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Abstract. — Clozel, Harris and Taylor proposed in [CHT08] conjectural generaliza-
tions of the classical Ihara’s lemma for GL2, to higher dimensional similitude groups.
We prove these conjectures in the so called limit case, which after base change is the
essential one, under some mild hypothesis coming from a level raising theorem of Gee
in [Gee11].
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1. Introduction

1.1. Ihara’s original Lemma: origin and proofs. — In the Taylor-Wiles
method Ihara’s lemma is the key ingredient to extend a R = T property from the
minimal case to a non minimal one. It is usually formulated by the injectivity of
some map as follows.

Let Γ = Γ0(N) be the usual congruence subgroup of SL2(Z) for some N > 1, and
for a prime p not dividing N let Γ′ := Γ∩Γ0(p). We then have two degeneracy maps

π1, π2 : XΓ′ −→ XΓ

between the compactified modular curves of levels Γ′ and Γ respectively, induced by
the inclusion

Γ′ →֒ Γ and

(
p 0
0 1

)
Γ′

(
p 0
0 1

)−1

→֒ Γ.

For l 6= p, we then have a map

π∗ := π∗
1 + π∗

2 : H1(XΓ,Fl)
2 −→ H1(XΓ′,Fl).

Theorem 1.1.1. — Let m be a maximal ideal of the Hecke algebra acting on these
cohomology groups which is non Eisenstein, i.e. that corresponds to an irreducible
Galois representation. Then after localizing at m, the map π∗ is injective.

Diamond and Taylor in [DT94] proved an analogue of Ihara’s lemma for Shimura
curves over Q. For a general totally real number field F with ring of integers OF ,
Manning and Shotton in [MS] succeeded to prove it under some large image hy-
pothesis. Their strategy is entirely different from those of [DT94]but rather consists
roughly

– to carry Ihara’s lemma for a compact Shimura curve YK̄ associated to a definite
quaternion algebraD ramified at some auxiliary place v of F , in level K̄ = K̄vK̄v

an open compact subgroup of D ⊗ AF,f unramified at v,
– to the indefinite situation XK relatively to a quaternion division algebra D
ramified at all but one infinite place of F , and isomorphic to D̄ at all finite
places of F different to v, and with level K agreing with K̄v away from v.

Indeed in the definite case Ihara’s statement is formulated by the injectivity of

π∗ = π∗
1 + π∗

2 : H0(YK̄ ,Fl)m ⊕H
0(YK̄,Fl)m −→ H0(YK̄0(w),Fl)m

where both D and K̄ are unramified at the place w and K̄0(w)w is the subgroup of
GL2(Fw) of elements which are upper triangular modulo p.

The proof goes like this, cf. [MS] theorem 6.8. Suppose (f, g) ∈ ker π∗. Regarding
f and g as Kv-invariant function on G(F )\G(AF,f), then f(x) = −g(xω) where

ω =

(
̟w 0
0 1

)
, ̟v being an uniformizer for Fw and G being the algebraic group
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over OF associated to O×
D
the inversible group of the maximal order OD of D: note

that G(Fw) ∼= GL2(Fw). Then f is invariant under Kv and ω−1Kvω so that, using
the strong approximation theorem for the subgroup of G of elements of reduced norm
1, then f factors through the reduced norm map, and so is supported on Eisenstein
maximal ideals.

The link between XK and YKv is given by the geometry of the integral model of the
Shimura curve XK0(v) with Γ0(v)-level structure. The main new ingredient of [MS]
to carry this geometric link to Ihara’s lemma goes through the patching technology
which allows to obtain maximal Cohen-Macaulay modules over deformation rings.
Using a flatness property and Nakayama’s lemma, there are then able to extend a
surjective property, dual to the injectivity in the Ihara’s lemma, from the maximal
unipotent locus on the deformation space to the whole space, and recover the Ihara’s
statement reducing by the maximal ideal of the deformation ring.

Recently Caraiani and Tamiozzo following closely [MS] also obtained Ihara’s lemma
for Hilbert varieties essentially because Galois deformations rings are the same and
so regular which is not the case beyond GL2.

1.2. Generalisations of Ihara’s Lemma. — To generalize the classical Ihara’s
lemma in higher dimension, there are essentially two approaches.

- The first natural one developed by Clozel, Harris and Taylor in their first proof of
Sato-Tate theorem [CHT08], focuses on the H0 with coefficients in Fl of a zero di-
mensional Shimura variety associated to higher dimensional definite division algebras.
More precisely consider a totally real field F+ and a imaginary quadratic extension
E/Q and define F = F+E. We then consider G/Q an unitary group with G(Q)
compact so that G becomes an inner form of GLd over F . This means, cf. §2.3, we
have fixed a division algebra B with center F , of dimension d2, provided with an in-
volution of the second kind such that its restriction to F is the complex conjugation.
We moreover suppose that at every place w of F , either Bw is split or a local division
algebra.

Let v be a place of F above a prime number p split in E and such that B
×

v
∼=

GLd(Fv) where Fv is the associated local field with ring of integers Ov and residue
field κ(v).

Notation 1.2.1. — Let qv be the order of the residue field κ(v).

Consider then an open compact subgroup K
v
infinite at v in the following sense:

G(Qp) ∼= Q×
p ×

∏
v+i
B

op,×

v+i
where p =

∏
i v

+
i in F+ and we identify places of F+ over

p = uuc ∈ E with places of F over u. We then ask K
v

p = Z×
p ×

∏
w|uKw to be such

that Kv is restricted to the identity element.
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The associated Shimura variety with level K = K
v
Kv for some finite level Kv at v,

denoted by ShK , is then such that its C-points are G(Q)\G(A∞
Q )/K and for l a prime

not divisible by v, its H0 with coefficients in Fl is then identified with the space

SG(K,Fl) = {f : G(Q)\G(A∞
Q )/K −→ Fl locally constant}.

Replacing K by K
v
, we then obtain an admissible smooth representation of GLd(Fv)

equipped with an action of the Hecke algebra T(K
v
) defined as the image of the

abstract unramified Hecke algebra, cf. definition 3.2.1, inside End(SG(K
v
,Fl)

)
.

To a maximal ideal m of T(K
v
) is associated a Galois Fl-representation ρm, cf. §4.2.

We consider the case where this representation is irreducible. Note in particular that
such an m is then not pseudo-Eisenstein in the usual terminology.

Conjecture 1.2.2. — (cf. conjecture B in [CHT08])
Any irreducible GLd(Fv)-submodule of SG(K

v
,Fl)m is generic.

- For rank 2 unitary groups, we recover the previous statement as the characters
are exactly those representations which do not have a Whittaker model, i.e. are the
non generic ones.

- For d ≥ 2, over Ql, the generic representations of GLd(Fv) are the irreducible
parabolically induced representations stt1(πv,1)×· · ·×sttr(πv,r) where for i = 1, · · · , r,

– πv,i is an irreducible cuspidal representation of GLgi(Fv),
– stti(πv,i) is a Steinberg representations, cf. definition 2.1.2,
–
∑r

i=1 tigi = d where the Zelevinsky segments [πv,i{
1−ti
2
}, πv,i{

ti−1
2
}]are not linked

in the sense of [Zel80].

- Over Fl every irreducible generic representation is obtained as the unique generic
subquotient of the modulo l reduction of a generic representation. It can also be
characterized intrinsically using representation of the mirabolic subgroup, cf. §2.1.

Here we will be mainly interested in the following weak form of Ihara’s lemma,
except that we will allow ramified characters, see the main theorem below.

Definition 1.2.3. — (cf. definition of [CHT08] 5.1.9)
An admissible smooth Fl[GLd(Fv)]-moduleM is said to have the weak Ihara property
if for every m ∈ MGLd(Ov) which is an eigenvector of Fl[GLd(Ov)\GLd(Fv)/GLd(Ov)],
every irreducible submodule of the Fl[GLd(Fv)]-module generated by m, is generic.

Remark. In particular if we ask about SG(K
v
,Fl)m having the weak Ihara property,

then SG(K
v
,Fl)m should have non trivial unramified vectors so that the supercuspidal

support of the restriction ρ
m,v of ρ

m
to the decomposition subgroup at v, is made of

unramified characters.
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- The second approach is to find a map playing the same role as π∗ = π∗
1 + π∗

2. It
is explained in section 5.1 of [CHT08] with the help of the element

θv ∈ Zl[K1(v
n)\GLd(Fv)/GLd(OFv

)]

constructed by Russ Mann, cf. proposition 5.1.7 of [CHT08], where Fv is here a
finite extension of Qp with ring of integers Ov.

Definition 1.2.4. — An admissible smooth Fl[GLd(Fv)]-module M is said to have
the almost Ihara property if θv :M

GLd(Ov) −→M is injective.

Recall that l is called quasi-banal for GLd(Fv) if either l ∤ ♯GLd(κv) (the banal
case) or l > d and qv ≡ 1 mod l (the limit case).

Proposition 1.2.5. — (cf. [CHT08] lemma 5.1.10)
Suppose that l is quasi-banal and M is a Fl[GLd(Fv)]-module verifying the Ihara prop-
erty. If ker(θv : MGLd(Ov) −→ M) is a Fl[GLd(OFv

)\GLd(Fv)/GLd(OFv
)]-module,

then M has the almost Ihara property.

Applications: the generalizations of the classical Ihara’s lemma were introduced in
[CHT08] to prove a non minimal R = T theorem. The weaker statement Rred = T
where Rred is the reduced quotient of R, was later obtained unconditionally using
Taylor’s Ihara avoidance method, cf. [Tay08] which was enough to prove the Sato-
Tate conjecture. However, the full R = T theorem would have applications to special
values of the adjoint L-function and would imply that R is a complete intersection. It
should also be useful for generalizing the local-global compatibility results of [Eme].

In [Mos21], the author also proved that Ihara’s property in the quasi-banal case
is equivalent to the following result.

Proposition 1.2.6. — (cf. [Mos21] corollary 9.5)
Let m be a non-Eisenstein maximal ideal of TS and f ∈ SG(K

v
GLd(Ov),Fl). Let Kv

be the Iwahori subgroup of GLd(Ov), then the Fl[Kv \GLd(Fv)/GLd(Ov)]-submodule
of SG(K

v
Kv,Fl) generated by f is of dimension d!.

1.3. Main result. — With the previous notations, let qv be the order of the residue
field of Fv. We fix some prime number l unramified in F+ and split in E and we place
ourself in the limit case where qv ≡ 1 mod l with l > d, which is, after by base
change, the crucial case to consider.

Definition 1.3.1. — As in definition 2.5.1 of [CHT08], we say that a subgroup
H ⊆ GLd(Fl) is big if :

– H has no l-power order quotients;
– H i(H, g0d(Fl)) = (0) for i = 0, 1 and where gd := LieGLd and g

0
d is the trace zero

subspace of gd;
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– for all irreducible Fl[H ]-submodules W of gd(Fl), we can find h ∈ H and α ∈ Fl

satisfying the following properties.

• The α-generalized eigenspace V (h, α) of h on F
d

l is one dimensional.

• Let πh,α : F
d

l ։ V (h, α) be the h-equivariant projection of F
d

l to V (h, α)

and let ih,α : V (h, α) →֒ F
d

l be the h-equivariant injection of V (h, α) into

F
d

l . Then πh,α ◦W ◦ ih,α 6= (0).

