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Abstract. — Clozel, Harris and Taylor proposed in [CHT08] conjectural generaliza-
tions of the classical Ihara’s lemma for GL2, to higher dimensional similitude groups.
We prove these conjectures in the so called limit case, which after base change is the
essential one, under any hypothesis allowing level raising as for example theorem 5.1.5
in [Gee11].
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1. Introduction

1.1. Ihara’s lemma: origin and proofs. — In the Taylor-Wiles method Ihara’s
lemma is the key ingredient to extend a R = T property from the minimal case to a
non minimal one. It is usually formulated by the injectivity of some map as follows.

Let Γ = Γ0(N) be the usual congruence subgroup of SL2(Z) for some N > 1, and
for a prime p not dividing N let Γ′ := Γ∩Γ0(p). We then have two degeneracy maps

π1, π2 : XΓ′ −→ XΓ

between the compactified modular curves of levels Γ′ and Γ respectively, induced by
the inclusion

Γ′ →֒ Γ and

(
p 0
0 1

)
Γ′

(
p 0
0 1

)−1

→֒ Γ.

For l 6= p, we then have a map

π∗ := π∗
1 + π∗

2 : H1(XΓ,Fl)
2 −→ H1(XΓ′,Fl).

Theorem 1.1.1. — Let m be a maximal ideal of the Hecke algebra acting on these
cohomology groups which is non Eisenstein, i.e. that corresponds to an irreducible
Galois representation. Then after localizing at m, the map π∗ is injective.

Diamond and Taylor in [DT94] proved an analogue of Ihara’s lemma for Shimura
curves over Q. For a general totally real number field F with ring of integers OF ,
Manning and Shotton in [MS21] succeeded to prove it under some large image hy-
pothesis. Their strategy is entirely different from those of [DT94]but consists roughly

– to carry Ihara’s lemma for a compact Shimura curve YK̄ associated to a definite
quaternion algebraD ramified at some auxiliary place v of F , in level K̄ = K̄vK̄v

an open compact subgroup of D ⊗ AF,f unramified at v,
– to the indefinite situation XK relatively to a quaternion division algebra D
ramified at all but one infinite place of F , and isomorphic to D̄ at all finite
places of F different to v, and with level K agreing with K̄v away from v.
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Indeed in the definite case Ihara’s statement is formulated by the injectivity of

π∗ = π∗
1 + π∗

2 : H0(YK̄ ,Fl)m ⊕H
0(YK̄ ,Fl)m −→ H0(YK̄0(v),Fl)m

where both D and K̄ are unramified at the place v and K̄0(v)v is the subgroup of
GL2(Fv) of elements which are upper triangular modulo p.

The proof goes like this, cf. [MS21] theorem 6.8. Suppose (f, g) ∈ ker π∗. Regard-
ing f and g as Kv-invariant function on G(F )\G(AF,f), then f(x) = −g(xω) where

ω =

(
̟v 0
0 1

)
, ̟v being an uniformizer for Fw and G being the algebraic group

over OF associated to O×
D
the inversible group of the maximal order OD of D: note

that G(Fv) ∼= GL2(Fv). Then f is invariant under Kv and ω−1Kvω so that, using
the strong approximation theorem for the subgroup of G of elements of reduced norm
1, then f factors through the reduced norm map, and so is supported on Eisenstein
maximal ideals.

The link between XK and YKv is given by the geometry of the integral model of the
Shimura curve XK0(v) with Γ0(v)-level structure. The main new ingredient of [MS21]
to carry this geometric link to Ihara’s lemma goes through the patching technology
which allows to obtain maximal Cohen-Macaulay modules over deformation rings.
Using a flatness property and Nakayama’s lemma, there are then able to extend a
surjective property, dual to the injectivity in the Ihara’s lemma, from the maximal
unipotent locus on the deformation space to the whole space, and recover the Ihara’s
statement reducing by the maximal ideal of the deformation ring.

Recently Caraiani and Tamiozzo following closely [MS21] also obtained Ihara’s
lemma for Hilbert varieties essentially because Galois deformations rings are the same
and so regular which is not the case beyond GL2.

1.2. Generalisations of Ihara’s Lemma. — To generalize the classical Ihara’s
lemma for GLd, there are essentially two approaches.

The first natural one developed by Clozel, Harris and Taylor in their first proof
of the Sato-Tate theorem [CHT08], focuses on the H0 with coefficients in Fl of a
zero dimensional Shimura variety associated to higher dimensional definite division
algebras. More precisely consider a totally real field F+ and a imaginary quadratic
extension E/Q and define F = F+E. We then consider G/Q an unitary group with
G(Q) compact so that G becomes an inner form of GLd over F . This means, cf.
§2.3, we have fixed a division algebra B with center F , of dimension d2, provided
with an involution of the second kind such that its restriction to F is the complex
conjugation. We moreover suppose that at every place w of F , either Bw is split or
a local division algebra.
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Let v be a place of F above a prime number p split in E and such that B
×

v
∼=

GLd(Fv) where Fv is the associated local field with ring of integers Ov and residue
field κ(v).

Notation 1.2.1. — Let qv be the order of the residue field κ(v).

Consider then an open compact subgroup K
v
infinite at v in the following sense:

G(Qp) ∼= Q×
p ×

∏
v+i
B
op,×

v+i
where p =

∏
i v

+
i in F+ and we identify places of F+ over

p = uuc ∈ E with places of F over u. We then ask K
v

p = Z×
p ×

∏
w|uKw to be such

that Kv is restricted to the identity element.

The associated Shimura variety with level K = K
v
Kv for some finite level Kv at v,

denoted by ShK , is then such that its C-points are G(Q)\G(A∞
Q )/K and for l a prime

not divisible by v, its H0 with coefficients in Fl is then identified with the space

SG(K,Fl) = {f : G(Q)\G(A∞
Q )/K −→ Fl locally constant}.

Replacing K by K
v
, we then obtain an admissible smooth representation of GLd(Fv)

equipped with an action of the Hecke algebra T(K
v
) defined as the image of the

abstract unramified Hecke algebra, cf. definition 3.2.1, inside End(SG(K
v
,Fl)

)
.

To a maximal ideal m of T(K
v
) is associated a Galois Fl-representation ρm, cf. §5.2.

We consider the case where this representation is irreducible. Note in particular that
such an m is then non pseudo-Eisenstein in the usual terminology.

Conjecture 1.2.2. — (cf. conjecture B in [CHT08])
Any irreducible GLd(Fv)-submodule of SG(K

v
,Fl)m is generic.

For rank 2 unitary groups, we recover the previous statement as the characters
are exactly those representations which do not have a Whittaker model, i.e. are the
non generic ones. For d ≥ 2, over Ql, the generic representations of GLd(Fv) are the
irreducible parabolically induced representations stt1(πv,1)× · · · × sttr(πv,r) where for
i = 1, · · · , r,

– πv,i is an irreducible cuspidal representation of GLgi(Fv),
– stti(πv,i) is a Steinberg representations, cf. definition 2.1.2,
–
∑r

i=1 tigi = d where the Zelevinsky segments [πv,i{
1−ti
2
}, πv,i{

ti−1
2
}]are not linked

in the sense of [Zel80].

Over Fl every irreducible generic representation is obtained as the unique generic
subquotient of the modulo l reduction of a generic representation. It can also be
characterized intrinsically using representation of the mirabolic subgroup, cf. §2.1.

Definition 1.2.3. — (cf. definition of [CHT08] 5.1.9)
An admissible smooth Fl[GLd(Fv)]-moduleM is said to have the weak Ihara property
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if for every m ∈ MGLd(Ov) which is an eigenvector of Fl[GLd(Ov)\GLd(Fv)/GLd(Ov)],
every irreducible submodule of the Fl[GLd(Fv)]-module generated by m, is generic.

Remark. If we ask SG(K
v
,Fl)m to verify the weak Ihara property, then it should have

non trivial unramified vectors so that the supercuspidal support of the restriction ρm,v
of ρm to the decomposition subgroup at v, is made of unramified characters.

The second approach asks to find a map playing the same role as π∗ = π∗
1 + π∗

2. It
is explained in section 5.1 of [CHT08] with the help of the element

θv ∈ Zl[K1(v
n)\GLd(Fv)/GLd(OFv)]

constructed by Russ Mann, cf. proposition 5.1.7 of [CHT08], where Fv is here a
finite extension of Qp with ring of integers Ov.

Definition 1.2.4. — An admissible smooth Fl[GLd(Fv)]-module M is said to have
the almost Ihara property if θv :M

GLd(Ov) −→M is injective.

Recall that l is called quasi-banal for GLd(Fv) if either l ∤ ♯GLd(κv) (the banal
case) or l > d and qv ≡ 1 mod l (the limit case).

Proposition 1.2.5. — (cf. [CHT08] lemma 5.1.10)
Suppose that l is quasi-banal and M is a Fl[GLd(Fv)]-module verifying the Ihara prop-
erty. If ker(θv : MGLd(Ov) −→ M) is a Fl[GLd(OFv)\GLd(Fv)/GLd(OFv)]-module,
then M has the almost Ihara property.

Applications: the generalizations of the classical Ihara’s lemma were introduced in
[CHT08] to prove a non minimal R = T theorem. The weaker statement Rred = T
where Rred is the reduced quotient of R, was later obtained unconditionally using
Taylor’s Ihara avoidance method, cf. [Tay08] which was enough to prove the Sato-
Tate conjecture. However, the full R = T theorem would have applications to special
values of the adjoint L-function and would imply that R is a complete intersection. It
should also be useful for generalizing the local-global compatibility results of [Eme].

In [Mos21], the author also proved that Ihara’s property in the quasi-banal case
is equivalent to the following result.

Proposition 1.2.6. — (cf. [Mos21] corollary 9.5)
Let m be a non-Eisenstein maximal ideal of TS and f ∈ SG(K

v
GLd(Ov),Fl). Let Kv

be the Iwahori subgroup of GLd(Ov), then the Fl[Kv \GLd(Fv)/GLd(Ov)]-submodule
of SG(K

v
Kv,Fl) generated by f is of dimension d!.

1.3. Main results. — With the previous notations, let qv be the order of the
residue field of Fv. We fix some prime number l unramified in F+ and split in E and
we place ourself in the limit case where qv ≡ 1 mod l with l > d, which is, after by
base change, the crucial case to consider.
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Definition 1.3.1. — As in definition 2.5.1 of [CHT08], we say that a subgroup
H ⊆ GLd(Fl) is big if :

– H has no l-power order quotients;
– H i(H, g0d(Fl)) = (0) for i = 0, 1 and where gd := LieGLd and g0d is the trace zero
subspace of gd;

– for all irreducible Fl[H ]-submodules W of gd(Fl), we can find h ∈ H and α ∈ Fl
satisfying the following properties.

• The α-generalized eigenspace V (h, α) of h on F
d

l is one dimensional.

• Let πh,α : F
d

l ։ V (h, α) be the h-equivariant projection of F
d

l to V (h, α)

and let ih,α : V (h, α) →֒ F
d

l be the h-equivariant injection of V (h, α) into

F
d

l . Then πh,α ◦W ◦ ih,α 6= (0).

Theorem 1.3.2. — In the limit case, suppose that there exists a prime p0 = u0ū0
split in E with a place v0|u0 of F such that Bv0 is a division algebra. Consider m

such that

ρm : GF −→ GLd(Fl)

is an irreducible representation which is unramified at all places of F lying above
primes which do not split in E and which satisfies the following hypothesis:

– F
ker ad ρ

does not contain F (ζl) where ζl is any primitive l-root of 1;
– ρ(GF+(ζl)) is big.

Then Ihara’s lemma of the conjecture 1.2.2 is true, i.e. every irreducible GLd(Fv)-
submodule of SG(K

v
,Fl)m is generic.

– The last two hypothesis come from theorem 5.1.5 of [Gee11] which is some level
raising and lowering statement, cf. theorem 5.2.2. Any other similar statement,
for example theorem 4.4.1 of [BLGGT14], with different hypothesis can then
be used to modify the hypothesis of the theorem above.

– Our techniques work also in the banal case as soon as you avoid cuspidal Fl-
representations which are not supercuspidal which is for example the case if you
suppose that, after semi-simplification, ρm,v is a direct sum of characters. In
particular the resulting statement is more general than those of [Boy22].

The basic idea(1), cf. §5.1, as in [Boy22], is to introduce geometry and move from
the Shimura variety associated to G which is of dimension zero, to another Shimura
variety ShK associated to some reductive group G and level K, of strictly positive
dimension, so that SG(K,Fl) appears in a certain cohomology group of some sheaf
over ShK so that Ihara’s lemma is a corollary of the following result.

(1)this explains the hypothesis on the existence of p0 in the statement
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Theorem 1.3.3. — With the same hypothesis as in theorem 1.3.2, every irreducibe
GLd(Fv)-submodule of H0(ShKv(∞),η̄,Zl[d− 1])m is generic.(2)

The first point in our strategy is to work in characteristic zero and then consider
modulo l reduction. For this we will need to fix the following data.

Notation 1.3.4. — Consider a coefficient field L which is a large enough finite
extension of Ql, with ring of integers OL and residue field OL/̟FOLFL for some
fixed uniformizer ̟L.

We then want to construct a filtration of the middle cohomology group of ShK with
coefficients in OL so that the graded parts, which are expected to be more easy to
handle with, all verify the genericity property of their irreducible sub-spaces. More
explicitly we study the middle degree cohomology group with coefficients in Zl, of the
KHT Shimura variety ShKv(∞) associated to some similitude group G/Q such that

G(A∞,p
Q ) ∼= G(A∞,p

Q ), cf. §2.3 for more details, and with level Kv(∞) := K
v
meaning

finite level outside v and infinite level at v. The localization at m of the cohomology
groups of ShKv(∞) can be computed as the cohomology of the geometric special fiber
ShKv(∞),s̄v of ShKv(∞), with coefficient in the complex of nearby cycles ΨKv(∞),v.

The Newton stratification of ShKv(∞),s̄v gives us a filtration of ΨKv(∞),v, cf.

[Boy20], and so a filtration Fil•(Kv(∞)) of Hd−1(ShKv(∞),η̄v ,Zl)m and the main
point of [Boy22] is to prove that the modulo l reduction of each graded part of
this filtration verifies the Ihara property, i.e. each of their irreducible sub-space are
generic. To realize this strategy

– we need first the cohomology groups of ShKv(∞) to be torsion free: this point is
now essentially settled by the main result of [Boy23a].

– More crucially the previous filtration Fil•(Kv(∞)) should be strict, i.e. its
graded parts have to be torsion free, cf. theorem 3.2.3.

– For each of the graded parts, the Ql-cohomology can be described by a set of
automorphic representations, each of them giving an automorphic contribution.
We choose any numbering of this discrete set and for each n, we choose a co-
efficient field L large enough to be able to separate the first n automorphic
contributions. The cohomology over OL gives us a lattice which then allows us
to deal with the modulo l reduction meaning reduction modulo ̟LOL.

Remark. In the following we will just write modulo l reduction for this construction.

It appears that the graded parts of Fil•(Kv(∞)) are parabolically induced and in
the limit case when the order qv of the residue field is such that qv ≡ 1 mod l, the
socle of the modulo l reduction of these parabolic induced representations are no more
irreducible and do not fulfill the Ihara property, i.e. some of their subspaces are not
generic. It then appears that we have at least

(2)cf. (8) for the meaning of this notation
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– to verify that the modulo l reduction of the first non trivial graded part of
Fil•(Kv(∞)) verifies the genericity property of its irreducible submodule. For
this we need a level raising statement as theorem 5.1.5 in [Gee11], cf. theorem
5.2.2, or theorem 4.4.1 of [BLGGT14].

– Then we have to understand that the extensions between the graded parts of
Fil•(Kv(∞))⊗Zl

Fl are non split.

One problem about this last point is that the Ql-cohomology is split. For any ir-
reducible automorphic representation Π of G(A) cohomological for, say, the trivial
coefficients, the Zl-cohomology defines a lattice Γ(Π) of (Π∞)K

v(∞) ⊗ σ(Π)v whose
modulo l reduction gives a subspace of the Fl-cohomology: Ihara’s lemma predicts
that the socle of this subspace is still generic, i.e. it gives informations about the lat-
tice Γ(Π). We then see that non splitness of Fil•(Kv(∞))⊗Zl

Fl should be understood
in a very flexible point of view. We then naturally face to prove the following result.

Proposition 1.3.5. — (cf. 5.5.1) The contribution Γ(Π) of an automorphic repre-
sentation Π to the cohomology viewed as a subrepresentation, defines a stable lattice
of Πv uniquely defined by the property that the socle of its modulo l reduction is irre-
ducible and generic.

In particular this lattice should depend only on Πv and not on the global repre-
sentation Π. This statement looks similar to the Breuil lattice conjecture which is
stated when l = p and Kv-types. We then first prove a simple version of this result,
cf. proposition 4.3.2 which can be stated as follows.

– Consider some fixed Kv-type σv,Ql

– and a system λ of Hecke eigenvalues associated to some automorphic represen-
tation Π as above

– such that σv,Ql
appears with multiplicity one in Πv.

Then the lattice of σv,Ql
∩ Γ(Π) depends only on the modulo l reduction of λ. One

combinatorial problem is then to recover the information on the GLd(Fv)-lattices from
this vague obversation, cf. §5.3.2. The idea to do so is to start from the filtration
Fil•(Kv(∞)) coming from a filtration of the nearby cycles perverse sheaf and modify
it step by step, cf. §5.3, until we arrive at an automorphic filtration, cf. §5.3.1,
i.e. where the graded parts correspond to the contribution of some automorphic
representation. The main ingredient to construct modifications of filtrations is to
consider situations as illustrated in the figure 1.

– A filtration Fil• of Hd−1(ShKv(∞),η̄v ,Zl)m whose graded parts gr• are torsion free;

– let k and X := Filk /Filk−2 such that X ⊗Zl
Ql
∼= (grk−1 ⊗Zl

Ql)⊕ (grk⊗Zl
Ql).

– We can then define g̃rk := X ∩ (grk⊗Zl
Ql) and the quotient g̃rk−1: note that T

is torsion.
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– We choose a finite extension L over Ql, so that this diagram is defined over
OL and which allows to look modulo l, meaning modulo ̟LOL, where we then
obtained a priori two distinct filtrations. Note that the subquotients of these
filtrations which are not involved in T [̟L] are identified, through the modulo
̟L reduction of the first square in the figure 1.

