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Abstract. — Persistence of non-degeneracy is a phenomenon which ap-
pears in the theory of Ql-representations of the linear group: every irre-
ducible submodule of the restriction to the mirabolic sub-representation
of a non-degenerate irreducible representation is non-degenerate. This
is not true anymore in general, if we look at the modulo l reduction
of some stable lattice. As in the Clozel-Harris-Taylor generalization of
global Ihara’s lemma, we show that this property, called non-degeneracy
persistence and related to the notion of essentially absolutely irreducible
and generic representations in the work of Emerton-Helm, remains true
for lattices given by the cohomology of Lubin-Tate spaces. As an global
application, we give a new construction of automorphic congruences in
the Ribet spirit.
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Résumé. — La persistence de la non dégénérescence est un phénomène
qui apparait dans la théorie des Ql-représentations du groupe linéaire:
toute sous-représentation irréductible de la restriction au groupe
mirabolique d’une représentation irréductible non dégénérée, est non
dégénérée. Ce n’est plus le cas en général pour la réduction modulo l

d’un réseau stable. Comme dans la généralisation par Clozel-Harris-
Taylor du lemme d’Ihara, nous montrons que cette propriété de non
dégénérescence, qui est reliée à la notion de représentation essentielle-
ment absolument générique de Emerton-Helm, reste valide pour les
réseaux donnés par la cohomologie des espaces de Lubin-Tate. Nous
une application de nature globale en construisant des congruences
automorphes dans l’esprit du travail de Ribet.
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Introduction

Before the “Ihara avoidance” argument of Taylor, the proof of Sato-
Tate conjecture by Clozel, Harris and Taylor, rested on a conjectural gen-
eralization in higher dimension of the classical Ihara’s lemma for GL2.
Their formulation can be understood as some persistence of the non-
degeneracy property by reduction modulo l of automorphic representa-
tions.

Fix prime numbers l 6= p and a finite extension K of Qp. Recall then

[28] corollary 6.8, that any irreducible Ql-representation π of GLd(K)
is homogeneous which means, cf. [28] definition 5.1, that its restriction
to the mirabolic subgroup Md(K) of matrices such that the last row
is (0, · · · , 0, 1), is homogeneous in the sense that every irreducible sub-
Md(K)-representation has the same level of degeneracy, cf. [28] 4.3 or
[5] 3.5. In particular if π is non-degenerate i.e. its level of degeneracy
equals d, then any irreducible sub-representation of π|Md(K) is also non-
degenerate. Modulo l, for π an irreducible non-degenerate representation
of GLd(K), there might exist stable lattices such that π|Md(K)⊗Zl

Fl owns
irreducible degenerate subspaces, cf. corollary 1.4.3.

We then propose to prove some persistence of non-degeneracy phe-
nomenons in the cohomology groups of Lubin-Tate spaces. Consider
a finite extension K/Qp with ring of integers OK . For d ≥ 1, denote

by M̂LT,d,n the formal scheme representing the functor of isomorphism
classes of deformations by quasi-isogenies of the formal OK-module over
Fp of dimension 1 and height d with n-level structure. We denote by

MLT,d,n its generic fiber over K̂un. For Λ = Ql,Zl or Fl, consider both

Ud−1
LT,d,Λ := lim

−→
n

Hd−1(MLT,d,n⊗̂K̂unK̂,Λ)

and

Vd−1
LT,d,Λ := lim

−→
n

Hd−1
c (MLT,d,n⊗̂K̂unK̂,Λ).

There is a natural action of GLd(K) × D×K,d × WK on Ud−1
LT,d,Ql

and

Vd−1
LT,d,Λ, where DK,d (resp. WK) is the central division algebra over K

with invariant 1/d (resp. the Weil group of K). In this paper we focus
on the action of GLd(K) and it appears, cf. [7], that every irreducible
GLd(K)-subquotient of Ud−1

LT,d,Ql

and Vd−1

LT,d,Ql

is either a cuspidal or a

generalized Steinberg representation, so it is always non-degenerate. One
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can then ask if any irreducible GLd(K)-equivariant subspace of Ud−1

LT,d,Fl

(resp. Vd−1

LT,d,Fl
) is still non-degenerate or even more if any irreducible

Md(K)-equivariant subspace is non-degenerate.

Theorem. — (cf. corollaries 4.1.9 and 4.2.5)
The persistence of non-degeneracy property relatively to Md holds for
Vd−1

LT,d,Zl
⊗Zl

Fl and Ud−1

LT,d,Zl,free
⊗Zl Fl, i.e. any irreducible Md(K)-

equivariant subspace is non-degenerate.

Remark: Ud−1
LT,d,Zl,free

is the free quotient of Ud−1
LT,d,Zl

. In [10] we prove that

V i
LT,d,Zl

and U i
LT,d,Zl

are free for every i so that

Vd−1
LT,d,Zl

⊗Zl
Fl ≃ V

d−1
LT,d,Fl

and Ud−1
LT,d,Zl,free

⊗Zl Fl ≃ U
d−1
LT,d,Fl

.

Note that we do not use this result to prove the theorem.

The main motivation of this work is to obtain a geometric incarnation
of the local Langlands correspondance in families of Emerton-Helm-Moss
and we hope to come to this project soon.

The strategy for proving this property of the Lubin-Tate cohomology,
is to argue globally on Shimura varieties of Harris-Taylor type, XI →
SpecOK where OK is the ring of integers of K, cf. 2.2. Thanks to
Berkovich’s comparison theorem in [4], we have to understand the stalk of
the Zl-vanishing cycle perverse sheaf ΨI at some geometric supersingular
point of the geometric special fiber XI,s̄ of XI .

Using the Newton stratification of XI,s̄ and usual adjunction proper-
ties, cf. [11], we can construct various filtrations of ΨI . The main issue
about these general constructions is to understand, with the terminology
of §3.2, the phenomenon of saturation which is a blind process consist-
ing of choosing artificially the right sub-perverse sheaves so that all the
graded pieces are free. In particular it seems impossible to follow the lat-
tices during this process. One solution is to use the construction of [14]
based on a coarse filtration of stratification as recalled in §3, which intro-
duce no saturation process during the construction: see lemmas 3.4.1 and
4.1.2. As explained in [14] the main reason that this coarse filtration is
more interesting, is its link with the small mirabolic induction as defined
in (1.3.5) rather than the full parabolic induction appearing in [7]. For
more details, we advice the reader to look at the introduction of §4.

For z a geometric supersingular point and iz : {z} →֒ XI,s̄, by consid-
ering either i∗zH

iΨI or i!zH
iΨI , where H

• designates the functor of sheaf
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cohomology, we then obtain a filtration of Ud−1

LT,d,Zl,free
and Vd−1

LT,d,Zl,free
.

The graded pieces of these filtrations are then lattices of the irreducible
Ql[GLd(K)×D×K,d×WK ]-subquotients of U

d−1

LT,d,Ql

(resp. Vd−1

LT,d,Ql

), which

can be described as a tensorial product of stable lattices ΛG ⊗ ΛD ⊗ ΛW

of respectively GLd(K), D×K,d and WK . Using the combinatorics of
the non supersingular strata and the classical properties of the induced
representations, cf. proposition 1.3.7, we are then able to prove that
V := ΛG ⊗Zl Fl is an essentially absolutely irreducible and generic repre-
sentation in the sense of [21] definition 3.2.1, i.e.

– the socle soc(V ) of V is absolutely irreducible and generic,
– the quotient V/soc(V ) contains no generic Jordan-Holder factors,
– the representation V is the union of its finite length submodules.

In §4.3, using results of [10], we also look at Ud−1−δ

LT,d,Fl
(resp. Vd−1+δ

LT,d,Fl
) for

δ > 0. The situation is less pleasant to state but we can find cases where,
cf. proposition 4.3.1 and the remarks before and after it, that irreducible
subspaces must have minimal derivative order, but among the irreducible
quotients of such derivative order, the lattices of Lubin-Tate cohomology
groups select the one with non-degenerate highest derivative.

In the last section, we give a global application with new congruences
between tempered and non tempered automorphic representations with
the same level at l: their level are the same except at one place which
can be chosen almost arbitrary.

Finally to give a perspective about this work, we could say, using the
terminology cf. §3.2, that in [10] we solve the question about positions
of the perverse Harris-Taylor sheaves inside the perverse sheaf of nearby
cycles, and here we elucidate that of lattices.



LOCAL IHARA’S LEMMA 5

1. Review on the representation theory for GLn(Qp)

We fix a finite extension K/Qp with residue field Fq. We denote by
| − | its absolute value.

1.1. Induced representations. — For a representation π of GLd(K)
and n ∈ 1

2
Z, set

π{n} := π ⊗ q−n val ◦det.

1.1.1. Notations. — For π1 and π2 representations of respectively
GLn1(K) and GLn2(K), we will denote by

π1 × π2 := ind
GLn1+n2 (K)

Pn1,n1+n2(K) π1{
n2

2
} ⊗ π2{−

n1

2
},

the normalized parabolic induced representation where for any sequence
r = (0 < r1 < r2 < · · · < rk = d), we write Pr for the standard parabolic
subgroup of GLd with Levi

GLr1 ×GLr2−r1 × · · · ×GLrk−rk−1
.

The symbol × being associative, we define inductively π1 × · · · × πs as
(π1 × · · · × πs−1)× πs = π1 × (π2 × · · · × πs).

Recall that a representation ̺ of GLd(K) is called cuspidal (resp.
supercuspidal) if it is not a subspace (resp. subquotient) of a proper
parabolic induced representation. When the field of coefficients is of
characteristic zero then these two notions coincide, but this is not true
anymore for Fl.

1.1.2. Definition. — (see [28] §9 and [8] §1.4) Let g be a divisor of
d = sg and π an irreducible cuspidal Ql-representation of GLg(K).

– The induced representation

π{
1− s

2
} × π{

3− s

2
} × · · · × π{

s− 1

2
}

holds a unique irreducible quotient (resp. subspace) denoted by
Sts(π) (resp. Spehs(π)); it’s a generalized Steinberg (resp. Speh)
representation.

– For any integers t, r ≥ 1, the induced representation Stt(π{
−r
2
}) ×

Spehr(π{
t
2
}) (resp. Stt−1(π{

−r−1
2
}) × Spehr+1(π{

t−1
2
})) owns

a unique irreducible subspace (resp. quotient), denoted by
LTπ(t− 1, r).
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1.2. Reduction modulo l of a Steinberg representation. — De-
note by el(q) the order of q ∈ F×l .

1.2.1. Notation. — For Λ = Ql or Fl, denote by ScuspΛ(g) the set
of equivalence classes of irreducible supercuspidal Λ-representations of
GLg(K).

1.2.2. Proposition. — (cf. [26] III.5.10) Let π be an irreducible cusp-
idal representation of GLg(K) with a stable Zl-lattice

(1), then its modulo
l reduction is irreducible and cuspidal but not necessarily supercuspidal.

In the following we will denote by rl the functor of modulo l reduction,
i.e. for a Ql-representation π of a group G, with a stable Zl-lattice Λ,
then rl(π) is Λ⊗Zl Fl with the induced action of G. Note that such rl(π)
should depend on the chosen lattice Λ but its semi-simplification doesn’t.

1.2.3. Proposition. — [20] §2.2.3
Let π be an irreducible entire cuspidal representation, and s ≥ 1. Then
the modulo l reduction of Spehs(π) is irreducible.

1.2.4. Notation. — The Zelevinski line associated with some irre-
ducible supercuspidal Fl-representation ̺, is the set {̺{i} / i ∈ Z}. It is
clearly a finite set and we denote by ǫ(̺) its cardinal which is a divisor
of el(q). We also introduce, cf. [27] p.51

m(̺) =

{
ǫ(̺), if ǫ(̺) > 1;
l, sinon.

1.2.5. Definition. — Consider a multiset(2) s = {ρn1
1 , · · · , ρ

nr
r } of ir-

reducible supercuspidal Fl-representations. Following [27] V.7, we then
denote by St(s) the unique non-degenerate irreducible sub-quotient of the
induced representation

ρ(s) :=

n1︷ ︸︸ ︷
ρ1 × · · · × ρ1× · · · ×

nr︷ ︸︸ ︷
ρr × · · · × ρr .

Remark: Thanks to [27] V.7, every irreducible non-degenerate Fl-
representation can be written as St(s).

(1)We say that π is entire.
(2)meaning we take into account the multiplicities
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1.2.6. Notation. — For s ≥ 1 and ̺ an irreducible cuspidal Fl-
representation, we denote by s(̺) for the multi-segment {̺, ̺{1}, · · · , ̺{s−
1}} and, cf. [27] V.4, Sts(̺) := St(s(̺)).

1.2.7. Proposition. — (cf. [27] V.4)
With the previous notation, the Fl-representation Sts(̺) is cuspidal if and
only if s = 1 or m(̺)lk for some k ≥ 0.

Remark: by [26] III-3.15 and 5.14, every irreducible cuspidal Fl-
representation can be written Sts(̺) for some irreducible supercuspidal
representation ̺, and s = 1 or s = m(̺)lk with k ≥ 0.

1.2.8. Notations. — Let ̺ be an irreducible cuspidal Fl-representation
of GLg(K). We then denote

– g−1(̺) := g and for i ≥ 0, gi(̺) := m(̺)lig;
– ̺−1 = ̺ and for all i ≥ 0, ̺i = Stm(̺)li(̺).

– Cusp(̺, i) the set of equivalence classes of irreducible entire Ql-
representations such that modulo l it is isomorphic to ̺i,

– and Cusp(̺) =
⋃

i≥−1Cusp(̺, i).

1.2.9. Notation. — Let s ≥ 1 and ̺ an irreducible cuspidal Fl-
representation of GLg(K). We denote by I̺(s) the set of sequences
(m−1, m0, · · · ) of non-negative integers such that

s = m−1 +m(̺)
+∞∑

k=0

mkl
k.

We denote by lg̺(s) the cardinal of I̺(s). We then define a relation of
order on I̺(s) by

(m−1, m0, · · · ) > (m′−1, m
′
0, · · · )⇔ ∃k ≥ −1 s.t. ∀i > k : mi = m′i and mk > m′k.

1.2.10. Definition. — For i = (i−1, i0, · · · ) ∈ I̺(s), we define

Sti(̺) := Sti−1(̺−1)× Sti0(̺0)× · · · × Stiu(̺u)

where ik = 0 for all k > u.

Remark : we will denote by smax the maximal element of I̺(s) so that
Stsmax(̺) is non-degenerate.
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1.2.11. Theorem. — (cf. [9] proposition 3.1.5) Consider π an entire
irreducible cuspidal Ql-representation of GLg(K) and let ̺ be its modulo

l reduction. In the Grothendieck group of Fl-representations of GLsg(K),
we have the following equality:

rl

(
Sts(π)

)
=

∑

i∈I̺(s)

Sti(̺).

Remark : for s < m(̺), it is irreducible so, up to isomorphism, it possesses
a unique stable lattice, cf. [2] proposition 3.3.2 and the following remark.

1.3. Restriction to the mirabolic group. — In this paragraph,
we want to state some of the main results of [5] §4 about Ql-
representations(3): for Fl-representations the usual reference is [26]
§III.

Recall first some notations of [5] §3, see also [26] §III-1 or [21] §3.
The mirabolic subgroup Md(K) of GLd(K) is the set of matrices with
last row (0, · · · , 0, 1): we denote

Vd(K) = {(mi,j) ∈Md(K) : mi,j = δi,j for j < d}.

its unipotent radical. We fix a non trivial character ψ of K and let θ the
character of Vd(K) defined by θ((mi,j)) = ψ(md−1,d). For G = GLr(K) or
Mr(K), we denote Alg(G) the abelian category of smooth representations
of G and, following [5], we introduce

Ψ− : Alg(Md(K)) −→ Alg(GLd−1(K)),

and
Φ− : Alg(Md(K)) −→ Alg(Md−1(K)),

defined by Ψ− = rVd,1 (resp. Φ− = rVd,θ) the functor of Vd coinvari-
ants (resp. (Vd, θ)-coinvariants), cf. [5] 1.8. We also introduce the un-
normalized compact induced functor

Ψ+ := iV,1 : Alg(GLd−1(K)) −→ Alg(Md(K)),

Φ+ := iV,θ : Alg(Md−1(K)) −→ Alg(Md(K)).

1.3.1. Proposition. — ([5] p451, [21] proposition 3.1.3 or [26] §III-1)

– The functors Ψ−, Ψ+, Φ− and Φ+ are exact.

(3)In loc. cit. the author consider complex representations, but for admissible ones,
so in particular for irreducible smooth representations, they are defined over a finite
extension of Q so that the facility consisting to fix an isomorphism Ql ≃ C is harmless.
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– Φ− ◦Ψ+ = Ψ− ◦ Φ+ = 0.
– Ψ− (resp. Φ+) is left adjoint to Ψ+ (resp. Φ−) and the following
adjunction maps

Id −→ Φ−Φ+, Ψ+Ψ− −→ Id,

are isomorphisms and the following sequence is exact

0→ Φ+Φ− −→ Id −→ Ψ+Ψ− → 0.