Theorem 1.3.2. — In the limit case, suppose moreover that there exists a prime
p0 = u0ū0 split in E with a place v0|u0 of F such that Bv0 is a division algebra.
Consider m such that

ρ
m
: GF −→ GLd(Fl)

is an irreducible representation which is unramified at all places of F lying above
primes which do not split in E and which satisfies the following hypothesis:

– after semi-simplification ρ
m,v is a direct sum of characters;

– F
ker ad ρ

does not contain F (ζl) where ζl is any primitive l-root of 1;
– ρ(GF+(ζl)) is big.

Then Ihara’s lemma of the conjecture 1.2.2 is true, i.e. every irreducible GLd(Fv)-
submodule of SG(K

v
,Fl)m is generic.

– The first hypothesis, if you moreover suppose that the characters are unramified,
corresponds to the weak form of Ihara’s lemma of definition 1.2.3. Using the main
result of [Boy23b] proving that p and p+ intermediate extensions of Harris-
Taylor local systems, in the limit case, coincide, it should be possible to remove
this restriction: however we found the exposition much more easy dealing only
with characters especially as for applications, by base change, we can reduce to
the case of characters.

– The last two hypothesis come from theorem 5.1.5 of [Gee11] which is some level
raising and lowering statement, cf. theorem 4.2.2. Any other similar statement,
for example theorem 4.4.1 of [BLGGT14], with different hypothesis can then
be used to formulate another statement.

In [Boy20] we essentially proved conjecture 1.2.2 in the banal case under some
restrictive hypothesis. The basic idea is to introduce geometry and move from the
Shimura variety associated to G which is of dimension zero, to another Shimura
variety ShK associated to some reductive group G and level K, of strictly positive
dimension, so that SG(K,Fl) appears in a certain cohomology group of some sheaf
over ShK . The strategy is then to construct filtration of this cohomology group
coming from geometry so that the graded parts, which are expected to be more easy
to handle with, also verify the genericity property of there irreducible sub-spaces.

More explicitly we study the middle degree cohomology group of the KHT Shimura
variety ShKv(∞) associated to some similitude group G/Q such that G(A∞,p

Q ) ∼=
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G(A∞,p
Q ), cf. §2.3 for more details, and with level Kv(∞) := K

v
meaning finite

level outside v and infinite level at v.

The localization at m of the cohomology groups of ShKv(∞) can be computed as
the cohomology of the geometric special fiber ShKv(∞),s̄v of ShKv(∞), with coefficient
in the complex of nearby cycles ΨKv(∞),v.

The Newton stratification of ShKv(∞),s̄v gives us a filtration of ΨKv(∞),v, cf.

[Boy19], and so a filtration Fil•(Kv(∞)) of Hd−1(ShKv(∞),η̄v ,Zl)m and the main
point of [Boy20] is to prove that the modulo l reduction of each graded part of
this filtration verifies the Ihara property, i.e. each of their irreducible sub-space are
generic. To realize this strategy we need first the cohomology groups of ShKv(∞) to
be torsion free: this point is now essentially settled by the main result of [Boy23a].
More crucially the previous filtration Fil•(Kv(∞)) should be strict, i.e. its graded
parts have to be torsion free, cf. theorem 3.2.3.

It appears that the graded parts of Fil•(Kv(∞)) are parabolically induced and in
the limit case when the order qv of the residue field is such that qv ≡ 1 mod l, the
socle of the modulo l reduction of these parabolic induced representations are no more
irreducible and do not fulfill the Ihara property, i.e. some of their subspaces are not
generic. It then appears that we have at least

– to verify that the modulo l reduction of the first non trivial graded part of
Fil•(Kv(∞)) verifies the genericity property of its irreducible submodule. For
this we need a level raising statement as theorem 5.1.5 in [Gee11], cf. theorem
4.2.2, or theorem 4.4.1 of [BLGGT14].

– Then we have to understand that the extensions between the graded parts of
Fil•(Kv(∞))⊗Zl

Fl are non split.

One problem about this last point is that the Ql-cohomology is split. For any ir-
reducible automorphic representation Π of G(A) cohomological for, say, the trivial
coefficients, the Zl-cohomology defines a lattice Γ(Π) of (Π∞)K

v(∞) ⊗ σ(Π)v whose
modulo l reduction gives a subspace of the Fl-cohomology: Ihara’s lemma predicts
that the socle of this subspace is still generic, i.e. it gives informations about the lat-
tice Γ(Π). We then see that non splitness of Fil•(Kv(∞))⊗Zl

Fl should be understood
in a very flexible point of view.

One possible strategy is, using the fact that the Ql-cohomology is split, to start
from the filtration Fil•(Kv(∞)) and modify it in order to arrive to another one where
all the modulo l reduction of the graded parts fulfill the Ihara property i.e. their
irreducible subspaces are generic. The main ingredient to construct modifications of
filtrations is to consider following situations:

– a filtration Fil• of Hd−1(ShKv(∞),η̄v ,Zl)m whose graded parts gr• are torsion free;

– let k and X := Filk /Filk−2 such that X ⊗Zl
Ql
∼= (grk−1 ⊗Zl

Ql)⊕ (grk⊗Zl
Ql).
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– We can then define g̃rk−1 and g̃rk with

g̃rk
� _

��

� p

!!❈
❈❈

❈❈
❈❈

❈❈

grk−1 � � //
� q

""❋
❋❋

❋❋
❋❋

❋
X // //

��
��

grk

�� ��
❂❂

❂❂
❂❂

❂❂

g̃rk−1

"" ""❊
❊❊

❊❊
❊❊

❊❊
T

T

⑧⑧⑧⑧⑧⑧⑧⑧⑧

⑧⑧⑧⑧⑧⑧⑧⑧⑧

obtained by taking g̃rk := X ∩ (grk ⊗Zl
Ql), and where T is torsion. Passing

modulo l, we then obtained a priori two distinct filtrations.

Let us first explain why something interesting should happen during this process.

– We can define a Fl-monodromy operator for the Galois action at the place v.(1)

We are looking for a geometric monodromy operator Ngeo
v which then exists

whatever are the coefficients, Ql, Zl and Fl, compatible with tensor products.
One classical construction is known in the semi-stable reduction case, cf. [Ill94]
§3, which corresponds to the case where the level at v of our Shimura variety is
of Iwahori type.(2) Using our knowledge of the Zl-nearby cycles described com-
pletely in [Boy23b], we can construct such a geometric nilpotent monodromy
operator which generalizes the semi-stable case by allowing ramified characters,
cf. §3.3.

– Taking this geometric monodromy operator, we then obtain a cohomological
monodromy operator N coho

v,m acting on H0(ShK,s̄v ,ΨKv(∞),v)m as soon as the irre-
ducible constituants of the restriction ρ

m,v of ρ
m
to the decomposition group at

v, are characters. One of the main point, cf theorem 3.2.3, is that the graded
parts of the filtration of H0(ShK,s̄v ,ΨKv(∞),v)m induced by the Newton filtration
on the nearby cycles spectral sequence, are all torsion free, so that in particular

we are in position to understand quite enough the action of N
coho

v,m := N coho
v,m ⊗Zl

Fl

on H0(ShK,s̄v ,ΨKv(∞),v)m ⊗Zl
Fl, and prove that its nilpotency order is as large

as possible.
– Note that as ρ

m
is supposed to be irreducible, then the modulo l reduction of the

monodromy operator acting on ρm̃ does not depend on the choice of the prime
ideal m̃ ⊆ m so that it is usually trivial.

(1)Note that over Fl the usual arithmetic approach for defining the nilpotent monodromy operator,
is hopeless because, up to consider a finite extension of Fv, such a Fl-representation has a trivial
action of the inertia group.
(2)This corresponds to automorphic representations Π such that the cuspidal support of Πv is made
of unramified characters, and so with the weak form of Ihara’s lemma of definition 1.2.3.
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Finally, as N coho
v ⊗Zl

Fl is far from being trivial, there should be non split extensions
between the graded parts of Fil•(Kv(∞)).

However this strategy seems difficult to implement directly because of counting
problems: to deal with finite number of representations you need to work with a
finite level at the place v and then pass to the limit. It seems first difficult to count
liftings of a fixed representation and secondly when increasing the level, it should
be not easy to glue back things together. Our approach in some sense consists to
consider all the liftings together using typicness of the cohomology, cf. §4.3. The
proof then goes into three main steps:

– we first prove, cf. theorem 3.2.3, that the filtration of the middle cohomology
groups constructed from the filtration of stratification of the nearby cycles per-
verse sheaf, has torsion free graded parts, otherwise the all cohomology would
have non trivial torsion classes which is not the case by [Boy23a];

– secondly, §3.3, using results from [Boy23b] about various filtrations of stratifica-
tion of the nearby cycle perverse sheaf over Zl, we define an integral monodromy
operator on the nearby cycles perverse sheaf;

– this integral geometric monodromy operator gives us a monodromy operator on
ρm ⊗Zl

Fl, a representation with coefficients in an artinian local ring defined as
the modulo l reduction of the image of some Hecke algebra acting on the middle
cohomology group with finite level. The index of nilpotency of this monodromy
operator is then as large as possible. Working at various finite level and using
Matlis duality for artinian ring, we finally prove, §4.3, the genericity of the socle
of the middle cohomology group at infinite level at v, for the action of GLd(Fv).

To conclude this long introduction, note that Ihara’s lemma in Clozel-Harris-Taylor
formulation, was stated in order to be able to do level raising. In our proof we use
level raising statements, proved thanks to Taylor’s Ihara avoidance in [Tay08], in
order to prove Ihara’s lemma.

2. Preliminaries

2.1. Representations of GLd(L). — Consider a finite extension L/Qp with residue
field Fq. We denote by | − | its absolute value. For a representation π of GLd(L) and
n ∈ 1

2
Z, set

π{n} := π ⊗ q−nval◦det.

Notation 2.1.1. — For π1 and π2 representations of respectively GLn1
(L) and

GLn2
(L), we will denote by

π1 × π2 := ind
GLn1+n2

(L)

Pn1,n1+n2
(L) π1{

n2

2
} ⊗ π2{−

n1

2
},

the normalized parabolic induced representation where for any sequence r = (0 <
r1 < r2 < · · · < rk = d), we write Pr for the standard parabolic subgroup of GLd
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with Levi

GLr1 ×GLr2−r1 × · · · ×GLrk−rk−1
.

Recall that a representation ̺ of GLd(L) is called cuspidal (resp. supercuspidal) if
it is not a subspace (resp. subquotient) of a proper parabolic induced representation.
When the field of coefficients is of characteristic zero, these two notions coincides, but
this is no more true over Fl.

Definition 2.1.2. — (see [Zel80] §9 and [Boy10] §1.4) Let g be a divisor of d = sg
and π an irreducible cuspidal Ql-representation of GLg(L). The induced representa-
tion

(1) π{
1− s

2
} × π{

3− s

2
} × · · · × π{

s− 1

2
}

holds an unique irreducible quotient (resp. subspace) denoted sts(π) (resp. Spehs(π));
it is a generalized Steinberg (resp. Speh) representation. Their cuspidal support is
the Zelevinsky segment

[π{
1− s

2
}, π{

s− 1

2
}] :=

{
π{

1− s

2
}, π{

3− s

2
}, · · · , π{

s− 1

2
}
}
.

More generally the set of sub-quotients of the induced representation (1) is in
bijection with the following set.

Dec(s) = {(t1, · · · , tr), such that ti ≥ 1 and

r∑

i=1

ti = s}.

For any s ∈ Dec(s), we the denote by sts(π) the associated irreducible sub-quotient
of (1). Following Zelevinsky, we fix this bijection such that Spehs(π) corresponds to
(s) and sts(π) to (1, · · · , 1). The Lubin-Tate representation LTh,s(π) will also appear

in the following, it corresponds with (

h︷ ︸︸ ︷
1, · · · , 1, s− h).