Let us first explain why something interesting should happen during this process.
(a) We can define a Fl-monodromy operator for the Galois action at the place v.(3)

We are looking for a geometric monodromy operator Ngeo
v which then exists whatever

are the coefficients, Ql, Zl and Fl, compatible with tensor products. One classical
construction is known in the semi-stable reduction case, cf. [Ill94] §3, which corre-
sponds to the case where the level at v of our Shimura variety is of Iwahori type.(4)

Using our knowledge of the Zl-nearby cycles described completely in [Boy23b], we
can construct such a geometric nilpotent monodromy operator which generalizes the
semi-stable case, cf. §3.3.
(b) Taking this geometric monodromy operator, we then obtain a cohomological mon-
odromy operator N coho

v,m acting on H0(ShK,s̄v ,ΨKv(∞),v)m One of the main point, cf
theorem 3.2.3, is that the graded parts of the filtration of H0(ShK,s̄v,ΨKv(∞),v)m in-
duced by the Newton filtration on the nearby cycles spectral sequence, are all torsion
free, so that in particular we are in position to understand quite enough the action of

N
coho

v,m := N coho
v,m ⊗Zl

Fl on H0(ShK,s̄v ,ΨKv(∞),v)m ⊗Zl
Fl, and prove that its nilpotency

order is as large as possible.
(c) Note that as ρm is supposed to be irreducible, then the modulo l reduction of the
monodromy operator acting on ρm̃ does not depend on the choice of the prime ideal
m̃ ⊆ m so that it is usually trivial. Finally, as N coho

v ⊗Zl
Fl is far from being trivial,

g̃rk
� _

��

� p

!!❈
❈❈

❈❈
❈❈

❈❈

grk−1 � � //
� q

""❋
❋❋

❋❋
❋❋

❋
X // //

����

grk

�� ��❂
❂❂

❂❂
❂❂

❂

g̃rk−1

"" ""❊
❊❊

❊❊
❊❊

❊❊
T

T

⑧⑧⑧⑧⑧⑧⑧⑧⑧

⑧⑧⑧⑧⑧⑧⑧⑧⑧

Figure 1. Exchange process

(3)Note that over Fl the usual arithmetic approach for defining the nilpotent monodromy operator,
is hopeless because, up to consider a finite extension of Fv, such a Fl-representation has a trivial
action of the inertia group.
(4)This corresponds to automorphic representations Π such that the cuspidal support of Πv is made
of unramified characters, and so with the weak form of Ihara’s lemma of definition 1.2.3.
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there should be non split extensions between the graded parts of The heart of our
proof is then divided in three main steps:

– prove that the lattice of Πv induced by Γ(Π) depends only on the modulo l
reduction of the system of Hecke eigenvalues of a globalization Π of Πv;

– using the modulo l monodromy operator N v, prove that this lattice verifies the
Ihara property;

– prove that the graded parts of our final filtration, which do not verify Ihara’s
property can not give a non generic subspace of the all cohomology.

To conclude this long introduction, note that Ihara’s lemma in Clozel-Harris-Taylor
formulation, was stated in order to be able to do level raising. In our proof we use
level raising statements, proved thanks to Taylor’s Ihara avoidance in [Tay08], in
order to prove Ihara’s lemma. Then we can see our arguments as the proof that level
raising implies Ihara’s lemma in the limit case.

2. Preliminaries

2.1. Representations of GLd. — Consider a finite extension M/Qp with residue
field Fq. We denote by |− | its absolute value. For a representation π of GLd(M) and
n ∈ 1

2
Z, set

π{n} := π ⊗ q−nval◦det.

Notation 2.1.1. — For π1 and π2 representations of respectively GLn1(M) and
GLn2(M), we will denote by

π1 × π2 := ind
GLn1+n2 (M)

Pn1,n1+n2 (M) π1{
n2

2
} ⊗ π2{−

n1

2
},

the normalized parabolic induced representation where for any sequence r = (0 <
r1 < r2 < · · · < rk = d), we write Pr for the standard parabolic subgroup of GLd
with Levi

GLr1 ×GLr2−r1 × · · · ×GLrk−rk−1
.

Recall that a representation ̺ of GLd(M) is called cuspidal (resp. supercuspidal) if
it is not a subspace (resp. subquotient) of a proper parabolic induced representation.
When the field of coefficients is of characteristic zero, these two notions coincides, but
this is no more true over Fl.

Definition 2.1.2. — (see [Zel80] §9 and [Boy10] §1.4) Let g be a divisor of d = sg
and π an irreducible cuspidal Ql-representation of GLg(M). The induced representa-
tion

(1) π{
1− s

2
} × π{

3− s

2
} × · · · × π{

s− 1

2
}
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holds an unique irreducible quotient (resp. subspace) denoted sts(π) (resp. Spehs(π));
it is a generalized Steinberg (resp. Speh) representation. Their cuspidal support is
the Zelevinsky segment

[π{
1− s

2
}, π{

s− 1

2
}] :=

{
π{

1− s

2
}, π{

3− s

2
}, · · · , π{

s− 1

2
}
}
.

More generally the set of sub-quotients of the induced representation (1) is in
bijection with the following set.

Dec(s) = {(t1, · · · , tr), such that ti ≥ 1 and

r∑

i=1

ti = s}.

For any s ∈ Dec(s), we then denote by sts(π) the associated irreducible sub-quotient
of (1). Following Zelevinsky, we fix this bijection such that Spehs(π) corresponds to
(s) and sts(π) to (1, · · · , 1). The Lubin-Tate representation LTh,s(π) will also appear

in the following, it corresponds with (

h︷ ︸︸ ︷
1, · · · , 1, s− h).

Definition 2.1.3. — For 1 ≤ s− 1, we say that s ∈ Dec(s) is t-small if the number
of consecutive 1 is less than t. We say that an irreducible subquotient of (1) is
(π, t)-small if its parameter s ∈ Dec(s) is t-small.

Proposition 2.1.4. — (cf. [Vig96] III.5.10) Let π be an irreducible cuspidal rep-
resentation of GLg(M) with a stable Zl-lattice(5), then its modulo l reduction is irre-
ducible and cuspidal (but not necessary supercuspidal).

We now suppose as explained in the introduction that

q ≡ 1 mod l and l > d

so the following facts are verified (cf. [Vig96] §III):

– the modulo l reduction of every irreducible cuspidal representation of GLg(M)
for g ≤ d, is supercuspidal(6): with the notation of [Boy11] proposition 1.3.5,
m(̺) = l > d for any irreducible Fl-supercuspidal representation ̺.

– For a Fl-irreducible supercuspidal representation ̺ of GLg(M), the parabolic
induced representation ̺ × · · · × ̺, with s copies of ̺, is semi-simple with
irreducible constituants(7) the modulo l reduction of the set of elements of
{sts(π) such that s ∈ Dec(s)}, where π is any cuspidal representation whose
modulo l reduction is isomorphic to ̺.

(5)As before, we fix L/Ql large enough and consider an OL-lattice: we say that π is integral.
(6)In the banal case this is not always the case but it is when the cuspidal support contains only
characters.
(7)some of them might be isomorphic to each others
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Concerning the notion of genericity, consider the mirabolic subgroup Md(M) of
GLd(M) as the set of matrices with last row (0, · · · , 0, 1): we denote by

Vd(M) = {(mi,j) ∈Md(M) : mi,j = δi,j for j < d}.

its unipotent radical. We fix a non trivial character ψ of L and let θ be the character
of Vd(M) defined by θ((mi,j)) = ψ(md−1,d). For G = GLr(M) or Mr(M), we denote
by alg(G) the abelian category of smooth representations of G and, following [BZ77],
we introduce

Ψ− : alg(Md(M)) −→ alg(GLd−1(M)),

and

Φ− : alg(Md(M)) −→ alg(Md−1(M)),

defined by Ψ− = rVd,1 (resp. Φ
− = rVd,θ) the functor of Vd coinvariants (resp. (Vd, θ)-

coinvariants), cf. [BZ77] 1.8. For τ ∈ alg(Md(M)), the representation

τ (k) := Ψ− ◦ (Φ−)k−1(τ)

is called the k-th derivative of τ . If τ (k) 6= 0 and τ (m) = 0 for all m > k, then τ (k)

is called the highest derivative of τ . In the particular case where k = d, there is an
unique irreducible representation τnd of Md(M) with derivative of order d.

Definition 2.1.5. — An irreducible representation π of GLd(M) is said generic, if
its restriction to the mirabolic subgroup admits τnd as a subquotient.

Let π be an irreducible generic Ql-representation of GLd(M) and consider any
stable lattice which gives us by modulo l reduction a Fl- representation uniquely
determined up to semi-simplification. Then this modulo l reduction admits an unique
generic irreducible constituant.

Lemma 2.1.6. — Let 1 ≤ t ≤ s and consider

– s = (l1 ≥ · · · ≥ lr) a partition of s with l1 < t;
– π1, · · · , πr irreducible cuspidal representations whose modulo l reductions are

isomorphic to ̺.

There exists an irreducible subquotient τ of stl1(π1)× · · · × stlr(πr) such that

– whatever is s′ = (l′1 ≥ · · · ≥ l′r′) with l
′
1 ≥ t,

– and π′
1, · · · , π

′
r′ irreducible cuspidal representations with modulo l reduction iso-

morphic to ̺,

then τ is not a subquotient of the modulo l reduction of stl′1(π
′
1)× · · · × stl′r(π

′
r′).

Proof. — Note that stl1(π1)× · · · × stlr(πr) has the same modulo l reduction as

(2) stl1(π1{
l1 − s

2
})× stl2(π2{

l2 − s

2
+ l1−1}× · · ·× stlr(π1{

lr − s

2
+ l1+ · · ·+ lr−1})
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where the shifts are chosen so that stl1(π{
l1−s
2
})×· · ·×stlr(π{

s−lr
2
}) is the subquotient

of (1) associated to

(

l1−1︷ ︸︸ ︷
1, · · · , 1, 2,

l1−1︷ ︸︸ ︷
1, · · · , 1, 2, · · · ,

lr−1︷ ︸︸ ︷
1, · · · , 1) ∈ Dec(s).

Note that this irreducible constituant of (1) is the less non degenerate subquotient
and we denote by τ is its modulo l reduction which remains irreducible.

The property stated in the lemma then follows from the fact that whatever is an
irreducible subquotient of the modulo l reduction of stl′1(π

′
1) × · · · × stl′r(π

′
r′), it has

a non zero derivative of order l′1, and so a non zero derivative of order t, while the
derivative of order t of τ is zero.

Definition 2.1.7. — Elements τ constructed in the above lemma will be said to be
(̺, t)-small.

Consider any non degenerate irreducible representation Π := stl1(π1)×· · ·×stlr(πr)
where the modulo l reduction of π1, · · · , πr is isomorphic to ̺. As the modulo l
reduction of Π contains an unique irreducible non degenerate subquotient, there exists
then an unique stable lattice such that its modulo l reduction has an irreducible
generic socle τgen, cf. [EGS15] lemma 4.1.1.

Notation 2.1.8. — We denote by Γ(Π)gen the lattice of Π for which the socle of its
modulo l reduction is generic.

2.2. Weil–Deligne inertial types. — Recall that a Weil-Deligne representation
of WM is a pair (r,N) where

– r : WM −→ GL(V ) is a smooth(8) representation on a finite dimensional Ql-
vector space V ; and

– N ∈ End(V ) is nilpotent such that

r(g)Nr(g)−1 = ||g||N,

where || • || : WM →WM/IM ։ qZ takes an arithmetic Frobenius element to q.

Remark. To a continuous(9) representation on a finite dimensional Ql-vector space V ,
ρ : WM −→ GL(V ) is attached a Weil-Deligne representation denoted by WD(ρ). A
Weil representation ofWM is also said of Galois type if it comes from a representation
of GM .

(8)i.e. continuous for the discrete topology on V
(9)relatively to the l-adic topology on V
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Main example: let ρ :WM −→ GL(V ) be a smooth irreducible representation on a
finite dimensional vector space V . For k ≥ 1 an integer, we then define a Weil-Deligne
representation

Sp(ρ, k) :=
(
V ⊕ V (1)⊕ · · · ⊕ V (k − 1), N

)
,

where for 0 ≤ i ≤ k − 2, the isomorphism N : V (i) ∼= V (i + 1) is induced by some
choice of a basis of L(1) and N|V (k−1) is zero. Then every Frobenius semi-simple
Weil-Deligne representation of WM is isomorphic to some

⊕r
i=1 Sp(ρi, ki), for smooth

irreducible representations ρi : WM −→ GL(Vi) and integers ki ≥ 1. Up to obvious
reorderings, such a writing is unique.

Let now ρ be a continuous representation ofWM , or its Weil-Deligne representation
WD(ρ), and consider its restriction to IM , τ := ρ|IM . Such an isomophism class of a
finite dimensional continuous representation of IM is then called an inertial type.

Notation 2.2.1. — Let I0 the set of inertial types that extend to a continuous
irreducible representation of GM .

Remark. τ ∈ I0 might not be irreducible.

Let Part be the set of decreasing sequences of positive integers

d = (d(1) ≥ d(2) ≥ · · · )

viewed as a partition of
∑
d :=

∑
i d(i). We also denote by Part(s) the set of partition

of s: Part =
∐

s≥1 Part(s).

Notation 2.2.2. — Let f : I0 −→ Part with finite support. We then denote by τf
the restriction to IM of ⊕

τ0∈I0

⊕

i

Sp(ρτ0 , f(τ0)(i)),

where ρτ0 is a fixed extension of τ0 to WM .

Remark. By lemma 3.3 of [MS21] the isomorphism class of τf is independent of the
choices of the ρτ0 .

The map from {f : I0 −→ Part} to the set of inertial types given by f 7→ τf , is
a bijection. The dominance order � on Part induces a partial order on the set of
inertial types.

We let recM denote the local reciprocity map of [HT01, Theorem A]. Fix an

isomorphism ı : Qℓ
∼
→ C. We normalize the local reciprocity map rec of [HT01,

Theorem A], defined on isomorphism classes of irreducible smooth representations of
GLn(M) over C as follows: if π is the isomorphism class of an irreducible smooth
representation of GLn(M) over Qℓ, then

ρℓ(π)
def
= ı−1 ◦ recM ◦ ı(π ⊗Qℓ

| det |(1−n)/2).
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Then ρℓ(π) is the isomorphism class of an n-dimensional, Frobenius semisimple Weil–
Deligne representation of WM over Qℓ, independent of the choice of ı. Moreover, if
ρ is an isomorphism class of an n-dimensional, Frobenius semisimple Weil–Deligne
representation of WM over M , then ρ−1

ℓ (ρ) is defined over M (cf. [CEG+16, §1.8]).

Recall the following compatibility of the Langlands correspondence.

Lemma 2.2.3. — If π and π′ are irreducible generic representations of GLd(M)
such that ρℓ(π)|IM ∼= ρℓ(π

′)|IM then π|GLd(OM )
∼= π′

|GLd(OM ).

Theorem 2.2.4. — (cf. [BC09] proposition 6.3.3 or [Sho18] theorem 3.7)
Let G = GLn. Let τ be a inertial type for M . Then there is a smooth irreducible
GLn(OM )-representation σ(τ) over E such that for any irreducible admissible repre-
sentation π of GLn(M), one has:

(i) if π|GLn(OM ) contains σ(τ) then ρℓ(π)|IM � τ ;
(ii) if ρℓ(π)|IM = τ , then π|GLn(OM ) contains σ(τ) with multiplicity one;
(iii) if ρℓ(π)|IM � τ and π is generic, then π|GLn(OM ) contains σ(τ) and the multi-

plicity is one if furthermore τ is maximal with respect to �.

Remark. For example take τ0 the trivial representation and consider the following
partitions d = (1 ≥ 1 ≥ · · · ≥ 1) (resp. (d)) denoted also by (1d). Denote then by τ
the associated inertial type of notation 2.2.2. Then σ(τ) is the trivial representation
(resp. is inflated from the Steinberg representation of GLd(κ)). Note also that π
contains σ(τ) if and only if π is unramified (resp. it implies that rℓ(π)|IM is unipotent).

We need more details about the construction of σ(τ) which rests on the notion
of SZ-stratum of [SZ99]. We first recall quickly the basic notions of type theory of
Bushnell and Kutzko. Let K denote Ql or Fl. Let V be a vector space over F and let
G = AutF (V ) and A = EndF (V ).

- An OF -lattice chain in V is a sequence L = (Λi)i∈Z of OF -lattices inV such that
Λi+1 ⊆ Λi for all i ∈ Z and such that there exists an period e ≥ 1 with Λi+i = PMΛi
for all i ∈ Z.

- The hereditary OM -orders in A are those orders U that arise as the stabiliser of
some OF -lattice chain; it is maximal if and only if it stabilises a lattice chain of
period e = 1.

- A hereditary order U ⊆ A has a unique two-sided maximal ideal P = {x ∈ U : xΛi ⊆
Λi+1 for all i ∈ Z}. We write U(U) for the group of units in U and U1(U) := 1 +P.

Definition 2.2.5. — A simple strata in A is [U, m, 0, β] where

– U is a hereditary OK-order in A;
– m > 0 is an integer;
– β ∈ P−m \ P1−m is such that E := L[β] is a field and E× is contained in the
normalized of U(U);
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– the number k0(β,U(E)) defined in [BK93] §1.4 is strictly negative.

The chain lattice defining U can be seen as an OE-lattice chain and we denote
B := U ∩ EndE(V ) its stabiliser. We define the groups U(B) and U1(B) as for U.
In [BK93], the authors associate to the simple stratum [U, m, 0, β], compact open
subgroups J = J(β,U), J1 = J1(β,U) and H = H1(β,U) of U(U) such that:

– J1 is a normal prop-p- subgroup of J ;
– H1 is a normal subgroup of J1;
– U(B) ⊆ J and U1(B) ⊆ J1 and the induced map

U(B)/U1(B) −→ J/J1

is a isomorphism.

By [BK93] §3.2, there is a set C(U, 0, β) of simple characters of H1(β,U). For θ ∈
C(U, 0, β) there is a unique irreducible representation η of J1(β,U) whose restriction
to H1(β,U) contains θ. There is then a distinguished class of β-extensions κ of η to
J(β,U).

It is the main result of [BK99] that every Berstein component of RepK(G) has a
type and give an explicit construction of them. When Ω is supercuspidal then they
construct a type (J, λ) such that J = J(β,U) for a simple stratum [U, m, 0, β] in A
in which B is a maximal OE-order and λ = κ ⊗ ν where κ is a β-extension of an
irreducible representation η containing a simple character θ ∈ C(U, 0, β) and ν is a
cuspidal representation of J/J1 ∼= GLn/[E:L](kE). This type is called maximal.

From [BK99] §4, the character θ determines a ps-character (Θ, 0, β) viewed as a
function Θ on the set of simple strata [U, m, 0, β] taking such a stratum to an element
Θ(U) ∈ C(U, 0, β). By [BK99] §4.5, the endo-class of this ps-character is determine
by Ω.

If [M, π] is an inertial equivalence class of supercuspidal pair corresponding to a
Berstein component Ω of RepK(G), then let (JM, λM) be a maximal type for the
supercuspidal Berstein component ΩM of RepM(M) containing π. By the results of
[BK99], there is, what is called a G-cover, (J, λ) of (JM, λM) which is a type for Ω.

Definition 2.2.6. — (cf. [Sho18] definition 6.11)
A SZ-datum over K, is a set

S =
{
(Ei, βi, Vi,Bi, λi), i = 1, · · · , r

}

where r is a positive integer and for each i = 1, · · · , r we have

– Ei/F is a finite extension generated by an element βi ∈ Ei,
– Vi is an Ei-vector space of finite dimension Ni,
– Bi ⊆ EndEi

(Vi) is a maximal hereditary OEi
-order,
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– let denote Ui the associated OM -order in Ai := EndM(Vi) and letmi := −vEi
(βi).

Then [Ui, mi, 0, βi] is a simple stratum and λi is an K-representation of Ji :=
J(βi,Ui) of the form κi ⊗ νi where κi is a βi-extension of the representation ηi
of J1

i := J1(βi,Ui) containing some simple character θi ∈ C(Ui, 0, βi) of H1
i =

H1(βi,Ui) and νi is an irreducible representation of U(Bi)/U
1(Bi) ∼= GLNi

(kEi
)

over K;
– no two of the θi are endo-equivalent in the sense of [BK99] §4.