1.3.2. Definition. — For τ ∈ Alg(Md(K)), the representation

τ (k) := Ψ− ◦ (Φ−)k−1(τ)

is called the k-th derivative of τ . If τ (k) 6= 0 and τ (m) = 0 for all m > k,
then τ (k) is called the highest derivative of τ .

1.3.3. Notation. — (cf. [28] 4.3) Let π ∈ Alg(GLd(K)) (or π ∈
Alg(Md(K))). The maximal number k such that (π|Md(K))

(k) 6= (0) is
called the level of non-degeneracy of π and denoted by λ(π).

Remark : cf [5] 3.5, there exists a natural filtration 0 ⊂ τd ⊂ · · · ⊂ τ1 = τ
with

τk = (Φ+)k−1 ◦ (Φ−)k−1(τ) and τk/τk+1 = (Φ+)k−1 ◦Ψ+(τ (k)).

In particular for τ irreducible there is exactly one k such that τ (k) 6= (0)
and then τ ≃ (Φ+)k−1 ◦Ψ+(τ (k)).

1.3.4. Notation. — In the particular case where k = d, there is a
unique irreducible representation τnd of Md(K) with derivative of order
d.

Remark: Note then by [5] 4.4, for every irreducible supercuspidal repre-
sentation π of GLd(K), we have

π|Md(K) ≃ τnd.

We can moreover understand theorem 1.2.11 as giving a partition of
Stt(π)|Md(K) that associates to each part an irreducible constituent of
rl(Stt(π)).

Consider first the following embedding GLr(K)×Ms(K) →֒ Mr+s(K)
sending

(A,M) 7→

(
A 0
0 M

)
.
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Imposing

(
Ir U
0 Is

)
acting trivially, and considering the normalized in-

duced functor, we then define

ρ⊗ τ ∈ Alg(GLr(K))×Alg(Ms(K)) 7→ ρ× τ ∈ Alg(Mr+s(K)). (1.3.5)

Secondly we consider Mr(K)×GLs(K) →֒ Mr+s(K) sending

((
A V
0 1

)
, B

)
7→




A 0 V
0 B 0
0 0 1


 ,

imposing




Ir−1 U 0
0 Is 0
0 0 1


 acting trivially and considering the normal-

ized compact induction functor, we define

τ ⊗ ρ ∈ Alg(Mr(K))× Alg(GLs(K)) 7→ τ × ρν−1/2 ∈ Alg(Mr+s(K)),
(1.3.6)

where for g ∈ GLs(K), we denote by ν(g) := qval(det g).

1.3.7. Proposition. — (cf. [5] 4.13) Let ρ ∈ Alg(GLr(K)), σ ∈
Alg(GLt(K)) and τ ∈ Alg(Ms(K)).

(a) In Alg(Mr+t(K)), we have

0→ (ρ|Mr(K))× σ −→ (ρ× σ)|Mr+t(K) −→ ρ× (σ|Mt(K))→ 0.

(b) If Ω is one of the functors Ψ±,Φ±, then ρ× Ω(τ) ≃ Ω(ρ× τ).
(c) Ψ−(τ × ρ) ≃ Ψ−(τ)× ρ and

0→ Φ−(τ)× ρ −→ Φ−(τ × ρ) −→ Ψ−(τ)× (ρ|Mr(K))→ 0.

(d) Suppose r > 0. Then for any non-zero Mr+s(K)-submodule ω ⊂
τ × ρ, we have Φ−(ω) 6= (0).

We will call the the induced representation ρ×τ (resp. τ×ρ) the small
(resp. the big) mirabolic induced representation in the sense that the big
one owns the highest derivative as you can see it in the proposition above
or in lemma 1.3.11.

1.3.8. Definition. — ([28] 5.1) A representation τ ∈ Alg(Md(K)) is
called homogeneous if for all non-zero submodules σ ⊂ τ , we have λ(σ) =
λ(τ).

1.3.9. Proposition. — (cf. [28] 6.8) Let π be an irreducible represen-
tation of GLd(K). Then π|Md(K) is homogeneous.
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In the sequel we will use, in some sense dually, the group Pd(K) with
first column equals to t(1, 0, · · · , 0). The map g 7→ σ(tg−1)σ−1 where σ
is the matrix permutation associated with the cycle (1 2 · · · n), induces
an isomorphism between Pd(K) and Md(K). After twisting with this
isomorphism, we obtain analogs of the previous results with for example
the following short exact sequence

0→ ρ× (σ|Pt(K)) −→ (ρ× σ)|Pr+t(K) −→ (ρ|Pr(K))× σ → 0, (1.3.10)

where the first representation is the compact induction relatively to



1 0 Vt−1
0 GLr U
0 0 GLt−1


 ,

and the second one is the induction from
(
Pr U
0 GLt

)
.

We will particularly use the following case.

1.3.11. Lemma. — (cf. [14] lemme 4.4) Let π be an irreducible cusp-
idal representation of GLg(K). Then as a representation of P(t+s)g(K),
we have isomorphisms

Stt(π{−
s

2
})|Ptg(K) × Spehs(π{

t

2
}) ≃ LTπ(t− 1, s)|P(t+s)g(K),

and

Stt(π{−
s

2
})× Spehs(π{

t

2
})|Psg(K) ≃ LTπ(t, s− 1)|P(t+s)g(K).

1.3.12. Notation. — For c ∈ Kd, we will denote by Mc(K) the
mirabolic subgroup stabilizing c.

Remark: with this notation Pd(K) is Mc(K) for c = (1, 0, · · · , 0).

1.4. Some lattices of Steinberg representations. — Let π be an
irreducible cuspidal Ql-representation of GLg(K), supposed to be entire.
As its reduction modulo l, denoted by ̺, is still irreducible, up to iso-
morphism, it has a unique stable lattice, cf. [2] proposition 3.3.2 and its
following remark.
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1.4.1. Definition. — (cf. [9]) Given a stable lattice of Stt(π), the sur-
jection (resp. the embedding)

Stt(π)× π{t}։ Stt+1(π), resp. Stt+1(π) →֒ Stt(π{1})× π

gives a stable lattice of Stt+1(π) so that inductively starting from t = 1,
we construct a lattice denoted by RIZ̄l,−(π, t) (resp. RIZ̄l,+(π, t)). We
then denote by

RIF̄l,−(π, t) := RIZ̄l,−(π, t)⊗Z̄lF̄l, resp. RIF̄l,+(π, t) := RIZ̄l,+(π, t)⊗Z̄lF̄l.

1.4.2. Proposition. — (cf. [9] propositions 3.2.2 and 3.2.7) For ev-
ery 0 ≤ k ≤ lg̺(s), there exists a unique length k sub-representation
V̺,±(s; k) of RIF̄l,±(π, s)

(0) = V̺,±(s; 0)  V̺,±(s; 1)  · · ·  V̺,±(s; lg̺(s)) = RIF̄l,±(π, s),

such that the image of V̺,−(s; k) (resp. V̺,+(s; k)) in the Grothendieck
group verifies the following property: all its irreducible constituents are
strictly greater (resp. smaller) than any irreducible constituent of

W̺,−(s; k) := V̺,−(s; lg̺(s))/V̺,−(s; k)

(resp. W̺,+(s; k) := V̺,+(s; lg̺(s))/V̺,+(s; k)), relatively to the relation
of order of 1.2.9.

1.4.3. Corollary. — If lg̺(s) ≥ 2, then we have two irreducible sub-

spaces of RIZl,+
(π, s)|Psg(K) ⊗Zl

Fl which are

– first some irreducible Psg(K)-subspaces of Sts(̺) which is necessarily
degenerate,

– and the non-degenerate irreducible Psg(K)-representation, τnd which
is a subspace of Stsmax(̺)|Psg(K).

1.4.4. Proposition. — The only irreducible subspace of the modulo l
reduction of RIZl,−(π, s)|Psg(K) is the non-degenerate one τnd.

Proof. — From the previous section, we have

RIZl,−
(π, s)|Psg(K) ≃ RIZl,−(π{

−1

2
}, s− 1)× (π{

s− 2

2
})|Psg(K),

so that the result follows by induction using proposition 1.3.7.
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2. Review on the geometric objects

2.1. Lubin-Tate spaces. — Let OK be the ring of integers of K, PK

its maximal ideal, ̟K a uniformizer and κ = OK/PK the residue field
of cardinal q = pf . Let Knr be the maximal unramified extension of K
and K̂nr its completion with ring of integers OK̂nr . Let ΣK,d be the one-

dimensional OK-formal module of Barsotti-Tate over Fp with height d,
cf. [22] §II. We consider the category C of artinian local OK̂nr -algebras
with residue field κ.

2.1.1. Definition. — The functor MLT,d,n which associates to an ob-
ject R of C, the set of isomorphism classes of deformations by quasi-
isogenies over R of ΣK,d, equipped with a n-level structure, is a dis-

joint union of sub-functors M
(h)
LT,d,n of deformations by a quasi-isogeny

of height h which is representable by a formal scheme M̂
(h)
LT,d,n where

M̂
(h)
LT,d,n.

Remark : each of the M̂
(h)
LT,d,n is non canonically isomorphic to the formal

scheme M̂
(0)
LT,d,n denoted by Spf Defd,n in [7]. We will use the nota-

tions without hat for the Berkovich generic fibers which are K̂nr-analytic

spaces in the sense of [3] and we noteM
d/K
LT,n :=MLT,d,n⊗̂K̂nrK̂.

The group of quasi-isogenies of ΣK,d is isomorphic to the unit group
D×K,d of the central division algebra overK with invariant 1/d, which then

acts onM
d/K
LT,n. For all n ≥ 1, we have a natural action of GLd(OK/P

n
K)

on the level structures and then onM
d/K
LT,n. This action can be extended

to GLd(K) on the projective limit lim
← n
M

d/K
LT,n which is then equipped with

the action of GLd(K)×D×K,d which factorises by
(
GLd(K)×D×K,d

)
/K×

where K× is embedded diagonally.

2.1.2. Definition. — Let Ψi
K,Λ,d,n ≃ H i(M

(0)
LT,d,n⊗̂K̂nrK̂,Λ), be the

Λ-module of finite type associated, by the vanishing cycle theory of

Berkovich, to the structural morphism
̂
M

(0)
LT,d,n −→ Spf Ônr

K .
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We also introduce U i
K,Λ,d,n := H i(M

d/K
LT,n,Λ) and U

i
K,Λ,d = lim

−→
n

U i
K,Λ,d,n

as well as the cohomology groups with compact supports

V i
K,Λ,d,n := H i

c(M
d/K
LT,n,Λ), and V

i
K,Λ,d = lim

−→
n

V i
K,Λ,d,n.

As Kn := Ker(GLd(OK) −→ GLd(OK/P
n
K)) is pro-p for all n ≥ 1, then

we have U i
K,Λ,d,n = (U i

K,Λ,d)
Kn and V i

K,Λ,d,n = (V i
K,Λ,d)

Kn .

The description of the U i
K,Ql,d

is given in [7] theorem 2.3.5. We will

denote by U i
K,Zl,d,free

(resp. V i
K,Zl,d,free

) the free quotient which is the

whole of U i
K,Zl,d

(resp. V i
K,Zl,d

) by the main result of [10].

2.2. KHT-Shimura varieties. — Let F = F+E be a CM field with
E/Q quadratic imaginary. For B/F a central division algebra with di-
mension d2 equipped with an involution of second kind ∗ and β ∈ B∗=−1,
consider the similitude group G/Q defined for any Q-algebra R by

G(R) := {(λ, g) ∈ R× × (Bop ⊗Q R)
× such that gg♯β = λ}

with Bop = B ⊗F,c F where c = ∗|F is the complex conjugation and ♯β
the involution x 7→ x♯β = βx∗β−1. For p = uuc decomposed in E, we
have

G(Qp) ≃ Q
×
p ×

∏

w|u

(Bop
w )×

where w describes the places of F above u. We suppose as in [22] that

– the associated unitary groupG0(R) has signatures (1, d−1)×(0, d)×
· · · × (0, d);

– for any place x of Q inert or ramified in E, then G(Qx) is quasi-split.
– We moreover suppose that u is chosen so that there exists a fixed
place v|u with Bv ≃Md(Fv).

2.2.1. Notations. — – Denote by A the adele ring of Q. For a
finite set S of places of Q, we then introduce AS the adele ring of
Q outside S.

– The set of places p of Q decomposed in E is denoted Spl and we
also introduce SplS the subset of places of Spl which does not belong
to S.
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For all open compact subgroups Up of G(A∞,p) and m = (mw)w|u a
collection of non-negative integers, we consider

Up(m) = Up × Z×p ×
∏

w|u

Ker(O×Bw
−→ (OBw

/Pmw

w )×),

where OBw
is the maximal order of Bw.

We then denote by I the set of these Up(m) such that it exists a place
x for which the projection from Up to G(Qx) doesn’t contain any element
with finite order except the identity, cf. [22] bellow of page 90.

Attached to each I ∈ I is a Shimura variety XI → SpecOv of type
Kottwitz-Harris-Taylor. The projective system XI = (XI)I∈I is then
equipped with a Hecke action of G(A∞), the transition morphisms rJ,I :
XJ → XI for J ⊂ I being finite flat and even etale when mv(J) = mv(I).

2.2.2. Notations. — (cf. [7] §1.3) Let I ∈ I,

– the special (resp. generic) fiber of XI at v will be denoted by XI,s

(resp. XI,η) and its geometric special (resp. generic) fiber XI,s̄ :=
XI,s × SpecFp (resp. XI,η̄).

– For 1 ≤ h ≤ d, let X≥hI,s̄ (resp. X=h
I,s̄ ) be the closed (resp. open)

Newton stratum of height h, defined as the subscheme where the con-
nected component of the universal Barsotti-Tate group is of height
greater or equal to h (resp. equal to h).

Remark : X≥hI,s̄ is of pure dimension d − h. For 1 ≤ h < d, the Newton

stratum X=h
I,s̄ is geometrically induced under the action of the parabolic

subgroup Ph,d(Ov) in the sense where there exists a closed subscheme
X=h

I,s̄,1h
stabilized by the Hecke action of Ph,d(Ov) and such that

X=h
I,s̄ ≃ X=h

I,s̄,1h
×Ph,d(Ov) GLd(Ov).

Let G(h) denote the universal Barsotti-Tate group over X=h
I,s̄,1h

:

0→ G(h)c −→ G(h) −→ G(h)et → 0

where G(h)c (resp. G(h)et) is connected (resp. étale) of height h (resp.
d − h). Denote by ιmv

: (P−mv
v /Ov)

d −→ G(h)[Pmv
v ] the universal level

structure. If we denote by (ei)1≤i≤d the canonical basis of (P−mv
v /Ov)

d,
then the Newton stratum X=h

I,s̄,1h
is defined by asking

{
ιmv

(ei) : 1 ≤ i ≤

h
}
to be a Drinfeld basis of G(h)c[Pmv

v ].
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2.2.3. Notation. — In the following, we won’t make any distinc-
tion between an element a ∈ GLd(Fv)/Ph,d(Fv) and the subspace
〈a(e1), · · · , a(eh)〉 generated by the image through a of the first h vectors
e1, · · · , eh of the canonical basis of F d

v . Denote by Pa(Fv) := aPh,d(Fv)a
−1

the parabolic subgroup of elements of GLd(Fv) stabilizing a ⊂ F d
v .

For I ∈ I, the element a ∈ GLd(Fv)/Ph,d(Fv) gives a direct factor
amv

of (P−mv
v /Ov)

d and so a stratum X=h
I,s̄,a which is defined by asking

for a basis (f1, · · · , fh) of amv
, that

{
ιmv

(fi) : 1 ≤ i ≤ h} is a Drinfeld

basis of G(h)c[Pmv
v ]. We also denote by X≥hI,s̄,a its closure in X≥hI,s̄ . Such

a stratum is said pure compared to the following situation. For a pure
stratum X=h

I,s̄,c and h
′ ≥ h, denote by

X=h′

I,s̄,c :=
∐

a: dima=h′

c⊂a

X=h′

I,s̄,a

and X≥h
′

I,s̄,c its closure.

2.3. Harris-Taylor perverse sheaves. — We recall now some nota-
tions about Harris-Taylor local systems of [22]. Let πv be an irreducible
cuspidal Ql-representation of GLg(Fv). Fix t ≥ 1 such that tg ≤ d. The
Jacquet-Langlands correspondence associates to Stt(πv), an irreducible
representation πv[t]D of D×v,tg. For Dv,tg the maximal order of Dv,tg, we
decompose (πv[t]D)|D×

v,tg
=

⊕eπv
i=1 ρv,i with the ρv,i irreductible. Thanks

to Igusa varieties, we then have a local system LQl
(ρv,i)1tg on X=tg

I,s̄,1tg

associated with each ρv,i and we write

L(πv[t]D)1tg := LQl
(ρv)1tg (2.3.1)

where ρv is any of the ρv,i, cf. [7] §2.4.4. Note that the Hecke action of
Ptg,d(Fv) on (2.3.1) is given through its quotient GLd−tg(Fv)× Z.