Proposition 2.1.3. — (cf. [Vig96] III.5.10) Let π be an irreducible cuspidal repre-
sentation of GLg(K) with a stable Z-lattice(3), then its modulo l reduction is irreducible
and cuspidal (but not necessary supercuspidal).

We now suppose as explained in the introduction that

q ≡ 1 mod l and l > d

so the following facts are verified (cf. [Vig96] §III):

– the modulo l reduction of every irreducible cuspidal representation of GLg(L)
for g ≤ d, is supercuspidal.

(3)We say that π is integral.
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– For a Fl-irreducible supercuspidal representation ̺ of GLg(L), the parabolic
induced representation ̺ × · · · × ̺, with s copies of ̺, is semi-simple with
irreducible constituants the modulo l reduction of the set of elements of
{sts(π) such that s ∈ Dec(s)}, where π is any cuspidal representation whose
modulo l reduction is isomorphic to ̺.

Concerning the notion of genericity, consider the mirabolic subgroup Md(L) of
GLd(L) as the set of matrices with last row (0, · · · , 0, 1): we denote by

Vd(L) = {(mi,j) ∈Md(L) : mi,j = δi,j for j < d}.

its unipotent radical. We fix a non trivial character ψ of L and let θ be the character
of Vd(L) defined by θ((mi,j)) = ψ(md−1,d). For G = GLr(L) or Mr(L), we denote by
alg(G) the abelian category of smooth representations of G and, following [BZ77],
we introduce

Ψ− : alg(Md(L)) −→ alg(GLd−1(L)),

and
Φ− : alg(Md(L)) −→ alg(Md−1(L)),

defined by Ψ− = rVd,1 (resp. Φ
− = rVd,θ) the functor of Vd coinvariants (resp. (Vd, θ)-

coinvariants), cf. [BZ77] 1.8. For τ ∈ alg(Md(L)), the representation

τ (k) := Ψ− ◦ (Φ−)k−1(τ)

is called the k-th derivative of τ . If τ (k) 6= 0 and τ (m) = 0 for all m > k, then τ (k)

is called the highest derivative of τ . In the particular case where k = d, there is an
unique irreducible representation τnd of Md(L) with derivative of order d.

Definition 2.1.4. — An irreducible representation π of GLd(L) is said generic, if
its restriction to the mirabolic subgroup admits τnd as a subquotient.

Let π be an irreducible generic Ql-representation of GLd(L) and consider any stable
lattice which gives us by modulo l reduction a Fl- representation uniquely determined
up to semi-simplification. Then this modulo l reduction admits an unique generic
irreducible constituant.

2.2. Weil–Deligne inertial types. — Recall that a Weil-Deligne representation
of WL is a pair (r,N) where

– r : WL −→ GL(V ) is a smooth(4) representation on a finite dimensional vector
space V ; and

– N ∈ End(V ) is nilpotent such that

r(g)Nr(g)−1 = ||g||N,

where || • || : WL −→WL/IL ։ qZ takes an arithmetic Frobenius element to q.

(4)i.e. continuous for the discrete topology on V



12 PASCAL BOYER

Remark. To a continuous(5) representation on a finite dimensional Ql-vector space V ,
ρ : WL −→ GL(V ) is attached a Weil-Deligne representation denoted by WD(ρ). A
Weil representation of WL is also said of Galois type if it comes from a representation
of GL.

Main example: let ρ : WL −→ GL(V ) be a smooth irreducible representation on a
finite dimensional vector space V . For k ≥ 1 an integer, we then define a Weil-Deligne
representation

Sp(ρ, k) :=
(
V ⊕ V (1)⊕ · · · ⊕ V (k − 1), N

)
,

where for 0 ≤ i ≤ k − 2, the isomorphism N : V (i) ∼= V (i + 1) is induced by some
choice of a basis of L(1) and N|V (k−1) is zero. Then every Frobenius semi-simple
Weil-Deligne representation of WL is isomorphic to some

⊕r
i=1 Sp(ρi, ki), for smooth

irreducible representations ρi : WL −→ GL(Vi) and integers ki ≥ 1. Up to obvious
reorderings, such a writing is unique.

Let now ρ be a continuous representation of WL, or its Weil-Deligne representation
WD(ρ), and consider its restriction to IL, τ := ρ|IL. Such an isomophism class of a
finite dimensional continuous representation of IL is then called an inertial type.

Notation 2.2.1. — Let I0 the set of inertial types that extend to a continuous
irreducible representation of GL.

Remark. τ ∈ I0 might not be irreducible.

Let Part be the set of decreasing sequences of positive integers d = (d(1) ≥ d(2) ≥
· · · ) viewed as a partition of

∑
d :=

∑
i d(i).

Notation 2.2.2. — Let f : I0 −→ Part with finite support. We then denote by τf
the restriction to IL of ⊕

τ0∈I0

⊕

i

Sp(ρτ0 , f(τ0)(i)),

where ρτ0 is a fixed extension of τ0 to WL.

Remark. By lemma 3.3 of [MS] the isomorphism class of τf is independent of the
choices of the ρτ0 .

The map from {f : I0 −→ Part} to the set of inertial types given by f 7→ τf , is
a bijection. The dominance order � on Part induces a partial order on the set of
inertial types.

We let recL denote the local reciprocity map of [HT01, Theorem A]. Fix an isomor-
phism ıQℓ

∼
→ C. We normalize the local reciprocity map rec of [HT01, Theorem A],

defined on isomorphism classes of irreducible smooth representations of GLn(L) over

(5)relatively to the l-adic topology on V
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C as follows: if π is the isomorphism class of an irreducible smooth representation of
GLn(L) over Qℓ, then

ρℓ(π)
def
= ı−1 ◦ recL ◦ ı(π ⊗Qℓ

| det |(1−n)/2).

Then ρℓ(π) is the isomorphism class of an n-dimensional, Frobenius semisimple Weil–
Deligne representation of WL over Qℓ, independent of the choice of ı. Moreover, if
ρ is an isomorphism class of an n-dimensional, Frobenius semisimple Weil–Deligne
representation of WL over M , then ρ−1

ℓ (ρ) is defined over M (cf. [CEG+16, §1.8]).

Recall the following compatibility of the Langlands correspondence.

Lemma 2.2.3. — If π and π′ are irreducible generic representations of GLd(L) such
that ρℓ(π)|IL ∼= ρℓ(π

′)|IL then π|GLd(OL)
∼= π′

|GLd(OL)
.

2.3. Kottwiz–Harris–Taylor Shimura varieties. — Let F = F+E be a CM
field where E/Q is a quadratic imaginary extension and F+/Q is totally real. We
fix a real embedding τ : F+ →֒ R. For a place v of F , we will denote by Fv the
completion of F at v, Ov its ring of integers with uniformizer ̟v and residue field
κ(v) = Ov/(̟v) of cardinal qv.

Let B be a division algebra with center F , of dimension d2 such that at every place
v of F , either Bv is split or a local division algebra and suppose B provided with
an involution of second kind ∗ such that ∗|F is the complex conjugation. For any
β ∈ B∗=−1, denote by ♯β the involution v 7→ v♯β = βv∗β−1 and let G/Q be the group
of similitudes, denoted by Gτ in [HT01], defined for every Q-algebra R by

G(R) ∼= {(λ, g) ∈ R× × (Bop ⊗Q R)
× such that gg♯β = λ}

with Bop = B ⊗F,c F . If x is a place of Q split x = yyc in E then

(2) G(Qx) ∼= (Bop
y )× ×Q×

x
∼= Q×

x ×
∏

v+i

(Bop

v+i
)×,

where x =
∏

i v
+
i in F+ and we identify places of F+ over x with places of F over y.

Convention 2.3.1. — For x = yyc a place of Q split in M and v a place of F
over y, we shall make throughout the text the following abuse of notation: we denote
G(Fv) the factor (Bop

v|
F+

)× in the formula (2) so that

G(A∞,v
Q ) := G(A∞,p

Q )×
(
Q×

p ×
∏

v+i 6=v|F+

(Bop

v+i
)×
)
.

In [HT01], the authors justify the existence of some G like before such that

– if x is a place of Q non split in M then G(Qx) is quasi split;
– the invariants of G(R) are (1, d−1) for the embedding τ and (0, d) for the others.
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As in [HT01, page 90], a compact open subgroup K of G(A∞
Q ) is said to be

sufficiently small if there exists a place x of Q such that the projection from Kx to
G(Qx) does not contain any element of finite order except identity.

Notation 2.3.2. — Denote by K the set of sufficiently small compact open sub-
groups of G(A∞). For K ∈ K, write ShK,η −→ SpecF for the associated Shimura
variety of Kottwitz-Harris-Taylor type.

Definition 2.3.3. — Denote by Spl the set of places w of F such that pw := w|Q 6= l
is split in E and B×

w
∼= GLd(Fw). For each K ∈ K, we write Spl(K) for the subset of

Spl of places such that Kv is the standard maximal compact of GLd(Fv).

In the sequel, we fix a place v of F in Spl. The scheme ShK,η has a projective model
ShK,v over SpecOv with special geometric fiber ShK,s̄v. We have a projective system
(ShK,s̄v)K∈K which is naturally equipped with an action of G(A∞

Q )× Z such that any

wv ∈ WFv
acts by − deg(wv) ∈ Z, where deg = val ◦ Art−1

Fv
and ArtFv

: F×
v

∼
→ W ab

Fv
.

Notation 2.3.4. — For K ∈ K, the Newton stratification of the geometric special
fiber ShK,s̄v is denoted by

ShK,s̄v =: Sh≥1
K,s̄v
⊃ Sh≥2

K,s̄v
⊃ · · · ⊃ Sh≥d

K,s̄v

where Sh=h
K,s̄v := Sh≥h

K,s̄v
− Sh≥h+1

K,s̄v
is an affine scheme, which is smooth and pure of

dimension d− h. It is built up by the geometric points such that the connected part
of the associated Barsotti–Tate group has rank h For each 1 ≤ h < d, write

ih : Sh≥h
K,s̄v
→֒ Sh≥1

K,s̄v
, j≥h : Sh=h

K,s̄v →֒ Sh≥h
K,s̄v

,

and j=h = ih ◦ j
≥h.

For n ≥ 1, with our previous abuse of notation, consider Kv(n) := KvKv(n) where

Kv(n) := ker(GLd(Ov)։ GLd(Ov/M
n
v )).

Recall that Sh=h
Iv(n),s̄v is geometrically induced under the action of the parabolic sub-

group Ph,d(Ov/M
n
v ), defined as the stabilizer of the first h vectors of the canonical

basis of F d
v . Concretely this means there exists a closed subscheme Sh=h

Kv(n),s̄v,1 stabi-
lized by the Hecke action of Ph,d(Fv) and such that

(3) Sh=h
Kv(n),s̄v = Sh=h

Kv(n),s̄v,1 ×Ph,d(Ov/Mn
v ) GLd(Ov/M

n
v ),

meaning that Sh=h
Kv(n),s̄v is the disjoint union of copies of Sh=h

Kv(n),s̄v,1 indexed by
GLd(Ov/M

n
v )/Ph,d(Ov/M

n
v ) and exchanged by the action of GLd(Ov/M

n
v ). We will

denote by Sh≥h
Kv(n),s̄v,1

the closure of Sh=h
Kv(n),s̄v,1 inside ShKv(n),s̄v .