Let V =
⊕r

i=1 Vi, A = EndM(V ) and G = AutM(V ). The Levi subgroup M =∏r
i=1AutM(Ai) ⊆ G has compact open subgroups J1

M ⊳ JM where J1
M =

∏r
i=1 J

1
i and

similarly for JM. Let denote by ηM =
⊗r

i=1 ηi, a representation of J1
M and similarly

for the representations κM and λM of JM. Note that ηM and κM are clearly irreducible
and λM is irreducible by [Sho18] propositions 6.12.

Since no two of the θi are endo-equivalent, by [BK99] §8, see also [MS14] propo-
sition 2.28, we have compact open subgroups J and J1 of G and representations η
of J1, κ of J and λ of J such that (J1, η) (resp. (J, κ), resp. (J, λ)) is a G-cover of
(J1

M, ηM) (resp. (JM, κM), resp. (JM, λM)) and J/J
1 = JM/J

1
M with λ = κ⊗ (

⊗r
i=1 νi)

under this identification.

Definition 2.2.7. — For S an SZ-stratum and J and λ as above. Let K be a
maximal compact subgroup of G such that JM ⊆ K ∩M. We then denote by

σ(S) := indKJ (λ),

which by [Sho18] theorem 6.16 is irreducible.

Start now from P ∈ I = {f : I0 −→ Part} and let n =
∑

τ0∈I0

∑
f(τ0) dim τ0.

Let V be a L-vector space of dimension n and let G = AutM(V ). Let (M0, π)
be a supercuspidal pair in the inertial equivalence class associated to the Bernstein
component attached to P. Write M0 =

∏t
i=1M

0
i where each M0

i is the stabiliser

of some ni-dimensional subspace V 0
i of V . Write π =

⊗t
i=1 πi and let Ωi be the

supercuspidal Berstein component containing πi. For each Ωi there is an associated
endo-class of ps-character Θ0

i = (Θ0
i , 0, β

0
i ). Let M =

∏r
i=1M

0
i the Levi subgroup of

G obtaining from M by gathering M0
j with M0

k if and only if Θ0
j = Θ0

k: we then write
simply (Θi, 0, βi) for the common value.

We attach to P a SZ-datum

SP =
{
(Ei, βi, Vi,Bi, κi ⊗ νi) : i = 1, · · · , r

}

as follows. Suppose first that r = 1 and write (Θ, 0, β) for the common value of
(Θ0

i , 0, β
0
i ).

– E = L[β];
– let (J0

i , λ
0
i ) be the maximal simple type for the supercuspidal Berstein component

Ω0
i with J0

i = J(β, UF 0
i ) for a simple stratum [U0

i , m
0
i , 0, β

0
i ] and λ0i contains
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θ0i := Θ(U0
i , 0, βi). As above we then have compact open subgroups J1 ⊆ J of G

and a representation η of J1 containing the simple character Θ(U, 0, β) where U

is a hereditary OM -order in A and Ui∩B = B is a maximal hereditary OE-order.
– We choose compatible β-extensions, in the sense of [Sho18] §6.6, κ0i of η

0
i coming

from a β-extension κ of η, and decompose each λ0i as κ
0
i⊗ν

0
i where ν

0
i is a cuspidal

representation of J0
i /J

1,0
i = U(B0

i )/U
1(B0

i )
∼= GLn0

i /[E:L](kE) for an integer n0
i .

Then J/J1 ∼= GLn/[E:L](kE) so that we can view each ν0i as an element of I0 and

define an element P ∈ I by P(ν0i ) = P(τi) where τi ∈ I0 corresponds to Ωi.
– Write st(P) for the irreducible representation ofMP(κE) whose tensor factors are

the st(σ,P(σ)(i)) for each (σ, i). We then denote by πP := ind
GLn/[E:L](κE)

L
P
(κE) st(P)

where LP is any parabolic subgroup with Levi factor MP . Let σP be the unique

irreducible representation of πP that is not contained in πP ′ for any P � P
′
. We

then write ν = σP a representation of GLn/[E:L](kE) and see it as a representation
of J/J1.

– We repeat this construction for every i = 1, · · · , r.

Notation 2.2.8. — For τ = τP we write σ(τ) := σ(SP).

Theorem 2.2.9. — ([Sho18] 6.20)
Let P ′ ∈ I with degree n and let (M ′, π′) be any discrete pair in the inertial equivalence
class associated to P ′. For any parabolic subgroup Q′ of G with Levi M ′, we have

dimHomK(σ(SP), ind
G
Q′ π′) =

∏

τ0∈I0

m(P(τ0),P
′(τ0)),

where for any two partition λ, µ of n, m(λ, µ) is the usual Kostka number which
counts the number of possible ways to fill the Young tableau with lines of respective
size λ1, · · · with µ1 one, µ2 two and so on, with the following properties: the sequence
of labels in each columns is strictly increasing, while it is increasing in each lines.

Note that

– if λ < µ then m(λ, µ) = 0;
– m(λ, λ) = 1;
– m((n), µ) = 1.

In particular if P is maximal that is if for every τ0 ∈ I0 we have P(τ0) = (
∑
P(τ0)),

then the multiplicity of σ(SP) in indGQ′ π′ is 1 if
∑
P ′(τ0) =

∑
P(τ0) for every τ0 ∈ I0,

otherwise it is 0.

Let S =
{
(Ei, βi, Vi,Bi, λi); i = 1, · · · , r

}
be an SZ-datum. Write λi = κi ⊗ νi

where the νi are irreducible representations of Ji/J
1
i . Note that the modulo l reduction

κi of κi remains irreducible. We then decompose the semisimplification of the modulo
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l reduction of νi:

νssi =
⊕

j∈Si

µi,jνi,j

where Si is some finite indexing set, νi,j are distinct irreducible Fl-representations and
µi,j ∈ N. For j = (j1, · · · , jr) ∈ S1 × · · · × Sr, define an SZ-datum Sj over Fl by

Sj =
{
(Ei, βi, Vi,Bi, κi ⊗ νi,ji); i = 1, · · · , r

}
.

Theorem 2.2.10. — (cf [Sho18] 6.23)
The semisimplified modulo l reduction of σ(S) is

⊕

j∈S1×···×Sr

µjσ(Sj),

where µj :=
∏r

i=1 µi,ji.

2.3. Kottwiz–Harris–Taylor Shimura varieties. — Let F = F+E be a CM
field where E/Q is a quadratic imaginary extension and F+/Q is totally real. We
fix a real embedding τ : F+ →֒ R. For a place v of F , we will denote by Fv the
completion of F at v, Ov its ring of integers with uniformizer ̟v and residue field
κ(v) = Ov/(̟v) of cardinal qv.

Let B be a division algebra with center F , of dimension d2 such that at every place
v of F , either Bv is split or a local division algebra and suppose B provided with
an involution of second kind ∗ such that ∗|F is the complex conjugation. For any
β ∈ B∗=−1, denote by ♯β the involution v 7→ v♯β = βv∗β−1 and let G/Q be the group
of similitudes, denoted by Gτ in [HT01], defined for every Q-algebra R by

G(R) ∼= {(λ, g) ∈ R× × (Bop ⊗Q R)
× such that gg♯β = λ}

with Bop = B ⊗F,c F . If x is a place of Q split x = yyc in E then

(3) G(Qx) ∼= (Bop
y )× ×Q×

x
∼= Q×

x ×
∏

v+i

(Bop

v+i
)×,

where x =
∏

i v
+
i in F+ and we identify places of F+ over x with places of F over y.

Convention 2.3.1. — For x = yyc a place of Q split in M and v a place of F
over y, we shall make throughout the text the following abuse of notation: we denote
G(Fv) the factor (Bop

v|F+
)× in the formula (3) so that

G(A∞,v
Q ) := G(A∞,p

Q )×
(
Q×
p ×

∏

v+i 6=v|F+

(Bop

v+i
)×
)
.

In [HT01], the authors justify the existence of some G like before such that

– if x is a place of Q non split in M then G(Qx) is quasi split;
– the invariants of G(R) are (1, d−1) for the embedding τ and (0, d) for the others.
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As in [HT01, page 90], a compact open subgroup K of G(A∞
Q ) is said to be

sufficiently small if there exists a place x of Q such that the projection from Kx to
G(Qx) does not contain any element of finite order except identity.

Notation 2.3.2. — Denote by K the set of sufficiently small compact open sub-
groups of G(A∞). For K ∈ K, write ShK,η −→ SpecF for the associated Shimura
variety of Kottwitz-Harris-Taylor type.

Definition 2.3.3. — Denote by Spl the set of places w of F such that pw := w|Q 6= l
is split in E and B×

w
∼= GLd(Fw). For each K ∈ K, we write Spl(K) for the subset of

Spl of places such that Kv is the standard maximal compact of GLd(Fv).

In the sequel, we fix a place v of F in Spl. The scheme ShK,η has a projective model
ShK,v over SpecOv with special geometric fiber ShK,s̄v. We have a projective system
(ShK,s̄v)K∈K which is naturally equipped with an action of G(A∞

Q )× Z such that any

wv ∈ WFv acts by − deg(wv) ∈ Z, where deg = val ◦ Art−1
Fv

and ArtFv : F
×
v

∼
→ W ab

Fv
.

Notation 2.3.4. — For K ∈ K, the Newton stratification of the geometric special
fiber ShK,s̄v is denoted by

ShK,s̄v =: Sh≥1
K,s̄v
⊃ Sh≥2

K,s̄v
⊃ · · · ⊃ Sh≥d

K,s̄v

where Sh=h
K,s̄v := Sh≥h

K,s̄v
− Sh≥h+1

K,s̄v
is an affine scheme, which is smooth and pure of

dimension d− h. It is built up by the geometric points such that the connected part
of the associated Barsotti–Tate group has rank h For each 1 ≤ h < d, write

ih : Sh
≥h
K,s̄v
→֒ Sh≥1

K,s̄v
, j≥h : Sh=h

K,s̄v →֒ Sh≥h
K,s̄v

,

and j=h = ih ◦ j
≥h.

For n ≥ 1, with our previous abuse of notation, consider Kv(n) := KvKv(n) where

Kv(n) := ker(GLd(Ov)։ GLd(Ov/M
n
v )).

Recall that Sh=h
Iv(n),s̄v is geometrically induced under the action of the parabolic sub-

group Ph,d(Ov/M
n
v ), defined as the stabilizer of the first h vectors of the canonical

basis of F d
v . Concretely this means there exists a closed subscheme Sh=h

Kv(n),s̄v,1 stabi-

lized by the Hecke action of Ph,d(Fv) and such that

(4) Sh=h
Kv(n),s̄v = Sh=h

Kv(n),s̄v,1 ×Ph,d(Ov/Mn
v ) GLd(Ov/M

n
v ),

meaning that Sh=h
Kv(n),s̄v is the disjoint union of copies of Sh=h

Kv(n),s̄v,1 indexed by

GLd(Ov/M
n
v )/Ph,d(Ov/M

n
v ) and exchanged by the action of GLd(Ov/M

n
v ). We will

denote by Sh≥h
Kv(n),s̄v,1

the closure of Sh=h
Kv(n),s̄v,1 inside ShKv(n),s̄v .

Notation 2.3.5. — Let 1 ≤ g ≤ d and πv be an irreducible cuspidal representation
of GLg(Fv). For 1 ≤ t ≤ s := ⌊d/g⌋, let Πt any representation of GLtg(Fv). We
denote by

H̃T 1(πv,Πt) := L(πv, t)1 ⊗ Π
Kv(n)
t ⊗ Ξ

t−s
2
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the Harris-Taylor local system on the Newton stratum Sh=tg
Kv(n),s̄v,1

where

– L(πv, t)1 is the Zl-local system given by Igusa varieties of [HT01] and associ-
ated to the representation πv[t]D of the division algebra Dv,tg/Fv with invariant
1/tg, corresponding through Jacquet-Langlands correspondance to stt(π

∨
v ): cf.

[Boy09] §1.4 for more details;

– Ξ : 1
2
Z −→ Z

×

l is defined by Ξ(1
2
) = q1/2.

We also introduce the induced version

H̃T (πv,Πt) :=
(
L(πv, t)1 ⊗ Π

Kv(n)
t ⊗ Ξ

t−s
2

)
×Ptg,d(Ov/Mn

v ) GLd(Ov/M
n
v ),

where the unipotent radical of Ptg,d(Ov/M
n
v ) acts trivially and the action of

(g∞,v,

(
gcv ∗
0 getv

)
, σv) ∈ G(A

∞,v)× Ptg,d(Ov/M
n
v )×Wv

is given

– by the action of gcv on Π
Kv(n)
t and deg(σv) ∈ Z on Ξ

t−s
2 , and

– the action of (g∞,v, getv , val(det g
c
v) − deg σv) ∈ G(A∞,v) × GLd−tg(Ov/M

n
v ) × Z

on LQl
(πv)1 ⊗ Ξ

t−s
2 .

We also introduce

HT (πv,Πt)1 := H̃T (πv,Πt)1[d− tg],

and the perverse sheaf

P (t, πv)1 :=
pj=tg1,!∗HT (πv, Stt(πv))1 ⊗ Lg(πv)

∨,

and their induced version, HT (πv,Πt) and P (t, πv), where Lg(πv)
∨ is the contragre-

dient of the representation of dimension g of Gal(F v/Fv) associated to πv by the
Langlands correspondence Lg.

Important property: over Zl, there are at least two notions of intermediate ex-
tension associated to the two classical t-structures p and p+. By proposition 2.4.1
of [Boy23b], in the limit case where all Fl-cuspidal representations are supercuspi-
dal, as recalled after proposition 2.1.4, all the p and p+ intermediate extensions of
Harris-Taylor local systems coincide. The arguments in loc. cit. are rather difficult
but if one accepts to restrict to the case where the irreducible constituants of ρm are
all characters, then the proof of this fact is easy. Indeed as Sh≥h

Kv(n),s̄v,1
is smooth over

SpecFp, then HT (χv,Πh)1 is perverse for the two t-structures with

ih≤+1,∗
1 HT (χv,Πh)1 ∈

pD<0 and ih≤+1,!
1 HT (χv,Πh)1 ∈

p+D≥1.

Let now denote by

ΨK,v := RΨηv(Zl[d− 1])(
d− 1

2
)
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the nearby cycles autodual free perverse sheaf on ShK,s̄v . Recall, cf. [Boy23b] propo-
sition 3.1.3, that

(5) ΨK,v
∼=

⊕

1≤g≤d

⊕

̺∈Scusp(g)

ΨK,̺,

where

– Scusp(g) is the set of equivalence classes of irreducible supercuspidal Fl-
representations of GLg(Fv).

– The irreducible sub-quotients of ΨK,̺ ⊗Zl
Ql are the Harris-Taylor perverse

sheaves of ΨK,Ql
associated to irreducible cuspidal representations πv with mod-

ulo l reduction having supercuspidal support a Zelevinsky segment associated
to ̺.

In the limit case when qv ≡ 1 mod l and l > d, recall that we do not have to
bother about cuspidal Fl-representation which are not supercuspidal. In particular
in the previous formula we can

– replace Scusp(g) by the set Cusp(g) of equivalence classes of cuspidal represen-
tations,

– and the Harris-Taylor perverse sheaves of ΨK,̺⊗Zl
Ql are those associated to πv

such that its modulo l reduction is isomorphic to ̺.

3. Nearby cycles and filtrations

3.1. Filtrations of stratification of Ψ̺. — We now fix an irreducible Fl-cuspidal
representation ̺ of GLg(Fv) for some 1 ≤ g ≤ d. We also introduce s = ⌊d/g⌋.

Using the Newton stratification and following the constructions of [Boy14], we can
define a Zl-filtration

Fil0! (ΨK,̺) →֒ · · · →֒ Fils! (ΨK,̺) = ΨK,̺

where Filt!(ΨK,̺) is the saturated image of j=tg! j=tg,∗ΨK,̺ −→ ΨK,̺. We also denote
by coFilt!(Ψ̺) := Ψ̺/Fil

t
!(Ψ̺). Dually we can define a cofiltration

ΨK,̺ = coFils∗(ΨK,̺)։ · · ·։ coFil1∗(ΨK,̺)

where coFilt∗(ΨK,̺) is the saturated image of ΨK,̺ −→ j=tg∗ j=tg,∗ΨK,̺: cf. figure 2 for
an illustration. We denote by Filt∗(Ψ̺) := ker(Ψ̺ ։ coFilt∗(Ψ̺)).

Over Ql, the filtration Fil•! (ΨK,̺) coincides with the iterated kernel of Nv, i.e.
Filt!(Ψ̺)⊗Zl

Fl ∼= ker(N t
v ⊗Zl

Fl). Dually the cofiltration coFil•! (ΨK,̺) coincides with

the iterated image of Nv, i.e. the kernel of ΨK,̺ ։ coFilt∗(ΨK,̺) is the image of N t
v.

Note that by Grothendieck-Verdier duality, we have D(Filt!(ΨK,̺)) ∼= coFilt∗(ΨK,̺).
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j=g! j=g,∗ ։

gr1!

gr2!

gr3!

 Fil1∗(gr
1
! )

 Fil2∗(gr
2
1)

j=g∗ j=g,∗ ←֓

cogr1∗

cogr2∗

cogr3∗

 coFil1! (cogr
1
∗)

 coFil2! (cogr
2
∗)

b

b

b

b

r

b

b

b

b

b

b

b

b

b

r

b

b

b

b

b

Figure 2. Filtrations of stratification of ΨK,̺

The graded parts grt!(ΨK,̺) are, by construction, free and admit a strict(10) filtra-
tion, cf. [Boy14] corollary 3.4.5

Fils−1
∗ (grk! (ΨK,̺)) →֒ · · · →֒ Filk−1

∗ (grk! (ΨK,̺)) = grk! (ΨK,̺)

with

gri−1
∗ (grk! (ΨK,̺))⊗Zl

Ql
∼=

⊕

πv∈Cusp(̺)

P (i, πv)(
i+ 1− 2k

2
),

where Cusp(̺) is the set of equivalence classes of irreducible cuspidal representations
with modulo l reduction isomorphic to ̺.

Dually, cogrk∗(ΨK,̺) has a cofiltration

cogrk∗(ΨK,̺) = coFilk−1
! (cogrk∗(ΨK,̺))։ · · ·։ coFils−1

! (cogrk∗(ΨK,̺)),

with

cogri−1
! (cogrk∗(ΨK,̺))⊗Zl

Ql
∼=

⊕

πv∈Cusp(̺)

P (i, πv)(
2k − i− 1

2
).

Concerning the Zl-structures, cf. the third global result of the introduction of
[Boy23b] , for every 1 ≤ k ≤ i ≤ s, we have strict epimorphisms(11)

j=ig! j=ig,∗ Fili−1
∗ (grk! (ΨK,̺))։ Fili−1

∗ (grk! (ΨK,̺))

(10)meaning the graded parts are free
(11)strict means that the cokernel is torsion free
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as well as strict monomorphisms

coFili−1
! (cogrk∗(ΨK,̺)) →֒ j=ig∗ j=ig,∗ coFili−1(cogrk∗(ΨK,̺)).

Exchange basic step: to go from one filtration to another, one can repeat the following
process to exchange the order of appearance of two consecutive subquotient:

P ′
1� _

��

� o

��❅
❅❅

❅❅
❅❅

P2 � o

��❅
❅❅

❅❅
❅❅

❅

� � // X

����

// // P1

�� ��❃
❃❃

❃❃
❃❃

❃

P ′
2

�� ��❅
❅❅

❅❅
❅❅

T

T,

��������

��������

where

– P1 and P2 are two consecutive subquotient in a given filtration and X is the
subquotient gathering them as a subquotient of this filtration.