2.3.2. Notation. — Let eπv
denote the order of the set of π′v inertially

equivalent to πv in the sense there exists a character ξ : Z −→ Q
×

l such
that π′ ≃ π ⊗ (ξ ◦ val ◦ det) where val : Fv −→ Z is the valuation of Fv;
cf. definition 1.1.3 of [7].
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2.3.3. Notations. — For Πt any representation of GLtg(Fv) and Ξ :
1
2
Z −→ Z

×

l defined by Ξ(1
2
) = q1/2, we introduce

H̃T 1tg(πv,Πt) := L(πv[t]D)1tg ⊗ Πt ⊗ Ξ
tg−d

2

living over X=tg

I,s̄,1tg
and its induced version living over X=tg

I,s̄

H̃T (πv,Πt) :=
(
L(πv[t]D)1tg ⊗ Πt ⊗ Ξ

tg−d
2

)
×Ptg,d(Fv) GLd(Fv),

where the unipotent radical of Ptg,d(Fv) acts trivially and the action of

(g∞,v,

(
gcv ∗
0 getv

)
, σv) ∈ G(A

∞,v)× Ptg,d(Fv)×WFv

is given

– by the action of gcv on Πt and deg(σv) ∈ Z on Ξ
tg−d

2 , and
– the action of (g∞,v, getv , val(det g

c
v)−deg σv) ∈ G(A

∞,v)×GLd−tg(Fv)×

Z on LQl
(πv[t]D)1tg ⊗ Ξ

tg−d

2 .

We also introduce

HT1tg(πv,Πt) := H̃T 1tg(πv,Πt)[d− tg],

and the perverse sheaf

P (t, πv)1tg := j=tg

1tg,!∗
HT1tg(πv, Stt(πv))⊗ L(πv),

and their induced version, HT (πv,Πt) and P (t, πv), where

– for any 1 ≤ h ≤ d we denote by

j=h := ih ◦ j≥h : X=h
I,s̄ →֒ X≥hI,s̄ →֒ XI,s̄,

and
j=h
1h

:= ih1h ◦ j
≥h

1h
: X=h
I,s̄,1h

→֒ X≥h
I,s̄,1h

→֒ XI,s̄.

– The contragredient L∨ of L, is the local Langlands correspondence.

More notations : for a ∈ GLd(Fv)/Ptg,d(Fv) as in notation 2.2.3, we will
also denote by HTa(πv,Πt) (resp. Pa(πv, t)) the image of HT1tg(πv,Πt)
(resp. P1tg(πv, t)) under the action of a, which is then equivariant for
Pa(Fv). We will also consider, cf. the end of the previous paragraph,

non necessarily pure strata X≥tgI,s̄,c associated with some pure strata X=h
I,s̄,c

with h ≤ tg and more specifically to the case where h = 1 to which we
then restrict ourselves. Denote by

HTc(πv,Πt) := ind
Pc(Fv)
Pc⊂a(Fc)

HTa(πv,Πt) (2.3.4)
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(resp. Pc(πv, t) := ind
Pc(Fv)
Pc⊂a(Fc)

Pa(πv, t)) where, using notation 2.2.3,

– the index a ∈ GLd(Fv)/Ptg,d(Fv) is any element containing c ∈
GLd(Fv)/P1,d(Fv) and Pc(Fv) (resp. Pc⊂a(Fv)) is the parabolic sub-
group of GLd(Fv) stabilizing c (resp. c ⊂ a);

– we restrict the natural action of Pa(Fv) on HTa(πv,Πt) (resp. on
Pa(πv, t)) to Pc⊂a(Fv) before inducing.

Consider a geometric supersingular point z and denote by iz : {z} →֒

XI,s̄. We then have an action of Pc(Fv) on ind
D×

v,d

(D×
v,d

)0̟Z
v

Hii∗z
pj=tg

c,!∗HTc(πv,Πt)

(resp. ind
D×

v,d

(D×
v,d

)0̟Z
v

Hii!z
pj=tg

c,!∗HTc(πv,Πt)). From (2.3.4) we then obtain

the following abstract description.

2.3.5. Lemma. — For any tg−d < i ≤ 0, ind
D×

v,d

(D×
v,d

)0̟Z
v

Hii∗z
pj=tg

c,!∗HTc(πv,Πt)

as a representation of the mirabolic group Mc(Fv) associated with c, cf.
notation 1.3.12, is isomorphic to a small mirabolic induced representation
of 1.3.7, cf. also the remark after loc. cit.

(Πt)|Mc(Fv) × τ,

for τ some representation of GLd−tg(Fv) and where, by abuse of notation
in the term (Πt)|Mc(Fv) of the above formula, Mc(Fv) is the mirabolic
subgroup of GLtg(Fv).

2.3.6. Notation. — Let X≥1I,s̄,c be a pure stratum and denote by

j6=c := j≥16=c : X≥1I,s̄ \X
≥1
I,s̄,c →֒ X≥1I,s̄.

For X≥1I,s̄,c 6= X≥1I,s̄,c′ two distinct pure strata, and for h ≥ 2, we write

〈c, c′〉 the subspace of F d
v generated by {c, c′} and

X=h
I,s̄,〈c,c′〉 =

∐

a:dima=h
〈c,c′〉⊂a

X=h
I,s̄,a,

with j=h
〈c,c′〉 : X

=h
I,s̄,〈c,c′〉 →֒ X≥hI,s̄,〈c,c′〉 →֒ X≥1I,s̄.

Consider a pure stratum X=h
I,s̄,a with a ⊃ 〈c, c′〉. For HTa(πv,Πt) a

Harris-Taylor local system on X=h
I,s̄,a, we will denote by

HT〈c,c′〉(πv,Πt) := ind
P〈c,c′〉(Fv)

P〈c,c′〉⊂a(Fv)
HTa(πv,Πt), (2.3.7)
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where P〈c,c′〉(Fv) (resp. P〈c,c′〉⊂a(Fv)) is the parabolic subgroup of ele-
ments of GLd(Fv) stabilizing 〈c, c

′〉 (resp. 〈c, c′〉 ⊂ a).
Consider now the subgroup Pc,c′(Fv) of Pc(Fv) stabilizing c′. Every

element of Pc(Fv) induces a endomorphism of F d
v /c and the image of

Pc,c′(Fv) is then the parabolic Pc′(Fv) of GL(F
d
v /c).

2.3.8. Lemma. — With the previous notations, and πv an irreducible
cuspidal entire Ql-representation of GLg(Fv), we have the following short
exact sequence of Pc,c′(Fv)-equivariant perverse sheaves

0→ pj
=(t+1)g
〈c,c′〉,!∗ HT〈c,c′〉

(
πv, Stt+1(πv)

)
(
1

2
) −→

j=1
6=c′,! j

=1,∗
6=c′

(
pj=tg

c,!∗HTc(πv, Stt(πv))
)

−→ pj=1
6=c′,!∗ j

=1,∗
6=c′

(
pj=tg

c,!∗HTc(πv, Stt(πv))
)
→ 0.

Remark: using the main results of [10], we could easily proved that the
lemma is still valid over Zl.

Proof. — Recall that for P a perverse sheaf on XI,s̄, the kernel of

j=1
6=c′,!j

=1,∗
6=c′ P ։ j=1

6=c′,!∗j
=1,∗
6=c′ P is given by pH−1i1,∗c′ P so that we are reduced

to prove that

pH−1i1,∗c′ (
pj=tg

c,!∗HTc(πv, Stt(πv))) ≃
pj

=(t+1)g
〈c,c′〉,!∗ HTQl,〈c,c

′〉

(
πv, Stt+1(πv)

)
(
1

2
).

In [7] 4.3.1, we described j=tg
a,! HTa(πv, Stt(πv)) in the Grothendieck group

of equivariant perverse sheaves and the weight filtration gives us a filtra-
tion, cf. also [14] (5.4), with the successive graded parts

pj
=(t+δ)g
a,!∗ HTa(πv, Stt(πv){

δ(g − 1)

2
} ⊗ Stδ(πv){

t(1− g)

2
})(δ/2).

By inducing from Pc⊂a(Fv) to Pc(Fv), we then obtain a filtration Fil•c(t)
of pj=tg

c,! HTc(πv, Stt(πv)) with graded parts

gr−δc (t) := pj
=(t+δ)g
c,!∗ HTc(πv, Stt(πv)|Pc(Fv){

−δ

2
} × Stδ(πv){

t

2
})(δ/2),

where by lemma 1.3.11, and taking into account the notation × in 1.1.1,

(
Stt(πv{

−δ

2
})
)
|Pc(Fv)

× Stδ(πv{
t

2
}) ≃ Stt+δ(πv)|Pc(Fv).
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We then apply then the functor pH−1i1,∗c′ to this filtration of j=tg
c,! HTc(πv, Stt(πv)),

so that we obtain

pH−1i1,∗c′
(
pj=tg

c,!∗HTc(πv, Stt(πv))
)
≃ pH0i1,∗c′ Fil−1c (t)։ pH0i1,∗c′ gr

−1
c (t),

with pH0i1,∗c′ gr
−1
c (t) ≃ pj

=(t+1)g
〈c,c′〉,!∗ HT〈c,c′〉(πv, Stt+1(πv))(

1
2
).

Now we use the computations of [14] corollary 6.6, where we proved
the same result for the whole of X≥1I,s̄ instead of X≥1I,s̄,c, i.e.

pH−1i1,∗c′
(
pj=tg

!∗ HT (πv, Stt(πv))
)
≃ pj

=(t+1)g
c′,!∗ HTc(πv, Stt+1(πv))(

1

2
).

Note also, cf. [14] lemma 6.2, that pH−ki1,∗c′
(
pj=tg

!∗ HT (πv, Stt(πv))
)
is zero

for any k 6= −1. We then apply the functor pH−1i1,∗c′ to the short exact
sequence of perverse sheaves

0→ pj=tg
c,!∗HTc(πv, Stt(πv)) −→

pj=tg
!∗ HT (πv, Stt(πv))

−→ pj=tg
6=c,!∗HT6=c(πv, Stt(πv))→ 0,

which gives us in particular

pH−1itg+1,∗
c′

(
pj=tg

c,!∗HTc(πv, Stt(πv))
)
→֒ pj

=(t+1)g
c′,!∗ HTc(πv, Stt+1(πv))(

1

2
),

which factorizes to pj
=(t+1)g
〈c,c′〉,!∗ HT〈c,c′〉(πv, Stt+1(πv))(

1
2
), just by considering

the supports.

3. Some coarse filtrations of ΨI

3.1. Filtrations of free perverse sheaves. — Let S = SpecFq and
X/S of finite type, then the usual t-structure on D(X,Zl) := Db

c(X,Zl)
is

A ∈ pD≤0(X,Zl)⇔ ∀x ∈ X, H
ki∗xA = 0, ∀k > − dim {x}

A ∈ pD≥0(X,Zl)⇔ ∀x ∈ X, H
ki!xA = 0, ∀k < − dim {x}

where ix : Specκ(x) →֒ X and Hk(K) is the k-th sheaf of cohomology of
K.

3.1.1. Notation. — Denote by pC(X,Zl) the heart of this t-structure
with associated cohomology functors pHi. For a functor T we denote by
pT := pH0 ◦ T .
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The category pC(X,Zl) is abelian equipped, cf. [11] §1.1, with a torsion
theory (T ,F) where T (resp. F) is the full subcategory of objects T
(resp. F ) such that lN1T is trivial for some large enough N(resp. l.1F
is a monomorphism). Recall that this means in particular that for every
object A there exists a short exact sequence

0→ Ator −→ A −→ Afree → 0

with Ator ∈ T and Afree ∈ F . Applying Grothendieck-Verdier duality,
we obtain

p+D≤0(X,Zl) := {A ∈
pD≤1(X,Zl) :

pH1(A) ∈ T }
p+D≥0(X,Zl) := {A ∈

pD≥0(X,Zl) :
pH0(A) ∈ F}

with heartp+C(X,Zl) equipped with its torsion theory (F , T [−1]).

3.1.2. Definition. — (cf. [11] §1.3) Let

F(X,Zl) :=
pC(X,Zl) ∩

p+C(X,Zl) =
pD≤0(X,Zl) ∩

p+D≥0(X,Zl)

the quasi-abelian category of free perverse sheaves over X.

Remark : for an object L of F(X,Zl), we will consider filtrations

L1 ⊂ L2 ⊂ · · · ⊂ Le = L

such that for every 1 ≤ i ≤ e− 1, Li →֒ Li+1 is a strict monomorphism,
i.e. Li+1/Li is an object of F(X,Zl).

Consider an open subscheme j : U →֒ X and i : F := X\U →֒ X .
Then

p+j!F(U,Zl) ⊂ F(X,Zl) and pj∗F(U,Zl) ⊂ F(X,Zl).

Moreover, if j is affine then j! is t-exact and j! =
pj! =

p+j!.

3.1.3. Lemma. — Consider L ∈ F(X,Zl) such that j!j
∗L ∈ F(X,Zl).

Then i∗
pH−δi∗L is trivial for every δ 6= 0, 1; for δ = 1 it belongs to

F(X,Zl).

Remark: If j is affine then the condition j!j
∗L ∈ F(X,Zl) is fulfilled.

Proof. — Start from the following distinguished triangle j!j
∗L −→ L −→

i∗i
∗L . From the perversity of L and j!j

∗L, the long exact sequence of
perverse cohomology is

0→ i∗
pH−1i∗L −→ pj!j

∗L −→ L −→ i∗
pH0i∗L→ 0.

The freeness of i∗
pH−1i∗L then follows from those of pj!j

∗L = j!j
∗L.
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3.1.4. Definition. — Recall the following notions, cf. [11] definition
1.3.4.

– A bimorphism of F(X,Zl), written L ։֒ L′, is both a monomor-
phism in pC(X,Zl) and an epimorphism in p+C(X,Zl). If moreover
the cokernel in pC(X,Zl) is of dimension strictly less than those of
the support of L, we will write L ։֒+ L

′.
– A morphism L −→ L′ is a strict monomorphism (resp. a strict
epimorphism) if it is a monomorphism (resp. an epimorphism) in
p+C(X,Zl) (resp. in

pC(X,Zl)) in which case we denote it by L −֒|→
L′ (resp. L −|։ L′).

For a free L ∈ F(X,Zl), we consider the following diagram

L
can∗,L

**❱❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱

p+j!j
∗L

can!,L

99rrrrrrrrrrr
+ // // pj!∗j

∗L � �

+
// // p+j!∗j

∗L � �

+ // pj∗j
∗L

where the bottom row is, cf. the remark following 1.3.10 of [11], the
canonical factorisation of p+j!j

∗L −→ pj∗j
∗L and where the maps can!,L

and can∗,L are given by the adjunction property.

3.1.5. Notation. — (cf. lemma 2.1.2 of [11]) We introduce the filtra-
tion Fil−1U,!(L) ⊂ Fil0U,!(L) ⊂ L with

Fil0U,!(L) = ImF(can!,L) and Fil−1U,!(L) = ImF

(
(can!,L)|PL

)
,

where PL := i∗
pH−1freei

∗j∗j
∗L is the kernel of KerF

(
p+j!j

∗L։ pj!∗j
∗L

)
.

Remark : we have L/Fil0U,!(L) ≃ i∗
p+i∗L and pj!∗j

∗L ։֒+ Fil0U,!(L)/Fil
−1
U,!(L),

which gives, cf. lemma 1.3.11 of [11], a commutative triangle

pj!∗j
∗L � �

+
// //

� w

+ )) ))❚❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

Fil0U,!(L)/Fil
−1
U,!(L)� _

+
����

p+j!∗j
∗L.

3.1.6. Notation. — (cf. [11] 2.1.4) Dually there is a cofiltration L։
CoFilU,∗,0(L)։ CoFilU,∗,1(L) where

CoFilU,∗,0(L) = CoimF(can∗,L) and CoFilU,∗,1(L) = CoimF (pL◦can∗,L),
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with pL : p+j!∗j
∗L։ QL := i∗

pH0
freei

∗j∗j
∗L.

Remark : the kernel cogrU,∗,1(L) of CoFilU,∗,0(L)։ CoFilU,∗,1(L) verifies

pj!∗j
∗L ։֒+ cogrU,∗,1(L) ։֒+

p+j!∗j
∗L.

The kernel cogrU,∗,0(L) of L։ CoFilU,∗,0(L) is isomorphic to i∗
pi!L.

Consider now X equipped with a stratification consisting of closed
subsets

X = X≥1 ⊃ X≥2 ⊃ · · · ⊃ X≥d,

and let L ∈ F(X,Zl). For 1 ≤ h < d, denote by X1≤h := X≥1 −X≥h+1

and j1≤h : X1≤h →֒ X≥1. We then define

Filr! (L) := ImF

(
p+j1≤r! j1≤r,∗L −→ L

)
,

which gives a filtration

0 = Fil0! (L) ⊂ Fil1! (L) ⊂ Fil2! (L) · · · ⊂ Fild−1! (L) ⊂ Fild! (L) = L.