Notation 2.3.5. — Let 1 ≤ h ≤ d and Πh any representation of GLh(Fv). For χv

a character of F×
v , we then denote by

H̃T 1(χv,Πh) := L(χv, t)1 ⊗Π
Kv(n)
h ⊗ Ξ

h−d
2
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the Harris-Taylor local system on the Newton stratum Sh=h
Kv(n),s̄v,1 where

– L(χv, t)1 is the constant sheaf Zl where the fundamental group acts through

π1 // // D×
v,h

χv
// // O×

v

where Dv,h is the maximal order of the division algebra Dv,h/Fv with invariant
1/h, and the first surjection is given by the Igusa varieties of [HT01];

– Ξ : 1
2
Z −→ Z

×

l is defined by Ξ(1
2
) = q1/2.

We also introduce the induced version

H̃T (χv,Πh) :=
(
L(χv, t)1 ⊗ Π

Kv(n)
h ⊗ Ξ

h−d
2

)
×Ph,d(Ov/Mn

v ) GLd(Ov/M
n
v ),

where the unipotent radical of Ph,d(Ov/M
n
v ) acts trivially and the action of

(g∞,v,

(
gcv ∗
0 getv

)
, σv) ∈ G(A

∞,v)× Ph,d(Ov/M
n
v )×Wv

is given

– by the action of gcv on Π
Kv(n)
h and deg(σv) ∈ Z on Ξ

h−d
2 , and

– the action of (g∞,v, getv , val(det g
c
v) − deg σv) ∈ G(A∞,v) × GLd−h(Ov/M

n
v ) × Z

on LQl
(χv)1 ⊗ Ξ

h−d
2 .

We also introduce
HT (χv,Πh)1 := H̃T (χv,Πh)1[d− tg],

and the perverse sheaf

P (h, χv)1 :=
pj=h

1,!∗HT (χv, Sth(χv))1 ⊗ χ
−1
v ,

and their induced version, HT (χv,Πh) and P (h, χv).

Note that over Zl, there are at least two notions of intermediate extension associated
to the two classical t-structures p and p+. However in our situation they all coincide.
Indeed as Sh≥h

Kv(n),s̄v,1
is smooth over SpecFp, then HT (χv,Πh)1 is perverse for the

two t-structures with

ih≤+1,∗
1 HT (χv,Πh)1 ∈

pD<0 and ih≤+1,!
1 HT (χv,Πh)1 ∈

p+D≥1.

Let now denote by

ΨK,v := RΨηv(Zl[d− 1])(
d− 1

2
)

the nearby cycles autodual free perverse sheaf on ShK,s̄v . Recall, cf. [Boy23b] propo-
sition 3.1.3, that

(4) ΨK,v
∼=

⊕

1≤g≤d

⊕

̺∈Scusp(g)

ΨK,̺,

where
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– Scusp(g) is the set of equivalence classes of irreducible supercuspidal represen-
tations of GLg(Fv).

– The irreducible sub-quotients of ΨK,̺ ⊗Zl
Ql are the Harris-Taylor perverse

sheaves of ΨK,Ql
associated to irreducible cuspidal representations πv with mod-

ulo l reduction having supercuspidal support a Zelevinsky segment associated
to ̺.

Remark. In the limit case when qv ≡ 1 mod l and l > d, recall that we do not have
to bother about cuspidal Fl-representation which are not supercuspidal. In particular
in the previous formula we can

– replace Scusp(g) by the set Cusp(g) of equivalence classes of cuspidal represen-
tations,

– and the Harris-Taylor perverse sheaves of ΨK,̺⊗Zl
Ql are those associated to πv

such that its modulo l reduction is isomorphic to ̺.

Moreover regarding the main statement about Ihara’s lemma, we will only be con-
cerned by ΨK,̺ for ̺ a character.

3. Nearby cycles and filtrations

3.1. Filtrations of stratification of Ψ̺. — Using the Newton stratification and
following the constructions of [Boy14], we can define a Zl-filtration

Fil0! (ΨK,̺) →֒ · · · →֒ Fild! (ΨK,̺) = ΨK,̺

where Filh! (ΨK,̺) is the saturated image of j=h
! j=h,∗ΨK,̺ −→ ΨK,̺. We also denote

by coFilh! (Ψ̺) := Ψ̺/Fil
h
! (Ψ̺). Dually we can define a cofiltration

ΨK,̺ = coFild∗(ΨK,̺)։ · · ·։ coFil1∗(ΨK,̺)

where coFilh∗(ΨK,̺) is the saturated image of ΨK,̺ −→ j=h
∗ j=h,∗ΨK,̺: cf. figure 3.3

for an illustration. We denote by Filh∗(Ψ̺) := ker(Ψ̺ ։ coFilh∗(Ψ̺)).

Over Ql, the filtration Fil•! (ΨK,̺) coincides with the iterated kernel of Nv, i.e.

Filk! (Ψ̺)⊗Zl
Fl
∼= ker(Nk

v ⊗Zl
Fl). Dually the cofiltration coFil•! (ΨK,̺) coincides with

the iterated image of Nv, i.e. the kernel of ΨK,̺ ։ coFilh∗(ΨK,̺) is the image of Nh
v .

Note that by Grothendieck-Verdier duality, we have D(Filh! (ΨK,̺)) ∼= coFilh∗(ΨK,̺).

The graded parts grk! (ΨK,̺) are, by construction, free and admit a strict(6) filtration,
cf. [Boy14] corollary 3.4.5

Fild−1
∗ (grk! (ΨK,̺)) →֒ · · · →֒ Filk−1

∗ (grk! (ΨK,̺)) = grk! (ΨK,̺)

(6)meaning the graded parts are free
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j=1
! j=1,∗

։

gr1!

gr2!

gr3!

 Fil1∗(gr
1
! )

 Fil2∗(gr
2
1)

j=1
∗ j=1,∗ ←֓

cogr1∗

cogr2∗

cogr3∗

 coFil1! (cogr
1
∗)

 coFil2! (cogr
2
∗)

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure 1. Filtrations of stratification of ΨK,̺

with

gri−1
∗ (grk! (ΨK,̺))⊗Zl

Ql
∼=

⊕

πv∈Cusp(̺)

P (i, πv)(
i+ 1− 2k

2
),

where Cusp(̺) is the set of equivalence classes of irreducible cuspidal representations
with modulo l reduction isomorphic to ̺.

Dually, cogrk∗(ΨK,̺) has a cofiltration

cogrk∗(ΨK,̺) = coFilk−1
! (cogrk∗(ΨK,̺))։ · · ·։ coFild−1

! (cogrk∗(ΨK,̺)),

with

cogri−1
! (cogrk∗(ΨK,̺))⊗Zl

Ql
∼=

⊕

πv∈Cusp(̺)

P (i, πv)(
2k − i− 1

2
).

Concerning the Zl-structures, cf. the third global result of the introduction of
[Boy23b] , for every 1 ≤ k ≤ i ≤ d, we have strict epimorphisms(7)

j=i
! j=i,∗ Fili−1

∗ (grk! (ΨK,̺))։ Fili−1
∗ (grk! (ΨK,̺))

as well as strict monomorphisms

coFili−1
! (cogrk∗(ΨK,̺)) →֒ j=i

∗ j=i,∗ coFili−1(cogrk∗(ΨK,̺)).

(7)strict means that the cokernel is torsion free
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Exchange basic step: to go from filtration to another, one can repeat the following
process to exchange the order of appearance of two consecutive subquotient:

P ′
1� _

��

� o

��
❅❅

❅❅
❅❅

❅

P2 � o

��
❅❅

❅❅
❅❅

❅❅

� � // X

��
��

// // P1

�� ��
❃❃

❃❃
❃❃

❃❃

P ′
2

�� ��
❅❅

❅❅
❅❅

❅
T

T,

��������

��������

where

– P1 and P2 are two consecutive subquotient in a given filtration and X is the
subquotient gathering them as a subquotient of this filtration.

– Over Ql, the extension X ⊗Zl
Ql is split, so that on can write X as an extension

of P ′
2 by P ′

1 with P ′
1 →֒ P1 and P2 →֒ P ′

2 have the same cokernel T , a perverse
sheaf of torsion.

Remark. In the particular case when P1 and P2 are intermediate extensions of local
systems living on different strata such that the two associated intermediate extensions
for the p and p+ t-structure are isomorphic, then T is necessary zero and X is then
split over Zl.

3.2. The canonical filtration of H0(ShK,s̄v ,ΨK,Zl
)m is strict. — We have spec-

tral sequences

(5) Ep,q
1 = Hp+q(ShK,s̄v , gr

−p
∗ (grk! (ΨK,̺)))⇒ Hp+q(ShK,s̄v gr

k
! (ΨK,̺)),

and

(6) Ep,q
1 = Hp+q(ShK,s̄v , gr

−p
! (ΨK,̺))⇒ Hp+q(ShK,s̄v ,ΨK,̺).

Definition 3.2.1. — For a finite set S of places of Q containing the places where
G is ramified, denote by TS

abs :=
∏′

x 6∈S Tx,abs the abstract unramified Hecke algebra

where Tx,abs
∼= Zl[X

un(Tx)]
Wx for Tx a split torus, Wx the spherical Weyl group and

Xun(Tx) the set of Zl-unramified characters of Tx.

Example. For w ∈ Spl, we have

Tv|Q,abs = Zl

[
Tv′,i : i = 1, · · · , d, v′|(v|Q)

]

where Tv′,i is the characteristic function of

GLd(Ov′) diag(

i︷ ︸︸ ︷
̟v′ , · · · , ̟v′,

d−i︷ ︸︸ ︷
1, · · · , 1)GLd(Ov′) ⊆ GLd(Fv′).
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Recall that TS
abs acts through correspondances on each of the H i(ShK,η̄,Zl) where

K ∈ K is maximal at each places outside S.

Notation 3.2.2. — For K unramified outside S, we denote by T(K) the image of
TS
abs inside EndZl

(Hd−1(ShK,η̄,Zl)).

We also denote by

Hd−1(ShKv(∞),η̄,Zl) := lim
−→

Kv

Hd−1(ShKvKv,η̄,Zl),

where Kv describe the set of open compact subgroup of GLd(Ov). We also use similar
notation for others cohomology groups.

Theorem 3.2.3. — Let m be a maximal ideal of T(Kv(∞)) such that ρ
m
is irre-

ducible, cf. §4.2, and the irreducible constituants of its restriction to the decomposi-
tion group at the place v are characters.(8) Then

(i) H i(ShKv(∞),η̄,Zl)m is zero if i 6= d− 1 and otherwise torsion free.
(ii) Moreover the spectral sequences (5) and (6), localized at m, degenerate at E1 and

the Ep,q
1,m are zero for p+ q 6= 0 and otherwise torsion free.

Proof. — (i) It is the main theorem of [Boy23a].

(ii) From (4) we are led to study the initial terms of the spectral sequence given by
the filtration of ΨKv(∞),̺ for ̺ a character which is a constituant of ρ

m,v. Recall also,
as we are in the limit case, that

– as there do not exist irreducible Ql-cuspidal representation of GLg(Fv) for g ≤ d
with modulo l reduction being not supercuspidal, the irreducible constituants of
ΨK,̺ ⊗Zl

Ql are the Harris-Taylor perverse sheaves P (h, χv)(
h−1−2k

2
) where the

modulo l reduction of χv is isomorphic to ̺ and 0 ≤ k < h.
– Over Zl, we do not have to worry about the difference between p and p+ inter-
mediate extensions.