– Over Ql, the extension X ⊗Zl
Ql is split, so that on can write X as an extension

of P ′
2 by P ′

1 with P ′
1 →֒ P1 and P2 →֒ P ′

2 have the same cokernel T , a perverse
sheaf of torsion.

Remark. In the particular case when P1 and P2 are intermediate extensions of local
systems living on respective strata of index h1 and h2 with h1 6= h2, such that the
two associated intermediate extensions for the p and p+ t-structure are isomorphic,
then T is necessary zero and X is then split over Zl. Indeed if T was not zero, then
seen as a quotient of P1 (resp. P

′
2) it has to be supported on the Sh≥h1

K,s̄v
(resp. Sh≥h1

K,s̄v
)

with j=h1,∗T 6= 0 (resp. j=h2,∗T 6= 0): the two conditions are then incompatible.

3.2. The abutment filtration of H0(ShK,s̄v ,ΨK,Zl
)m is strict. — We have spec-

tral sequences

(6) Ep,q
1 = Hp+q(ShK,s̄v , gr

−p
∗ (grk! (ΨK,̺)))⇒ Hp+q(ShK,s̄v gr

k
! (ΨK,̺)),

and

(7) Ep,q
1 = Hp+q(ShK,s̄v , gr

−p
! (ΨK,̺))⇒ Hp+q(ShK,s̄v ,ΨK,̺).

Definition 3.2.1. — For a finite set S of places of Q containing the places where
G is ramified, denote by TSabs :=

∏′
x 6∈S Tx,abs the abstract unramified Hecke algebra

where Tx,abs ∼= Zl[Xun(Tx)]
Wx for Tx a split torus, Wx the spherical Weyl group and

Xun(Tx) the set of Zl-unramified characters of Tx.
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Example. For w ∈ Spl, we have

Tw|Q,abs = Zl
[
Tw′,i : i = 1, · · · , d, w′|(w|Q)

]

where Tw′,i is the characteristic function of

GLd(Ow′) diag(

i︷ ︸︸ ︷
̟w′, · · · , ̟w′,

d−i︷ ︸︸ ︷
1, · · · , 1)GLd(Ow′) ⊆ GLd(Fw′).

Recall that TSabs acts through correspondances on each of the H i(ShK,η̄,Zl) where
K ∈ K is maximal at each places outside S.

Notation 3.2.2. — For K unramified outside S, we denote by T(K) the image of
TSabs inside EndZl

(Hd−1(ShK,η̄,Zl)).

We also denote by

(8) Hd−1(ShKv(∞),η̄,Zl) := lim
−→

Kv

Hd−1(ShKvKv,η̄,Zl),

where Kv describe the set of open compact subgroup of GLd(Ov). We also use similar
notation for others cohomology groups.

Theorem 3.2.3. — Let m be a maximal ideal of T(Kv(∞)) such that ρm is irre-
ducible, cf. §5.2.(12) Then

(i) H i(ShKv(∞),η̄,Zl)m is zero if i 6= d− 1 and otherwise torsion free.
(ii) Moreover the spectral sequences (6) and (7), localized at m, degenerate at E1 and

the Ep,q
1,m are zero for p+ q 6= 0 and otherwise torsion free.

Proof. — (i) It is the main theorem of [Boy23a].

(ii) We follow closely the arguments of [Boy23a] dealing with all irreducible cusp-
idal representations instead of only characters in loc. cit. using crucially that in the
limit case, the p and p+ intermediate extensions coincide exactly as it was the case
for characters in loc. cit.

From (5) we are led to study the initial terms of the spectral sequence given by the
filtration of ΨKv(∞),̺ for ̺ a irreducible Fl-supercuspidal representation associated
through local Langlands correspondance to an irreducible constituant of ρm,v. Recall
also, as we are in the limit case, that

– as there do not exist irreducible Ql-cuspidal representation of GLg(Fv) for g ≤ d
with modulo l reduction being not supercuspidal, the irreducible constituants
of ΨK,̺⊗Zl

Ql are the Harris-Taylor perverse sheaves P (t, πv)(
t−1−2k

2
) where the

modulo l reduction of πv is isomorphic to ̺ and 0 ≤ k < t.
– Over Zl, we do not have to worry about the difference between p and p+ inter-
mediate extensions.

(12)Recall also that we suppose qv ≡ 1 mod l and l > d.
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From [Boy23b] §2.3, consider the following equivariant resolution

(9) 0→ j=sg! HT (πv,Πt{
t− s

2
} × Spehs−t(πv{t/2}))⊗ Ξ

s−t
2 −→ · · ·

−→ j
=(t+1)g
! HT (πv,Πt{−1/2} × πv{t/2})⊗ Ξ

1
2 −→

j=tg! HT (πv,Πt) −→
pj=tg!∗ HT (πv,Πt)→ 0,

where Πt is any representation of GLtg(Fv), also called the infinitesimal part of the
perverse sheaf pj=tg!∗ HT (πv,Πh).

(13)

By adjunction property, for 1 ≤ δ ≤ s− t, the map

(10) j
=(t+δ)g
! HT (πv,Πt{

−δ

2
} × Spehδ(πv{t/2}))⊗ Ξδ/2

−→ j
=(t+δ−1)g
! HT (πv,Πt{

1− δ

2
} × Spehδ−1(πv{h/2}))⊗ Ξ

δ−1
2

is given by

(11) HT (πv,Πt{
−δ

2
} × Spehδ(πv{t/2}))⊗ Ξδ/2 −→

j=(t+δ)g,∗(pi(t+δ)g,!(j
=(t+δ−1)g
! HT (πv,Πt{

1− δ

2
} × Spehδ−1(πv{t/2}))⊗ Ξ

δ−1
2 ))

To compute this last term we use the resolution (9) for t + δ − 1. Precisely denote

by H := HT (πv, stt(πv{
1−δ
2
}) × Spehδ−1(πv{t/2})) ⊗ Ξ

δ−1
2 , and write the previous

resolution for t + δ − 1 as follows

0→ K −→ j
=(t+δ)g
! H′ −→ Q→ 0,

0→ Q −→ j
=(t+δ−1)g
! H −→ pj

=(t+δ−1)g
!∗ H → 0,

with

H′ := HT
(
πv,Πt{

1− δ

2
} ×

(
Spehδ−1(πv{−1/2})× πv{

δ − 1

2
}
)
{t/2}

)
⊗ Ξδ/2.

As the support of K is contained in Sh
≥(t+δ+1)g
I,s̄v

then pi(t+δ)g,!K = K and

j=(t+δ)g,∗(pi(t+δ)g,!K) is zero. Moreover pi(t+δ)g,!(pj
=(t+δ−1)g
!∗ H) is zero by construction

of the intermediate extension. We then deduce that

(12) j=(t+δ)g,∗(pi(t+δ)g,!(j
=(t+δ−1)g
! HT (πv,Πt{

1− δ

2
} × Spehδ−1(πv{t/2}))⊗ Ξ

δ−1
2 ))

∼= HT
(
πv,Πt{

1− δ

2
}

×
(
Spehδ−1(πv{−1/2})× πv{

δ − 1

2
}
)
{t/2}

)
⊗ Ξδ/2

In particular, up to homothety, the map (11), and so (10), is unique. Finally as the
maps of (9) are strict, the given maps (10) are uniquely determined, that is, if we

(13)In P (t, πv) the infinitesimal part Πt is stt(πv).
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forget the infinitesimal parts, these maps are independent of the chosen t in (9), i.e.
only depends on t+ δ.

For every 1 ≤ t ≤ s, let denote by i(t) the smallest index i such that
H i(ShKv(∞),s̄v ,

pj=tg!∗ HT (πv,Πt))m has non trivial torsion: if it does not exist then we
set i(t) = +∞ and note that it does not depend on the choice of the infinitesimal
part Πt. By duality, as pj!∗ = p+j!∗ for ours Harris-Taylor local systems, note that
when i(t) is finite then i(t) ≤ 0. Suppose by absurdity there exists t with i(t) finite
and denote t0 the biggest such t.

Lemma 3.2.4. — For 1 ≤ t ≤ t0 then i(t) = t− t0.

Proof. — a) We first prove that for every t0 < t ≤ s, the cohomology groups of
j=tg! HT (πv,Πt) are torsion free. Consider the following strict filtration in the category
of free perverse sheaves

(13) (0) = Fil−1−s(πv, h) −֒|→ Fil−s(πv, h) −֒|→ · · ·

−֒|→ Fil−t(πv, t) = j=tg! HT (πv,Πt)

where the symbol −֒|→ means a strict(14) monomorphism, with graded parts

gr−k(πv, t) ∼=
pj=kg!∗ HT (πv,Πt{

t− k

2
} ⊗ stk−t(πv{t/2}))(

t− k

2
).

Over Ql, the result is proved in [Boy09] §4.3. Over Zl, the result follows from
the general constructions of [Boy14] and the fact that the p and p+ intermediate
extensions are isomorphic for Harris-Taylor perverse sheaves associated to characters.
The associated spectral sequence localized at m, is then concentrated in middle degree
and torsion free which gives the claim.

b) Before watching the cases t ≤ t0, note that the spectral sequence associated to
(9) for t = t0 + 1, has all its E1 terms torsion free and degenerates at its E2 terms.
As by hypothesis the aims of this spectral sequence is free and equals to only one E2

terms, we deduce that all the maps

(14) H0
(
ShKv(∞),s̄v , j

=(t+δ)g
! HTξ(πv, stt(πv{

−δ

2
})× Spehδ(πv{t/2}))⊗ Ξδ/2

)
m

−→

H0
(
ShKv(∞),s̄v , j

=(t+δ−1)g
! HTξ(πv, stt(χv{

1− δ

2
})

× Spehδ−1(χv{t/2}))⊗ Ξ
δ−1
2

)
m

are saturated, i.e. their cokernel are free Zl-modules. Then from the previous fact
stressed after (12), this property remains true when we consider the associated spec-
tral sequence for 1 ≤ t′ ≤ t0.

(14)i.e. the cokernel is free
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c) Consider now t = t0 and the spectral sequence associated to (9) where

(15) Ep,q
2 = Hp+2q(ShKv(∞),s̄v , j

=(t+q)g
!

HTξ(πv, stt(πv(−q/2))× Spehq(πv{t/2}))⊗ Ξ
q
2 )m

By definition of t0, we know that some of the Ep,−p
∞ should have a non trivial torsion

subspace. We saw that

– the contributions from the deeper strata are torsion free and
– H i(ShKv(∞),s̄v , j

=t0g
! HTξ(πv,Πt0))m are zero for i < 0 and is torsion free for i = 0,

whatever is Πt0 .
– Then there should exist a non strict map dp,q1 . But, we have just seen that it
can not be maps between deeper strata.

– Finally, using the previous points, the only possibility is that the cokernel of

(16) H0
(
ShKv(∞),s̄v , j

=(t0+1)g
! HTξ(πv, stt0(πv{

−1

2
})× πv{t0/2}))⊗ Ξ1/2

)
m

−→

H0
(
ShKv(∞),s̄v , j

=t0g
! HTξ(πv, stt0(πv))

)
m

has a non trivial torsion subspace.

In particular we have i(t0) = 0.

d) Finally using the fact 2.18 and the previous points, for any 1 ≤ t ≤ t0, in the
spectral sequence (15)

– by point a), Ep,q
2 is torsion free for q ≥ t0 − t+ 1 and so it is zero if p+ 2q 6= 0;

– by affiness of the open strata, cf. [Boy19] theorem 1.8, Ep,q
2 is zero for p+2q < 0

and torsion free for p+ 2q = 0;
– by point b), the maps dp,q2 are saturated for q ≥ t0 − t + 2;

– by point c), d
−2(t0−t+1),t0−t+1
2 has a cokernel with a non trivial torsion subspace.

– Moreover, over Ql, the spectral sequence degenerates at E3 and Ep,q
3 = 0 if

(p, q) 6= (0, 0).

We then deduce that H i(ShKv(∞),s̄v ,
pj=tg!∗ HTξ(πv,Πt))m is zero for i < t− t0 and for

i = t− t0 it has a non trivial torsion subspace.

Consider now the filtration of stratification of Ψ̺ := ΨKv(∞),̺
(15) constructed using

the adjunction morphisms j=h! j=h,∗ as in [Boy14]

(17) Fil1! (Ψ̺) −֒|→ Fil2! (Ψ̺) −֒|→ · · · −֒|→ Fils! (Ψ̺)

where Filt!(Ψ̺) is the saturated image of j=tg! j=tg,∗Ψ̺ −→ Ψ̺. For a fixed πv, let

denote by Fil1!,πv(Ψ) −֒|→ Fil1! (Ψ̺) such that Fil1!,πv(Ψ)⊗Zl
Ql
∼= Fil1! (Ψπv) where Ψπv

(15)i.e. with infinite level at v
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is the direct factor of Ψ̺⊗Zl
Ql associated to πv, cf. [Boy14]. From [Boy23b] 3.3.5,

we have the following resolution of grt!,πv(Ψ̺)

(18) 0→ j=sg! HT (χv, LTt,s(πv))⊗ π
∨
v (
s− t

2
) −→

j
=(s−1)g
! HT (πv, LTt,s−1(πv))⊗ π

∨
v (
s− t− 1

2
) −→

· · · −→ j=tg! HT (πv, stt(πv))⊗ π
∨
v −→ grt!,πv(Ψ̺)→ 0,

where LTt,t+δ(πv) →֒ stt(πv{−δ/2}) × Spehδ(πv{t/2}), is the only irreducible sub-
space of this induced representation,

We can then apply the previous arguments a)-d) above: for t ≤ t0 (resp. t > t0)
the torsion of H i(ShKv(∞),s̄v , gr

t
!,πv

(Ψv,ξ))m is trivial for any i ≤ t− t0 (resp. for all i)
and the free parts are concentrated for i = 0. Using the spectral sequence associated
to the previous filtration, we can then conclude that H1−t0(ShKv(∞),s̄v ,Ψv,ξ)m would
have non trivial torsion which is false as m is supposed to be KHT-free.

In particular the previous spectral sequence gives us a filtration ofHd−1(ShKv(∞),η̄v ,Fl)m
whose graded parts are

H0(ShKv(∞),s̄v , gr
−p(grk! (ΨK,̺)))m ⊗Zl

Fl,

for ̺ describing the equivalence classes of irreducible Fl-supercuspidal representation
of GLg(Fv) with 1 ≤ g ≤ d, and then 1 ≤ k ≤ p ≤ ⌊d

g
⌋.

3.3. Local and global monodromy. — Consider a fixed Fl-character ̺ and de-
note by Ψ̺ the direct factor of ΨKv(∞),v associated to ̺.

OverQl, the monodromy operator define a nilpotent morphism N̺,Ql
: Ψ̺⊗Zl

Ql −→

Ψ̺(1)⊗Zl
Ql compatible with the filtration Fil•! (Ψ̺) in the sense that Filt!(Ψ̺)⊗Zl

Ql

coincides with the kernel of N t
̺,Ql

. The aim of this section is to construct a Zl-version

N̺ of N̺,Ql
such that Filt!(Ψ̺)⊗Zl

Fl coincides with the kernel of N t
̺ ⊗Zl

Fl.

First step: consider

0→ Fil1! (Ψ̺) −→ Ψ̺ −→ coFil1! (Ψ̺)→ 0,

and the following long exact sequence

0→ hom(coFil1! (Ψ̺),Ψ̺(1)) −→ hom(Ψ̺,Ψ̺(1)) −→ hom(Fil1! (Ψ̺),Ψ̺(1)) −→ · · ·

where hom is taken in the category of equivariant Hecke perverse sheaves with an
action of Gal(F v/Fv). As Fil1! (Ψ̺) ⊗Zl

Ql coincides with the kernel of N̺,Ql
, then

N̺,Ql
∈ hom(Ψ̺,Ψ̺) ⊗Zl

Ql comes from hom(coFil1! (Ψ̺),Ψ̺(1)) ⊗Zl
Ql, so that we

focus on hom(coFil1! (Ψ̺),Ψ̺(1)). From

0→ gr2! (Ψ̺) −→ coFil1! (Ψ̺) −→ coFil2! (Ψ̺)→ 0,
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we obtain

0→ hom(coFil2! (Ψ̺),Ψ̺(1)) −→ hom(coFil1! (Ψ̺),Ψ̺(1)) −→

hom(gr2! (Ψ̺),Ψ̺(1)) −→ Ext1(coFil2! (Ψ̺),Ψ̺(1))) −→ · · ·

The socle of Ψ̺ ⊗Zl
Ql being contained in Fil1! (Ψ̺) ⊗Zl

Ql, any map coFil2! (Ψ̺) −→
Ψ̺(1)) can not be equivariant for the Galois action, so that we are led to look at

hom(gr2! (Ψ̺),Ψ̺(1)) ∼= hom(gr2! (Ψ̺),Fil
1
∗(gr

1
! (Ψ̺(1))))

where

0→ Fil1∗(gr
1
! (Ψ̺)) −→ Fil1! (Ψ̺) −→ coFil1∗(Fil

1
! (Ψ̺)→ 0.

Note that gr2! (Ψ̺)⊗Zl
Ql
∼= Fil1∗(gr

1
1(Ψ̺(1)))⊗Zl

Ql and their Zl-structure is obtained,

cf. the introduction of [Boy23b] or equation (9), through the strict Zl-epimorphisms

j=2g
! j=2g,∗ gr2! (Ψ̺)։ gr2! (Ψ̺), and j=2g

! j=2g,∗ Fil1∗(gr
1
! (Ψ̺))։ Fil1∗(gr

1
! (Ψ̺)),

cf. figure 2 and the notations of the beginning of §3.1.

In particular to prove that gr2! (Ψ̺) is isomorphic to Fil1∗(gr
1
1(Ψ̺(1))), it suffices to

prove that the two local systems j=2g,∗ gr2! (Ψ̺) and j
=2g,∗ Fil1∗(gr

1
1(Ψ̺(1))) are isomor-

phic. In this case we can take(16) Nv ∈ hom(Ψ̺,Ψ̺(1)) ⊗Zl
Ql so that, over Zl we

have Fil1∗(gr
1
! (Ψ̺(1))) = Nv(Fil

2
! (Ψ̺)).

More generally to prove that the two perverse sheaves grh+1
! (Ψ̺) and Fil1∗(gr

h
! (Ψ̺(1)))

are isomorphic, it suffices to prove that the two local systems j=(h+1)g,∗ grh+1
! (Ψ̺) and

j=(h+1)g,∗ Fil1∗(gr
h
! (Ψ̺(1))) are isomorphic.

Second step: we want to prove that the local systems j=2g,∗ gr2! (Ψ̺) and j
=2g,∗ Fil1∗(gr

1
! (Ψ̺))

are isomorphic. Consider first the following situation: let Lk and Lk+1 be Zl-local
systems on a scheme X such that:

– Lk →֒ Lk+1 where the cokernel grk+1 is torsion free;

– Lk+1 ⊗Zl
Ql
∼= (Lk ⊗Zl

Ql)⊕ (grk+1⊗Zl
Ql) where grk+1⊗Zl

Ql is supposed to be
irreducible;

– we introduce

gr′k+1
� � //❴❴❴❴

� _

��✤
✤

✤
grk+1,Ql� _

��

Lk+1
� � // Lk+1 ⊗Zl

Ql.

We moreover suppose that grk+1⊗Zl
Fl is also irreducible so the various stable

Zl-lattices of grk+1 are homothetic.