Dually, the following

CoFil∗,r(L) = CoimF

(
L −→ pj1≤r∗ j1≤r,∗L

)
,

define a cofiltration

L = CoFil∗,d(L)։ CoFil∗,d−1(L)։ · · ·

· · ·։ CoFil∗,1(L)։ CoFil∗,0(L) = 0,

and a filtration

0 = Fil−d∗ (L) ⊂ Fil1−d∗ (L) ⊂ · · · ⊂ Fil0∗(L) = L

where
Fil−r∗ (L) := KerF

(
L։ CoFil∗,r(L)

)
.

Note these two constructions are exchanged by Grothendieck-Verdier du-
ality,

D
(
CoFil!,−r(L)

)
≃ Fil−r∗ (D(L)) and D

(
CoFil∗,r(L)

)
≃ Filr! (D(L)).

We can also refine the previous filtrations with the help of Fil−1U,!(L),
cf. [11] proposition 2.3.2, to obtain exhaustive filtrations

0 = Fill−2
d−1

! (L) ⊂ Fill−2
d−1+1

! (L) ⊂ · · ·

· · · ⊂ Fill0! (L) ⊂ · · · ⊂ Fill2
d−1−1

! (L) = L, (3.1.7)
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such that the graded pieces grrk(L) are simple over Ql, i.e. verify
pj=h

!∗ j
=h,∗grrk(L) ։֒+ grrk(L) for some h. Dually using : coFilU,∗,1(L), we

construct a cofiltration

L = CoFill∗,2d−1(L)։ CoFill∗,2d−1−1(L)։ · · ·։ CoFill∗,−2d−1(L) = 0

and a filtration Fill−r∗ (L) := KerF
(
L ։ CoFill∗,r(L)

)
. These two con-

structions are exchanged by duality

D
(
CoFill∗,r(L)

)
≃ Fillr!

(
D(L)

)
and D

(
CoFill!,r(L)

)
≃ Fillr∗

(
D(L)

)

and can be mixed if we want to.

3.2. Remarks and terminology about perverse sheaves. — Be
cause the previous definitions come from the geometry, it is then possible
to construct filtrations whatever is the ring of coefficients. Moreover when
you want to understand the graded pieces,

– you can first look at these filtrations over Ql which gives you the
simple perverse sheaves described in terms of an intermediate exten-
sion i∗j!∗L[−δ] of some local system L living in some locally closed

stratum U � � j // U � � i // X where δ is the dimension of U .

– Then you have to understand the Zl-lattice of L; in the following
we will speak about the lattice of the perverse sheaf.

– And finally determine the position of the graded piece between the
two natural intermediate extension i∗

pj!∗L[−δ] ։֒+ i∗
p+j!∗L[−δ].

One also have to take into account that the lattices and the positions
depend strongly on the order of the graded pieces, i.e. for two different
filtrations Fil•1 and Fil•2, then two graded pieces grk11 and grk22 which are
isomorphic over Ql, might be not isomorphic over Zl either because the
lattices, or their positions, are different.

Finally as remarked in the introduction, when taking image in F or
kernel in F+, you loose control of lattices and positions:(4) we then speak
of a saturation process as it corresponds to the usual saturation of lattices
in the case where the geometric support is of dimension 0. In the following
we will focus on graded pieces concentrated on the supersingular locus
so that there is no issue about the positions. Concerning the lattices of
these graded pieces, we advise the reader when reading the arguments
of §4 to focus on this issue to understand how we manage to recover the
lattices.

(4)The understanding of positions in the previous meaning, is solved in [10].
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Remark: by arguing inductively on the Lubin-Tate spaces, we will in fact
be able, cf. the proof of theorem 4.1.6, to understand among all the
lattices of Harris-Taylor perverse sheaf P (t, πv)(

1−t+2k
2

) with 0 ≤ k ≤
t − 1, given by filtrations of stratification of ΨI , those for k = 0 and
k = t − 1. It would then be possible, and quite easy using the coarse
filtrations of §3, to describe the others which then depend on how we
decide to filtrate ΨI , as opposed to the cases where k = 0, t−1 considered
here. We postpone this work to the day when we will find an application.

3.3. Supercuspidal decomposition of ΨI. —

3.3.1. Notation. — For I ∈ I, let

ΨI,Λ := RΨηv ,I(Λ[d− 1])(
d− 1

2
)

be the vanishing cycle autodual perverse sheaf on XI,s̄. When Λ = Zl, we
will simply write ΨI .

As before, we will use the notation ΨI for the system (ΨI)I∈I . Recall
the following result of [22] relating ΨI with Harris-Taylor local systems.

3.3.2. Proposition. — (cf. [22] proposition IV.2.2 and §2.4 of [7])
There is an isomorphism G(A∞,v)× Ph,d(Fv)×WFv

-equivariant

ind
D×

v,h

(D×
v,h

)0̟Z
v

(
Hh−d−iΨI,Zl

)
|X=h

I,s̄,1h

≃
⊕

τ̄∈R
Fl
(h)

LZl,1h(U
h−1−i
τ̄ ,N ),

where

– LZl,1h(U
h−1−i
τ̄ ,N ) is the local system over X=h

I,s̄,1h
associated with Uh−1−i

τ̄ ,N

viewed as a representation of D×v,h, cf. the remark before 2.3.3;

– RFl(h) is the set of equivalence classes of irreducible Fl-representations

of D×v,h;

– for τ̄ ∈ RFl(h) and V a Zl-representation of D×v,h, then Vτ̄ denotes,
cf. [19] §B.2, the direct factor of V whose irreducible subquotients
are isomorphic to a subquotient of τ̄|D×

v,h
where Dv,h is the maximal

order of Dv,h.
– With the previous notation, U i

τ̄ ,N :=
(
U i
Fv,Zl,d,n

)
τ̄
.

– The matching at finite levels between the system indexed by I and
those by N is given by the map mv : I −→ N.
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Remark: for τ̄ ∈ RFl(h), and a lifting τ which by Jacquet-Langlands
correspondence can be written τ ≃ π[t]D for π irreductible cuspidal, let
̺ ∈ ScuspFl(g) be in the supercuspidal support. Then the inertial class
of ̺ depends only on τ̄ and we will use the following notation.

3.3.3. Notation. — With the previous notation, we write V̺ for Vτ̄ .

The description of the various filtration from the previous section ap-
plied to ΨI,Ql

is given in [11] §3.4. Over Zl, first note that ΨI,Zl is

an object of F(XI,s̄,Zl). Indeed, by [1] proposition 4.4.2, ΨI,Zl is an

object of pD≤0(XI,s̄,Zl). By [23] variant 4.4 of theorem 4.2, we have
DΨI,Zl ≃ ΨI,Zl, so that

ΨI,Zl ∈
pD≤0(XI,s̄,Zl) ∩

p+D≥0(XI,s̄,Zl) = F(XI,s̄,Zl).

We can then deduce from the description of the filtrations of ΨI,Ql
the

same sort of description except that first we have no control on the bi-
morphism pj=h

!∗ j
=h,∗grrk(L) ։֒+ grrk(L) and secondly all the contribution

relatively to irreducible cuspidal Ql-representations should be considered
altogether. About this last point, we have the following result.

3.3.4. Proposition. — We have a decomposition

ΨI ≃
d⊕

g=1

⊕

̺∈Scusp
Fl
(g)

Ψ̺

with Ψ̺ ⊗Zl Ql ≃
⊕

πv∈Cusp(̺) Ψπv
where the irreducible constituent of

Ψπv
are exactly the perverse Harris-Taylor sheaves attached to πv, i.e.

with the notations of 2.3.3, the P (πv, t)(
1−t+δ

2
) with 1 ≤ t ≤ d/g and

0 ≤ δ ≤ t− 1.

Remark : the graded pieces grh! (Ψ̺) of the previous filtration of stratifi-
cation of Ψ̺ verify

j=h,∗grh! (Ψ̺) ≃

{
0 if g ∤ h
LZl(̺[t]D) for h = tg.

Proof. — We argue by induction on r to show that there exists a decom-
position

Filr! (ΨI) =

d⊕

g=1

⊕

̺∈Scusp
Fl
(g)

Filr!,̺(ΨI).
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The case r = 0 being trivial, we suppose it is true for r − 1. From
j=r,∗grr! (ΨI) ≃

⊕
g|r=tg

⊕
̺∈Scusp

Fl
(g) LZl(̺[t]D), we obtain

grr! (ΨI) ≃
⊕

g|r

⊕

̺∈Scusp
Fl
(g)

grr!,̺(ΨI)

with j=r
! LZl(̺[t]D)[d − r] ։ grr!,̺(ΨI) where the irreducible constituents

of grr!,̺(ΨI)⊗Zl Ql are of type ̺.
Consider two free perverse sheaves A1 and A2 and let A be an extension

0→ A1 −→ A −→ A2 → 0,

supposed to be split over Ql. Denote then the pull back A′2

A′2
� � //❴❴❴❴❴❴

� _

��✤
✤

✤
A� _

��

A2 ⊗Zl Ql
� � // A⊗Zl

Ql

so that

A1� _

��

A1� _

��
A′2

� � // A // //

����

A′1

����
A′2

� � // A2
// // T

(3.3.5)

where T is the common cokernel of A1 →֒ A′1 and A′2 →֒ A2. Then
T = 0 if and only the extension A is split. Now suppose that A1 (resp.
A2) is a Harris-Taylor perverse sheaf of type ̺1 (resp. ̺2) with ̺1 and
̺2 not belonging to the same Zelevinsky line. Then the action of the
Weil group on T [l] seen as a quotient of A′1 (resp. of A2) is isotypic
relatively to the galois representation associated with ̺1 (resp. ̺2) by
the Langlands-Vigneras correspondence, which imposes that T = 0.

By applying this general remark to grr!,̺2(ΨI), we conclude it is in

a direct sum with Filr−1!,̺1
(ΨI), which, by varying ̺1 and ̺2, proves the

result.

In order to understand the next computations on ΨI , it might be useful
for the reader to recall the following description in the Grothendieck
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group of Ψπv
given in [7]

[
Ψπv

]
=

⌊ d
g
⌋∑

t=1

t−1∑

k=0

P (t, πv)(
1− t+ 2k

2
), (3.3.6)

where πv is an irreducible cuspidal representation of GLg(Fv). Then, cf.
[11] §3.4, the graded pieces grr! (Ψπv

) are zero if r 6∈ {g, 2g, · · · , ⌊d
g
⌋g} and

otherwise its image in the Grothendieck group is

[
grkg!

(
Ψπv

)]
=

⌊ d
g
⌋∑

t=k

P (t, πv)(
1 + t− 2k

2
). (3.3.7)

In particular for k = 1, then

[
grg!

(
Ψπv

)]
=

⌊ d
g
⌋∑

t=1

P (t, πv)(
t− 1

2
). (3.3.8)

3.4. Filtrations with the use of j6=c. — Denote by

j̄ : XI,η̄ →֒ XI ←֓ XI,s̄ : ī,

and consider the following t-structure on XI := XI ×SpecOv
SpecOv

obtained by glueing
(
pD≤−1(XI,η,Zl),

pD≥−1(XI,η,Zl)
)

and
(
pD≤0(XI,s,Zl),

pD≥0(XI,s,Zl)
)
.

The functors j̄! and j̄∗ =
pj̄!∗ are then t-exact with

0→ ΨI −→ j̄!Zl[d− 1](
d− 1

2
) −→ j̄∗Zl[d− 1](

d− 1

2
)→ 0.

Consider now a pure stratum X≥1I,s̄,c. Note then that the morphism

j̄6=c : XI \X
≥1
I,s̄,c →֒ XI is affine, cf. [14] beginning of §7.

3.4.1. Lemma. — The perverse sheaf Ψc := i1c,∗
pH0i1,∗c

(
ΨI

)
is free.

Proof. — Let F := j̄∗Zl[d− 1](d−1
2
) = j̄!∗Zl[d− 1](d−1

2
) over XI . Denote

by i1c : X
≥1
I,s̄,c →֒ X≥1I,s̄, and īc := ī ◦ i≥1c . As ΨI =

pH−1ī∗j̄∗Zl[d − 1](d−1
2
),

we have to prove that i1,∗c
pH−1ī∗F is perverse for the t-structures p and

p+. Consider the spectral sequence

Er,s
2 = pHri1∗c

(
pHsī∗F

)
⇒ pHr+sī∗cF.
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As j̄ is affine, by lemma 3.1.3, we know that pHsī∗F is trivial for s < −1.
The epimorphism j̄!j̄

∗F ։ F , gives also that pH0ī∗F = 0 so that the
previous spectral sequence degenerates at E2 with

pHr ī∗cF ≃
pHr+1i1,∗c

(
pH−1ī∗F

)
.

In the same way as j̄6=c : XI \ X
≥1
I,s̄,c →֒ XI is affine, then, by lemma

3.1.3, pHr ī∗cF is trivial for r < −1 and free for r = −1 which finishes the
proof.

The decomposition of 3.3.4 gives Ψc ≃
⊕d

g=1

⊕
̺∈Scusp

Fl
(g)Ψ̺,c. For

any ̺ ∈ ScuspFl(g) we then have the following short exact sequence of
free perverse sheaves

0→ j6=c,!j
∗
6=cΨ̺ −→ Ψ̺ −→ Ψ̺,!,c → 0, (3.4.2)

where j6=c : X
≥1
I,s̄ \X

≥1
I,s̄,c →֒ X≥1I,s̄.

Remark: applied to Ψπv
, the equality (3.3.6) becomes, cf. [11] §3.4

[
Ψπv,!,c

]
=

⌊ d
g
⌋∑

t=1

P (t, πv)c(
1− t

2
). (3.4.3)

Consider the filtration of stratification

0 = Fil−d∗ (Ψ̺,!,c) ⊂ Fil1−d∗ (Ψ̺,!,c) ⊂ · · · ⊂ Fil0∗(Ψ̺,!,c) = Ψ̺,!,c.

3.4.4. Proposition. — The graded pieces grh∗(Ψ̺,!,c) verify the follow-
ing properties

– it is trivial if h is not equal to some−gi(̺) + 1 > −d for i ≥ −1;
– for such i ≥ −1 with gi(̺) ≤ d, then

gr−gi(̺)+1
∗ (Ψ̺,!,c)⊗Zl

Ql ≃
⊕

πv∈Cusp(̺,i)

gr−gi(̺)+1
∗ (Ψπv,!,c)

where gr
−gi(̺)+1
∗ (Ψπv,!,c) is the push forward

Ψπv
// //

����

Ψπv,!,c

����✤
✤

✤

coFil∗,gi(̺)(Ψπv
) // //❴❴❴ gr

−gi(̺)+1
∗ (Ψπv,!,c).

Remark: from [14] proposition 7.1, the graded pieces grh!
(
gr
−gi(̺)+1
∗ (Ψπv,!,c)

)

of the filtration of stratification are then
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– trivial if h is not of the shape tgi(̺) ≤ d,
– and for h = tgi(̺) ≤ d, we have, if we consider for simplicity c = 11

gr
tgi(̺)
!

(
gr−gi(̺)+1
∗ (Ψπv,!,c)

)
≃ ind

P1,d(Fv)

P1,h,d(Fv)
P (t, πv)1h(

1− t

2
).

Proposition 7.1 of [14] only deals with the Grothendieck group and not
with the filtration, which is the main point of our proposition here.

Proof. — As explained in the remark before §3.3, as long as the state-
ment do not speak about the lattices and the positions, then it is only a
statement on Ψπv

and the precise description of Ψπv
. For simplicity we

suppose c = 11. From [11], the graded piece grh!
(
coFil∗,gi(̺)(Ψπv

)
)
of the

filtration Fil•!
(
coFil∗,gi(̺)(Ψπv

)
)
are trivial for all h 6= tgi(̺) ≤ d and

gr
tgi(̺)
!

(
coFil∗,gi(̺)(Ψπv

)
)
≃ P (t, πv)(

1− t

2
).

3.4.5. Lemma. — For 0 ≤ r ≤ d, the

grh!

(
i1c,∗

pH0i1,∗c Filr!
(
coFil∗,gi(̺)(Ψπv

)
))

verify the following properties

– they are trivial if r < gi(̺);
– for tgi(̺) ≤ r < (t+ 1)gi(̺), they are trivial if h 6= tgi(̺);
– otherwise, for a ∈ GLd(Fv)/Ph,d(Fv) such that c ⊂ a, it is isomor-
phic to

ind
Pc(Fv)
Pc⊂a(Fv)

P (t, πv)a(
1− t

2
).

Remark: in the last point with h = tgi(̺), for c = 11 and a = 1h the
formula is

ind
P1,d(Fv)

P1,h,d(Fv)
P (t, πv)1h(

1− t

2
).