From [Boy23b] §2.3, consider the following equivariant resolution

(7) 0→ j=d
! HT (χv,Πh{

h− d

2
} × Spehd−h(χv{h/2}))⊗ Ξ

d−h
2 −→ · · ·

−→ j=h+1
! HT (χv,Πh{−1/2} × χv{h/2})⊗ Ξ

1

2 −→

j=h
! HT (χv,Πh) −→

pj=h
!∗ HT (χv,Πh)→ 0,

where Πh is any representation of GLh(Fv), also called the infinitesimal part of the
perverse sheaf pj=h

!∗ HT (χv,Πh).
(9)

(8)Recall also that we suppose qv ≡ 1 mod l and l > d.
(9)In P (h, χv) the infinitesimal part Πh is sth(χv).
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By adjunction property, for 1 ≤ δ ≤ d− h, the map

(8) j=h+δ
! HT (χv,Πh{

−δ

2
} × Spehδ(χv{h/2}))⊗ Ξδ/2

−→ j=h+δ−1
! HT (χv,Πh{

1− δ

2
} × Spehδ−1(χv{h/2}))⊗ Ξ

δ−1

2

is given by

(9) HT (χv,Πh{
−δ

2
} × Spehδ(χv{h/2}))⊗ Ξδ/2 −→

j=h+δ,∗(pih+δ,!(j=h+δ−1
! HT (χv,Πh{

1− δ

2
} × Spehδ−1(χv{h/2}))⊗ Ξ

δ−1

2 ))

To compute this last term we use the resolution (7) for h + δ − 1. Precisely denote

by H := HT (χv, sth(χ{
1−δ
2
}) × Spehδ−1(χv{h/2})) ⊗ Ξ

δ−1

2 , and write the previous
resolution for h + δ − 1 as follows

0→ K −→ j=h+δ
! H′ −→ Q→ 0,

0→ Q −→ j=h+δ−1
! H −→ pj=h+δ−1

!∗ H → 0,

with

H′ := HT
(
χv,Πh{

1− δ

2
} ×

(
Spehδ−1(χv{−1/2})× χv{

δ − 1

2
}
)
{h/2}

)
⊗ Ξδ/2.

As the support of K is contained in Sh≥h+δ+1
I,s̄v

then pih+δ,!K = K and j=h+δ,∗(pih+δ,!K)

is zero. Moreover pih+δ,!(pj=h+δ−1
!∗ H) is zero by construction of the intermediate ex-

tension. We then deduce that

(10) j=h+δ,∗(pih+δ,!(j=h+δ−1
! HT (χv,Πh{

1− δ

2
} × Spehδ−1(χv{h/2}))⊗ Ξ

δ−1

2 ))

∼= HT
(
χv,Πh{

1− δ

2
}

×
(
Spehδ−1(χv{−1/2})× χv{

δ − 1

2
}
)
{h/2}

)
⊗ Ξδ/2

In particular, up to homothety, the map (9), and so (8), is unique. Finally as the
maps of (7) are strict, the given maps (8) are uniquely determined, that is, if we
forget the infinitesimal parts, these maps are independent of the chosen h in (7), i.e.
only depends on h+ δ.

For every 1 ≤ h ≤ d, let denote by i(h) the smallest index i such that
H i(ShKv(∞),s̄v ,

pj=h
!∗ HT (χv,Πh)m has non trivial torsion: if it does not exist then we

set i(h) = +∞ and note that it does not depend on the choice of the infinitesimal
part Πh. By duality, as pj!∗ = p+j!∗ for Harris-Taylor local systems associated to
characters, note that when i(h) is finite then i(h) ≤ 0. Suppose by absurdity there
exists h with i(h) finite and denote h0 the biggest such h.

Lemma 3.2.4. — For 1 ≤ h ≤ h0 then i(h) = h− h0.
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Note that a similar result is proved in [Boy17] when the level is maximal at v.

Proof. — a) We first prove that for every h0 < h ≤ d, the cohomology groups of
j=h
! HT (χv,Πh) are torsion free. Consider the following strict filtration in the category
of free perverse sheaves

(11) (0) = Fil−1−d(χv, h) −֒|→ Fil−d(χv, h) −֒|→ · · ·

−֒|→ Fil−h(χv, h) = j=h
! HT (χv,Πh)

where the symbol −֒|→ means a strict(10) monomorphism, with graded parts

gr−k(χv, h) ∼=
pj=k

!∗ HT (χv,Πh{
h− k

2
} ⊗ stk−h(χv{h/2}))(

h− k

2
).

Over Ql, the result is proved in [Boy09] §4.3. Over Zl, the result follows from
the general constructions of [Boy14] and the fact that the p and p+ intermediate
extensions are isomorphic for Harris-Taylor perverse sheaves associated to characters.
The associated spectral sequence localized at m, is then concentrated in middle degree
and torsion free which gives the claim.

b) Before watching the cases h ≤ h0, note that the spectral sequence associated to
(7) for h = h0 + 1, has all its E1 terms torsion free and degenerates at its E2 terms.
As by hypothesis the aims of this spectral sequence is free and equals to only one E2

terms, we deduce that all the maps

(12) H0
(
ShKv(∞),s̄v , j

=h+δ
! HTξ(χv, sth(χv{

−δ

2
})× Spehδ(χv{h/2}))⊗ Ξδ/2

)
m

−→

H0
(
ShKv(∞),s̄v , j

=h+δ−1
! HTξ(χv, sth(χv{

1− δ

2
})

× Spehδ−1(χv{h/2}))⊗ Ξ
δ−1

2

)
m

are saturated, i.e. their cokernel are free Zl-modules. Then from the previous fact
stressed after (10), this property remains true when we consider the associated spec-
tral sequence for 1 ≤ h′ ≤ h0.

c) Consider now h = h0 and the spectral sequence associated to (7) where

(13) Ep,q
2 = Hp+2q(ShKv(∞),s̄v , j

=h+q
!

HTξ(χv, sth(χv(−q/2))× Spehq(χv{h/2}))⊗ Ξ
q
2 )m

By definition of h0, we know that some of the Ep,−p
∞ should have a non trivial torsion

subspace. We saw that

– the contributions from the deeper strata are torsion free and

(10)i.e. the cokernel is free
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– H i(ShKv(∞),s̄v , j
=h0

! HTξ(χv,Πh0
))m are zero for i < 0 and is torsion free for i = 0,

whatever is Πh0
.

– Then there should exist a non strict map dp,q1 . But, we have just seen that it
can not be maps between deeper strata.

– Finally, using the previous points, the only possibility is that the cokernel of

(14) H0
(
ShKv(∞),s̄v , j

=h0+1
! HTξ(χv, sth0

(χv{
−1

2
})× χv{h0/2}))⊗ Ξ1/2

)
m

−→

H0
(
ShKv(∞),s̄v , j

=h0

! HTξ(χv, sth0
(χv))

)
m

has a non trivial torsion subspace.

In particular we have i(h0) = 0.

d) Finally using the fact 2.18 and the previous points, for any 1 ≤ h ≤ h0, in the
spectral sequence (13)

– by point a), Ep,q
2 is torsion free for q ≥ h0− h+1 and so it is zero if p+2q 6= 0;

– by affiness of the open strata, cf. [Boy17] theorem 1.8, Ep,q
2 is zero for p+2q < 0

and torsion free for p+ 2q = 0;
– by point b), the maps dp,q2 are saturated for q ≥ h0 − h + 2;

– by point c), d
−2(h0−h+1),h0−h+1
2 has a cokernel with a non trivial torsion subspace.

– Moreover, over Ql, the spectral sequence degenerates at E3 and Ep,q
3 = 0 if

(p, q) 6= (0, 0).

We then deduce that H i(ShKv(∞),s̄v ,
pj=h

!∗ HTξ(χv,Πh))m is zero for i < h− h0 and for
i = h− h0 it has a non trivial torsion subspace.

Consider now the filtration of stratification of Ψ̺ := ΨKv(∞),̺
(11) constructed using

the adjunction morphisms j=h
! j=h,∗ as in [Boy14]

(15) Fil1! (Ψ̺) −֒|→ Fil2! (Ψ̺) −֒|→ · · · −֒|→ Fild! (Ψ̺)

where Filh! (Ψ̺) is the saturated image of j=h
! j=h,∗Ψ̺ −→ Ψ̺. For our fixed χv, let

denote by Fil1!,χv
(Ψ) −֒|→ Fil1! (Ψ̺) such that Fil1!,χv

(Ψ)⊗Zl
Ql
∼= Fil1! (Ψχv

) where Ψχv

is the direct factor of Ψ̺⊗Zl
Ql associated to χv, cf. [Boy14]. From [Boy23b] 3.3.5,

we have the following resolution of grh!,χv
(Ψ̺)

(16) 0→ j=d
! HT (χv, LTh,d(χv))⊗ χ

−1
v (

d− h

2
) −→

j=d−1
! HT (χv, LTh,d−1(χv))⊗ χ

−1
v (

d− h− 1

2
) −→

· · · −→ j=h
! HT (χv, sth(χv))⊗ χ

−1
v −→ grh!,χv

(Ψ̺)→ 0,

(11)i.e. with infinite level at v
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where LTh,h+δ(χv) →֒ sth(χv{−δ/2}) × Spehδ(χv{h/2}), is the only irreducible sub-
space of this induced representation,

We can then apply the previous arguments a)-d) above: for h ≤ h0 (resp. h > h0)
the torsion of H i(ShKv(∞),s̄v , gr

h
!,χv

(Ψv,ξ))m is trivial for any i ≤ h−h0 (resp. for all i)
and the free parts are concentrated for i = 0. Using the spectral sequence associated
to the previous filtration, we can then conclude that H1−t0(ShKv(∞),s̄v ,Ψv,ξ)m would
have non trivial torsion which is false as m is supposed to be KHT-free.

In particular the previous spectral sequence gives us a filtration ofHd−1(ShKv(∞),η̄v ,Fl)m
whose graded parts are

H0(ShKv(∞),s̄v , gr
−p(grk! (ΨK,̺)))m ⊗Zl

Fl,

for ̺ describing the equivalence classes of irreducible Fl-supercuspidal representation
of GLg(Fv) with 1 ≤ g ≤ d, and then 1 ≤ k ≤ p ≤ ⌊d

g
⌋.

3.3. Local and global monodromy. — Consider a fixed Fl-character ̺ and de-
note by Ψ̺ the direct factor of ΨKv(∞),v associated to ̺.

OverQl, the monodromy operator define a nilpotent morphism N̺,Ql
: Ψ̺⊗Zl

Ql −→

Ψ̺(1)⊗Zl
Ql compatible with the filtration Fil•! (Ψ̺) in the sense that Filh! (Ψ̺)⊗Zl

Ql

coincides with the kernel of Nh
̺,Ql

. The aim of this section is to construct a Zl-version

N̺ of N̺,Ql
such that Filh! (Ψ̺)⊗Zl

Fl coincides with the kernel of Nh
̺ ⊗Zl

Fl.

First step: consider

0→ Fil1! (Ψ̺) −→ Ψ̺ −→ coFil1! (Ψ̺)→ 0,

and the following long exact sequence

0→ hom(coFil1! (Ψ̺),Ψ̺(1)) −→ hom(Ψ̺,Ψ̺(1)) −→ hom(Fil1! (Ψ̺),Ψ̺(1)) −→ · · ·

where hom is taken in the category of equivariant Hecke perverse sheaves with an
action of Gal(F v/Fv). As Fil1! (Ψ̺) ⊗Zl

Ql coincides with the kernel of N̺,Ql
, then

N̺,Ql
∈ hom(Ψ̺,Ψ̺) ⊗Zl

Ql comes from hom(coFil1! (Ψ̺),Ψ̺(1)) ⊗Zl
Ql, so that we

focus on hom(coFil1! (Ψ̺),Ψ̺(1)). From

0→ gr2! (Ψ̺) −→ coFil1! (Ψ̺) −→ coFil2! (Ψ̺)→ 0,

we obtain

0→ hom(coFil2! (Ψ̺),Ψ̺(1)) −→ hom(coFil1! (Ψ̺),Ψ̺(1)) −→

hom(gr2! (Ψ̺),Ψ̺(1)) −→ Ext1(coFil2! (Ψ̺),Ψ̺(1))) −→ · · ·

The socle of Ψ̺ ⊗Zl
Ql being contained in Fil1! (Ψ̺) ⊗Zl

Ql, any map coFil2! (Ψ̺) −→
Ψ̺(1)) can not be equivariant for the Galois action, so that we are led to look at

hom(gr2! (Ψ̺),Ψ̺(1)) ∼= hom(gr2! (Ψ̺),Fil
1
∗(gr

1
! (Ψ̺(1))))
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where
0→ Fil1∗(gr

1
! (Ψ̺)) −→ Fil1! (Ψ̺) −→ coFil1∗(Fil

1
! (Ψ̺)→ 0.