(16)As it is not clear that Ext1(coFil2! (Ψ̺),Ψ̺(1))) is torsion free, we can not claim at this stage
that Nv ∈ hom(Ψ̺,Ψ̺(1)).
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We then have

0→ Lk ⊕ gr′k+1 −→ Lk+1 −→ T → 0,

where T is torsion and can be viewed as a quotient

Lk →֒ L
′
k ։ T, gr′k+1 →֒ grk+1 ։ T,

with

Lk →֒ Lk+1 ։ grk+1, gr′k+1 →֒ Lk+1 ։ L
′
k.

As grk+1⊗Zl
Ql is irreducible, then gr′k+1 →֒ grk+1 is given by multiplication by lδk and,

as the stable lattices of grk ⊗Zl
Ql are all isomorphic, the extension is characterized

by this δk.

Consider then the Zl-local system L := j=g,∗Ψ̺ and recall that

L ⊗Zl
Ql
∼=

r⊕

i=1

HTQl
(πv,i, πv,i),

where we fix any numbering of Cusp(̺) = {πv,1, · · · , πv,r}. For k = 1, · · · , r, we
introduce

Lk
� � //❴❴❴

� _

��✤
✤
✤
✤
✤

k⊕

i=1

HT (πv,i, πv,i)

� _

��

L � � // L⊗Zl
Ql.

Let denote by Tk+1 the torsion local system such that

0→ Lk ⊕ grk+1 −→ Lk+1 −→ Tk+1 → 0,

where grk+1 := Lk+1/Lk, as above. We can apply the previous remark and denote
by δk the power of l which define the homothety gr′k+1 →֒ grk+1 ։ Tk+1. The set

{δk : k = 1, · · · , r} is then a numerical data to characterize L inside j=1,∗Ψ̺ ⊗Zl
Ql.

(i) To control j=2g,∗ Fil1∗(gr
1
! (Ψ̺)), we use the general description above with

– local systems L+
k for k = 1, · · · , r so that L+

k⊗Zl
Ql
∼=

⊕k
i=1HTQl

(πv,i, st2(πv,i)(−1/2);

– with gr+,
′

k+1 defined, as before, with

0→ L+
k ⊕ gr+,

′

k+1 −→ L
+
k+1 −→ Tk+1 → 0,

where Tk+1 is killed by lδ
+
k+1 .

We want to prove that δ+k = δk for every k = 1, · · · , r where {δk : k = 1, · · · , r} is
the numerical data associated to j=1,∗Ψ̺.

Let denote by

j=1
6=1 : ShK,s̄v \ Sh

≥1
K,s̄v,1

→֒ ShK,s̄v, i11 : Sh
≥1
K,s̄v,1

→֒ Sh≥1
K,s̄v

= ShK,s̄v .
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From [Boy23b] lemma B.3.2, j=2g,∗ Fil1∗(gr
1
! (Ψ̺)) is obtained as follows. Let

P := ph−1i1,∗1 j=1
6=1,∗j

=1,∗
6=1 Ψ̺

so that

0→ P −→ j=1
6=1,!j

=1,∗
6=1 Ψ̺ −→

pj=1
6=1,!∗j

=1,∗
6=1 Ψ̺ → 0.

Then P is the cosocle of i1,∗1 Fil1∗(gr
1
! (Ψ̺)) so that

j=2g,∗ Fil1∗(gr
1
! (Ψ̺)) ∼= j=2g,∗P ×P1,d(Fv) GLd(Fv),

where induction has the same meaning as in (4).

Note then that the numerical data associated to j=2g,∗P are also given by {δ+k : k =
1, · · · , r}. With the previous notations, consider the data associated to L := j=g,∗Ψ̺,
i.e. a filtration

L1 ⊆ L2 ⊆ · · · ⊆ Lr = L

with graded parts grk and gr′k →֒ grk is given by multiplication by lδk . We then have
a strict filtration

ph−1i1,∗1 j=1
6=1,∗L1 ⊆ · · · ⊆

ph−1i1,∗1 j=1
6=1,∗Lr = P,

with graded parts ph−1i1,∗1 j=1
6=1,∗ grk. Indeed we have

ph−2i1,∗1 j=1
6=1,∗ grk+1 = 0 −→ ph−1i1,∗1 j=1

6=1,∗Lk −→

ph−1i1,∗1 j=1
6=1,∗Lk −→

ph−1i1,∗1 j=1
6=1,∗ grk+1 −→

ph0i1,∗1 j=1
6=1,∗Lk

where the free quotient of ph0i1,∗1 j=1
6=1,∗Lk is zero. Moreover it is torsion free because

its torsion corresponds to the difference between p and p+ intermediate extensions
which are equal here from the main result of [Boy23b]. We then apply the exact
functor j=2g,∗ and we induce from P1,d(Fv) to GLd(Fv) to obtain the filtration L+

• of

j=2g,∗ Fil1∗(gr
1
! (Ψ̺)) where gr+,

′

k →֒ gr+k is given by multiplication by lδk .

(ii) Dually the same arguments applied to

0→ pj=1
6=1,!∗j

=1,∗
6=1 Ψ̺ −→

pj=1
6=1,∗j

=1,∗
6=1 Ψ̺ −→ Q→ 0,

give us that j=2g,∗Q is characterized by the data {δk : k = 1, · · · , r}. After inducing
from P1,d(Fv) to GLd(Fv), we obtain the description of the local system A := j=2g,∗A
where A is defined as follows:

0→ pj=g!∗ j
=g,∗ coFil1∗(Ψ̺) −→ coFil1∗(Ψ̺) −→ A→ 0.

Concretely this means that pj=2g
!∗ A is the socle A1 of A, which corresponds to the

square dot in the right side of the figure 2.

We are interested by the local system associated to j=2g,∗ of the cosocle of Fil2! (Ψ̺),
which corresponds to the square dot in the left side of the figure 2. As explained in
§3.1, we have to use basic exchange steps as many times as needed to move A1 until
it appears as the cosocle of Fil2! (Ψ̺) →֒ Ψ̺.
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Note then that all the perverse sheaves which are exchanged with A1 during
this process, are lattice of j=tg!∗ HTQl

(πv, stt(πv))(
1−t+δ

2
) with t ≥ 3, cf. figure 2.

As explained in the remark after the definition of the exchange basic step, as
pj=2g

!∗ HT (πv, st2(πv)) ∼=
p+j=2g

!∗ HT (πv, st2(πv)), for all these exchange, we have T = 0
and A1 remains unchanged during all the basic exchange steps.

Third step: at this stage we constructed a Ql-monodromy operator Nv such
Fil1∗(gr

1
! (Ψ̺(1))) = Nv(Fil

2
! (Ψ̺)). Recall that this monodromy operator induces

α : coFilt!(cogr
t
∗(Ψ̺)) −→ cogrt+1

∗ (Ψ̺(1))

such that j=(t+1)g,∗ ◦ α is then an isomorphism over Zl. We say that α is an isomor-
phism. Indeed consider

0→ pj=tg!∗ j=tg,∗ cogrt∗(Ψ̺) −→ cogrt∗(Ψ̺) −→ coFilt!(cogr
t
∗(Ψ̺))→ 0,

with the following two strict monomorphisms

(19) α1 : cogr
t+1
∗ (Ψ̺) →֒ j=(t+1)g

∗ j=(t+1)g,∗ cogrt+1
∗ (Ψ̺)

and

(20) α2 : coFil
t
!(cogr

t
∗(Ψ̺(1))) →֒ j=(t+1)g

∗ j=(t+1)g,∗ coFilt!(cogr
t
∗(Ψ̺(1))).

By composing α with α2 in (20), we obtain

(21) α1, α2 ◦ α ∈ hom
(
cogrt+1

∗ (Ψ̺), j
=(t+1)g
∗ j=(t+1)g,∗ cogrt+1

∗ (Ψ̺)
)

∼= hom
(
j=(t+1)g,∗ cogrt+1

∗ (Ψ̺), j
=(t+1)g,∗ cogrt+1

∗ (Ψ̺)
)
,

by adjunction. By hypothesis α1 and α2 ◦ α coincides in this last space, so they are
equal and α is then an isomorphism.

Notation 3.3.1. — Under the hypothesis of theorem 3.2.3 on m, the action of N̺

on Ψ̺ defined above for every Fl-character ̺, induces a nilpotent monodromy oper-

ator N coho
m,v on H0(ShI,s̄v ,Ψv,ξ)m. We also denote by N

coho

m,v := N coho
m,v ⊗Zl

Fl acting on

H0(ShI,s̄v ,Ψv,ξ)m ⊗Zl
Fl

4. Uniformity of automorphic sub-lattices

4.1. Infinite level at v. — For K ∈ K a compact open subgroup of G(A∞
Q ) as

before, we consider the category C(K) of finitely generated OL-modules with a con-
tinuous K-action and let C′(K) be a Serre subcategory of C(K). Let C(K)Z be the
subcategory of C(K) consisting of those σ ∈ C possessing a central character which
lifts

∏
v∈Σ+(K)(det ρ|Iv ε̄) ◦ Art and let C′(K)Z be a Serre subcategory of C(K)Z .

For each v ∈ Σ+(K), we fix

– a lift of a geometric Frobenius element Frobv ∈ Gv := Gal(F v/Fv),
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– an element αv ∈ Zl lifting det ρv(Frobv),

– a character ψσ,v : Gv −→ Z
×

l such that ψσ,v(Frobv) = αv and the composite with
Artin map has a restriction to Iv equal to the central character σ.

For σ ∈ C′(K)Z , we define

MK(σ) := H0(ShK,s̄v ,Ψv ⊗Lσ∨)
∨
m,

where Lσ∨ is the sheaf associated to σ∨. When we consider only the direct factor Ψ̺

of Ψv, we then denote by MK,̺(σ) the associated space.

Remark. As the m-localized cohomology groups are concentrated in middle degree,
note that the functor σ 7→M∞,K,̺(σ) is exact.

Let σv be a continuous finitely generated representation of Kv and let σ0(v) be
the representation of K = KvKv given by twisting the action of Kv on σv by the
character ψ ◦ ArtFv ◦ det of Kv. We assume that σ ∈ C(K)Z . We then define

SKv(σv) := lim
→n

Hd−1(ShKv(n),s̄v ,L
∨
σ0(v)∨)

)m.

We let T(σv) denote the image of TS in EndO(SKv(σv)) and we write ρ(σv)m for the
composite GalF,s

ρuniv

−→GLd(R
univ
S ) −→ GLd(T(σv)m). We set

(22) MKv(σv)
def
=

(
homT(σv)m[GalF,S ](ρ(σ

v)m, SKv(σv)m))
∗.

For a fixed Kv and a representation σv of Kv such that σ := σv⊗O σ
v is an element

of C(K)Z , then we have a natural isomorphism

(23) MK(σ) ∼= homKv(MKv(σv), σ∗
v)

∗.

4.2. Typicity. — As explained in [HT01], the Ql-cohomology of ShK,η̄ can be
written as

Hd−1(ShK,η̄,Ql)m ∼=
⊕

π∈AK(m)

(π∞)K ⊗ σ(π∞),

where

– AK(m) is the set of equivalence classes of automorphic representations of G(A)
with non trivial K-invariants and such that its modulo l Satake’s parameters,
outside the set S of places dividing the level K, are prescribed by m,

– and σ(π∞) is a representation of GalF,S.

As ρm is supposed to be absolutely irreducible, then as explained in chapter VI of
[HT01], if σ(π∞) is non zero, then π is a weak transfer of a cohomological automorphic
representation (Π, ψ) of GLd(AF )×A

×
F with Π∨ ∼= Πc where c is the complex conjuga-

tion. Attached to such a Π is a global Galois representation ρΠ,l : GalF,S −→ GLd(Ql)
which is irreducible.
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Theorem 4.2.1. — (cf. [NF19] theorem 2.20)
If ρΠ,l is strongly irreducible, meaning it remains irreducible when it is restricted to
any finite index subgroup, then σ(π∞) is a semi-simple representation of GalF,S.

Remark. The Tate conjecture predicts that σ(π∞) is always semi-simple.

Definition 4.2.2. — (cf. [Sch18] §5) We say that m is KHT-typic for K if, as a
T(K)m[GalF,S]-module,

Hd−1(ShK,η̄,Zl)m ∼= σm,K ⊗T(K)m ρm,K ,

for some T(K)m-module σm,K on which GalF,S acts trivially and

ρm,K : GalF,S −→ GLd(T(K)m)

is the stable lattice of
⊕

m̃⊆m ρm̃ introduced in the introduction.

Proposition 4.2.3. — We suppose that for all π ∈ AK(m), the Galois representa-
tion σ(π∞) is semi-simple. Then m is KHT-typic for K.

Proof. — By proposition 5.4 of [Sch18] it suffices to deal with Ql-coefficients.
From [HT01] proposition VII.1.8 and the semi-simplicity hypothesis, then

σ(π∞) ∼= R̃(π)
⊕
n(π) where R̃(π) is of dimension d. We then write

(π∞)K ⊗Ql
R(π) ∼= (π∞)K ⊗T(K)

m,Ql
(T(K)m,Ql

)d,

and (π∞)K ⊗Ql
σ(π∞) ∼= ((π∞)K)

⊕
n(π) ⊗T(K)

m,Ql
(T(K)m,Ql

)d and finally

Hd−1(ShK,η̄,Ql)m ∼= σm,K,Ql
⊗T(K)

m,Ql
(T(K)m,Ql

)d,

with σm,K,Ql

∼=
⊕

π∈AK(m)((π
∞)I)

⊕
n(π). The result then follows from [HT01] theorem

VII.1.9 which insures that R(π) ∼= ρm̃, if m̃ is the prime ideal associated to π,

In particular with the notations of §4.1, we have an isomorphism

MKv(σv)⊗T(σv)m ρ(σ
v)m −→ SKv(σv)m.

4.3. Lattices. — For each place w ∈ S\{v} choose an inertial type τw and a lattice
σ0(τw) in σL(τw) and let σv := ⊗w∈S\{v}σ

0(τw) the corresponding representation of
Kv =

∏
w∈S\{v}Kw.

Recall that OL is the ring of integers of a large enough finite extension L of Ql. Let
λ : Tm −→ OL be a system(17) of Hecke eigenvalues corresponding to some minimal
prime ideal of Tm := T(σvσ0(τv))m for some lattice σ0(τv) of σL(τv) define just after:
note that Tm does not depend on this choice. Let Πv := (MKv(σv)∗[1/l])[λ] which
by strong multiplicity one is an irreducible representation of GLd(Fv). We suppose

(17)Note that λ mod ̟L is given by m, i.e. the modulo l reduction of λ is fixed.
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that σL(τv) appears with multiplicity one in (Πv)|Kv . The eigenspace MKv(σv)∗[λ] is
a lattice in Πv and

σλ(τv) := σL(τv) ∩MKv(σv)∗[λ]

is Kv-stable lattice in σL(τv).

For any lattice σ1(τv) of σL(τv), it follows from (23) that there is a natural isomor-
phism

(24) homKv(σ
1(τv), σλ(τv))

∗ ∼=MKv(σvσ1(τv))/λ.

Consider some injection
ι : σ1(τv) →֒ σ2(τv)

between two lattices of σL(τv). Then ι induces a injective map

MKv(σvσ1(τv)) →֒ MKv(σvσ2(τv)).

Lemma 4.3.1. — Suppose there exists λ0 so that the natural map induces by ι

(25) MKv(σvσ1(τv))/λ0 →֒ MKv(σvσ2(τv))/λ0

is an isomorphism, then this is true for every λ ≡ λ0 mod ̟L.

Proof. — For any λ the natural inclusion

OL ∼=MKv(σvσ1(τv))/λ →֒ MKv(σvσ2(τv))/λ ∼= OL

is either an isomorphism or multiplication by some power of ̟L and so zero modulo
̟L. By hypothesis modulo ̟L, the natural map ι induces an isomorphism

MKv(σvσ1(τv))/(λ0, ̟L) ∼=MKv(σvσ2(τv))/(λ0, ̟L).

As the following diagram is commutative

Rτv
∞

λ0 //

λ

!!❈
❈❈

❈❈
❈❈

❈
ZL // // FL

ZL

>> >>⑥⑥⑥⑥⑥⑥⑥⑥

with common kernel m, we then deduce that ι induces an isomorphism

MKv(σvσ1(τv))/(λ,̟L) ∼=MKv(σvσ2(τv))/(λ,̟L),

so that the natural map induces by ι

MKv(σvσ1(τv))/λ →֒ MKv(σvσ2(τv))/λ

is also an isomorphism.

Proposition 4.3.2. — Consider two automorphic irreducible representations Π and
Π′ associated to respectively two systems(18) of Hecke eigenvalues λ, λ′ : Tm −→ OL.
We denote by

Πv := (MKv(σv)∗[1/l])[λ] and Π′
v := (MKv(σv)∗[1/l])[λ′].

(18)with modulo l reduction fixed by m
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Consider a K-type τv such that σL(τv) appears with multiplicity one in (Πv)|Kv (resp.
in (Π′

v)|Kv) and let σλ(τv) (resp. σλ′(τv)) be the stable lattice in σL(τv) defined by

σλ(τv) := σL(τv) ∩MKv(σv)∗[λ], resp. σλ′(τv) := σL(τv) ∩MKv(σv)∗[λ′].

Then these two lattices are homothetic.

Proof. — Up to homothety any stable lattice σ+ is such that

σ0 := σλ(τv) ( σ+ ( ̟−δ
L σλ(τv),

where δ is minimal and σ0 6⊆ ̟Lσ+. The natural morphism

OL ∼= homGLd(Ov)(σ+, σλ(τv)) −→ homGLd(Ov)(σ0, σλ(τv))
∼= OL

is given by multiplication by ̟δ
L, while

homGLd(Ov)(σ0, σλ(τv)) −→ homGLd(Ov)(σ−, σλ(τv))

is a isomorphism. From the isomorphism (24), ι induces

(26) MKv(σvσ−)/λ =MKv(σvσ0)/λ = ̟δ
LMKv(σvσ+)/λ.

If σλ′(τv) were equal to σ+ then the morphism induced by ι

homGLd(Ov)(σ+, σλ′(τv)) →֒ homGLd(Ov)(σ0, σλ′(τv))

would be an isomorphism and by (24), the natural injection would give the equality

MKv(σvσ0)/λ
′ =MKv(σvσ+)/λ

′,

which, by the previous lemma, is not compatible with (26).

5. Proof of Ihara’s lemma

5.1. Supersingular locus as a zero dimensional Shimura variety. — As ex-
plained in the introduction, we follow the strategy of [Boy22] which consists to
transfer the genericity property of Ihara’s lemma concerning G to the genericity of
the cohomology of KHT-Shimura varieties.

Let G be a similitude group as in the introduction such that moreover there exists
a prime number p0 split in E and v+0 a place of F+ above p0, identified as before to
a place v0 of F , such that Bv0 is a division algebra: in particular v0 6= v. Consider
then, with the usual abuse of notation, G/Q such that G(A∞,v0

Q ) ∼= G(A∞,v0
Q ) with

G(Fv0)
∼= GLd(Fv0) and G(R) of signatures (1, n − 1), (0, n)r. The KHT Shimura

variety ShK,v0 → specOv0 associated to G with level K, has a Newton stratification
of its special fiber with supersingular locus

Sh=d
K,s̄v0

=
∐

i∈ker1(Q,G)

Sh=d
K,s̄v0 ,i

.

