Devoir à la maison Equations d'Hurwirtz

L'équation d'Hurwitz est

$$x_1^2 + \dots + x_n^2 = kx_1 \dots x_n$$
, $n, k \in \mathbb{N} * \text{avec } x_1, \dots, x_n \in \mathbb{N} *$.

- 1. Traiter les cas n = 1 et n = 2.
- 2. Montrer que si (x_1, \dots, x_n) est un solution de l'équation alors $(x_1, \dots, x_{i-1}, x'_i, x_{i+1}, \dots, x_n)$, avec $x'_i = kx_1 \dots x_{i-1}x_{i+1} \dots x_n x_i$ est aussi une solution.

On suppose désormais k et n fixés avec $n \geq 3$; on dira que deux solutions sont les mêmes si elles s'obtiennent l'une à partir de l'autre par permutation des indices. On ordonne ainsi les solutions $(x_1 \leq x_2 \leq \cdots \leq x_n)$ et on introduit la relation d'ordre lexicographique sur l'ensemble des solutions, i.e. $(x_1 \leq \cdots \leq x_n) < (y_1 \leq \cdots \leq y_n)$ si et seulement si $x_1 = y_1 \cdots x_k = y_k$ et $x_{k+1} < y_{k+1}$.

Définition: étant donnée une solution (x_1, \dots, x_n) , les solutions de la question 2) sont dites voisines de (x_1, \dots, x_n) ; une solution sera dite fondamentale si elle est plus petite que toutes ses voisines.

- 3. Montrer qu'une solution possède au plus un père, i.e. un voisin qui lui est plus petit; en déduire qu'une solution est associée à une unique solution fondamentale.
- 4. Montrer que si l'équation d'Hurwitz admet une solution alors elle en admet une infinité.

Une étude analytique à partir d'une solution minimale $(x_1 \leq \cdots \leq x_n)$ permet de montrer que $k \in \{1, \cdots, n\}$, ce que nous admettrons dans la suite. On s'intéresse désormais au cas n = 3.

5. Montrer qu'il y a une bijection entre les solutions associés au k = 1 avec celles associées à k = 3.

6. Montrer qu'il n'y a pas de solutions pour k=2.

On s'intéresse désormais au cas n=k=3 dont les solutions s'appellent des triplets de Markov $(x \leq y \leq z)$ et les entiers z des nombres de Markov. Pour déterminer les solutions fondamentales qui permettent d'obtenir tous les nombres de Markov, par des majorations élémentaires on se ramène à tester un nombre fini de triplets. Finalement on trouve que (1,1,1) est l'unique solution fondamental racine d'un arbre dit de Markov; (1,1,2) est l'unique fils et (1,2,5) est l'unique petit fils.

- 7. Soit (x, x, y) un nombre de Markov; montrer alors qu'à permutation près cette solution est (1, 1, 2) ou (1, 1, 2).
- 8. Soit (x < y < z) un triplet de Markov; montrer alors que cette solution a deux fils et un père.
- 9. Soit $(F_n)_{n\in\mathbb{N}}$ la suite de Fibonacci. Montrer que pour tout $n\in\mathbb{N}$, F_{2n} est un nombre de Markov.

Une conjecture affirme qu'un nombre de Markov, n'apparait qu'une seule fois dans l'arbre, i.e. toute triplet de Markov $(x \le y \le z)$ est déterminé par son élément maximal.

Définition : deux irrationnels θ et θ' sont dits équivalents s'il existe des entiers $a,b,c,d\in\mathbb{Z}$ tels que |ad-bc|=1 et

$$\theta' = \frac{a\theta + b}{c\theta + d}.$$

Lagrange a montré qu'il existe une infinité d'approximation $\frac{p}{q}$ de θ telles que

$$|\theta - \frac{p}{q}| \le \frac{1}{\sqrt{5}q^2}$$

et qu'on ne peut pas augmenter les $\sqrt{5}$ pour les irrationnels équivalents à $\theta = \frac{1+\sqrt{5}}{2}$. Pour tous les autres irrationnels, on a

$$|\theta - \frac{p}{q}| \le \frac{1}{\sqrt{8}q^2}.$$

D'efinition: pour tout irrationnel x, on note

$$\nu(x) = \liminf_{q \to \infty} q \min_{p \in \mathbb{Z}} |qx - p|,$$

$$et \ \lambda(c) = \nu(x)^{-1}.$$

On peut montrer que ν est constant sur les classes d'équivalences d'irrationnels; le théorème de Lagrange affirme alors que $\lambda(x) \geq \sqrt{5}$ avec égalité si et seulement si x est équivalent au nombre d'or; pour les autres irrationnels on a $\lambda(x) \geq 2\sqrt{2}$ avec égalité si et seulement si x est équivalent à $\sqrt{2}$. La suite des valeurs prises par λ est alors

$$\lambda_m = \sqrt{9 - \frac{4}{m^2}}$$

où m décrit la suite des nombres de markov ; le cas d'égalité étant donné par la classe d'une solution de

$$mX^2 + (3m - 2q)X + (r - 3q)$$

où q est l'entier tel que m divise $q^2 + 1$ avec 0 < q < m/2 et $r = \frac{q^2 + 1}{m}$. Il y a encore de nombreux liens entre les nombres de Markov et les

Il y a encore de nombreux liens entre les nombres de Markov et les minima des formes quadratiques et les sommes de Dedekind.