Note that gr2! (Ψ̺)⊗Zl
Ql
∼= Fil1∗(gr

1
1(Ψ̺(1)))⊗Zl

Ql and their Zl-structure is obtained,
cf. the introduction of [Boy23b] or equation (7) for a character alone, through the
strict Zl-epimorphisms

j=2
! j=2,∗ gr2! (Ψ̺)։ gr2! (Ψ̺), and j=2

! j=2,∗ Fil1∗(gr
1
! (Ψ̺))։ Fil1∗(gr

1
! (Ψ̺)),

cf. figure and the notations of the beginning of §3.1.

In particular to prove that gr2! (Ψ̺) is isomorphic to Fil1∗(gr
1
1(Ψ̺(1))), it suffices to

prove that the two local systems j=2,∗ gr2! (Ψ̺) and j
=2,∗ Fil1∗(gr

1
1(Ψ̺(1))) are isomor-

phic. In this case we can take(12) Nv ∈ hom(Ψ̺,Ψ̺(1)) ⊗Zl
Ql so that, over Zl we

have Fil1∗(gr
1
! (Ψ̺(1))) = Nv(Fil

2
! (Ψ̺)).

More generally to prove that the two perverse sheaves grh+1
! (Ψ̺) and Fil1∗(gr

h
! (Ψ̺(1)))

are isomorphic, it suffices to prove that the two local systems j=h+1,∗ grh+1
! (Ψ̺) and

j=h+1,∗ Fil1∗(gr
h
! (Ψ̺(1))) are isomorphic.

Second step: we want to prove that the local systems j=2,∗ gr2! (Ψ̺) and j
=2,∗ Fil1∗(gr

1
! (Ψ̺))

are isomorphic. Consider first the following situation: let Lk and Lk+1 be Zl-local
systems on a scheme X such that:

– Lk →֒ Lk+1 where the cokernel grk+1 is torsion free;

– Lk+1 ⊗Zl
Ql
∼= (Lk ⊗Zl

Ql)⊕ (grk+1⊗Zl
Ql) where grk+1⊗Zl

Ql is supposed to be
irreducible;

– we introduce
gr′k+1

� � //❴❴❴❴
� _

��
✤

✤

✤
grk+1,Ql� _

��

Lk+1
� � // Lk+1 ⊗Zl

Ql.

We moreover suppose that grk+1⊗Zl
Fl is also irreducible so the various stable

Zl-lattices of grk+1 are homothetic.

We then have
0→ Lk ⊕ gr′k+1 −→ Lk+1 −→ T → 0,

where T is torsion and can be viewed as a quotient

Lk →֒ L
′
k ։ T, gr′k+1 →֒ grk+1 ։ T,

with
Lk →֒ Lk+1 ։ grk+1, gr′k+1 →֒ Lk+1 ։ L

′
k.

(12)As it is not clear that Ext1(coFil2! (Ψ̺),Ψ̺(1))) is torsion free, we can not claim at this stage
that Nv ∈ hom(Ψ̺,Ψ̺(1)).
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As grk+1⊗Zl
Ql is irreducible, then gr′k+1 →֒ grk+1 is given by multiplication by lδk and,

as the stable lattices of grk ⊗Zl
Ql are all isomorphic, the extension is characterized

by this δk.

Consider then the Zl-local system L := j=1,∗Ψ̺ and recall that

L ⊗Zl
Ql
∼=

r⊕

i=1

HTQl
(χv,i, χv,i),

where we fix any numbering of Cusp(̺) = {χv,1, · · · , χv,r}. For k = 1, · · · , r, we
introduce

Lk
� � //❴❴❴

� _

��
✤
✤
✤
✤
✤

k⊕

i=1

HT (χv,i, χv,i)

� _

��

L � � // L⊗Zl
Ql.

Let denote by Tk+1 the torsion local system such that

0→ Lk ⊕ grk+1 −→ Lk+1 −→ Tk+1 → 0,

where grk+1 := Lk+1/Lk, as above. We can apply the previous remark and denote
by δk the power of l which define the homothety gr′k+1 →֒ grk+1 ։ Tk+1. The set

{δk : k = 1, · · · , r} is then a numerical data to characterize L inside j=1,∗Ψ̺ ⊗Zl
Ql.

(i) To control j=2,∗ Fil1∗(gr
1
! (Ψ̺)), we use the general description above with

– local systems L+
k for k = 1, · · · , r so that L+

k⊗Zl
Ql
∼=

⊕k
i=1HTQl

(χv,i, st2(χv,i)(−1/2);

– with gr+,′

k+1 defined, as before, with

0→ L+
k ⊕ gr+,′

k+1 −→ L
+
k+1 −→ Tk+1 → 0,

where Tk+1 is killed by lδ
+

k+1 .

We want to prove that δ+k = δk for every k = 1, · · · , r where {δk : k = 1, · · · , r} is
the numerical data associated to j=1,∗Ψ̺.

Let denote by

j=1
6=1 : ShK,s̄v \ Sh

≥1
K,s̄v,1

→֒ ShK,s̄v, i11 : Sh
≥1
K,s̄v,1

→֒ Sh≥1
K,s̄v

= ShK,s̄v .

From [Boy23b] lemma B.3.2, j=2,∗ Fil1∗(gr
1
! (Ψ̺)) is obtained as follows. Let

P := ph−1i1,∗1 j=1
6=1,∗j

=1,∗
6=1 Ψ̺

so that
0→ P −→ j=1

6=1,!j
=1,∗
6=1 Ψ̺ −→

pj=1
6=1,!∗j

=1,∗
6=1 Ψ̺ → 0.

Then P is the cosocle of i1,∗1 Fil1∗(gr
1
! (Ψ̺)) so that

j=2,∗ Fil1∗(gr
1
! (Ψ̺)) ∼= j=2,∗P ×P1,d(Fv) GLd(Fv),
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where induction has the same meaning as in (3).

Note then that the numerical data associated to j=2,∗P are also given by {δ+k : k =
1, · · · , r}. With the previous notations, consider the data associated to L := j=1,∗Ψ̺,
i.e. a filtration

L1 ⊆ L2 ⊆ · · · ⊆ Lr = L

with graded parts grk and gr′k →֒ grk is given by multiplication by lδk . We then have
a strict filtration

ph−1i1,∗1 j=1
6=1,∗L1 ⊆ · · · ⊆

ph−1i1,∗1 j=1
6=1,∗Lr = P,

with graded parts ph−1i1,∗1 j=1
6=1,∗ grk. Indeed we have

ph−2i1,∗1 j=1
6=1,∗ grk+1 = 0 −→ ph−1i1,∗1 j=1

6=1,∗Lk −→

ph−1i1,∗1 j=1
6=1,∗Lk −→

ph−1i1,∗1 j=1
6=1,∗ grk+1 −→

ph0i1,∗1 j=1
6=1,∗Lk

where the free quotient of ph0i1,∗1 j=1
6=1,∗Lk is zero. Moreover it is torsion free because

its torsion corresponds to the difference between p and p+ intermediate extensions
which are equal here from the main result of [Boy23b]. We then apply the exact
functor j=2,∗ and we induce from P1,d(Fv) to GLd(Fv) to obtain the filtration L+

• of

j=2,∗ Fil1∗(gr
1
! (Ψ̺)) where gr+,′

k →֒ gr+k is given by multiplication by lδk .

(ii) Dually the same arguments applied to

0→ pj=1
6=1,!∗j

=1,∗
6=1 Ψ̺ −→

pj=1
6=1,∗j

=1,∗
6=1 Ψ̺ −→ Q→ 0,

give us that j=2,∗Q is characterized by the data {δk : k = 1, · · · , r}. After inducing
from P1,d(Fv) to GLd(Fv), we obtain the description of the local system A := j=2,∗A
where A is defined as follows:

0→ pj=1
!∗ j

=1,∗ coFil1∗(Ψ̺) −→ coFil1∗(Ψ̺) −→ A→ 0.

Concretely this means that pj=2
!∗ A is the socle A1 of A but as we are interested by

the local system associated to j=2,∗ of the cosocle of Fil2! (Ψ̺), as explained in §3.1,
we have to use basic exchange steps as many times as needed to move A1 until it
appears as the cosocle of Fil2! (Ψ̺) →֒ Ψ̺.

Note then that all the perverse sheaves which are exchanged with A1 during this
process, are lattice of j=h

!∗ HTQl
(χv, sth(χv))(

1−h+δ
2

) with h ≥ 3. As explained in the

remark after the definition of the exchange basic step, as pj=2
!∗ HT (χv, st2(χv)) ∼=

p+j=2
!∗ HT (χv, st2(χv)), for all these exchange, we have T = 0 and A1 remains un-

changed during all the basic exchange steps.

Third step: at this stage we constructed a Ql-monodromy operator Nv such
Fil1∗(gr

1
! (Ψ̺(1))) = Nv(Fil

2
! (Ψ̺)). Recall that this monodromy operator induces

α : coFilh! (cogr
h
∗(Ψ̺)) −→ cogrh+1

∗ (Ψ̺(1))
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such that j=h+1,∗◦α is then an isomorphism over Zl. We say that α is an isomorphism.
Indeed consider

0→ pj=h
!∗ j

=h,∗ cogrh∗(Ψ̺) −→ cogrh∗(Ψ̺) −→ coFilh! (cogr
h
∗(Ψ̺))→ 0,

with the following two strict monomorphisms

(17) α1 : cogr
h+1
∗ (Ψ̺) →֒ j=h+1

∗ j=h+1,∗ cogrh+1
∗ (Ψ̺)

and

(18) α2 : coFil
h
! (cogr

h
∗(Ψ̺(1))) →֒ j=h+1

∗ j=h+1,∗ coFilh! (cogr
h
∗(Ψ̺(1))).

By composing α with α2 in (18), we obtain

(19) α1, α2 ◦ α ∈ hom
(
cogrh+1

∗ (Ψ̺), j
=h+1
∗ j=h+1,∗ cogrh+1

∗ (Ψ̺)
)

∼= hom
(
j=h+1,∗ cogrh+1

∗ (Ψ̺), j
=h+1,∗ cogrh+1

∗ (Ψ̺)
)
,

by adjunction. By hypothesis α1 and α2 ◦ α coincides in this last space, so they are
equal and α is then an isomorphism.

Notation 3.3.1. — Under the hypothesis of theorem 3.2.3 on m, the action of N̺

on Ψ̺ defined above for every Fl-character ̺, induces a nilpotent monodromy oper-

ator N coho
m,v on H0(ShI,s̄v ,Ψv,ξ)m. We also denote by N

coho

m,v := N coho
m,v ⊗Zl

Fl acting on

H0(ShI,s̄v ,Ψv,ξ)m ⊗Zl
Fl

4. Proof of the Ihara’s lemma

4.1. Supersingular locus as a zero dimensional Shimura variety. — As ex-
plained in the introduction, we follow the strategy of [Boy20] which consists to
transfer the genericity property of Ihara’s lemma concerning G to the genericity of
the cohomology of KHT-Shimura varieties.