For a equivariant sheaf FK,i on Sh=d
Kv(∞),s̄v0 ,i

seen as acompatible system over

Sh=d
KvKv,s̄v0 ,i

for Kv describing the set of open compact subgroups of GLd(Ov), its
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fiber at a compatible system zKv(∞),i of supersingular point zKvKv,i, has an action of

G(A∞
Q )×GLd(Fv)

0 where GLd(Fv)
0 is the kernel of the valuation of the determinant

so that, cf. [Boy09] proposition 5.1.1, as a GLd(Fv)-module, we have

H0(Sh=d
Kv(∞),s̄v0 ,i

,FKv(∞),i) ∼=
(
ind

G(A∞,v)×Z

G(Q)
z∗Kv0(∞),iFKv0(∞),i

)Kv

,

with δ ∈ G(Q) 7→ (δ∞,v0, val ◦ rn(δv0)) ∈ G(A∞,v0,v) × Z and where the action of

gv0 ∈ GLd(Fv0) is given by those of (g
−val det gv0
0 gv0, val det gv0) ∈ GLd(Fv0)

0 ×Z where
g0 ∈ GLd(Fv0) is any fixed element with val det g0 = 1. Moreover, cf. [Boy09]
corollaire 5.1.2, if z∗Kv0 (∞),iFKv0(∞),i is provided with an action of the kernel (D×

v0,d
)0

of the valuation of the reduced norm, action compatible with those of G(Q) →֒ D×
v0,d

,
then as a G(A∞)-module, we have

(27) H0(Sh=d
Kv(∞),s̄v0 ,i

,FKv(∞),i) ∼=
(
C∞(G(Q)\G(A∞),Λ)⊗D×

v0,d
ind

D×

v0,d

(D×

v0,d
)0
z∗iFI,i

)Kv

In particular, cf. lemma 2.3.1 of [Boy22], let π be an irreducible sub-Fl-
representation of C∞(G(Q)\G(A)/Kv,Fl)m for m such that ρm is irreducible.
Write its local component π̄v0

∼= πv0 [s]D with πv0 an irreducible cuspidal rep-
resentation of GLg(Fv0) with d = sg. Then (πv0)K

v
is a sub-representation of

H0(Sh=d
Kv(∞),s̄v0

, HT (π∨
v0 , s))m ⊗Zl

Fl and, cf. proposition 2.3.2 of [Boy22], a sub-Fl-

representation of Hd−1(ShKv(∞),η̄v0
,Fl)m. Indeed, cf. theorem 3.2.3,

– by the main result of [Boy23a], as l > d ≥ 2 and ρm is irreducible, then m is
KHT free so that hypothesis (H1) of [Boy22] is fulfilled.

– Theorem 3.2.3 gives us that the filtration of Hd−1(ShKv(∞),η̄v0
,Zl)m induced by

the filtration of the nearby cycles at v0, is strict.
(19)

Finally if the analog of Ihara’s lemma for Hd−1(ShKv(∞),η̄,Fl)m is true for the action of

GLd(Fv), then this is also the case for G. We now focus on the genericity of irreducible
sub-GLd(Fv)-modules of H0(ShKv(∞),η̄,Fl)m using the nearby cycles at the place v.

5.2. Level raising. — To a cohomological minimal prime ideal m̃ of T(K), which
corresponds to a maximal ideal of T(K)[1

l
], is associated both a near equivalence class

of Ql-automorphic representation Πm̃ and a Galois representation

ρm̃ : GF := Gal(F̄ /F ) −→ GLd(Ql)

such that the eigenvalues of the Frobenius morphism at an unramified place w are
given by the Satake parameters of the local component Πm̃,w of Πm̃. The semi-simple
class ρm of the reduction modulo l of ρm̃ depends only of the maximal ideal m of TSK
containing m̃.

(19)In [Boy22] hypothesis (H3) was introduced for this property to be true.
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We now allow infinite level at v and we denote by T(Kv(∞)) the associated Hecke
algebra. We fix a maximal ideal m in T(Kv(∞)) such that the associated Galois
representation ρm : GF → GLd(F) is irreducible.

Remark. For every minimal prime m̃ ⊆ m, note that Πm̃,v looks like sts1(πv,1) ×
· · · × stsr(πv,r) where πv,i is an irreducible cuspidal representation of GLgi(Fv) and
s1g1 + · · ·+ srgr = d.

Let Sv(m) be the supercuspidal support of the modulo l reduction of any Πm̃,v in
the near equivalence class associated to a minimal prime ideal m̃ ⊆ m. Recall that
Sv(m) is a multi-set, i.e. a set with multiplicities which only depends on m. We
decompose it according to the set of Zelevinsky lines: as we supposed qv ≡ 1 mod l
then every Zelevinsky line is reduced to a single equivalence class of an irreducible
(super)cuspidal Fl-representations ̺ of some GLg(̺)(Fv) with 1 ≤ g(̺) ≤ d.

Sv(m) =
∐

1≤g≤d

∐

̺∈Cusp
Fl
(g,v)

S̺(m),

where CuspFl
(g, v) is the set of irreducible cuspidal Fl-representations of GLg(Fv).

Notation 5.2.1. — We denote by l̺(m) the multiplicity of S̺(m).

For m̃ ⊆ m, the local component Πm̃,v of Πm̃ can then be written as a full induced

representation ×
1≤g≤d
×

̺∈Cusp
Fl
(g,v)

Πm̃,̺ where each Πm̃,̺ is also a full induced representa-

tion

Πm̃,̺
∼=

r̺(m̃)

×
i=1

Stl̺,i(m̃)(πv,i)

where rl(πv,i) ∼= ̺, l̺,1(m̃) ≥ · · · ≥ l̺,r̺(m̃)(m̃) and
∑r

i=1 l̺,i(m̃) = l̺(m).

Suppose now that there exists 1 ≤ g ≤ d and ̺ ∈ CuspFl
(g, v) such that

minm̃⊆m{r̺(m̃)} ≥ 2 and let l̺,1 := maxm̃⊆m{l̺,1(m̃)} which is then strictly less than
l̺(m).

Fact from [Boy10] §3: for an irreducible cuspidal representation πv such that its
modulo l reduction is isomorphic to ̺, H0(ShKv(∞),s̄v , P (t, πv))m ⊗Zl

Ql is the sum of
the contributions of Πm̃ with m̃ ⊆ m such that Πm̃ is of the following shape: stt(π

′
v)×ψ

where π′
v is an unramified twist of πv and ψ is any representation of GLd−tg(Fv) whose

cuspidal support is not linked to those of stt(π
′
v).

In particular for every t > l̺,1, H
0(ShKv(∞),s̄v , P (t, πv))m ⊗Zl

Ql is zero, so that, as
everything is torsion free,

H0(ShKv(∞),s̄v , gr
l̺,1(̺)−1
∗ (gr1! (Ψ̺)))m ⊗Zl

Fl →֒ H0(ShKv(∞),s̄v ,ΨKv(∞),v))m ⊗Zl
Fl.

Moreover this subspace, as a Fl-representation of GLd(Fv), has a subspace of the
following shape stl1(̺)(̺) × τ where the supercuspidal support of τ contains ̺. In
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particular as qv ≡ 1 mod l and l > d, this induced representation has both a generic
and a non generic subspace.

We can then conclude that for the genericity property to be true for KHT Shimura
varieties, one needs a level raising property as in proposition 3.3.1 of [Boy22]. Hope-
fully such statements exist under some rather mild hypothesis as for example the
following result of T. Gee.

Theorem 5.2.2. — ([Gee11] theorem 5.1.5) Let F = F+E be a CM field where F+

is totally real and E is imaginary quadratic. Let d > 1 and l > d be a prime which is
unramified in F+ and split in E. Suppose that

ρ : GF −→ GLn(Fl)

is an irreducible representation which is unramified at all places of F lying above
primes which do not split in E and which satisfies the following properties.

– ρ is automorphic of weight a, where we assume that for all τ ∈ (Zd)hom(F,C) we
have either(20)

l − 1− d ≥ aτ,1 ≥ · · · ≥ aτ,d ≥ 0 or l − 1− d ≥ acτ,1 ≥ · · · ≥ acτ,d ≥ 0.

– F
ker ad ρ

does not contain F (ζl).
– ρ(GF+(ζl)) is big.

Let u be a finite place of F+ which split in F and not dividing l. Choose an inertial
type τv and a place v of F above u. Assume that ρ|GFv

has a lift to characteristic zero
of type τv.

Then there is an automorphic representation π of GLn(AF ) of weight a and level
prime to l such that

– rl,ι(π) ∼= ρ.
– rl,ι(π)|GFv

has type τv.
– π is unramified at all places w 6= v of F at which ρ is unramified.

Remark. In this text we focus only on the trivial coefficients Zl, i.e. to the case
aτ,1 = · · · = aτ,d = acτ,1 = · · · = acτ,d = 0, but we could also deals with others weights
as in the previous theorem.

5.3. Various filtrations. — Recall that

Hd−1(ShK,η̄v ,Zl)m ⊗Zl
Fl ∼= σK ⊗RK

ρK ,

with σK/m ∼= ρm. It can be decomposed as follows.

(20)Note that these conditions imply ρc ∼= ρ∨ǫ1−d.
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– It is the direct sum⊕

1≤g≤d

⊕

̺∈Cusp
Fl
(g,v)

H0(ShK,s̄v ,Ψ̺)m ⊗Zl
Fl.

– For some fixed Fl-supercuspidal representation ̺ of GLg(Fv), the maximal ideal
m gives us at the place v an element P ∈ I and in particular numbers s̺ for
every irreducible Fl-supercuspidal representation ̺.

– For t > s̺, and πv irreducible cuspidal with modulo l reduction isomorphic to
̺, then H0(ShKv(∞),s̄v ,P(t, πv))m = (0).

We then have a filtration of H0(ShKv(∞),s̄v ,Ψ̺)m coming from the previous filtration
of Ψ̺:

(0) = Fil0̺ ⊆ Fil1̺ ⊆ · · · ⊆ Fil
s̺(s̺+1)

2
̺ ,

where for k = s̺+(s̺−1)+ · · ·+(s̺−t)−δ with 0 ≤ t ≤ s̺−1 and 0 ≤ δ < s̺−t−1
we have

grk̺
∼= H0(ShK,s̄v ,P(̺, s̺ − δ))(

1− s̺ + 2t

2
)m.

The modulo l monodromy operator N ̺ induces an isomorphism

grs̺+(s̺−1)+···+(s̺−t)−δ
̺

∼= grs̺+(s̺−1)+···+(s̺−t−1)−δ
̺ .

We then consider partitions (l1(̺) ≥ l2(̺), · · · ) of s̺. The idea of the proof is to
pass, step by step, from the previous filtration, coming from a sheaf filtration, to
another one

(0) = Filfin−1−s̺ ⊆ Filfin−s̺ ⊆ · · · ⊆ Filfin−1 = H0(ShKv(∞),s̄v ,Ψ̺)m

where for r = 1, · · · , s̺, the graded part grfin−r is a lattice of

(28)
⊕

s̺∈Partr(s̺)

⊕

Π∈AKv,m(̺,s̺)

(Π∞)K
v

⊗ σ̺(Π),

where

– Partr(s̺) is the subset of partition s̺ = (l1 ≥ · · · ≥ lk) of s̺ such that l1 = r;
– for s̺ = (l1 ≥ · · · ≥ lk) a partition of s̺, AKv,m(̺, s̺) is the set of isomorphism
classes of irreducible automorphic with m-Kv non trivial invariants and such
that

Πv
∼= stl1(πv,1)× · · · × stlk(πv,k)× ψ

where the modulo l reduction of πv,1, · · · , πv,k are isomorphic to ̺ and the su-
percuspidal support of the modulo l reduction of ψ does not contain ̺.

– σ̺(Π) is the ̺-part of σ(Π) i.e. with the above notations,

σ̺(Π) ∼= Spl1(ρv,1)⊕ · · · ⊕ Splk(ρv,k)

where for i = 1, · · · , k, the Galois representation ρv,i is the contragredient of the
representation associated to πv,i by the local Langlands correspondence.



42 PASCAL BOYER
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⊕

⊕
Πv

∼=St3
ΠK ⊗ σ̺(Π) =

=
⊕

Πv
∼=St2,1

ΠK ⊗ σ̺(Π)

=⊕
Πv

∼=St1,1,1
ΠK ⊗ σ̺(Π)

→֒

12 3
1 1

→֒ →֒ →֒

cokernels are killed by l and their socle are generic

Figure 3. Three filtrations of H0(ShKv(∞),s̄v ,Ψ̺)m when s̺ = 3

At each step r we prove the ̺-part of Ihara’s lemma for representations Π ∈
AKv,m(̺, s̺) with s̺ ∈ Partr(s̺) in the following sense:

– for such a irreducible automorphic representation Π, let Γ(Π) be the lattice of
Πv induced by the OL-cohomology through

(Π∞,v)K
v

⊗ Πv ⊗ σ(Π) →֒ H0(ShKv(∞),s̄v ,Ψ̺)m ⊗Zl
Ql;

– then Γ(Π) ⊗OL
OL/̟LOL, as a FL-representation of GLd(Fv), has a ̺-generic

socle, i.e representations of the form stl̺(m)(̺) × ψ where ̺ does not belong to
the supercuspidal support of ψ.

5.3.1. Case where s̺ = 3. — Before considering the general case, we first want to
explain the case where s̺ = 3 and d = gs̺: we advise the reader to follow the details
of the proof with the help of figure 3. We first describe it.

– It illustrates three filtrations separated by the symbols  ; the graded parts are
represented by circles corresponding to the cohomology of Harris-Taylor perverse
sheaves: compare the filtration on the left with those in the figure 2. In particular
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each circle can be viewed as some lattice of

⊕

Π∈AKv,m(̺,s̺)

(Π∞)K
v

⊗ σ′
̺(Π)

for some partition s̺ of s̺ = 3 with the following precisions.
• When the circle is filled with diagonal lines with slope 1, it corresponds to
s̺ = (1, 1, 1) or to the contribution of 1 in the partition s̺ = (2, 1) in the
sense that σ′

̺(Π) is the Galois representation ρl(πv,2)
∨ associated to πv,2 in

Πv
∼= st2(πv,1) × πv,2, i.e. the contragredient of the Galois representation

associated to πv,2 by the local Langlands correspondence.
• When the circle is filled with diagonal lines with slope ±1, it corresponds
to the contribution of 2 in the partition s̺ = (2, 1), in the sense that σ′

̺(Π)
is the Galois representation associated either to πv,1{1/2} or πv,1{−1/2}
in Πv

∼= st2(πv,1)× πv,2: the sign corresponds to the weight of the perverse
Harris-Taylor sheaf whose cohomology gives the circle.
• When the circle is empty, it then corresponds to s̺ = (3): then σ′

̺(Π)
correspond to the Galois representation associated to πv{k} in Πv

∼= st3(πv)
where k ∈ {−1, 0, 1} corresponds to the weight of the perverse Harris-
Taylor sheaf whose cohomology gives the circle.

– For each of these three filtrations illustrated in figure 3, subspaces appears from
bottom to top.

– Arrows correspond to the nilpotent monodromy operator and we explicit if its
modulo l reduction N is zero or non zero, see after for more details.

– In the second filtration we gather the contribution of AKv,m(̺, (3)) so that in the
large ellipse we obtain as a quotient the contribution of

⊕
Π∈AKv,m(̺,(3))(Π

∞)K
v
⊗

σ̺(Π) for all of σ̺(Π). The indices 1 above the circles means that the lattices
are modified which is materialize in the bottom of the figure with the precision
that cokernels are killed by ̟L with generic cosocle as FL-representations.

– In the last filtration on the right of the figure, we gather in the large circle the
contribution of AKv,m(̺, (2, 1) with another modifications of the lattices: note
that one have to separate the contributions of (2, 1) with (1, 1, 1) in the circle
filled with lines with slope 1.

The automorphic filtration

For each of these circles viewed as the Zl-cohomology group of Harris-Taylor perverse
sheaves, we will also consider filtrations as follows.

– For n = 1 we fix any numbering of elements in AKv,s̄v(̺, s̺) which appears in
AKv(1),s̄v(̺, s̺), i.e. having non trivial vectors invariants under Kv(1). We then

obtain successive subspaces of the Ql-contribution of this circle: the intersection
with the Zl cohomology gives us successive lattices Γ(Π) of (Π∞)K

v
⊗ σ′

̺(Π) for
theses elements Π ∈ AKv,s̄v(̺, s̺) having non zero vectors invariant under Kv(1).
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N 6= 0

N = 0

1

1
 

→֒ ←֓։ T և
1 1

Figure 4. First step

– We then take n = 2, and consider elements of AKv(2),s̄v(̺, s̺) which do not
appears with AKv(1),s̄v(̺, s̺): we fix a numbering of them and obtain other
lattices of their contribution.

– We keep on this construction for any n and speak about the automorphic filtra-
tion of this circle.

Remark. Note that the lattice Γ(Π) might depends on the ordering of any of the
AKv(n),m(̺, s̺). To deal with finite number of graded parts, in the following we will
argue for some fixed n: this also allows us to have everything defined over some finite
extension L of Ql as before.

A- We first explain how to pass from the first filtration to the second one.

Step 1: the exchange is non trivial
Consider as illustrated in the figure 4, the three first quotients of the first filtration,
which correspond to the three circles in the bottom on the left part of the figure 3.
We then exchange the first two as explained in figure 1. We want first to explain why
this exchange is non trivial, i.e. the first extension is non split or equivalently T is
non zero. For this we examine more precisely N on this space denoted by V .

a) On the left side of the figure 4 we know that the arrow is a isomorphism: we
just write N 6= 0 in the figure. We can then read the dimension of the image of N
from what happens over Ql. More precisely, over Ql, the rank of the monodromy
operator is equal to the cardinal of AKv,m(̺, (3)) meaning for each finite level Kv,
Π ∈ AKv,m(̺, (3)) contributes to g dimQl

(Π∞)K
vKv .
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Remark. It is also possible to argue with Kv(∞), i.e. with infinite dimension at v: to
be able to count something with finite dimension, one can look at the contribution of
a Kv-type for example.

b) We then look at the right side of the figure 4. Looking at the last two graded
parts, over Fl, as explained in the introduction, the modulo l reduction of the nilpotent
monodromy operator is zero on any σ̺(Π) so when considering a lattice of a direct
sum of σ̺(Π), the rank of N has to be strictly less than those of N over Ql. In the

above picture we simplify this observation by simply writing N = 0.

So the ellipse of the figure 4 cannot be split, i.e. the exchange is non trivial and
the T appearing in figure 4 is non zero.

– As a quotient of the empty circle on the right of the last line, corresponding
to the contribution of AKv,m(̺, (3)), we deduce that T has to be extensions

of Fl-generic representations of GLd(Fv). To see this, consider an automorphic
filtration of the empty circle and view T as a the limit of Tn where Tn corresponds
to the exchange of the automorphic representation for Kv(n). Then every Tn is
a extension of ̺-generic representations.
Remark. in view of the next steps we just remember that T has a ̺-generic socle;

– We then look at T as a quotient of left part of the last line. Consider an
automorphic filtration of the circle filled with diagonal lines corresponding to
automorphic representations in AKv,m(̺, (2, 1)). Let denote by Γ(Π) be the
lattice given by the initial circle and Γ1(Π) after the exchange, i.e. for the circle
indexed with a 1. If Γ(Π) is modified, for the first time it becomes Γ(Π)gen the
lattice with a ̺-generic socle. Then it is not possible to modify Γ(Π)gen to obtain
a new lattice Γ(Π)2 such that Γ(Π)gen/Γ(Π)2 is ̺-generic: indeed the modulo l
reduction of Γ(Π)gen contains an unique ̺-generic constituant and it has to be
in the image of

Γ(Π)2 ⊗Zl
Fl −→ Γ(Π)gen ⊗Zl

Fl.