Solutions

- 1) Pour n = 1, l'équation est $x_1^2 = kx_1$ et donc $x_1 = k$. Pour k = 2, en divisant l'équation homogène par $x_1 \wedge x_2$, on se ramène au cas $x_1 \wedge x_2 = 1$ et $x_1^2 + x_2^2 = kx_1x_2$ de sorte que $x_1 = x_2 = 1$ et k = 2.
- 2) Cela découle directement du fait que la somme des racines du polynôme $X^2 + a_1X + a_0$ vaut $-a_1$.
- 3) Soit $(u_1 \leq \cdots \leq u_n)$ l'un des pères de $(x_1 \leq \cdots \leq x_n)$ qui est donc égal à permutation près à $(x_1, \cdots, x_{i-1}, x'_i, x_{i+1}, \cdots, x_n)$ de sorte que $x'_i \leq x_i$ et donc

$$x_{i} \geq kx_{1} \cdots x_{i-1}x_{i+1} \cdots x_{n} - x_{i}$$

$$2x_{i} \geq kx_{1} \cdots x_{i-1}x_{i+1} \cdots x_{n}$$

$$2x_{i}^{2} \geq kx_{1} \cdots x_{n}$$

$$2x_{1}^{2} \geq x_{1}^{2} + \cdots + x_{n}^{2}$$

$$x_{i}^{2} \geq x_{1}^{2} + \cdots + x_{i-1}^{2} + x_{i+1}^{2} + \cdots + x_{n}^{2}$$

de sorte que i = n et donc (u_1, \dots, u_n) est une permutation de $(x_1, \dots, x_{n-1}, x'_n)$ d'où le résultat.

Ainsi de père en père, en un nombre fini d'étapes, on ramène toute solution à une solution fondamentale.

- 4) Supposons par l'absurde qu'il n'y ait qu'un nombre fini de solutions; l'ordre lexicographique étant total, il existe une solution maximale $(x_1 \le \cdots \le x_n)$. En reprenant les majorations de la question précédente, on obtient $x_1^2 \ge x_2^2 + \cdots + x_n^2$ ce qui est absurde vu que $n \ge 3$.
- 5) Modulo 3, si $x_i \not\equiv 0 \mod 3$ pour i=1,2,3, on obtient $x_1x_2x_3 \equiv 1+1+1 \mod 3$ ce qui est contradictoire. Supposons $x_1 \equiv 0 \mod 3$, on trouve alors que $x_2 \equiv x_3 \equiv 0 \mod 3$ et donc

$$\left(\frac{x_1}{3}\right)^2 + \left(\frac{x_2}{3}\right)^2 + \left(\frac{x_3}{2}\right)^2 = 3\frac{x_1}{3}\frac{x_2}{3}\frac{x_3}{3}.$$

6) x_1 , x_2 et x_3 ne peuvent pas être pairs en même temps sinon on obtient une solution pour k=4. En réduisant modulo 2, on trouve deux variables impaires et une paire; $x_1 \equiv x_2 \equiv 1 \mod 2$ et $x_3 \equiv 0 \mod 2$. On obtient alors $2x_1x_2x_3 - x_3^2 = x_1^2 + x_2^2 \mod 4$ et donc $0 \equiv 2 \mod 4$, contradiction.

- 7) On a $2x^2 + y^2 = 3x^2y$ et donc x divise y et $1 + 1 + (\frac{y}{x})^2 = (3x) \cdot 1 \cdot 1 \cdot (\frac{y}{c})$ et donc k = 3x ne peut être égal qu'à 1 ou 3 et donc x = 1 et $2 + y^2 = 3y$ et donc y divise 2 d'où le résultat.
- 8) On a $3xz y = \frac{x^2 + z^2}{y} > \frac{z^2}{z} = z$ et 3yz x > 3xz y de sorte que (x, z, 3xz y) et (y, z, 3yz x) sont deux fils de (x, y, z) et donc (x, y, 3xy z) est son unique père.
- 9) Si (x, y, z) est un triplet de Markov, alors (z, x_n, x_{n+1}) avec $x_{n+2} = 3zx_{n+1} x_n$ et $x_0 = x$, $x_1 = y$, est aussi un triplet de Markov. Il suffit alors de remarquer que (1, 1, 1) est solution et que $F_{n+2} = F_{n+1} + F_n = 3F_n F_{n-2}$.

Corrigé