Let G be a similitude group as in the introduction such that moreover there exists
a prime number p0 split in E and v+0 a place of F+ above p0, identified as before to
a place v0 of F , such that Bv0 is a division algebra: in particular v0 6= v. Consider
then, with the usual abuse of notation, G/Q such that G(A∞,v0

Q ) ∼= G(A∞,v0
Q ) with

G(Fv0)
∼= GLd(Fv0) and G(R) of signatures (1, n − 1), (0, n)r. The KHT Shimura

variety ShK,v0 → specOv0 associated to G with level K, has a Newton stratification
of its special fiber with supersingular locus

Sh=d
K,s̄v0

=
∐

i∈ker1(Q,G)

Sh=d
K,s̄v0 ,i

.

For a equivariant sheaf FK,i on Sh=d
Kv(∞),s̄v0 ,i

seen as acompatible system over

Sh=d
KvKv,s̄v0 ,i

for Kv describing the set of open compact subgroups of GLd(Ov), its

fiber at a compatible system zKv(∞),i of supersingular point zKvKv,i, has an action of
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G(A∞
Q )×GLd(Fv)

0 where GLd(Fv)
0 is the kernel of the valuation of the determinant

so that, cf. [Boy09] proposition 5.1.1, as a GLd(Fv)-module, we have

H0(Sh=d
Kv(∞),s̄v0 ,i

,FKv(∞),i) ∼=
(
ind

G(A∞,v)×Z

G(Q)
z∗Kv0(∞),iFKv0(∞),i

)Kv

,

with δ ∈ G(Q) 7→ (δ∞,v0, val ◦ rn(δv0)) ∈ G(A∞,v0,v) × Z and where the action of

gv0 ∈ GLd(Fv0) is given by those of (g
−val det gv0
0 gv0, val det gv0) ∈ GLd(Fv0)

0 ×Z where
g0 ∈ GLd(Fv0) is any fixed element with val det g0 = 1. Moreover, cf. [Boy09]
corollaire 5.1.2, if z∗Kv0 (∞),iFKv0(∞),i is provided with an action of the kernel (D×

v0,d
)0

of the valuation of the reduced norm, action compatible with those of G(Q) →֒ D×
v0,d

,
then as a G(A∞)-module, we have

(20) H0(Sh=d
Kv(∞),s̄v0 ,i

,FKv(∞),i) ∼=
(
C∞(G(Q)\G(A∞),Λ)⊗D×

v0,d
ind

D×

v0,d

(D×

v0,d
)0
z∗iFI,i

)Kv

In particular, cf. lemma 2.3.1 of [Boy20], let π be an irreducible sub-Fl-
representation of C∞(G(Q)\G(A)/Kv,Fl)m for m such that ρ

m
is irreducible.

Write its local component π̄v0
∼= πv0 [s]D with πv0 an irreducible cuspidal rep-

resentation of GLg(Fv0) with d = sg. Then (πv0)K
v

is a sub-representation of

H0(Sh=d
Kv(∞),s̄v0

, HT (π∨
v0
, s))m ⊗Zl

Fl and, cf. proposition 2.3.2 of [Boy20], a sub-Fl-

representation of Hd−1(ShKv(∞),η̄v0
,Fl)m. Indeed, cf. theorem 3.2.3,

– by the main result of [Boy23a], as l > d ≥ 2 and ρ
m
is irreducible, then m is

KHT free so that hypothesis (H1) of [Boy20] is fulfilled.
– Theorem 3.2.3 gives us that the filtration of Hd−1(ShKv(∞),η̄v0

,Zl)m induced by

the filtration of the nearby cycles at v0, is strict.
(13)

Finally if the analog of Ihara’s lemma for Hd−1(ShKv(∞),η̄,Fl)m is true for the action of

GLd(Fv), then this is also the case for G. We now focus on the genericity of irreducible
sub-GLd(Fv)-modules of H0(ShKv(∞),η̄,Fl)m using the nearby cycles at the place v.

4.2. Level raising. — To a cohomological minimal prime ideal m̃ of T(K), which
corresponds to a maximal ideal of T(K)[1

l
], is associated both a near equivalence class

of Ql-automorphic representation Πm̃ and a Galois representation

ρm̃ : GF := Gal(F̄ /F ) −→ GLd(Ql)

such that the eigenvalues of the Frobenius morphism at an unramified place w are
given by the Satake parameters of the local component Πm̃,w of Πm̃. The semi-simple
class ρ

m
of the reduction modulo l of ρm̃ depends only of the maximal ideal m of TS

K

containing m̃.

We now allow infinite level at v and we denote by T(Kv(∞)) the associated Hecke
algebra. We fix a maximal ideal m in T(Kv(∞)) such that

(13)In [Boy20] hypothesis (H3) was introduced for this property to be true.
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– the associated Galois representation ρ
m
: GF → GLd(F) is irreducible;

– ρ
m
|WFv

, after semi-simplification, is a direct sum of characters.

Remark. For every minimal prime m̃ ⊆ m, note that Πm̃,v looks like sts1(χv,1)× · · · ×
stsr(χv,r) with s1 + · · ·+ sr = d.

Let Sv(m) be the supercuspidal support of the modulo l reduction of any Πm̃,v in
the near equivalence class associated to a minimal prime ideal m̃ ⊆ m. Recall that
Sv(m) is a multi-set, i.e. a set with multiplicities which only depends on m. We
decompose it according to the set of Zelevinsky lines: as we supposed qv ≡ 1 mod l
then every Zelevinsky line is reduced to a single equivalence class of an irreducible
(super)cuspidal Fl-representations ̺ of some GLg(̺)(Fv) with 1 ≤ g(̺) ≤ d. Moreover
our second hypothesis tells us that we are only concerned with ̺ being a character:

Sv(m) =
∐

̺∈Cusp
Fl
(1,v)

S̺(m),

where CuspFl
(1, v) is the set of Fl-characters of F

×
v .

Notation 4.2.1. — We denote by l̺(m) the multiplicity of S̺(m).

For m̃ ⊆ m, the local component Πm̃,v of Πm̃ can then be written as a full induced

representation ×
̺∈Cusp

Fl
(1,v)

Πm̃,̺ where each Πm̃,̺ is also a full induced representation

Πm̃,̺
∼=

r̺(m̃)

×
i=1

Stl̺,i(m̃)(πv,i)

where rl(πv,i) ∼= ̺, l̺,1(m̃) ≥ · · · ≥ l̺,r̺(m̃)(m̃) and
∑r

i=1 l̺,i(m̃) = l̺(m).

Suppose now that there exists ̺ ∈ CuspFl
(1, v) such that minm̃⊆m{r̺(m̃)} ≥ 2 and

let l̺,1 := maxm̃⊆m{l̺,1(m̃)} which is then strictly less than l̺(m).

Recall that for a character χv such that its modulo l reduction is isomorphic to ̺,
H0(ShKv(∞),s̄v , P (h, χv))m ⊗Zl

Ql as computed in [Boy10], is the sum of the contri-
butions of Πm̃ with m̃ ⊆ m such that Πm̃ is of the following shape: sth(χ

′
v)×? where

χ′
v/χv is unramified and ? is any representation of GLd−h(Fv) whose cuspidal support

is not linked to those of sth(χ
′
v).

In particular for every h > l̺,1, H
0(ShKv(∞),s̄v , P (h, χv))m⊗Zl

Ql is zero, so that, as
everything is torsion free,

H0(ShKv(∞),s̄v , gr
l̺,1(̺)−1
∗ (gr1! (Ψ̺)))m ⊗Zl

Fl →֒ H0(ShKv(∞),s̄v ,ΨKv(∞),v))m ⊗Zl
Fl.

Moreover this subspace, as a Fl-representation of GLd(Fv), has a subspace of the
following shape stl1(̺)(̺) × τ where the supercuspidal support of τ contains ̺. In
particular as qv ≡ 1 mod l and l > d, this induced representation has both a generic
and a non generic subspace.
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We can then conclude that for the genericity property to be true for KHT Shimura
varieties, one needs a level raising property as in proposition 3.3.1 of [Boy20]. Hope-
fully such statements exist under some rather mild hypothesis as for example the
following result of T. Gee.

Theorem 4.2.2. — ([Gee11] theorem 5.1.5) Let F = F+E be a CM field where F+

is totally real and E is imaginary quadratic. Let d > 1 and l > d be a prime which is
unramified in F+ and split in E. Suppose that

ρ : GF −→ GLn(Fl)

is an irreducible representation which is unramified at all places of F lying above
primes which do not split in E and which satisfies the following properties.

– ρ is automorphic of weight a, where we assume that for all τ ∈ (Zd)hom(F,C) we
have either(14)

l − 1− d ≥ aτ,1 ≥ · · · ≥ aτ,d ≥ 0 or l − 1− d ≥ acτ,1 ≥ · · · ≥ acτ,d ≥ 0.

– F
ker ad ρ

does not contain F (ζl).
– ρ(GF+(ζl)) is big.

Let u be a finite place of F+ which split in F and not dividing l. Choose an inertial
type τv and a place v of F above u. Assume that ρ|GFv

has a lift to characteristic zero
of type τv.

Then there is an automorphic representation π of GLn(AF ) of weight a and level
prime to l such that

– rl,ι(π) ∼= ρ.
– rl,ι(π)|GFv

has type τv.
– π is unramified at all places w 6= v of F at which ρ is unramified.

Remark. In this text we focus only on the trivial coefficients Zl, i.e. to the case
aτ,1 = · · · = aτ,d = acτ,1 = · · · = acτ,d = 0, but we could also deals with others weights
as in the previous theorem.

4.3. Genericity for KHT-Shimura varieties. — As explained in [HT01], the
Ql-cohomology of ShK,η̄ can be written as

Hd−1(ShK,η̄,Ql)m ∼=
⊕

π∈Aξ,K (m)

(π∞)K ⊗ V (π∞),

where

(14)Note that these conditions imply ρc ∼= ρ∨ǫ1−d.
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– AK(m) is the set of equivalence classes of automorphic representations of G(A)
with non trivial K-invariants and such that its modulo l Satake’s parameters
outside S are prescribed by m,

– and V (π∞) is a representation of GalF,S.

As ρ
m

is supposed to be absolutely irreducible, then as explained in chapter VI
of [HT01], if V (π∞) is non zero, then π is a weak transfer of a cohomological
automorphic representation (Π, ψ) of GLd(AF ) × A×

F with Π∨ ∼= Πc where c is
the complex conjugation. Attached to such a Π is a global Galois representation
ρΠ,l : GalF,S −→ GLd(Ql) which is irreducible.

Theorem 4.3.1. — (cf. [NF19] theorem 2.20)
If ρΠ,l is strongly irreducible, meaning it remains irreducible when it is restricted to
any finite index subgroup, then V (π∞) is a semi-simple representation of GalF,S.

Remark. The Tate conjecture predicts that V (π∞) is always semi-simple.

Definition 4.3.2. — (cf. [Sch18] §5) We say that m is KHT-typic for K if, as a
T(K)m[GalF,S]-module,

Hd−1(ShK,η̄,Zl)m ∼= σm,K ⊗T(K)m ρm,K ,

for some T(K)m-module σm,K on which GalF,S acts trivially and

ρm,K : GalF,S −→ GLd(T(K)m)

is the stable lattice of
⊕

m̃⊆m
ρm̃ introduced in the introduction.