Finally after the exchange, the subspace of the new filtration illustrated by a circle
filled with lines and indexed by 1 in the figure 4, provided with its automorphic
filtration, is such that the lattices are either the same as the initial one or it is the
one with a ̺-generic socle.

There is then at least one Π0 ∈ AKv,m(̺, (2, 1)) such that its lattice is Γ(Π0)
gen and

is not the one before the exchange. Take Π0 as the first one. Note that modulo l we
have the following commutative diagram

st3(̺)
� � // X // // Γ(Π0)

Γ
gen

(Π0)
� � // X // // st3(̺)
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where before the exchange, st3(̺) = ker(X ։ Γ(Π0)) belongs to the image of N ̺.
Then as

st3(̺) = ker(Γ
gen

(Π0) −→ Γ(Π0))

we then deduce that, after the exchange, modulo l, the subspace st3(̺) of Γ
gen

(Π0)
maps to st3(̺) = ker(X ։ Γ(Π0) and then belongs to the image of N̺.

Step 2: the subspace lattice of Π0 has also a ̺-generic socle
Maybe Π0 does not appears first in the automorphic filtration. Let denote by k the
index of the graded part corresponding to Π0 in the automorphic filtration of the
circle on the bottom in the right side of the figure 4, i.e. the one indexed by 1 and
filled with diagonal lines: we denote by W the cohomology represented by this circle.

We may moreover suppose that k is minimal among all modified lattices and we
want to prove that k = 1. We reason by absurd and assume k ≥ 2. Let then denote
by Γ(Π) the lattice which appears just before Γ(Π0)

gen, i.e. the graded part of index
k − 1. We then exchange these two graded parts so that before the exchange the
successive graded parts are

W = Γ−, Γ(Π), Γ(Π0)
gen, Γ+

and after there are

W = Γ−, Γ(Π0), Γ(Π)′, Γ+

and

(29) Γ(Π0)
� � // Γ(Π0)

gen // // T

Γ(Π) �
� // Γ(Π)′ // // T,

where T is l-torsion, non zero and not ̺-generic. As k is minimal, then Γ−,Γ(Π0)
is induced by the circle filled with diagonal lines in the left part of the figure 4, i.e.
before any exchange, so that T is non zero as Π0 was chosen so that Γ(Π0)

gen is
not the same lattice as before the exchange. The modulo l reduction of these two
filtrations gives a filtration of the modulo l reduction W of W with successive graded
parts

W = Γ−, Γ(Π0), Γ(Π)′, Γ+ = Γ−, Γ(Π), Γ(Π0)
gen, Γ+.

We then focus on the ̺-generic constituant of Γ(Π0):

– viewed inside Γ(Π0), it is not in the image of N ,
– but viewed in the second filtration, i.e. as a subsapce of Γ(Π0)

gen, we have seen
it is in the image of N ;

– but as the modulo l reduction of T in (29) is not generic, these two subquotient
are equal: contradiction.
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Remark. Note that here ̺-generic is the same as generic.

Step 3: every subspace lattice has a ̺-generic socle
Consider now Π ∈ AKv,m(̺, (2, 1)) and the two previous lattices of Πv with

(30) 0→ Γ(Π)gen −→ Γ(Π) −→ st3(̺)→ 0.

We want to distinguish these two lattices through their restriction to Kv = GLd(Ov).
Note that st3(̺)|Kv contains an unique Kv-type σmax which is moreover maximal.
From theorem 2.2.9 σmax appears with multiplicity one in the modulo l reduction
of Γ(Π)|Kv . Write Πv

∼= st2(πv,1) × πv,2. With the notations of §2.2, to these two
cuspidal representations πv,1 and πv,2, is associated a SZ-datum and in particular
cuspidal representations ν1 and ν2 of a finite linear group.
(a) We first suppose that ν2 and ν1 are not isomorphic. Then Πv contains an unique
Kv-type σL whose modulo l reduction contains two Kv-types, σmax and another one
σmin. We denote by σ (resp. σgen) the lattice of σL obtained from Γ(Π) (resp. Γ(Π)gen)
through σL →֒ (Πv)|Kv . By the multiplicity one property, the short exact sequence
(30) gives

0→ σgen −→ σ −→ T → 0,

where T is non zero as it contains at least σmax as a sub-quotient. Consider any
Π ∈ AKv,m(̺, (2, 1)), we know that its subspace lattice induced by the cohomology is
either Γ(Π) or Γ(Π)gen. Proposition 4.3.2 tells us that it has to be Γ(Π)gen.

(b) Consider now the case where the two cuspidal representations ν1 and ν2 are
isomorphic. We consider another cuspidal representation ν ′2 isomorphic to ν2 modulo
̟L, which is not isomorphic to ν1 and we denote by π′

v,2 the corresponding cuspidal
representation constructed as in §2.2 using the same data for πv,2 and replacing ν2 by
ν ′2.

By [Gee11] theorem 5.1.5, cf. theorem 5.2.2, there exists another system of Hecke
eigenvalues λ′ so that λ′ ≡ λ mod ̟L and the associated local component Π′

v is
isomorphic to st2(πv,1)×π

′
v,2: note that λ

′ now verifies the property as in the previous
case (a) so that Π′

v has only one Kv-type σ
′
L. This type is constructed as explained in

§2.2 so that we can copy the construction for Πv to obtain a representation σL: note
that, with the notations of the paragraph after definition 2.2.7, σP is not equal to πP
and so σL is not a Kv-type.

We then consider the induced lattices Γind (resp. Γ′
ind) of Πv (resp. Π′

v) and the
associated lattices σind (resp. σ

′
ind) of σL (resp. σ′

L). Note that modulo ̟L, we have

Γind ∼= Γ
′

ind and σind ∼= σ′
ind.

Let then denote by Γgen and Γ′
gen the lattices such the socle of

Γgen/̟LΓgen ∼= Γ′
gen/̟LΓ

′
gen
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is generic. We then also introduce the pullbacks

Γgen
� � // Γind Γ′

gen
� � // Γ′

ind

σgen
� � //❴❴❴?�

OO✤
✤

✤

σind
?�

OO

σ′
gen

� � //❴❴❴
?�

OO✤
✤

✤

σ′
ind

?�

OO

The semi-simplification of σgen/̟Lσgen is, cf. theorem 2.2.10, the sum of the only
two Kv-types of Γgen and so is equal to the semi-simplification of σ′

gen/̟Lσ
′
gen and

the image of

σgen/̟Lσgen →֒ Γgen ∼= Γ
′

gen

is σ′
gen/̟Lσ

′
gen so that

σgen/̟Lσgen ∼= σ′
gen/̟Lσ

′
gen,

and
σgen/̟Lσgen //

∼=
��

σind/̟Lσind

∼=
��

σ′
gen/̟Lσ

′
gen

// σ′
ind/̟Lσ

′
ind

is commutative.

Case (a) gives us that the natural morphism

M(σvσ′
gen)/(λ

′, ̟L) −→M(σvσ′
ind)/(λ

′, ̟L)

induced by ι : σ′
gen →֒ σ′

ind is zero so that it is the same for

(31) M(σvσgen)/(λ,̟L) −→ M(σvσind)/(λ,̟L).

But if the lattice induced by λ were Γind, then

homKv(σind/̟L, σind/̟L) −→ homKv(σgen/̟L, σind/̟L)

is non zero as the image of identity is ι 6= 0 and so (31) is non zero.

Remark. In case (b) if we do not modify one of the cuspidal representations, the prob-
lem is that the Kv-type whose modulo l reduction contains σmax, remains irreducible
modulo ̟L and so have, up to homothety, only one stable lattice. We are then not
able to detect the right GL3s̺(Fv)-lattice. In the general case we might also have
to modify one of the cuspidal representation in the cuspidal support to avoid such a
situation.

Remark. The case s̺ = 3 is more easy than the general one because we are concerned
with only one partition (2, 1) so that when we consider any other automorphic con-
tribution Π it shares the same partition (2, 1) with Π0 and the modulo l reduction
of the types of Π and Π0 coincide. In the general case we will need to manage the
existence of various partitions contributing to the considered circle.

Step 4: Ihara’s lemma for AKv,m(̺, (2, 1))
By now concerning the new filtration, those illustrated on the right side of the figure
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4, we denote again by W the contribution of the circle filled with diagonal lines and
indexed by 1:

0→W −→ V −→W ′ → 0.

We focus on an automorphic filtration of W where the graded parts are lattices of
the contribution of some Π ∈ AKv,m(̺, (2, 1): we have seen that the first graded part,
i.e. the subspace one, is such that its modulo l reduction is a non trivial extension of
the irreducible non ̺-generic constituant by the ̺-generic one.

Consider any graded part Γ(Π) and suppose that its modulo l reduction has a non
̺-generic subspace: we state that it is not a subspace ofW . Indeed we have seen that
subspace lattice of the contribution of Π is Γ(Π)gen and

0→ Γ(Π)gen −→ Γ(Π) −→ T → 0,

where T is l-torsion and non zero as by hypothesis Γ(Π) is supposed to be non
isomorphic to Γ(Π)gen. Tensoring with Fl, we then obtain that the non ̺-generic
constituant of Γ(Π)⊗Zl

Fl, which is supposed to be a subspace ofW and which belongs

to the image of Γ(Π)gen ⊗Zl
Fl. But we know that this non ̺-generic constituant is

not a subspace of Γ(Π)gen ⊗Zl
Fl: contradiction.

Step 5: final exchanges to arrive at the second filtration
We now exchange W ′ with the two circles of the first filtration of the figure 3: those
filled with diagonal lines with slope 1 and those with slopes ±1. We then arrive at the
second filtration of this figure. To be in position to pass from the second filtration to
the third one, we need to give more informations on the arrow N 6= 0 of the second
filtration of the figure 3.

Let consider the subspace represented by the first three graded parts, i.e. we remove
the quotient given by the contribution of AKv,m(̺, (3)). Before all the exchanges, the
image of the considered N was equal to the contribution of the circle pointed by this
arrow. In particular all the (̺, 2)-small subquotients were in the image of N . But
as the exchanges made are only related to st3(̺), we then deduce that after all the
exchanges, all the (̺, 2)-small subquotients of the circle pointed by the arrow are still
in the image of N .

B- We now explain how to pass from the second filtration to the third one.

The situation is very similar, we just focus on the differences. Let denote again by
V the quotient gathering the three first graded parts of this second filtration. Note
that

– the modulo l reduction of the first graded part, i.e. the circle filled with lines
with slopes ±1, has a ̺-generic socle;

– the rank ofN , concerning the (̺, 2)-small subquotients, can be directly compared
to its Ql-version as explained above.
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Step 1: the exchange is non trivial
As step 1 of A, the exchange between the first two graded parts is necessarly non
trivial because after the exchange the Fl-contribution of N , concerning (̺, 2)-small
subquotients, in the first two graded parts is strictly less than its Ql-contribution.

Remark. The easiest way maybe to count things, is to look at the contributions of Kv-
type for the partition (2, 1): note that st3(πv) never contributes to these contributions.

Concerning the torsion module T produced by the various exchanges,

(i) on one side as a quotient of the contribution of AKv,m(̺, (2, 1)), it follows from
A step 3, one of them has a ̺-generic socle but compared to A we don’t know
whether it is always a non trivial extension of st3(̺) by LT̺(1, 1) or it is st3(̺)
alone with LT̺(1, 1) appearing alone after;

(ii) on the other side, note that modulo ̟L, the representation πv,1× πv,2× πv,3 has
a subquotient which is not a constituant of any st2(πv,1)×πv,2, where all the πv,i
are supposed to be isomorphic to ̺ modulo ̟L. As before we then deduce that
T is killed by ̟L.

We then deduce that after the exchange, concerning the circle filled with line of slope
1 and indexed with a 2, its automorphic filtration separating the contributions of
Π ∈ AKv,m(̺, (1, 1, 1)), has a graded part Γ(Π0) such that its modulo ̟L reduction,
as a FL-representation of GLd(Fv), has a ̺-generic socle.

Step 2-3-4: lattices for elements of AKv,m(̺, (1, 1, 1))
The arguments of A-step 2 applies and gives us that the lattice associated to Π0 viewed
as a subspace of V has also a ̺-generic socle. Repeating the arguments of A-step 3,
thanks to proposition 4.3.2, we then deduce that whatever is Π ∈ AKv,m(̺, (1, 1, 1)),
its lattice induced by V as a subspace, has also a ̺-generic socle. In particular
in (i) above, we deduce that all l-torsion modules appearing in the exchanges are
necessary a non trivial extension of LT̺(1, 1) by st3(̺) and the subspace lattice of
any Π ∈ AKv,m(̺, (1, 1, 1)), has a socle filtration with at least three graded parts
where the two first ones are st3(̺) and LT̺(1, 1).

Finally the previous arguments of A-step 4 show that no non ̺-generic subquotient
of the contributions of elements of AKv,m(̺, (1, 1, 1)) can give an irreducible subspace
of the modulo l cohomology.

We then arrive at our final filtration where we succeeded to gather the contributions
of the various elements of AKv,m(̺, s̺) such that no non ̺-generic irreducible consti-
tuant of the various graded parts could be a subspace of the modulo l cohomology:
Ihara’s lemma is then proved in this case.

5.3.2. The general case. — We now consider the general case and we follow closely
the arguments explained when s̺ = 3. We first have to define the different filtrations
and then explain how to pass from one to its following.
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For some fixed r between 1 and s̺ we suppose that we have already proved the
following property:

– consider an automorphic representation Π which contributes toH0(ShK,s̄v,Ψ̺)m⊗Zl

Ql with Πv
∼= stl1(̺)πv,1 × · · · stlk(̺)πv,k × ψ where (l1(̺) ≥ l2(̺), · · · , lk(̺)) is a

partition of s̺ with rl(πv,i) ∼= ̺ for i = 1, · · · , k and the supercuspidal support
of the modulo l reduction of ψ does not contain ̺;

– suppose that l1(̺) ≥ r, then the GLd(Fv)-lattice induced by

(Π∞,v)K
v

⊗ Πv ⊗ ρl(πv)
∨ →֒ H0(ShKv(∞),s̄v ,Ψ̺)m

is such that the only irreducible subspace of its modulo l reduction is sts̺(̺)×ψ

where ψ is some irreducible Fl-representation whose supercuspidal support does
not contain ̺.

For the same fixed r between 1 and s̺ we consider the following filtration:

(0) = Fil−r(r+1)/2
̺ (r) ⊆ · · · ⊆ Fil0̺(r) ⊆ Fil1̺(r) = H0(ShKv(∞),s̄v ,Ψ̺)m

such that

– gr1̺(r)⊗Zl
Ql is the direct sum

⊕

s̺>(r)

⊕

Π∈AKv,m(̺,s̺)

(Π∞)K
v(∞) ⊗ σ̺(Π),

where (l1 ≥ l2 ≥ · · · ) > (r) means l1 > r;
– for k = 1 + 2 + · · ·+ (t + 1) − δ with 0 ≤ t ≤ r − 1 and 0 ≤ δ ≤ t, the graded

part gr
−r(r+1)/2+k
̺ (r) is a lattice Γ(t, δ)init of(21)

⊕

s̺=(r≥··· )

⊕

Π∈AKv,m(̺,s̺)

(Π∞)K
v(∞) ⊗ ρl(Πv)(

r − 1− 2t+ δ

2
)

→֒
⊕

πv/rl(πv)∼=̺

H0(ShKv(∞),s̄v ,P(r − δ)(
r − 1− 2t+ δ

2
))m ⊗Zl

Ql.

Moreover with the same notations for 0 ≤ δ ∈ {t− 1, t}, if we denote by Γ(t, δ)0

the lattice induced by
⊕

πv/rl(πv)∼=̺

H0(ShKv(∞),s̄v ,P(t+ 1 + δ, πv)(
t− δ

2
))m

on the previous subspace, then we have

Γ(t, δ)init →֒ Γ(t, δ)0

where the cokernel does not contain any (̺, r)-small subquotient.

(21)The contribution of the automorphic representations Π ∈ AKv ,m(̺, s̺) for s̺ = (l1 ≥ · · · )

with l1 > r was already put in gr0̺(r) while the others which contributes to the cohomology of

P(t+ 1 + δ)( t−δ
2 ) remains in this graded parts.
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Remark. In the case s̺ = 3,
• in the second filtration of the figure 3, gr1̺(2) is the first ellipse gathering
the contributions ofAKv,m(̺, (3)). The image of the circle pointed by (resp.
at the origin of) the vector corresponds to (t, δ) = (0, 0) (resp. (1, 0)) and
the last one is indexed by (1, 1).
• In the third filtration of this figure, gr1̺(1) gathers both the contribution
of AKv,m(̺, (3)) and those of AKv,m(̺, (2, 1)) in the large circle. There is
then only remaining graded part for (t, δ) = (0, 0) which corresponds to
the contribution of AKv,m(̺, (1, 1, 1)) which corresponds to the remaining
part of the cohomology of

⊕
πv/rl(πv)∼=̺

P(1, πv)(0) when the contribution

of AKv,m(̺, (2, 1)) has been removed.
– For every 0 ≤ t ≤ r − 1, the modulo ̟L monodromy operator N̺ induces

gr
− r(r+1)

2
+(1+2+···+(t+1)−(t−1))

̺ (r) −→ gr
− r(r+1)

2
+(1+2+···+t−(t−1))

̺ (r),

which is surjective relatively to all the (̺, r)-small subquotients.

– if ΓKv,m(r, t, δ) is the initial lattice of gr
−

r(r+1)
2

+(1+2···+(t+1)−δ)
̺ (r) induced by

H0(ShKv(∞),s̄v ,P(r − δ)(−
r−1−2t+δ

2
))m then

gr
−

r(r+1)
2

+(1+2+···+(t+1)−δ)
̺ (r) →֒ ΓKv,m(r, t, δ)

where the cokernel does not contain any (̺, r)-small subquotient, and the kernel
of the modulo ̟L reduction of this injection has a ̺-generic socle.

5.3.3. Proof of the induction. — Note first that the case r = s̺ is clearly satisfied.
We now suppose that the result is true for r and we prove it is then true for r−1 ≥ 1.
We follow closely the arguments of the case s̺ = 3.

Step 1: the exchange is non trivial
Consider the three first graded parts V := Fil−r(r+1)/2+2

̺ (r) where the nilpotent mon-

odromy operator induces gr
−r(r+1)/2+2
̺ (r) −→ gr

−r(r+1)/2
̺ (r) which remains an isomor-

phism modulo ̟L. We then exchange the two first graded parts and then denote the
new graded parts as

g̃r−r(r+1)/2+1
̺ (r, s̺(r,max)), g̃r−r(r+1)/2

̺ (r, s̺(r,max)), gr−r(r+1)/2+2
̺ (r)

with

0→ g̃r−r(r+1)/2+1
̺ (r) −→ gr−r(r+1)/2+1

̺ (r) −→ T → 0,

and

0→ gr−r(r+1)/2
̺ (r) −→ g̃r−r(r+1)/2

̺ (r) −→ T → 0,

where T is torsion. The situation is exactly similar as step 1 for the case s̺ = 3, so
that by considering the modulo ̟L reduction of the nilpotent monodromy operator
on V , we deduce that the exchange is non trivial, i.e. T 6= 0. Considering the modulo
̟L reduction of the second short exact sequence, the induction hypothesis tells us
that the socle of T [̟L] is ̺-generic.
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Consider an automorphic filtration of gr
−r(r+1)/2+1
̺ (r) whose graded parts grrk̺(r)

correspond to the contribution of some Π ∈ AKv,m(̺, s̺) for some partition s̺ =

(r− 1 ≥ · · · ) of s̺ starting with r− 1. We infer a similar filtration of g̃r−r(r+1)/2+1
̺ (r)

with graded parts

0→ g̃rrk̺(r) −→ grrk̺(r) −→ T k̺ (r)→ 0.