Proof. — Note first that the statement is trivially true for r < gi(̺).
Recall moreover that

i1c,∗
pH0i1,∗c P (t, πv) ≃ P (t, πv)c := ind

Pc(Fv)
Pc⊂a(Fv)

P (t, πv)a(
1− t

2
),
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where a ∈ GLd(Fv)/Ptgi(̺),d(Fv) is such that c ⊂ a. We then argue by
induction through the short exact sequence

0→ Filr−1!

(
coFil∗,gi(̺)(Ψπv

)
))
−→ Filr!

(
coFil∗,gi(̺)(Ψπv

)
))

−→ grr!
(
coFil∗,gi(̺)(Ψπv

)
))
→ 0.

If r is not of the shape tgi(̺) there is nothing to prove, otherwise as

– the irreducible constituents of i1c,∗
pH0i1,∗c Filr−1!

(
coFil∗,gi(̺)(Ψπv

)
))

are, by induction, intermediate extensions of Harris-Taylor local
systems on X=i

I,s̄ for i ≤ r,

– and i1c,∗
pH−1i1,∗c P (t, πv) is supported on X≥r+1

I,s̄ ,

then the cone map i1c,∗
pH−1i1,∗c P (t, πv) −→ i1c,∗

pH0i1,∗c Filr−1!

(
coFil∗,gi(̺)(Ψπv

)
)

is trivial. The result follows then from the short exact sequence

0→ i1c,∗
pH0i1,∗c Filr−1!

(
coFil∗,gi(̺)(Ψπv

)
)
−→ i1c,∗

pH0i1,∗c Filr!
(
coFil∗,gi(̺)(Ψπv

)
)

−→ i1c,∗
pH0i1,∗c grr!

(
coFil∗,gi(̺)(Ψπv

)
)
→ 0.

It suffices now to prove that the epimorphism

i1c,∗
pH0i1,∗c Ψπv

։ i1c,∗
pH0i1,∗c

(
coFil∗,gi(̺)(Ψπv

)
)

is an isomorphism. For that it suffices to prove that, for every geometric
point z, the germs at z of the sheaves cohomology groups of these two
perverse sheaves, are the same.

Let then z be a geometric point of X=h
I,s̄,1h

. By [7], the germ at z of

the i-th sheaf of cohomology Hij=kg

1kg,∗
HT1kg(πv, Stk(πv))⊗ Ξ

1−k
2 is zero if

(h, i) is not of the shape (d − tg, tg − d + k − t) with k ≤ t ≤ ⌊d
g
⌋ and

otherwise isomorphic to those of

HT1tg
(
πv, Stk(πv{

k − t

2
})⊗ Speht−k(πv{

k

2
})
)
⊗ Ξ

1+t−2k
2 .

Then for h = d − tg and i = tg − d + k − t, the fiber at z of

Hij=kg

11,∗
HT11(πv, Stk(πv))⊗ Ξ

1−k
2 is isomorphic to those of

HT1tg

(
πv,

(
Stk(πv{

k − t

2
})|P1,kg(Fv) × Speht−k(πv{

k

2
})
))
⊗ Ξ

1+t−2k
2 ,

where we induce from P1,kg(Fv) ⊗ GL(t−k)g(Fv) to P1,tg(Fv). Moreover
considering the weights, we see that the spectral sequence computing



32 BOYER PASCAL

the fibers of sheaves of cohomology of Ψπv,c from those of grk! (Ψπv,c)
degenerate at E1. From 1.3.11, we have

(
Stk(πv{

k − t

2
})
)
|P1,kg(Fv)

×Speht−k(πv{
k

2
}) ≃

(
LTπ(k, t−1−k)πv

)
|P1,tg(Fv)

so that, by the main result of [7], the fiber at z of HiΨπv,c is isomorphic
to those of Hi

(
pH0i1,∗c Ψπv

)
, so we are done.

Dually we have

0→ Ψ̺,∗,c −→ Ψ̺ −→ j6=c,∗j
∗
6=cΨ̺ → 0, (3.4.6)

such that the graded pieces grh! (Ψ̺,∗,c) verify the following properties

– it is trivial if h is not equal to some gi(̺) ≤ d for i ≥ −1;
– for such i ≥ −1 with gi(̺) ≤ d, then

gr
gi(̺)
! (Ψ̺,∗,c)⊗Zl

Ql ≃
⊕

πv∈Cusp(̺,i)

gr
gi(̺)
! (Ψπv,∗,c)

where gr
gi(̺)
! (Ψπv,∗,c) is the pull back

gr
gi(̺)
! (Ψπv,∗,c)

� � //❴❴❴

� _

��✤
✤

✤
Ψπv,∗,c� _

��
Fil

gi(̺)
! (Ψπv

) �
� // Ψπv

.

Remark: applied to Ψπv
, the equality (3.3.6) becomes, cf. [11] §3.4

[
Ψπv,∗,c

]
=

⌊ d
g
⌋∑

t=1

P (t, πv)c(
t− 1

2
). (3.4.7)

More precisely for πv ∈ Cusp(̺, i), then gr
gi(̺)
! (Ψπv,∗,c) has a filtration

Filk(gr
gi(̺)
! (Ψπv,∗,c)) for 0 ≤ k ≤ si(̺) := ⌊ d

gi(̺)
⌋ with graded pieces

grk(gr
gi(̺)
! (Ψπv,∗,c)) ≃ P (si(̺)− k + 1, πv)c(

si(̺)−k
2

).

4. Non-degeneracy property for submodules

Recall first that, for a fixed irreducible Fl-representation ̺ of D×v,d, the

notation Vd−1
̺,N (resp. Ud−1

̺,N ) designates the direct factor of Vd−1

Fv,Zl,d
(resp.

the free quotient Ud−1

Fv,Zl,d,free
) associated with ̺ in the sense of [19] §B.2.
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Let iz : z →֒ X=d
I,s̄, be any supersingular point. Then, from the main

theorem of Berkovitch in [4], we have an isomorphism

ind
D×

v,d

(D×
v,d

)0̟Z
v

pH0i!zΨ̺ ≃ V
d−1
̺,N , (4.0.1)

and respectively

(
ind

D×
v,d

(D×
v,d

)0̟Z
v

pH0i∗zΨ̺

)
free
≃ Ud−1

̺,N , (4.0.2)

which are equivariant for D×v,d × GLd(Fv) ×WFv
, so that we are led to

compute pH0i!zΨ̺ (resp. the free quotient of pH0i∗zΨ̺).
Remark: p+H0i!zΨ̺ might have torsion(5) but by definition pH0i!zΨ̺ is
necessarily free.

Recall that our strategy is to construct a filtration of Vd−1
̺,N (resp. Ud−1

̺,N )

with irreducible graded pieces as a Zl-representation of GLd(Fv)×D
×
Fv,d
×

WFv
, which means that they are free and irreducible after tensoring with

Ql. Of course the idea is to obtain such a filtration from a filtration
Fil•(Ψ̺) of Ψ̺, constructed using the Newton stratification, so that the
associated spectral sequences

Er,s
!,1 := pHr+si!zgr

−r(Ψ̺)⇒
pHr+si!zΨ̺

and

Er,s
∗,1 :=

pHr+si∗zgr
−r(Ψ̺)⇒

pHr+si∗zΨ̺,

give us the expected filtrations of H0i!zΨ̺ and pH0i∗zΨ̺, where gr•(Ψ̺)
are the graded pieces of Fil•(Ψ̺).
Remark: as long as we are only interested in Vd−1

̺,N (resp. Ud−1
̺,N ) and not

with the others V•̺,N and U•̺,N, we have in fact only to bother with the
perverse sheaves concentrated on the supersingular locus. More precisely
note that for a perverse sheaf P not concentrated in the supersingular
locus, then pHδi!zP (resp. pH−δi∗zP) is zero for δ ≤ 0 (resp. zero for δ < 0
and torsion for δ = 0).

Meanwhile some of the Er,s
!,1 (resp. Er,s

∗,1) for r+ s = 1 (resp. r+ s = 0)
might be torsion so that to control the lattices, it is better if all the
perverse sheaves concentrated on the supersingular locus appears before
(resp. after) the others, see the fourth step in the next section.
Remark: of course as long as you are only concerned with perverse sheaves
on the supersingular locus, you do not need to bother about the positions

(5)The main theorem of [10] tells that this is not the case.
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of these perverse sheaves but only about their lattices, cf. §3.2. At
the end the non-degeneracy persistence property will be deduced from
proposition 1.3.7.

4.1. The case of Vd−1
̺,N . — The main goal is then to construct a filtra-

tion of Ψ̺.

First step: we start with the following three pieces filtration. For every
c ∈ GLd(Fv)/P1,d(Fv), note that any supersingular point belongs to the

pure stratum X≥1I,s̄,c, so that in the short exact sequence (3.4.6)

0→ Ψ̺,∗,c −→ Ψ̺ −→ j6=c,∗j
∗
6=cΨ̺ → 0, (4.1.1)

we have, with harmless abuse of notations, H0i!zΨ̺ ≃ H
0i!zΨ̺,∗,c. Con-

sider then another pure stratum X≥1I,s̄,c′ with c
′ 6= c.

4.1.2. Lemma. — The perverse sheaf pHii1,∗c′ Ψ̺,∗,c is zero for i 6= 0 and
it is free for i = 0.

Proof. — Note first, cf. lemma 3.4.1, that the result is true for Ψ̺.
Moreover for any perverse free sheaf P , we have pHii∗c′P = 0 if i 6∈ {0,−1}
and it is free for i = −1. The result then follows easily from the long
exact sequence associated to the previous short exact sequence when we
apply i∗c′ .

In particular in the following short exact sequence

0→ j6=c′,!j
∗
6=c′Ψ̺,∗,c −→ Ψ̺ −→ Ψ̺,∗,c,!,c′ → 0

the perverse sheaf Ψ̺,∗,c,!,c′ is free. Moreover as the cokernel of

j6=c′,!j
∗
6=c′Ψ̺,∗,c →֒ Ψ̺,∗,c is i1c′,∗

pH0i1,∗c′ Ψ̺,∗,c, we have the following short
exact sequence

0→ i1c′,∗
pH0i1,∗c′ Ψ̺,∗,c −→ Ψ̺,∗,c,!,c′ −→ j6=c,∗j

∗
6=cΨ̺ → 0.

Remark: with the terminology of §3.2, the dual version of lemma 3.4.1
tells us that in the short exact sequence (4.1.1), there is no saturation
process: in fact all the questions about saturation keep inside the left
and right terms of this short exact sequence, cf. [10] for more details.
In the same way, the previous lemma tells us that there is no saturation
process in considering the adjunction morphism j6=c′,!j

∗
6=c′Ψ̺,∗,c −→ Ψ̺,∗,c.

Second step: we want to refine the filtration of the first step in order
to compute pH0i!zΨ̺ for any supersingular point z. Note first that, as

z belongs to any X≥1I,s̄,c′, then
pH0i!zj6=c,∗j

∗
6=cΨ̺ = (0) so in fact we just
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need to bother about the first two graded pieces of the previous filtration,
which corresponds to a filtration of Ψ̺,∗,c. With the terminology of §3.2,
at this step we do not want to deal with lattices and positions, but just
describe the irreducible sub-quotients over Ql.

Consider the first graded piece j6=c′,!j
∗
6=c′Ψ̺,∗,c. As j6=c′ is affine, j6=c′,!j

∗
6=c′

is an exact functor, so that from the previous section, j6=c′,!j
∗
6=c′Ψ̺,∗,c has a

filtration Fil•
(
j6=c′,!j

∗
6=c′Ψ̺,∗,c

)
with graded pieces j6=c′,!j

∗
6=c′gr

gi(̺)
! Ψ̺,∗,c.

(6)

We then have

j6=c′,!j
∗
6=c′gr

gi(̺)
! (Ψ̺,∗,c)⊗Zl

Ql ≃
⊕

πv∈Cusp(̺,i)

j6=c′,!j
∗
6=c′gr

gi(̺)
! (Ψπv,∗,c),

where j6=c′,!j
∗
6=c′gr

gi(̺)
! (Ψπv,∗,c) has a filtration whose graded pieces, by com-

bining (3.4.7) and lemma 2.3.8, are, in the order of appearance from the
socle to the top,

– for t = si(̺), · · · , 2, the P (t, πv)c(
t−1
2
) obtained through the follow-

ing short exact sequence twisted by ( t−1
2
)

0→ P (t, πv)c, 6=c′ −→ P (t, πv)c −→ P (t, πv)〈c,c′〉 → 0,

where

P (t, πv)c, 6=c′ :=
pj=1
6=c′,!∗j

=1,∗
6=c′ PQl,c

(t, πv),

– and with last quotient P (1, πv)c, 6=c′.

The second graded piece i1c′,∗
pH0i1,∗c′ Ψ̺,∗,c of the filtration of the first step,

is a free perverse sheaf which, over Ql, have then irreducible constituents
P (1, πv)〈c,c′〉 for πv ∈ Cusp(̺) an irreducible representation of GLg(Fv)
with g < d.

Third step: We now want, using the terminology of §3.2, to understand
lattices and positions of the perverse sheaves of the second step. Our
aim is to give a filtration over Zl from which we will be able to compute
pH0i!zΨ̺ thanks to a spectral sequence as usual.

(a) Start first with i1c′,∗
pH0i1,∗c′ Ψ̺,∗,c. For πv an irreducible cuspidal

representation of GLg(Fv) and 1 ≤ t ≤ s := ⌊d/g⌋, note that, if tg < d,
then pH0i!zP (t, πv) = (0). In particular if pH0i!zP (1, πv)〈c,c′〉 6= (0) then
g = d so that

– trivially P (1, πv)〈c,c′〉 = P (1, πv),

(6)Again here there is no need of saturation.
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– concerning the action of GLd(Fv), as the modulo l reduction of πv
is still irreducible, all the stable lattices are homothetic and

– there is only one position possible for the intermediate extension as
the perverse sheaf is concentrated on a zero dimensional sub-scheme.

In short, we do not have to bother with i1c′,∗
pH0i1,∗c′ Ψ̺,∗,c.

(b) We focus then on pH0i!z
(
j6=c′,!j

∗
6=c′Ψ̺,∗,c

)
by refining the previous

filtration Fil•
(
j6=c′,!j

∗
6=c′Ψ̺,∗,c

)
with graded pieces j6=c′,!j

∗
6=c′gr

gi(̺)
! Ψ̺,∗,c. Re-

call that

j=gi(̺),∗j6=c′,!j
∗
6=c′gr

gi(̺)
! Ψ̺,∗,c ⊗Zl

Ql ≃
⊕

πv∈Cusp(̺,i)

HTc, 6=c′(πv, πv),

and by fixing any numbering of Cusp(̺, i) = {πv,1, · · · } the pull-back

Filk
(
j=gi(̺),∗j6=c′,!j

∗
6=c′gr

gi(̺)
! Ψ̺,∗,c

)
� � //❴❴❴❴❴

� _

��✤
✤

✤

j=gi(̺),∗j6=c′,!j
∗
6=c′gr

gi(̺)
! Ψ̺,∗,c

� _

��⊕k
i=1HTc, 6=c′(πv,i, πv,i)

� � // j=gi(̺),∗j6=c′,!j
∗
6=c′gr

gi(̺)
! Ψ̺,∗,c ⊗Zl

Ql,

define then a naive filtration of j=gi(̺),∗j6=c′,!j
∗
6=c′gr

gi(̺)
! Ψ̺,∗,c such that

the graded pieces are some lattices of HTc, 6=c′(πv, πv) for πv describing

Cusp(̺, i). By taking the image by j
=gi(̺)
! of this filtration, we obtain

a filtration of j6=c′,!j
∗
6=c′gr

gi(̺)
! Ψ̺,∗,c whose graded pieces are entire ver-

sions of j6=c′,!j
∗
6=c′gr

gi(̺)
! (Ψπv,∗,c) for πv describing Cusp(̺, i). Then we

can filtrate each of these graded pieces to obtain a filtration denoted
Fill•

(
j6=c′,!j

∗
6=c′Ψ̺,∗,c

)
whose graded pieces grrk

(
j6=c′,!j

∗
6=c′Ψ̺,∗,c

)
are some

entire version of the P (t, πv)c if 2 ≤ t ≤ si(̺) (resp. P (1, πv)c, 6=c′), for
πv ∈ Cusp(̺, i) with i ≥ −1: these entire perverse sheaves may depend
on all the choices.
Remark: as pointed out above, we just have to deal with the graded pieces
concentrated on the supersingular locus for which with do not have to
bother about the position of the intermediate extension, but now as t
might be strictly greater than one, we have to describe the lattices. For
πv ∈ Cusp(̺, i) and t such that (t+ 1)gi(̺) = d, let then denote by

PFill,!,c(t+ 1, πv),

the lattice defined above starting from a filtration of j6=c′,!j
∗
6=c′Ψπv,∗,c, cf.

(4.1.8). Note at this point that finally PFill,!,c(t + 1, πv) is given by the
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short exact sequence of lemma 2.3.8 so that we can easily identify its
lattice as explained in theorem 4.1.6.