Proposition 4.3.3. — We suppose that for all π ∈ AK(m), the Galois representa-
tion V (π∞) is semi-simple. Then m is KHT-typic for K.

Proof. — By proposition 5.4 of [Sch18] it suffices to deal with Ql-coefficients.
From [HT01] proposition VII.1.8 and the semi-simplicity hypothesis, then

V (π∞) ∼= R̃(π)
⊕

n(π) where R̃(π) is of dimension d. We then write

(π∞)K ⊗Ql
R(π) ∼= (π∞)K ⊗T(K)

m,Ql
(T(K)

m,Ql
)d,

and (π∞)K ⊗Ql
V (π∞) ∼= ((π∞)K)

⊕
n(π) ⊗T(K)

m,Ql
(T(K)

m,Ql
)d and finally

Hd−1(ShK,η̄,Ql)m ∼= σ
m,K,Ql

⊗T(K)
m,Ql

(T(K)
m,Ql

)d,

with σ
m,K,Ql

∼=
⊕

π∈AK(m)((π
∞)I)

⊕
n(π). The result then follows from [HT01] theorem

VII.1.9 which insures that R(π) ∼= ρm̃, if m̃ is the prime ideal associated to π,

Let ̺ be a Fl-character with l̺(m) > 0. Then H0(ShK,η̄v ,ΨK,̺)m as a direct factor

of Hd−1(ShK,η̄,Ql)m, is also typic, i.e.

H0(ShK,η̄v ,ΨK,̺)m ∼= σm,K,̺ ⊗T(K)m ρm,K,̺.
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The monodromy operator N coho
m,̺ acting on H0(ShK,η̄v ,ΨK,̺)m is such that

N coho
m,̺ ⊗Zl

Ql
∼= Id⊗N

m,̺,Ql
,

i.e. it acts trivially on the first factor σm,K,̺. We then deduce that N coho
m,̺ induces a

nilpotent operator Nm,̺ (resp. Nm,̺) on ρm,K,̺ (resp. ρ
m,K,̺ := ρm,K,̺ ⊗Zl

Fl).

In the following, we will work with the following levels at v.

Notation 4.3.4. — For α ∈ N \ {0}, we will denote by

Kv(α) := ker
(
GLd(Ov) −→ GLd(Ov/̟

α
v )
)
,

the open compact subgroup of GLd(Ov). For a fixed level Kv outside v, we denote
by RK,̺(α) the image of T(Kv)m acting on the direct factor H0(ShKv Kv(α),s̄v ,Ψ̺)m of
H0(ShKv Kv(α),s̄v ,Ψv)m.

We now focus on the modulo l reduction of the previous objects

H0(ShKv Kv(α),η̄v ,Ψ̺)m ⊗Zl
Fl
∼= σK,̺(α)⊗RK,̺(α)

ρK,̺(α),

where σK,̺(α) := σm,Kv Kv(α),̺ ⊗Zl
Fl, similarly ρK,̺(α) := ρm,Kv Kv(α),̺ ⊗Zl

Fl and

RK,̺(α) := RK,̺(α)⊗Zl
Fl.

Note thatRK,̺(α) is an artinian local commutative ring with maximal ideal mK,̺(α)
and with finite length rK,̺(α). Let denote by

(0) = I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ IrK,̺(α) = RK,̺(α),

the ideals of RK,̺(α) such that for k = 1, · · · , r, the quotients Ik/Ik−1 are sim-

ple and so isomorphic to RK,̺(α)/mK,̺(α) ∼= Fl. For any irreducible cuspidal Fl-
representation ̺, we consider the filtration of σK,̺(α):

(0) ⊆ I1σK,̺(α) ⊆ · · · ⊆ IrK,̺(α)−1σK,̺(α) ⊆ σK,̺(α).

As ρK,̺(α) is RK,̺(α)
d provided with a Galois action, it is flat as a RK,̺(α)-module,

so that we have the following filtration

(21) (0) ⊆ I1σK,̺(α)⊗RK,̺(α)
ρK,̺(α) ⊆ · · · ⊆

Ir−1σK,̺(α)⊗RK,̺(α)
ρK,̺(α) ⊆ σK,̺(α)⊗RK,̺(α)

ρK,̺(α),

with

Ik−1σK,̺(α)⊗RK,̺(α)
ρK,̺(α)

� � // IkσK,̺(α)⊗RK,̺(α)
ρK,̺(α) // // IkσK,̺(α)/Ik−1σK,̺(α)⊗RK,̺(α)

ρK

σK,̺(α)⊗RK,̺(α)
Ik−1ρK,̺(α) // σK,̺(α)⊗RK,̺(α)

IkρK,̺(α) // // σK,̺(α)⊗RK,̺(α)
Ik−1ρK,̺(α)/IkρK
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In other words, the graded parts are

IkσK,̺(α)/Ik−1σK,̺(α)⊗RK,̺(α)
ρK,̺(α)

∼= σK,̺(α)⊗RK,̺(α)
IkρK,̺(α)/Ik−1ρK,̺(α)

∼= σK,̺(α)⊗RK,̺(α)

(
ρK,̺ ⊗ Ik/Ik−1

)
∼= σK,̺(α)/mK,̺(α)⊗Fl

ρK,̺(α)/mK,̺(α).

Remark. As expected all these graded parts are isomorphic as RK,̺(α)-module. They

are also equipped with an action of the modulo l local Hecke algebra Tv(α) =
Fl[Kv(α)\GLd(Ov)/Kv(α)] at the place v with level Kv(α). At this stage we do
not know anything about the structure of these graded parts as Tv(α)-modules. Note
also that this filtration is not trivial: indeed otherwise as Nm,̺/m is trivial, then

N
coho

m,̺ := N coho
m,̺ ⊗RK,̺(α) RK,̺(α)

would be trivial but we know it is not the case as its order of nilpotency is l̺(m) as
soon as Kv K(α) is small enough.

Notation 4.3.5. — Let EK,̺(α) be the injective hull of RK,̺(α)/mK,̺(α) and

D :M −→ D(M) = homRK,̺(α)(M,EK,̺(α))

be the Maltis duality functor for the local artinian ring RK,̺(α) where M is any
finitely generated RK,̺(α)-module.

Recall the following properties:

(a) D is exact and D ◦D(M) is canonically isomorphic to M ;
(b) lengthRK,̺(α)

D(M) = lengthRK,̺(α)
M ;

(c) for every ideal I of RK,̺(α), we have D(M [I]) ∼= D(M)/ID(M) and
D(M/IM) ∼= D(M)[I];

(d) D(RK,̺(α)) = EK,̺(α) and D(RK,̺(α)/mK,̺(α)) ∼= RK,̺(α)/mK,̺(α);
(e) M ⊗RK,̺(α)

D(N) ∼= D
(
homRK,̺(α)

(M,N)
)
.

Remark. as Fl →֒ RK,̺(α), then we have EK,̺(α) = homFl
(RK,̺(α),Fl).

Lemma 4.3.6. — With the previous notations, we have

(
σK,̺(α)⊗RK,̺(α)

ρK,̺(α)
)
[mK,̺(α)] ∼= σK,̺(α)/mK,̺(α)⊗Fl

ρK,̺(α)[mK,̺(α)]
∼= σK,̺(α)[mK,̺(α)]⊗Fl

ρK,̺(α)/mK,̺(α).
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Proof. — From the previous properties
(
σK,̺(α)⊗RK,̺(α)

ρK,̺(α)
)
[mK,̺(α)] is isomor-

phic to

∼=
(
D2

(
σK,̺(α)

)
⊗RK,̺(α)

ρK,̺(α)
)
[mK,̺(α)] ∼= D

(
homRK,̺(α)

(ρK,̺(α), D(σK,̺(α)))
)
[mK,̺(α)]

∼= D
(
homRK,̺(α)

(ρK,̺(α), D(σK,̺(α)))⊗RK,̺(α)
RK,̺(α)/mK,̺(α)

)

∼= D
(
homRK,̺(α)

(
ρK,̺(α), D(σK,̺(α))/mK,̺(α))

)

∼= D
(
homRK,̺(α)

(
(
ρK,̺(α)), D(σK,̺(α)[mK,̺(α)])

)

∼= ρK,̺(α)⊗RK,̺(α)
D2(σK,̺(α)[mK,̺(α)])

∼= ρK,̺(α)⊗RK,̺(α)
σK,̺(α)[mK,̺(α)] ∼= ρK,̺(α)/mK,̺(α)⊗RK,̺(α)/mK,̺

σK,̺(α)[mK,̺(α)]

The second isomorphism is obtained by the symmetry of the proof.

With the notations of §4.2, for a fixed ̺, theorem 4.2.2 gives us the existence of
m̃ ⊆ m such that Πm̃,v

∼= stl̺(m)(χv)×? where χv is a character lifting ̺ and ? is a
representation of GLd−l̺(m(Fv) such that the supercuspidal support of its modulo l
reduction does not contain ̺. We consider any α0 big enough such that Πm̃,v has non
trivial vectors invariant under Kv(α0).

For α ≥ α0, let k be minimal such that N
l̺(m)−1

m,̺ is non zero on ρK,̺(α), and so
intersects ρK,̺(α)[mK,̺(α)]. Consider then

0 6= z ∈ ρK,̺(α)[mK,̺(α)] ∩ Im
(
(N

l̺(m)−1

m,̺ )|IkρK,̺(α)

)
.

Note that the map

σK,̺(α)/mK,̺(α)⊗Fl
ρK,̺(α)/mK,̺(α) ∼= σK,̺(α)⊗RK,̺(α)

IkρK,̺(α)/Ik−1ρK,̺(α)

−→ σK,̺(α)⊗Fl
ρK,̺(α)[mK,̺(α)] ∼= (σK,̺(α)⊗RK,̺(α)

ρK,̺(α))[mK,̺(α)]

induced by N
l̺(m)−1

m,̺ is then non zero and contains σK,̺(α)/mK,̺(α) ⊗Fl
Flz which

is then contained in H0(ShKv Kv(α),s̄v ,
pj

=l̺(m)
!∗ HTFl

(̺, stl̺(m)(̺)))m whose image in the

Grothendieck group of Fl[Tv(Kv(α))]-modules is equal to

∑

m̃⊆m

nm̃rl

(
Πm̃∞

)Kv Kv(α)

,

where

– nm̃ is a positive integer we do not need to precise,
– and the sum goes on the set of m̃ ⊆ m such that Πm̃,v is of the form stl̺(m)(χv)×?
where χv is a lift of ̺ and ? is a representation of GLd−l̺(m)(Fv) whose modulo
l reduction does not contain ̺ in its supercuspidal support.

Using the second isomorphism of the lemma 4.3.6, we then deduce that the image of
σK,̺(α)[mK,̺(α)] in the Grothendieck group of Fl[Tv(Kv(α))]-modules has the same
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shape with multiplicities n′
m̃
≤ nm̃. We then conclude that as a Fl-representation of

GLd(Fv), every irreducible constituant of

σK,̺[mK ] = lim
→α

σK,̺(α)[mK,̺(α)]

is of the form stl̺(m)(̺)×? where ̺ does not belong to the supercuspidal support of ?.
Varying ̺ we conclude that every irreducible constituant of σK,̺[mK ] is isomorphic
to×̺

stl̺(m)(̺), i.e. is generic.

Consider finally an irreducible T(Kv)m ×GLd(Fv)-submodule V of σKv : then V =
V [mK ] ⊆ σKv [mK ] is necessary generic as a representation of GLd(Fv), which finishes
the proof.
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