As T is also a quotient of g̃rr(r+1)/2−1
̺ (r), we then deduce that there exists k such that

T k̺ (r)[̟L] has a non zero socle which is ̺-generic.

Step 2: the subspace lattice of Π0 has also a ̺-generic socle
The same arguments of the case s̺ = 3 apply without any change.

Step 3: every subspace lattice attached to any Π ∈ AKv,m(̺, s̺) for any partition
s̺ = (r − 1 ≥ · · · ), has also a ̺-generic socle
The main ingredient is the same as in the case s̺ = 3, that is proposition 4.3.2,
but now we have to struggle with the fact that usually there are many partitions
s̺ = (r − 1 ≥ · · · ) starting with r − 1: the problem is that proposition 4.3.2 needs
the Kv-type to have multiplicity one in (Πv)|Kv .

(i) From some s0̺ to (r − 1, s̺ − r + 1)
By now we proved the existence of some Π0 ∈ AKv,m(̺, s

0
̺) for which its subspace

lattice Γgen0 induced by the cohomology is such that its modulo l reduction has a
̺-generic socle. The local component of Π0 at v looks like

Π0,v
∼= str−1(πv,0)× stl1(πv,1)× · · · × stlk(πv,k)× ψ

̺

where

– s0̺ = (r − 1 ≥ l1 ≥ · · · ≥ lk),
– the modulo l reduction of πv,i is isomorphic to ̺ for i = 0, · · · , k
– and ̺ does not belong to the supercuspidal support of the modulo l reduction
of ψ̺.

Consider now

Π′
v
∼= str−1(πv,0)× stl1(πv,1{δ1/2})× · · · × stlk(πv,1{δk/2})× ψ

̺

where δ1 = s̺ − r, δ2 = δ1 − 2l1... and δk = δ1 − 2l1 − · · · − 2lk−1 = r − s̺.

Remark. The δi are chosen so that

(32) sts̺−r+1(πv,1) →֒ stl1(πv,1{δ1/2})× · · · × stlk(πv,1{δk/2}).

Lemma 5.3.1. — To any stable lattice Γ of

str−1(πv,0)× stl1(πv,1)× · · · × stlk(πv,k)

is associated a stable lattice Γ′ of

str−1(πv,0)× stl1(πv,1{δ1/2})× · · · × stlk(πv,1{δk/2})
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such that Γ := Γ/̟LΓ ∼= Γ′/̟LΓ
′ =: Γ

′
.

Proof. — Let denote by Γind (resp. Γ
′
ind) the induced stable lattice of the first (resp.

second) induced representation of the lemma, and note that their modulo l reduction
is semi-simple and so isomorphic. Consider then a stable lattice Γ contained in Γind
such that τ := Γind/Γ is l-torsion and let Γ′ be defined by the following pullback:

τ τ

lΓ′
ind

� � // Γ′
ind

// //

OOOO

τ ⊕ τ ′

OOOO

lΓ′
ind

� � // Γ′
?�

OO✤
✤

✤

//❴❴❴❴ τ ′.
?�

OO

We then have Γ
′ ∼= Γ. We can then repeat the argument with this (Γ,Γ′) instead of

(Γind,Γ
′
ind) so that, step by step, we are finally able to cover all the cases.

Recall that for each of the πv,i is associated, cf. notation 2.2.8, a SZ datum and in
particular a cuspidal representation σi of a finite linear group.

– If all these σi for i = 0, · · · , k are pairwise non isomorphic, we then consider σL
the associated Kv-type of str−1(πv,0)× stl1(πv,1)× · · · × stlk(πv,k): it is obtained
by inducing the Kv-types of the Steinberg representations.(22) Note that from
theorem 2.2.10, the modulo ̟L-reduction of σL is reducible.

– Otherwise, as in A step 3 for s̺ = 3, to avoid to consider a Kv-type with an
irreducible modulo ̟L reduction, we modify the σi to σ̃i such that they are then
pairwise distinct.
Remark. Note that l divides q−1 and l > d such that there exists, up to increase
L, at least d distinct characters of F×

q −→ O
×
L all to congruent to the trivial one

modulo ̟L.
Let denote by π̃v,i the cuspidal representation associated to the Kv-type of

πv,i where we replace σi by σ̃i. Consider then the Kv-type σ̃L of str−1(π̃v,0) ×
stl1(π̃v,1)×· · ·× stlk(π̃v,k), which also have a reducible modulo ̟L reduction. (23)

We then copy the construction of σ̃L replacing σ̃i by σi, to obtain σL which is now
reducible. Note also that σ̃L is both irreducible and appears with multiplicity
one in str−1(π̃v,0)× stl1(πv,1)×· · · × stlk(πv,k), which allows to apply proposition
4.3.2.

Replacing the πv,i for i = 1, · · · , k, by π̃v,1, and πv,0 by π̃v,0, in the construction of σL
we obtain a subspace σ′

L of str−1(π̃v,0)× stl1(π̃v,1{δ1/2})× · · · × stlk(π̃v,1{δk/2}). By

(22)With the notations of loc. cit., we have σ
P
= π

P
.

(23)Note that for σ̃L, with the notations of the paragraph after definition 2.2.7, σ
P

is not equal to
π
P

and so σ̃L is not a Kv-type.
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construction in notation 2.2.8, the Kv-type σst,L of str−1(π̃v,0)× sts̺−r+1(π̃v,1) appears
with multiplicity one in σ′

L and has a reducible modulo ̟L reduction.

For a stable lattice Γ we obtain lattices Γ
′

and Γ̃ as explained in the previous lemma
and we denote by Γst the lattice of str−1(π̃v,0)× sts̺−r+1(π̃v,1) given by Γ

′

through the
injective map (32). We then obtain a lattice σ of σL and, using the previous lemma,
lattices σ′ of σ′

L and σ̃ of σ̃L. By construction for the induced lattices, note that

σ
′,ind := σ

′,ind/̟Lσ
′,ind ∼= σind/̟Lσ

ind =: σind ∼= σ̃ind/̟Lσ̃
ind

as a FL-representation of Kv = GLd(Ov). We also obtained a lattice σindst of σst,L with

σindst := σindst /̟Lσ
ind
st →֒ σ

′,ind ∼= σind.

Starting with Γgen we denote the associated lattices by σgen, σ̃gen, σgen,
′

and σgenst .
Reasoning as in step 3 for case s̺ = 3, in the diagram

σ̃gen/̟L
� � // Γ̃/̟L

∼=
��

σgen/̟L
� � // Γ/̟L

the image of σ̃gen/̟L in Γ/̟L is σgen/̟L: indeed the semi-simplification of σ̃gen/̟L

(resp. σgen/̟L) is, cf. theorem 2.2.10, the sum of all the Kv-types of Γ̃/̟L (resp.
Γ/̟L). In the same way we also have σgen/̟L

∼= σgen,
′

/̟L.

As the modulo ̟L reduction of Γgenst has two irreducible subquotients, Γst,L has a
unique stable lattice Γst,+ such that

Γgenst ( Γst,+ ( ̟−1
L Γgenst .

Note that the cokernel Γst,+/Γ
gen
st contains exactly oneKv-type, the maximal one σmax

of sts̺(̺). We then deduce that the cokernel of σgenst →֒ σst,+ is non zero as it contains
at least σmax. We then construct the lattice Γ′

+ by pushout

Γgenst
� � //

� _

��

Γst,+� _

��✤
✤

✤

Γgen,
′ � � //❴❴❴ Γ′

+,

giving also rise to a lattice Γ+. We then obtained lattices σst,+, σ
′
+, σ+ and σ̃+.

Recall that ψ̺ is a representation of GLd−s̺g(Fv) such that ̺ does not belong to
the supercuspidal support of its ̟L-modulo reduction. Consider a representation ψ̺
such that, up to multiplicity, the supercuspidal support of its modulo ̟L reduction
is equal to ̺. Any stable lattice of ψ̺ × ψ

̺ is then induced form stable lattices Γ̺
and Γ̺ of respectively ψ̺ and ψ̺. Consider then any stable lattice Γ̺ of ψ̺ that we
induce with the previous lattices σgen, σ′ · · · to obtain lattices denoted σgenψ , σ′

ψ · · · .
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With the notations of §4.3, consider then the following commutative diagram
(33)

MKv(σvσgenst,ψ)
//

� _

��

MKv(σvσst,+,ψ)� _

��

MKv(σvσgenψ ) MKv(σvσgen,
′

ψ ) // MKv(σvσ′
+,ψ) MKv(σvσ+,ψ)

MKv(σvσ̃genψ /̟L) MKv(σvσ̃+,ψ/̟L)

By [Gee11] theorem 5.1.5, cf. theorem 5.2.2, there exists another system of Hecke

eigenvalues λ̃ so that λ̃ ≡ λ0 mod ̟L and the associated local component Π′
v is

isomorphic to
str−1(π̃v,0)× stl1(πv,1)× · · · · · · stlk(πv,k)× ψ

̺.

Proposition 4.3.2 tells us that

MKv(σvσ̃genψ )/(̟L, λ̃) −→MKv(σvσ̃+,ψ)/(̟L, λ̃)

is either zero or an isomorphism, and it is independent on the choice of λ̃. However
for λ0, as the lattice induced by the cohomology on σL is σgen, then

MKv(σvσgenψ )/λ0 −→MKv(σvσ+,ψ)/λ0

can not be an isomorphism, so it is zero.

The commutativity of the diagram imposes that the top horizontal map is also
zero. Consider then a system of Hecke eigenvalues λ1 associated to a automorphic
representation Π1 ∈ AKv,m(̺, (r − 1, s̺ − r + 1)) with

Π1,v
∼= str−1(π

1
v,0)× sts̺−r+1(π

1
v,1)× ψ

̺
1 ,

where the modulo ̟L reduction of π1
v,0 and π1

v,1 is isomorphic to ̺ while those of ψ̺1
does not contain ̺ in its supercuspidal support. As above, the construction of σst,L
can be used, replacing π̃v,0 (resp. πv,1) by π

1
v,0 (resp. π1

v,1) and ψ̺ by ψ̺1 , to obtain

the subspace σ1
st,L,ψ1

of (Π1,v)Kv . The lattices σgenst,ψ and σst,+,ψ then gives us lattices

σgen,1st,ψ1
and σ1

st,+,ψ1
such that

σ1
st,+,ψ1

/̟L
∼= σst,+,ψ/̟L and σgen,1st,ψ1

/̟L
∼= σgenst,ψ/̟L.

We have seen that
MKv(σvσgenst,ψ) −→ MKv(σvσst,+,ψ)

is zero modulo λ0 and so it is also zero modulo λ1. In particular we see that Γ1
st,+ can

not be the subspace lattice of Π1. Finally we are able to eliminate stable lattice on
the right of Γgenst which are not isomorphic to it.

To deal with lattices Γst,− contained in Γgenst

̟LΓ
gen
st ( Γst,− ( Γgenst ,
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i.e. to go on the left, we repeat the same arguments but now playing with

Πv,−
∼= str−1(πv,0)× stl1(πv,1{δ1/2})× · · · stlk(πv,1{δk/2})× ψ

where δ1 = r − s̺, δ2 = δ1 + 2l1... and δk = δ1 + 2l1 + · · ·+ 2lk−1 = s̺ − r so that

(34) stl1(πv,1{δ1/2})× · · · × stlk(πv,1{δk/2})։ sts̺−r+1(πv,1).

We construct Γ′
− by pullback

Γst,−
� � // Γgenst

Γ′
−

OOOO✤
✤

✤

� � //❴❴❴ Γgen,
′

.

OOOO

With similar notations as above, we have a commutative diagram
(35)

MKv(σvσst,−,ψ) // MKv(σvσgenst,ψ)

MKv(σvσ−,ψ) MKv(σvσ′
−,ψ) //

OOOO

MKv(σvσgen,
′

ψ ),

OOOO

M∞(σvσgenψ )

MKv(σvσ̃−,ψ/̟L) MKv(σvσ̃−,ψ/̟L)

where the bottom horizontal map has to be an isomorphism as it is modulo λ0.
The commutativity of the above diagram imposes the top horizontal map is also an
isomorphism so that Γ1

st,− ca not be the subspace lattice of Π1.

(ii) From (r − 1, s̺ − r + 1) to any s̺
We repeat the same arguments but starting now from lattices

̟LΓ
gen,′ ( Γ′

− ( Γgen,
′

( Γ′
+ ( ̟−1

L Γgen,
′

.

Using pullback and pushout, we then construct lattices Γst,± and we conclude through
the commutative diagrams (33) and (35) through the fact that if the top horizontal
map is non zero then the bottom horizontal map is also non zero, and so necessary
an isomorphism as explained before.

Step 4: Ihara’s lemma for AKv,m(̺, (r − 1 ≥ · · · ))
The arguments are exactly the same as in the case s̺ = 3. Precisely consider as

before an automorphic filtration of H0(ShKv(∞),s̄v ,Zl)m such that the graded parts
correspond to some automorphic representation. Consider such a graded part asso-
ciated to Π ∈ AKv,m(̺, s̺) where s̺ = (r − 1 ≥ · · · ) is a partition of s̺ starting
with r − 1. Let denote by Γ(Π) the associated lattice and suppose that its modulo l
reduction has a non ̺-generic subspace τ which is a subspace of H0(ShKv(∞),s̄v ,Fl)m:
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we want to prove it is absurd. Let Γ(Π)gen be the subspace lattice associated to Π so
that

0→ Γ(Π)gen −→ Γ(Π) −→ T → 0,

where T is l-torsion. The modulo l reduction of Γ(Π) is such that

0→W −→ Γ(Π)⊗Zl
Fl −→ T → 0,

where the socle of T is generic and where W is the image of

Γ(Π)gen ⊗Zl
Fl −→ Γ(Π)⊗Zl

Fl.

and non zero as we have seen that the modulo l We then remark that τ is necessary
a subspace of W but as τ is not a subspace of Γ(Π)gen⊗Zl

Fl it cannot be a subspace

of H0(ShKv(∞),s̄v ,Fl)m.

Step 5: Final exchanges to conclude the induction
We then exchange every contribution coming from AKv,m(̺, s) for any s = (r ≥ · · · )
until we arrive at the filtration for r − 1. We then just have to check the hypothesis
on the modulo l monodromy operator. Before all the exchanges we know that for
every 0 ≤ t ≤ r − 2, the modulo ̟L reduction of

N : gr
− r(r+1)

2
+(1+2+···+t−(t−1))

̺ (r) −→ gr
−r(r+1)

2
+(1+2+···+(t−1)−(t−1))

̺ (r),

is surjective relatively to all the (̺, r)-small subquotients and also for the (̺, r − 1)-
small ones. After we have to check that the modulo ̟L reduction of

(36) N : gr
− r(r+1)

2
+(1+2+···+t−(t−1))

̺ (r − 1) −→ gr
− r(r+1)

2
+(1+2+···+(t−1)−(t−1))

̺ (r − 1),

remains surjective relatively to all the (̺, r− 1)-small subquotients. By construction
we have

⊕

s̺≤(r−1)

⊕

Π∈AKv,m(̺,s̺)

(Π∞)K
v

⊗ L(Πv)(...)
� � //

� y

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲

gr
−

r(r+1)
2

+(1+2+···+t−(t−1))
̺ (r)⊗Zl

Ql

gr
− r(r+1)

2
+(1+2+···+(t−1)−(t−1))

̺ (r)⊗Zl
Ql

and if Γ1 (resp. Γ2) is the lattice induced on this subspace by gr
−

r(r+1)
2

+(1+2+···+t−(t−1))
̺ (r)

(resp. by gr
− r(r+1)

2
+(1+2+···+(t−1)−(t−1))

̺ (r)), then we have

0→ gr
−

r(r+1)
2

+(1+2+···+(t−1)−(t−2))
̺ (r − 1) −→ Γ1 −→ T1 → 0,

0→ gr
−

r(r+1)
2

+(1+2+···+(t−2)−(t−2))
̺ (r − 1) −→ Γ2 −→ T2 → 0,

where none of the irreducible constituants of T1 and T2 are (̺, r−1)-small in the sense
of definition 2.1.7. By the induction hypothesis, the monodromy operator induces
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Γ1 −→ Γ2 such that, after tensoring with FL, the cokernel does not have any (̺, r−1)-
subquotients. We then deduce that the induced map

N : gr
− r(r+1)

2
+(1+2+···+(t−1)−(t−2))

̺ (r − 1) −→ gr
− r(r+1)

2
+(1+2+···+(t−2)−(t−2))

̺ (r − 1)

is such that the cokernel of its modulo ̟L reduction does not have any (̺, r − 1)-
subquotients.

5.4. Genericity for KHT-Shimura varieties. — Consider an irreducible sub-
space τ of H0(ShKv(∞),s̄v ,Ψ)m. To prove that τ is generic, we are led to prove it is
̺-generic for every ̺ in its supercuspidal support. Recall that

H0(ShKv(∞),s̄v ,Ψ)m ∼=
⊕

̺∈Cusp
Fl

H0(ShKv(∞),s̄v ,Ψ̺)m

and, from the typicity property, for ̺ belonging to the supercuspidal support of τ ,
τ is also a subspace of H0(ShKv(∞),s̄v ,Ψ̺)m. From step 4 of the previous section, we
know that τ has to be ̺-generic.

5.5. Breuil’s lattice conjecture for l 6= p. — Consider an inertial type τv and its
associatedKv-type σL(τv). Consider also a system of Hecke eigenvalues λ : Tm −→ ZL
associated to some automorphic representation Π which appears in middle cohomol-
ogy group of ShKv(∞),η̄n with coefficients in L∨

σ0(v)
for σ0(v) = σvσv where σv is a

continuous finitely generated representation of Kv. When σL(τv) appears with mul-
tiplicty one in Πv, we can define

σλ(τv) :=MKv(σv)∗[λ] ∩ σL(τv),

which is a stable lattice of σL(τv): from theorem 2.2.4 (iii), we can apply this con-
struction to the maximal inertia type. Proposition 4.3.2 tells us that this lattice only
depends on the modulo l reduction of λ. One possible translation of Breuil’s lattice
conjecture to our situation could be the following.

Proposition 5.5.1. — The lattice σλ(τv) depends only on the local datum Πv.

Proof. — Consider Π1 and Π2 associated to two systems of Hecke eigenvalues λ1 and
λ2 as above: we moreover suppose that Πv,1

∼= Πv,2. From Ihara’s lemma we know
that the lattice of Πv,1 is the one such that the socle of its modulo l reduction is
irreducible and generic: this lattice is then isomorphic to those of Πv,2 which proves
the statement.

However note that the previous proposition is not so interesting as there are very
few stable lattices compare to the case where l = p.
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groups. I., Ann. Scient. de l’ENS 4e série, tome 10 n4 (1977), 441–472 (English).

[CEG+16] A. Caraiani, M. Emerton, T. Gee, D. Geraghty, V. Paškūnas, and S. W. Shin,
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[Ill94] L. Illusie, Autour du théorème de monodromie locale, Périodes p-adiques, Astérisque,
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