Fourth step: now we want to modify the previous filtration of Ψ̺,∗,c by
reorganizing the order of the graded pieces so that those concentrated on
the supersingular locus appear first. Let first explain why it is possible
to do so. Denote by

j1≤d−1 : X≥1I,s̄ \X
=d
I,s̄ →֒ X≥1I,s̄

and consider the adjunction morphism

Ψ̺,∗,c −→
p+j1≤d−1∗ j1≤d−1,∗Ψ̺,∗,c,

where (3.4.7) described Ψ̺,∗,c, at least over Ql. Then the kernel K̺,∗,c,d

of this morphism, is by construction free and in the Grothendieck group
we have

[
K̺,∗,c,d ⊗Zl

Ql

]
=

∑

i≥−1

∑

πv∈Cusp(̺,i)
d=tigi(̺)

[
P (ti, πv)(

ti − 1

2
)
]
,

i.e. K̺,∗,c,d gathers all the irreducible constituents of Ψ̺,∗,c concentrated
on the supersingular locus. To see this, it suffices to argue on Ψπv

for
πv ∈ Cusp(̺, i) with Kπv,∗,c,d the kernel of the adjunction morphism
Ψπv,∗,c −→

p+j1≤d−1∗ j1≤d−1,∗Ψπv,∗,c. We then notice that

– for a pure perverse sheaf P of weight 0 then the irreducible con-
stituents of pj1≤d−1∗ j1≤d−1,∗P are of non-negative weight;

– and the irreducible constituents of j1≤d−1,∗Ψπv,∗,c are the P (t, πv)(
t−1
2
)

with t ≤ si := ⌊
d

gi(̺)
⌋ (resp. t < si) if gi(̺) do not divide d (resp. if

sigi(̺) = d).

Then when gi(̺) divide d, all the irreducible constituents are of
weight strictly greater than those of P (si, πv)(

si−1
2

) so that Kπv,∗,c,d =

P (si, πv)(
si−1
2

). Otherwise Kπv,∗,c,d is trivial.

We start then from the previous filtration which is Pc,c′(Fv)-equivariant
and where the order of its graded pieces verifies the following property:

– P (1, πv) for πv ∈ Cusp(̺, i) with gi(̺) = d appears after, i.e. in
higher graded pieces than those associated with either P (t, π′v)c, 6=c′

or P (t, π′v)〈c,c′〉 for π
′
v ∈ Cusp(̺, i′) where tgi(̺) < d or t > 1;

– let k be the index of graded piece associated with P (t, πv) with
t > 1, πv ∈ Cusp(̺, i) with tgi(̺) = d. Then for any graduate piece
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of index k′ < k associated with some P (t′, π′v)c, 6=c′ or P (t
′, π′v)〈c,c′〉

with π′v ∈ Cusp(̺, i′) and t′gi′(̺) < d, then i′ < i.

Note also that, for any πv ∈ Cusp(̺, i) and t such that tgi(̺) < d,
then if k 6=c′ > kc′ are the indexes of the graded pieces associated with
respectively P (t′, π′v)c, 6=c′ and P (t

′, π′v)〈c,c′〉, then for any kc′ < k < k 6=c′,
the associated graded piece is never concentrated in the supersingular
locus. This implies that we can modify the filtration such that

– the graded pieces are of the shape P (t, πv)c without modifying the
lattices of the graded pieces concentrated in the supersingular locus.

– Now the filtration is equivariant for the action of Pc(Fv) as all
the graduate and the whole of the perverse sheaf, are Pc(Fv)-
equivariant.

4.1.3. Lemma. — Consider a Pc(Fv)-equivariant perverse sheaf X
which can be written

0→ A1 −→ X −→ A2 → 0

where

– A2 is a free perverse sheaf with A2 ⊗Zl
Ql = P (t, πv) for πv ∈

Cusp(̺, i) and tgi(̺) = d,
– and A1 is some free perverse sheaf with A1 ⊗Zl

Ql isomorphic to
P (t′, π′v)c with π

′
v ∈ Cusp(̺, i′), h = t′gi′(̺) and i

′ < i.

Suppose moreover that

X ⊗Zl
Ql ≃ (A1 ⊗Zl

Ql)⊕ (A2 ⊗Zl
Ql),

then X ≃ A1 ⊕ A2.

Proof. — We have a diagram like (3.3.5) where T is supported on X=d
I,s̄

so that A1 →֒ A′1 ։ T is obtained through

pj=h
c,!∗j

=h,∗
c A1 ։֒+ A1 ։֒+ A

′
1 ։֒+

p+j=h
c,!∗j

=h,∗
c A1.

Suppose by absurdity, that T 6= (0).

– Then as a quotient of A′1 and as a representation of Pc(Fv)
T ⊗Zl

Fl is isomorphic to a small mirabolic induced representation

(rl(Stt′(π
′
v))|Pc(Fv)×τ for some Fl-representation τ ofGLd−t′gi′ (̺)

(Fv),
and where rl designates the modulo l reduction functor. In particu-
lar, proposition 1.3.7 imposes that T⊗ZlFl must have an irreducible
sub-quotient with derivative of order gi′(̺).
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– On the other side, note that as a quotient of A2 all of its derivative
have order ≥ gi(̺) > gi′(̺).

So T must be trivial, i.e. X = A1 ⊕A2.

We now sum up what we have done until now.

4.1.4. Proposition. — There exists a filtration

(0) = Fil0(Ψ̺,∗,c) ⊂ Fil1(Ψ̺,∗,c) ⊂ Fil2(Ψ̺,∗,c) = Ψ̺,∗,c

such that

– the irreducible constituents of gri(Ψ̺,∗,c) ⊗Zl Ql for i = 1 (resp.

i = 2) are all with support in X=d
I,s̄ (resp. are of the form P (t, πv)c

with πv ∈ Cusp(̺, i) and tgi(̺) < d).
– Moreover there is a filtration of

(0) = Fil−2(gr1(Ψ̺,∗,c)) ⊂ Fil−1(gr1(Ψ̺,∗,c)) ⊂ · · ·

· · · ⊂ Fils(gr1(Ψ̺,∗,c)) = gr1(Ψ̺,∗,c)

whose graded pieces gri(gr1(Ψ̺,∗,c)) are zero except if there exists
t such that tgi(̺) = d in which case with the previous notations,
gri(gr1(Ψ̺,∗,c)) admits a naive filtration, cf. point (b) in the third
step, indexed by πv ∈ Cusp(̺, i) such that its graded pieces are, cf.
(4.1.8), the PFill,!,c(t, πv).

Remark: we will next identify the PFill,!,c(t, πv) and see that, at least for
the action of Pc(Fv), they are independent of the choice of the naive
filtration, so that we will simply write

gri(gr1(Ψ̺,∗,c)) ≈
⊕

πv∈Cusp(̺,i)

PFill,!,c(t, πv), (4.1.5)

in place of the long statement in the second point of the proposition
above.

Last step: as explained in the introduction of §4, for a perverse
sheaf P (t, πv) not concentrated in the supersingular locus, we have
pH0i!zP (t, πv) = (0). In the long exact sequence associated with the
pH•i!z applied to the short exact sequence

0→ gr1(Ψ̺,∗,c) −→ Fil2(Ψ̺,∗,c) −→ gr2(Ψ̺,∗,c)→ 0,
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we then have pH0i!zΨ̺,∗,c ≃
pH0i!zgr

1(Ψ̺,∗,c). From the previous proposi-
tion we obtain a filtration

(0) = Fil−2(pH0i!z(Ψ̺)) ⊂ Fil−1(pH0i!z(Ψ̺)) ⊂ · · ·

· · · ⊂ Fils(pH0i!z(Ψ̺)) =
pH0i!z(Ψ̺)

whose non zero graded pieces coincide with the indexes i ≥ −1 such that
there exists t with tgi(̺) = d and then with the notation of (4.1.5)

gri(pH0i!z(Ψ̺)) ≈
⊕

πv∈Cusp(̺,i)

PFill,!,c(t, πv)z.

We will now simply denote by
(
Fillk(Ψ̺,∗,c)

)
0≤k≤r

the filtration of

gr1(Ψ̺,∗,c) obtained above such that its graded pieces grrk(Ψ̺,∗,c) are

irreducible after tensoring with Ql. We then also denote by

Fillk(Vd−1
̺,N ) := ind

D×
v,d

(D×
v,d

)0̟Z
v

pH0i!z Fill
k(Ψ̺,∗,c).

4.1.6. Theorem. — As a Zl[Pd(Fv)×D
×
v,d ×WFv

]-module, the succes-

sive graded pieces grk(Vd−1
̺,N ) are such that there exists i, πv ∈ Cusp(̺, i)

and t such that tgi(̺) = d with

grk(Vd−1
̺,N ) ≃ ΓGDW (πv),

with ΓGDW (πv) ≃ ΓG(πv)⊗ ΓD(πv)⊗ ΓW (πv) where

– ΓD(πv) (resp. ΓW (πv)) is a stable lattice of πv[t]D (resp. Lgi(̺)(πv));

– ΓG(πv) is isomorphic to the stable lattice
(
RIZl,−

(πv, t)
)
|Pd(Fv)

of def-

inition 1.4.1.

Remark: in other words, the lattice PFill,!,c(t, πv), which is a sheaf on
the supersingular locus, is with the previous notations, fiber by fiber
isomorphic to ΓG(πv)⊗ ΓD(πv)⊗ ΓW (πv).

Proof. — We argue by induction on d. As the result is trivial for g−1(̺)
because, as the modulo l reduction is irreducible, there is, up to isomor-
phism, only one stable lattice, we suppose the result true for all h < d. We
then use the statement of the theorem through the isomorphism (4.0.1),
to obtain informations on the lattices of our perverse sheaves not concen-
trated on the supersingular locus. Thus arguing like before on j1≤h,∗Ψ̺,
we can conclude that, for any i ≥ −1, πv ∈ Cusp(̺, i) and tgi(̺) < d, the
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lattices of HTc(πv, Stt(πv))(
t−1
2
) of the graded pieces grk(j6=c′,!j

∗
6=c′Ψ̺,∗,c)

are of the shape

LD ⊗
(
RIZl,−(πv, t)

)
|Ptgi(̺)

(Fv)
⊗ ΓW , (4.1.7)

where LD is some stable Zl-lattice sheaf of L(πv[t]D)c.
To prove the theorem, by the isomorphism (4.0.1), we now have to show

that the lattice PFill,!,c(t, πv) is a tensorial product of lattices equipped
with action by Pd(Fv), D

×
v,d and WFv

, and the lattice for the action of

Pd(Fv) is isomorphic to
(
RIZl,−

(πv, t)
)
|Pd(Fv)

.

By hypothesis we have πv ∈ Cusp(̺, i) and tgi(̺) = d. Recall also,
using the exactness of jc, 6=c′,!, that PFill,!,c(t, πv) fits in the following short
exact sequence of lemma 2.3.8

0→ PFill,!,c(t, πv) −→ j6=c′,!j
∗
6=c′gr

k(j6=c′,!j
∗
6=c′Ψ̺,∗,c)

−→ pj6=c′,!∗j
∗
6=c′gr

k(j6=c′,!j
∗
6=c′Ψ̺,∗,c)→ 0 (4.1.8)

where

grk(j6=c′,!j
∗
6=c′Ψ̺,∗,c)⊗Zl

Ql ≃ P (t− 1, πv)c(
t− 2

2
) →֒ P (t− 1, πv)(

t− 2

2
).

Over Zl, we have seen that j=(t−1)gi(̺),∗grk(j6=c′,!j
∗
6=c′Ψ̺,∗,c) is a tensorial

product of lattices where those relatively to the action of P(t−1)gi(̺)(Fv)

is
(
RIZl,−(πv, t − 1)

)
|P(t−1)gi(̺)

(Fv)
. Moreover, as the supersingular locus

belongs toX≥1I,s̄,c′, relatively to the supersingular locus, grk(j6=c′,!j
∗
6=c′Ψ̺,∗,c)

behaves like a p-intermediate extension, i.e.

H0i∗zgr
k(j6=c′,!j

∗
6=c′Ψ̺,∗,c) = (0),

for all geometric supersingular point z. For such a p-intermediate exten-
sion we materialize this property by writing p(ss) as a left exponent. By
inducing we can then write

grk(j6=c′,!j
∗
6=c′Ψ̺,∗,c) →֒

p(ss)PRI,⊗(t− 1, πv)(
t− 2

2
)

where p(ss)PRI,⊗(t − 1, πv) is a lattice of PQl
(t − 1, πv) verifying the fol-

lowing two properties:

– for all geometric supersingular point z, the perverse sheaf behaves
like a p-intermediate extension, i.e. H0i∗z

(
p(ss)PRI,⊗(t− 1, πv)

)
=

(0);
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– j=(t−1)gi(̺),∗
(
p(ss)PRI,⊗(t − 1, πv)

)
is a tensorial stable lattice where

the lattice associated with the action of P(t−1)gi(̺)(Fv) is isomorphic

to
(
RIZl,−(πv, t− 1)

)
|P(t−1)gi(̺)

(Fv)
.

Remark: we prefer to introduce the full of p(ss)PRI,⊗(t− 1, πv) instead of
j≥1,∗c

p(ss)PRI,⊗(t − 1, πv) which is then isomorphic to grk(j6=c′,!j
∗
6=c′Ψ̺,∗,c),

see the next diagram.
We then have

PFill,!,c(t, πv)
� � //

≃

��✤
✤

✤
j6=c′,!j

∗
6=c′gr

k(j6=c′,!j
∗
6=c′Ψ̺,∗,c)

� _

��
pH−1i∗c′

p(ss)PRI,⊗(t− 1, πv)(
t−2
2
) �
� // j6=c′,!j

∗
6=c′

p(ss)PRI,⊗(t− 1, πv)(
t−2
2
).

By (4.1.8) PFill,!,c(t, πv) ≃
pH−1i∗c′gr

k(j6=c′,!j
∗
6=c′Ψ̺,∗,c) and as for a Harris-

Taylor perverse sheaf P supported on the supersingular locus, we have
P = Pc = P〈c,c′〉, then the left map of the diagram is an isomorphism

over Ql. Moreover as each of the other maps of this diagram are strict
so is the dotted one which is then an isomorphism.

By lemma 2.3.5 and (4.1.7), the lattice relatively to the action of Pd(Fv)
on pH−1i∗c′

p(ss)PRI,⊗(t−1, πv)(
t−2
2
) is given by the induced representation

RIZl,−(πv{
−1
2
}, t− 1)× (πv{

t−1
2
})|Pgi(̺)

(Fv)
� � //

∼

,,❨❨❨❨❨
❨❨❨

❨❨❨
❨❨❨❨

❨❨❨
❨❨❨

❨❨❨
❨❨❨

(
RIZl,−

(πv{
−1
2
}, t− 1)× πv{

t−1
2
}
)
|Pd(Fv)

����
RIZl,−

(πv, t)|Pd(Fv),

which finishes the proof.

From proposition 1.4.2, we obtain the expected non-degeneracy prop-
erty.

4.1.9. Corollary. — Any irreducible Pd(Fv)-equivariant subspace of
Vd−1
̺,N ⊗Zl

Fl, is non-degenerate and so isomorphic to τnd.

4.2. The case of Ud−1
̺,N . — In [10], we prove that for any supercuspidal

Fl-representation ̺, then U
d−1
̺,N is free. As at this stage we do not want to

use [10], we introduce its free quotient Ud−1
̺,N,free. We then follow exactly

the same steps than in the previous section, but dually. Precisely fix
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a supersingular point z and denote as before iz : z →֒ X=d
I,s̄. From the

D×v,d ×GLd(Fv)×WFv
-equivariant isomorphism

ind
D×

v,d

(D×
v,d

)0̟Z
v

pH0i∗zΨ̺ ≃ U
d−1
̺,N , (4.2.1)

we are led to compute the free quotient of pH0i∗zΨ̺. As explained in the
introduction of §4, we first construct a filtration of Ψ̺. Dually to the
previous section consider first the short exact sequences

0→ j6=c,!j
∗
6=cΨ̺ −→ Ψ̺ −→ Ψ̺,!,c → 0,

and

0→ i1c′,∗
p+H0i1,!c′ Ψ̺,!,c −→ Ψ̺,!,c −→ jc, 6=c′,∗j

∗
c, 6=c′Ψ̺,!,c → 0.

One can also introduce Ψ̺,!,c,∗,c′ as the pull-back

j6=c,!j
∗
6=cΨ̺

� � // Ψ̺,!,c,∗,c′
// //❴❴❴

� _

��✤
✤

✤
i1c′,∗

p+H0i1,!c′ Ψ̺,!,c
� _

��
j6=c,!j

∗
6=cΨ̺

� � // Ψ̺
// // Ψ̺,!,c.

(a) Using the exactness of j6=c′,∗j
∗
6=c′ , as in second step of the previous

section, the filtration Fil•∗(Ψ̺,!,c) of proposition 3.4.4, gives a filtration

Fil•(j6=c′,∗j
∗
6=c′Ψ̺,!,c) with graded pieces j6=c′,∗j

∗
6=c′gr

−gi(̺)+1
∗ (Ψ̺,!,c) such that

j6=c′,∗j
∗
6=c′gr

−gi(̺)+1
∗ (Ψ̺,!,c)⊗Zl

Ql ≃
⊕

πv∈Cusp(̺,i)

j6=c′,∗j
∗
6=c′gr

−gi(̺)+1
∗ (Ψπv,!,c),

where j6=c′,∗j
∗
6=c′gr

−gi(̺)+1
! (Ψπv,!,c) has a filtration whose graded pieces, by

lemma 2.3.8, are, from quotient to subspaces,

– for si(̺) ≥ t ≥ 2, the P (t, πv)〈c,c′〉(
1−t
2
) and P (t, πv)c, 6=c′(

1−t
2
) allow-

ing to reconstruct P (t, πv)c(
1−t
2
) by the short exact sequence

0→ P (t, πv)〈c,c′〉 −→ P (t, πv)c −→ P (t, πv)c, 6=c′ → 0,

– and P (1, πv)c, 6=c′.

(b) Concerning i1c′,∗
p+H0i1,!c′ Ψ̺,!,c, after tensoring with Ql, its irreducible

sub-quotients are the P (1, πv)〈c,c′〉 for πv ∈ Cusp(̺, i) with gi(̺) < d.
By arguing like in the third and fourth steps of the previous section,

we can manage to modify the previous filtration to another one such that

– it is equivariant for the action of Pc(Fv);
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– its graded pieces are the P (t, πv)c without modifying the lattices,
given by the starting filtration, of the perverse sheaves concentrated
on the supersingular locus;

– the perverse sheaves concentrated on the supersingular locus ap-
pears in the last graded pieces;

– if P (t, πv)(
1−t
2
) (resp. P (t′, π′v)(

1−t′

2
)) for πv ∈ Cusp(̺, i) (resp. π′v ∈

Cusp(̺, i′)) are concentrated in the supersingular locus. If i < i′

then the indexes k and k′ respectively associated to them verify
k > k′.

Remark: As before we do not pay attention to the position of these
perverse sheaves between the p and p+ intermediate extensions, but we
merely concentrate on the lattice of the associated local systems.

4.2.2. Notation. — For πv ∈ Cusp(̺, i) and t such that tgi(̺) = d,
denote by PFill,∗,c(t, πv) the lattice obtained by the previous construction
starting from the filtration of j6=c′,∗j

∗
6=c′Ψπv,!,c.

To sum up we state the analogous of proposition 4.1.4.

4.2.3. Proposition. — There exists a filtration of

(0) = Fil−2(Ψ̺,!,c) ⊂ Fil−1(Ψ̺,!,c) ⊂ Fil0(Ψ̺,!,c) = Ψ̺,!,c

such that

– the irreducible constituents of gri(Ψ̺,!,c)⊗Zl
Ql for i = 0 (resp. i =

−1) are all with support in X=d
I,s̄ (resp. are of the form P (t, πv)c

with πv ∈ Cusp(̺, i) and tgi(̺) < d).
– Moreover there is a filtration of

(0) = Fil−s−1(gr0(Ψ̺,!,c)) ⊂ Fil−s(gr0(Ψ̺,!,c)) ⊂ · · ·

· · · ⊂ Fil−1(gr0(Ψ̺,!,c)) = gr0(Ψ̺,!,c)

whose graded pieces gr−i(gr0(Ψ̺,!,c)) are zero except if there exists t
such that tgi(̺) = d in which case with the notation of 4.2.2 and
(4.1.5),

gr−i(gr0(Ψ̺,!,c)) ≈
⊕

πv∈Cusp(̺,i)

PFill,∗,c(t, πv).
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We denote by
(
Fillk(Ψ̺,!,c)

)
0≤k≤r

the filtration of gr0(Ψ̺,!,c) obtained

above such that its graded pieces grrk(Ψ̺,!,c) are irreducible after tensor-

ing with Ql. We also denote by

Fillk(Ud−1
̺,N ) := pH0i∗z Fill

k(Ψ̺,!,c).

Using (4.0.2) and arguing by induction we obtain the Ud−1
̺,N -version of

theorem 4.1.6.

4.2.4. Theorem. — As a Zl[Pd(Fv)×D
×
v,d ×WFv

]-module, the succes-

sive graded pieces grrk(Ud−1
̺,N ) are such that there exists i, πv ∈ Cusp(̺, i)

and t such that tgi(̺) = d with

grrk(Ud−1
̺,N,free) ≃ ΓGDW (πv),

with ΓGDW (πv) ≃ ΓG(πv)⊗ ΓD ⊗ ΓW (πv) where

– ΓD (resp. ΓW ) is a stable lattice of πv[si(̺)]D (resp. Lgi(̺)(πv));
– ΓG is isomorphic to a stable Pd(Fv)-equivariant lattice of Stsi(̺)(πv)
such that every irreducible subspace of its modulo l reduction, is
isomorphic to rl(τnd).

The only difference from the previous section concerns the lattice ΓG

which is obtained through

j6=c′,∗j
∗
6=c′

p+(ss)PRI,⊗(si(̺)− 1, πv)(
2−si(̺)

2
) // // p+H1i!c′PRI,⊗(si(̺)− 1, πv)(

si(̺)−2
2

)

j6=c′,∗j
∗
6=c′gr

k(j6=c′,∗j
∗
6=c′Ψ̺,!,c)

?�

OO

// // PFill,∗,c(si(̺), πv)

≃

OO✤
✤

✤

and where, by induction, p+H1i!c′PRI,⊗(si(̺) − 1, πv)(
si(̺)−2

2
) is given by

Γ′G × (πv{
1−si(̺)

2
})|Pgi(̺)

(Fv) where by the induction hypothesis Γ′G is a

P(si(̺)−1)gi(̺)(Fv)-equivariant lattice of Stsi(̺)−1(πv{
1
2
}) such that every

subspace of its modulo l reduction is isomorphic to rl(τnd). The persis-
tence of non-degeneracy property then follows from the exactness of Φ−

and Ψ− and from proposition 1.3.7.
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Remark: It is not so easy than in the previous situation, to identify the
lattice as now we only have the following commutative diagram

Stsi(̺)(πv)|Pd(Fv)� _

��

Γ′G × (πv{
1−si(̺)

2
})|Pgi(̺)

(Fv)
� � //

** **❱❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱

(
Γ′G × πv{

1−si(̺)
2
}
)
|Pd(Fv)

����
LTπv

(si(̺)− 2, 1)|Pd(Fv).

4.2.5. Corollary. — Any irreducible Pd(Fv)-equivariant subspace of
Ud−1
̺,N,free ⊗Zl

Fl, is non-degenerate and so isomorphic to τnd.

4.3. Other orders of cohomology groups. — As the situations of
Ud−1−δ
̺,N and Vd−1+δ

̺,N are dual, consider for example the case of Ud−1−δ
̺,N for

δ > 0. Remember the strategy explained in the introduction of §4 which
consists in computing pH−δi∗zΨ̺ through the spectral sequence

Er,s
∗,1 :=

pHr+si∗zgr
−r(Ψ̺)⇒

pHr+si∗zΨ̺,

associated with some filtration Fil•(Ψ̺) of Ψ̺. For δ > 0 we now need
to consider all the perverse sheaves and not only those supported on the
supersingular locus. In the previous sections, arguing inductively on the
Lubin-Tate spaces, we essentially understood the lattices but now the
question is about the positions of the Harris-Taylor perverses sheaves
which is solved in [10].

Start again from

0→ j6=c,!j
∗
6=cΨ̺ −→ Ψ̺ −→ Ψ̺,!,c → 0,

and with the filtration of Fil•∗(Ψ̺,!,c) with graded pieces gr
−gi(̺)+1
∗ (Ψ̺,!,c)

which can be refined as before, such that to obtain graded pieces
grrk(Ψ̺,!,c) verifying

pj
=tgi(̺)
c,!∗ j=tgi(̺),∗

c grrk(Ψ̺,!,c)

։֒+ grrk(Ψ̺,∗,c) ։֒+

p+j
=tgi(̺)
c,!∗ j=tgi(̺),∗

c grrk(Ψ̺,!,c),

with grrk(Ψ̺,!,c)⊗Zl
Ql ≃ P (t, πv)(

1−t
2
). In [10], we prove
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– grrk(Ψ̺,∗,c) ≃
pj

=tgi(̺)
c,!∗ j

=tgi(̺),∗
c grrk(Ψ̺,!,c),

– and the sheaf cohomology group of grrk(Ψ̺,∗,c) are free.

In particular for a supersingular point z, the spectral sequence computing
H−δi∗zΨ̺ ≃ H

−δi∗zΨ̺,!,c through the H•i∗zgrr
k(Ψ̺,∗,c), degenerates at E1.

Note then that the Pd(Fv)-lattice is given by the induced representation

ΓG × Spehδ(πv{
si(̺)− δ − 1

2
})

where

– ΓG is a stable P(si(̺)−δ)gi(̺)(Fv)-lattice of St(si(̺)−δ)gi(̺)(Fv)(πv) such
that any irreducible subspace is isomorphic to τnd;

– Spehδ(πv) has, up to isomorphism, only one stable GLδgi(̺)(Fv)-
stable lattice.

Like in the previous sections, we then obtain the following description of
Ud−1−δ
̺,N , which is free by the main result of [10].

4.3.1. Proposition. — As a Zl[Pd(Fv) ×D
×
v,d ×WFv

]-module, Ud−1−δ
̺,N

has a filtration with successive graded pieces grrk(Ud−1−δ
̺,N,free) where there

are an associated i, πv ∈ Cusp(̺, i) and t such that tgi(̺) = d and

gr−i(Ud−1−δ
̺,N,free) ≃ ΓGDW (πv),

with ΓGDW (πv) ≃ ΓG(πv)⊗ ΓD ⊗ ΓW (πv) where

– ΓD (resp. ΓW ) is a stable lattice of πv[si(̺)]D (resp. Lgi(̺)(πv));
– ΓG is isomorphic to a stable Pd(Fv)-equivariant lattice of LTπv

(si(̺)−
δ − 1i, δ) such that any irreducible Pd(Fv)-equivariant subspace of
ΓG ⊗Zl

Fl has order of derivative equal to gi(̺).

Remark: consider the case where s = −1, that is g0(̺) does not divide
d. Then we see that the non-degeneracy property which would advocate
that irreducible subspaces of Ud−1−δ

̺,N ⊗Zl
Fl should be the less possible

degenerate among all the others, is no longer true for δ > 0, even more
this is the exact opposite as gi(̺) is the smallest derivative order of

all irreducible subquotients of
(
ΓG × Spehδ(πv{

si(̺)−δ−1
2
})
)
⊗Zl

Fl. One
way to keep trace of the non-degeneracy property might be the following
statement which follows trivially from the isomorphism (τ×π)(k) ≃ τ (k)×
π for τ (resp. π) a representation of Pd(Fv) (resp. GLs(Fv)), and the
short exact sequence (1.3.10).
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4.3.2. Proposition. — Let τ be an irreducible subspace of the modulo

l reduction of ΓG×Spehδ(πv{
si(̺)−δ−1

2
}). Then τ (gi(̺)) is non-degenerate.

To sum up, we have seen that an irreducible subspace of
(
ΓG ×

Spehδ(πv{
si(̺)−δ−1

2
})
)
⊗Zl Fl is necessarily with derivative order gi(̺),

but among all of them it is the less degenerated one.

5. Automorphic congruences

The class number formula for number fields (resp. the Birch-
Swinnerton-Dyer conjecture) asserts that the order of vanishing of the
Dedekind zeta function at s = 0 of a number field K (resp. the order
of vanishing at s = 1 of the L-function of some elliptic curve E over a
number field K) is given by the rank of its group of units (resp. by the
rank of the Mordell-Weil group E(K)). Both of these statements can
be restated in terms of the rank of Selmer groups and is generalized for
p-adic motivic Galois representations in the Bloch-Kato conjecture.

Since the work of Ribet, one strategy to realize a part of this con-
jecture is to consider some automorphic tempered representation Π of a
reductive group G/Q and take a prime divisor l of some special values of
its L-function. We try then to construct an automorphic non tempered
representation Π′ of G congruent to Π modulo l in some sense so that
such an automorphic congruence produces a non trivial element in some
Selmer group.

For G a similitude group as in §2.2, in [13] we show how to produce
automorphic congruences from torsion classes in the cohomology of ShK

with coefficients in the local system Vξ. For example,

– see corollary 2.9 of [13], to each non trivial torsion cohomology
class of level I, we can associate an infinite collection of non iso-
morphic weakly congruent irreducible automorphic representations
of the same weight and level but each of them being tempered.

– In section 3 of [13], we obtained automorphic congruences between
tempered and non tempered automorphic representations but with
distinct weights.

– In [15], using completed cohomology, we construct automorphic
congruences between tempered and non tempered automorphic rep-
resentations of the same weight but without any control of their
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respective level at l which might be an issue to construct then non
trivial elements in some Selmer groups, cf. loc. cit.

Another way to interpret the computations of [15], is to say that,
whatever is the weight ξ, if you take the level at l large enough, then the
cohomology groups of your KHT Shimura variety with coefficients in Vξ
can not be all free, there must exist some non trivial cohomology classes.
The main aim of this section is then to find explicit conditions for the
existence of non trivial cohomology classes with coefficients in Vξ, with
the control of the level at l.

5.1. Cohomology groups over Ql. —

5.1.1. Definition. — (cf. [24]) For Π an automorphic irreducible rep-
resentation ξ-cohomological of G(A), then, see for example lemma 3.2
of [12], there exists an integer s called the degeneracy depth of Π, such
that through the Jacquet-Langlands correspondence and base change, its
associated representation of GLd(AQ) is isobaric of the following form

µ| det |
1−s
2 ⊞ µ| det |

3−s
2 ⊞ · · ·⊞ µ| det |

s−1
2

where µ is an irreducible cuspidal representation of GLd/s(AQ).

Remark: For a place v such that G(Fv) ≃ GLd(Fv) in the sense of our
previous convention, the local component Πv of Π at v is isomorphic
to some Spehs(πv) where πv is an irreducible non degenerate represen-
tation, s ≥ 1 is an integer and Spehs(πv) is the Langlands quotient of
the parabolic induced representation πv{

1−s
2
}×πv{

3−s
2
}× · · ·×πv{

s−1
2
}.

In terms of the Langlands correspondence, Spehs(πv) corresponds to
σ ⊕ σ(1) ⊕ · · · ⊕ σ(s − 1) where σ is the representation of Gal(F̄ /F )
associated with πv by the local Langlands correspondence.

5.1.2. Notation. — For πv an irreducible cuspidal Ql-representation
of GLg(Fv) and t ≥ 1 such that tg ≤ d, write

H i
Iv(∞),!,1(πv, t, ξ) := lim

−→
n

H i
c(Sh

=tg

Iv(n),s̄v,1tg
, Vξ ⊗ j

=tg,∗

1tg
P (πv, t)1tg)

and its induced version

H i
Iv(∞),!(πv, t, ξ) := lim

−→
n

H i
c(Sh

=tg
Iv(n),s̄v

, Vξ ⊗ j
=tg,∗P (πv, t))

≃ H i
Iv(∞),!,1(πv, t)×Ptg,d(Fv) GLd(Fv).
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We also consider

H i
Iv(∞),!∗,1(πv, t, ξ) := lim

−→
n

H i(Sh≥tg
Iv(n),s̄v,1tg

, Vξ ⊗ P (πv, t)1tg)

and

H i(πv, t, ξ)Iv(∞),!∗ := lim
−→
n

H i(Sh≥tgIv(n),s̄v
, Vξ ⊗ P (πv, t))

≃ H i
Iv(∞),!∗,1(πv, t)×Ptg,d(Fv) GLd(Fv).

In this section we only consider the Ql-cohomology groups and we
recall the computations of [8].

5.1.3. Notation. — Let TS
ξ be the image of TS

abs inside

2d−2⊕

i=0

lim
→
I

H i(ShI,η̄, Vξ,Ql
)

where the limit concerned the ideals I which are maximal at each places
outside S.

For Π∞,v an irreducible representation of G(A∞,v), consider the
set S of finite places w of Q such that G, I and Π∞,v are unrami-
fied at w, We then consider Π∞,v as a TS

abs-module and we denote
by [H i

Iv(∞),!(πv, t, ξ)]{Π
∞,v} the associated TS

abs-isotypic component of

H i
Iv(∞),!(πv, t, ξ). We will use similar notations with the cohomology

groups introduced above. Consider now a fixed irreducible cuspidal
representation πv of GLg(Fv).

5.1.4. Proposition. — (cf. [12] §3.2 and 3.3) Let Π be an irreducible
automorphic representation of G(A) which is ξ-cohomological and with
degeneracy depth s ≥ 1.

– If s = 1 then [H i
Iv(∞),!(πv, t, ξ)]{Π

∞,v} and [H i
Iv(∞),!,∗(πv, t, ξ)]{Π

∞,v}

are all zero for i 6= 0. For i = 0, if [H i
Iv(∞),!(πv, t, ξ)]{Π

∞,v} 6= (0)

(resp. [H i
Iv(∞),!∗(πv, t, ξ)]{Π

∞,v} 6= (0)) then

Πv ≃ Stk(π̃v)× Π′v,

where Π′v is any irreducible representation, π̃v is inertially equivalent
to πv and k ≤ t (resp. k = t).
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– For s ≥ 1, and Πv ≃ Spehs(πv × π′v) for π′v any irreducible rep-
resentation of GL d−sg

s

(Fv), then [H i
Iv(∞),!(πv, t, ξ)]{Π

∞,v} (resp.

[H i
Iv(∞),!∗(πv, t, ξ)]{Π

∞,v}) is non zero if and only if i = s − 1 and

t ≥ s (resp. t = s and i ≡ s− 1 mod 2 with |i| ≤ s− 1).

Remark: In [12], we give the complete description of these cohomology
groups.

5.2. Torsion for Harris-Taylor perverse sheaves. — From now
on, we fix an irreducible supercuspidal Fl-representation ̺ and all the
irreducible cuspidal Ql-representation πv considered will be of type ̺. In
[11], using the adjunction maps Id −→ j=h

∗ j=h,∗, we construct a filtration
of stratification

0 = Fil−d∗ (πv,Πt) ⊂ Fil1−d∗ (πv,Πt) ⊂ · · · ⊂ Fil0∗(πv,Πt) = j=tg
! HT (πv,Πt),

with free gradutates gr−r∗ (πv,Πt) := Fil−r∗ (πv,Πt)/Fil
−r−1
∗ (πv,Πt) which

are trival except for r = kg − 1 with t ≤ k ≤ s and then verifying

pj=kg
!∗ HT (πv,Πt

−→
×Stk−t(πv))⊗ Ξ(t−k)/2

։֒ gr1−kg∗ (πv,Πt) ։֒

p+j=kg
!∗ HT (πv,Πt

−→
×Stk−t(πv))⊗ Ξ(t−k)/2,

where we recall that ։֒+ means a bimorphism, i.e. both a mono and a
epi-morphism, whose cokernel has support in Sh≥kg+1

I,s̄ .
Remark: In [10], we in fact proved that each of these graded parts are
isomorphic to the p-intermediate extensions.

5.2.1. Lemma. — When g = 1, i.e. πv = χv is a character, then for
all 1 ≤ t ≤ d, whatever is the representation Πt of GLt(Fv), we have

pj=t
!∗ HT (χv,Πt) ≃

p+j=t
!∗ HT (χv,Πt).

Proof. — For πv a character, the associated Harris-Taylor local system
on Sh=h

I,s̄ is just the trivial one Zl where the fundamental group Π1(Sh
=h
I,s̄)

acts by its quotient Π1(Sh
=h
I,s̄) ։ D

×
v,h with D×v,h acting by the character

χv. Then as Sh≥h
I,s̄v,1h

is smooth over SpecFp, then this Harris-Taylor local

system shifted by the dimension d − h, is perverse for both t-structures
p and p+, in particular the two intermediate extensions are equal.
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Remark: One of the main result of [10] is that this equality of perverse
extensions remains true for every Harris-Taylor local systems associated
with any irreducible cuspidal representation πv such that its modulo l
reduction is still supercuspidal, i.e. is of ̺-type −1.

5.2.2. Proposition. — For any representation Πt of GLt(Fv), we have
the following resolution of pj=t

!∗ HT (χv,Πt)

0→ j=d
! HT (χv,Πt{

t− s

2
})× Spehd−t(χv{t/2}))⊗ Ξ

s−t
2 −→ · · ·

−→ j=t+1
! HT (χv,Πt{−1/2} × χv{t/2})⊗ Ξ

1
2 −→

j=t
! HT (χv,Πt) −→

pj=t
!∗ HT (χv,Πt)→ 0. (5.2.3)

Proof. — As explained in [10], the statement is equivalent to the free-
ness of the sheaf cohomology groups of pj=t

!∗ HT (χv,Πt) which is trivial

when χv is a character. Indeed, as the strata Sh≥hIv,s̄v,1
are smooth, then

the constant sheaf, up to shift, is perverse and so equals to the interme-
diate extension of the constant sheaf, shifted by d − h, on Sh=h

Iv,s̄v,1h
. In

particular we have trivially the following resolution

0→ j=d
! HT (1v,Πt{

t− s

2
})⊗ Spehd−t(1v{t/2}))⊗ Ξ

s−t
2 −→ · · ·

−→ j=t+1
! HT (1v,Πt{−1/2} ⊗ 1v{t/2})⊗ Ξ

1
2 −→

j=t
! HT (1v,Πt) −→

pj=t
!∗ HT (1v,Πt)→ 0,

where we recall that Spehδ(1v) is the trivial representation of GLδ(Fv).
The resolution (5.2.3) is then just the induced version of the previous
one twisted by χv, as HT (χv,Πt) is the HT (1v,Πt) where the action of
the fundamental group factors through

π1(Sh
=t
I,s̄v)։ D

×
v,t

χv
−→F×v .

Remark: In [10], we prove the previous resolution more generally for
every irreducible cuspidal representation πv of GLg(Fv),

0→ j=sg
! HT (πv,Πt

−→
× Spehs−t(πv))⊗ Ξ

s−t
2 −→ · · · −→

j
=(t+2)g
! HT (πv,Πt

−→
× Speh2(πv))⊗ Ξ1 −→ j

=(t+1)g
! HT (πv,Πt

−→
×πv)⊗ Ξ

1
2

−→ j=tg
! HT (πv,Πt) −→

pj=tg
!∗ HT (πv,Πt)→ 0, (5.2.4)
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which is again equivalent to the property that the sheaf cohomology
groups of pj=tg

!∗ HT (πv,Πt) are torsion free.
In [13] we prove that torsion classes arising in some cohomology group

of the whole Shimura variety, can be raised in characteristic zero to some
automorphic tempered representation of G(A) in the following sense.

5.2.5. Definition. — A torsion class either in H i
Iv(∞),!∗(πv, t, ξ)m

or in H i
Iv(∞),!(πv, t, ξ)m, is said tempered ξ-cohomological if there

exists an irreducible automorphic and ξ-cohomological tempered rep-
resentation Π unramified outside I and p with Π∞ a sub-quotient of
lim→nH

d−1(ShIv(n),η̄, Vξ,Ql
)m.

From now on we denote by ̺ a Fl-character of F
×
v which could be, if we

admit the results of [10], any irreducible Fl-supercuspidal representation
of GLg−1(̺)(Fv). We will write the statements and the proofs in the
general case. We moreover suppose that

d = g−1(̺)m(̺)lu

and we will pay attention to irreducible GLd(Fv)-sub-quotients of either
H i

Iv(∞),!∗(πv, t, ξ)m[l] or H
i
Iv(∞),!(πv, t, ξ)m[l], isomorphic to ρu.

5.2.6. Lemma. — Consider πv,i ∈ Cuspi(̺) for i ≥ −1. Suppose there

exists a GLd(Fv)-irreducible sub-quotient of Hj
Iv(∞),!∗(πv,i, t, ξ)m[l] (resp.

Hj
Iv(∞),!(πv,i, t, ξ)m[l]), isomorphic to ρu, then j ∈ {0, 1} (resp. j = 1).

Proof. — (a) Consider first the case of i = −1. We argue by induc-
tion from t = s = m(̺)lu to t = 1 with both Hj

Iv(∞),!,1(πv,−1, t, ξ)m

and Hj
Iv(∞),!∗(πv,−1, t, ξ)m. Concerning Hj

Iv(∞),!∗(πv,−1, t, ξ)m, recall that,

as πv,−1 ∈ Cusp−1(̺) so that(7) whatever is the representation Πt of
GLtg−1(̺)(Fv),

pj=tg
!∗ HT (πv,−1,Πt) ≃

p+j=tg
!∗ HT (πv,−1,Πt),

then we only have to consider the case j ≤ 0. By Artin’s theorem, see for
example theorem 4.1.1 of [6], using the affiness of Sh=h

I,s̄v , we know that

Hj
Iv(∞),!(πv,−1, t, ξ)m is zero for every j < 0 and is torsion free for j = 0.

(7)cf. the lemma 5.2.1 for a character and [10] for the general case.
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- Note first that for t = s, then HT (πv,−1,Πs) has support in dimension

zero, so that Hj
Iv(∞),!∗(πv,−1, s, ξ)m = Hj

Iv(∞),!(πv,−1, s, ξ)m is zero for j 6= 0

and free for j = 0, so the result is trivially true.
- Suppose by induction, the result is true for all t′ > t and consider

the case of Hj
Iv(∞),!∗(πv,−1, t, ξ)m through the spectral sequence associated

with the resolution (5.2.3). Note first that concerning irreducible sub-
quotients of the l-torsion of the cohomology groups which are GLd(Fv)-
isomorphic to ρu, then we can truncate (5.2.3) to the short exact sequence
of its last three terms.

0 99K j
=(t+1)g
! HT (πv,−1,Πt

−→
×πv,−1)⊗ Ξ

1
2 −→

j=tg
! HT (πv,−1,Πt) −→

pj=tg
!∗ HT (πv,−1,Πt)→ 0. (5.2.7)

Then considering our problem for Hj
Iv(∞),!∗(πv,−1, t, ξ)m, for j ≤ −1,

there is no torsion with an irreducible sub-quotient isomorphic to
ρu. We are then done with Hj

Iv(∞),!∗(πv,−1, t, ξ)m. The result about

Hj
Iv(∞),!(πv,−1, t, ξ)m, then follows from the long exact sequence associ-

ated with (5.2.7) using the fact that for j = 0, it is torsion free.

(b) Consider now the case i ≥ 0. Recall, cf. [20] proposition 2.3.3,
that the semi-simplification of the modulo l reduction of πv,i[t]D, does
not depend of the choice of a stable lattice, and is equal to

m(̺)li−1∑

k=0

τ{−
m(̺)li − 1

2
+ k}

where τ is the modulo l reduction of πv,−1[tm(̺)li]D which is irreducible,
and τ{n} := τ ⊗ q−n val ◦nrd where nrd is the reduced norm. In particular
for any representation Πt of GLtg−1(̺)(Fv), we have

m(̺)liF
[
j
=tm(̺)lig−1(̺)
! HT (πv,−1,Π)

]
= m(̺)lij

=tm(̺)lig−1(̺)
!

[
FHT (πv,−1,Π)

]

= j
=tgi(̺)
!

[
FHT (πv,i,Π)

]
= F

[
j
=tgi(̺)
! HT (πv,i,Π)

]
, (5.2.8)

where F(•) = • ⊗L
Zl
Fl. By the computation of [8] §5, we note that

for j > 0, the irreducible sub-quotients of Hj(ShI,s̄v , j
=tg
! HT (πv,−1,Πt)⊗

Vξ)⊗ZlQl are not tempered except if t = s−1 and j = 1. Then concerning
sub-quotients isomorphic to ρu, the only case where it can appeared in the
modulo l reduction of some irreducible sub-quotient of the free quotient
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of Hj(ShI,s̄v , j
=tg
! HT (πv,−1,Πt) ⊗ Vξ) is when either (t, j) = (s − 1, 1)

or j = 0. The result about Hj
Iv(∞),!(πv,i, t, ξ)m[l] then follows from the

previous case where i = −1 using (5.2.8) and the following wellknown
short exact sequence

0→ Hn(X,P)⊗Zl Fl −→ Hn(X,FP) −→ Hn+1(X,P)[l]→ 0,

for any Fq-scheme X and any Zl-perverse free sheaf P.
Then the result about the cohomology of pj=tg

!∗ HT (πv,i,Πt) follows from

the resolution analog of (5.2.7), and the case of p+j=tg
!∗ HT (πv,i,Πt) is

obtained by Grothendieck-Verdier duality.

5.3. Tempered and non tempered congruences. —

5.3.1. Proposition. — Let Π be an irreducible automorphic cuspidal
representation of G(A) verifying the following properties:

– it is ξ-cohomological with non trivial invariant under some fixed
I ∈ I;

– its degeneracy depth is equal to s > 1;
– its local component at v is isomorphic to Spehs(πv) with πv ∈
Cusp(̺,−1) and where(8) d = gu(̺) for some u ≥ 0.

Denote by m the maximal ideal of TI associated with Π. Then for any
w ∈ Spl such that Iw is maximal, and distinct from l, there exists an
irreducible tempered representation Π(w) of G(A) such that:

– it is ξ-cohomological,
– of level I(w) = IwIw where Iw is the subgroup of elements of
GLd(Ow) which, modulo the maximal ideal of Ow, belong to the
parabolic subgroup P1,d(κ(w));

– Π(w) is weakly m-congruent to Π in the sense it shares the same
multiset of Satake’s parameters than Π outside I(w).

Remark: In particular for s = 2, as in Ribet’s proof of Herbrand theorem,
we should obtain a non trivial element in the Selmer group of the adjoint
representation of the Galois Fl-representation associated with m.

Thanks to the main result of [13], it suffices to prove that under the
previous hypothesis, the torsion of H1(ShI,η̄v , Vξ[d − 1])m is non trivial.
Note moreover that Π(w)w looks like St2(χw) × χw,1 × · · · × χw,d−2 for
unramified characters χw, χw,1, · · · , χw,d−2.

(8)For πv the trivial character, the hypothesis d = gu(̺) for u = 0 is equivalent to ask
that the order of q ∈ Fl, which is the cardinal of the residue field of Fv, is equal to d.
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Proof. — Thanks to the main result of [13], it suffices to prove that
under the previous hypothesis, the torsion of H1(ShI,η̄v , Vξ[d − 1])m is
non trivial. To do so, consider the spectral sequence

Ep,q
1 = Hp+q(ShI,s̄v , grr

−p
!,̺ )m ⇒ Hp+q(ShI,η̄v , Vξ[d− 1])m

associated with the filtration Fill•!,̺ of Ψ̺. Up to translation we may
suppose that Ep,q

1 = 0 for all p < 0.

– The first idea to construct torsion classes, could be to find some
non trivial torsion classes in the E1-page, i.e. in the cohomology of
the Harris-Taylor perverse sheaves. For example in [12] proposition
4.5.1, we prove that if the modulo l reduction of such πv is cuspidal
but not supercuspidal, then, for a well chosen level, the cohomology
groups of the associated Harris-Taylor perverse sheaves, can not be
all free, so there is torsion on the E1 page. Unfortunately it seems
not so clear that such torsion cohomology class remains in the E∞-
page.

– The idea is then to produce torsion in the E2 page by finding a map
dp,q1 with

Ep,q
1 ⊗Zl

Ql

dp,q1 ⊗Zl
Ql

//

����

Ep+1,q
1 ⊗Zl

Ql

Q
∼ // Q′

?�

OO

such that the Zl-lattices of Q and Q′ respectively induced by Ep,q
1

and Ep+1,q
1 , are not isomorphic.

First note that over Ql:

– E−r,r1 ⊗Zl
Ql has a direct factor isomorphic to (Π∞,v)I ⊗ Sts(πv) ⊗

L(πv)(
1−s
2
) where we recall that the contragredient of L(πv) is the

Galois representation attached to πv by the local Langlands corre-
spondance;

– d−r,r1 ⊗Zl
Ql induces a injection from the previous direct factor into

a direct factor of E−r+1,r
1 which, as a representation of GLd(Fv), is

parabolically induced from P(s−1)g−1(̺),d(Fv) to GLd(Fv).

From the last remark of the previous section, ind
D×

v,d

(D×
v,d

)0̟Z
v

pH0i∗zE
−r,r
1 as

a GLd(Fv)-representation, has a sub-space isomorphic to ΓG(πv) where
ΓG(πv) is a stable lattice of Sts(πv) such that ρu is the only irreducible
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sub-representation of ΓG(πv)⊗Zl
Ql. Moreover we know that ρu can not

be a sub-space of a parabolically induced representation. From these
facts we conclude that the torsion of E−r+1,r

2 is non trivial and more
precisely that ρu is a sub-quotient of E−r+1,r

2 [l].
If ρu as a sub-quotient of E−r+1,r

2 [l] remains a subquotient of E1
∞[l]

then we are done. Suppose by absurdity it is not the case. First about
the free quotient Ep,q

k,free of the E
p,q
k , we know from(9) [8] that:

– if ρu is a sub-quotient of Ep,q
1,free ⊗Zl

Fl with p+ q 6= 0, then grr−p!,̺ is
isomorphic to some P (πv, si(̺) − 1) with πv ∈ Cusp(̺, i) and then
p+ q = ±1;

– for k ≥ 2 and p + q 6= 0, as the Ql-spectral sequence degenerates
in E2 and that for n 6= 0, En

∞ ⊗Zl
Ql does not have a tempered

sub-quotient, then ρu is never a sub-quotient of Ep,q
k,free ⊗Zl

Fl.

Then there must exist (p, q) and a torsion class in (Ep,q
1,tor)m with p+q = 2

such that ρu is a sub-quotient of its l-torsion which contradicts lemma
5.2.6.
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