Mauvaise réduction des variétés de Drinfel'd et conjecture de Langlands locale

par

Pascal BOYER

5 rue Cacheux 75013 Paris FRANCE boyer@cmla.ens-cachan.fr

Table des matières

1	Enoncé d'une conjecture de Deligne-Carayol.			7			
	1	Le groupe de Grothendieck des représentations de $GL_h(F) \times D_{F,h}^{\times} \times$					
		$W_F \operatorname{sur} \bar{\mathbb{Q}}_l$					
		1.1	Rappels sur les représentations lisses, admissibles	7			
		1.2	Représentations l -adique de W_F	12			
		1.3	Représentations admissibles de $G \times \Gamma$	15			
		1.4	Définition du groupe $K_{\rm ad}$	19			
		1.5	Description des objets irréductibles de $C_{\rm ad}$	20			
		1.6	Les groupes $K_{GL,\Gamma}$ et $K_{GL,H,\Gamma}$	23			
		1.7	Induction et cuspidalité	25			
	2	Corre	spondances de Jacquet-Langlands et de Langlands locales	27			
		2.1	Correspondance de Jacquet-Langlands locale	27			
		2.2	Correspondance de Langlands locale	29			
	3 La représentation locale fondamentale			31			
		3.1	Les \mathcal{O} -modules formels et leurs déformations d'après Drin-				
			fel'd	31			
		3.2	Définition de la représentation locale fondamentale	35			
	4						
2	\mathcal{D} -faisceaux elliptiques, structures de niveaux, espaces de mo-						
	dules: rappels et compléments. 4						
	1	_	els sur les \mathcal{D} -faisceaux elliptiques	42			
		1.1	Algèbre à division centrale sur F	42			
		1.2	Définition des \mathcal{D} -faisceaux elliptiques	42			
		1.3	φ -faisceaux, schémas Gr et application aux \mathcal{D} -faisceaux el-				
			liptiques	43			
		1.4	Structures de niveaux en dehors de la caractéristique	47			
		1.5	Schéma de module, propreté	49			
		1.6	Déformations des \mathcal{D} -faisceaux elliptiques	50			
	2 O-module de Dieudonné, O-modules divisible et théorème de Se						
		Tate.	· · · · · · · · · · · · · · · · · · ·	55			
		2.1	Rappels sur le module de coordonnées des \mathcal{O} -modules formels.	55			
		2.2	\mathcal{O} -modules de Dieudonné et \mathcal{O} -modules divisibles	57			

		2.3	Modules divisibles associés à un $\mathcal{D}\text{-faisceau}$ elliptique	62			
		2.4	Anneau universel des déformations d'un \mathcal{O} -module divisible				
			et théorème de Serre-Tate	62			
	3	Exten	sion aux niveaux divisant la caractéristique	66			
		3.1	Bases de Drinfeld	66			
		3.2	Représentabilité relative	69			
		3.3	Anneau universel des déformations d'un \mathcal{O} -module divisible				
			muni d'une structure de niveau n et propriétées locales de				
			$\mathcal{E}ll_{X,\mathcal{D}J}$	70			
		3.4	Correspondances de Hecke	72			
3	Vér	ificatio	on d'une conjecture de Rapoport.	79			
	1	φ -faise	ceaux sur une base S et stratification de S	79			
	2	Stratification de l'anneau universel des déformations d'un \mathcal{O} -modul					
		divisib	ble	81			
		2.1	ble	81			
		2.2	Composantes $\operatorname{Spec}(E_n^{h,j,=h'})_A$ de $\operatorname{Spec}(E_n^{h,j,=h'})$	83			
	3	Strati	fication des fibres de $\mathcal{E}ll_{X,\mathcal{D},I}$	88			
		3.1	Définition des strates $\mathcal{E}ll_{X,\mathcal{D},I,x}^{\mathcal{B},h}$ pour $x \in X'$	88			
		3.2	Décomposition des strates dans le cas de mauvaise réduction.	89			
	4	Les st	les strates non supersingulières sont induites 91				
	5		Description adélique des points supersinguliers				
		5.1	Rappels sur les φ -espaces et φ -paires	94			
		5.2	Existence de points supersinguliers et dimension des strates.	96			
		5.3	Description adélique des points supersinguliers suivant leur				
			(D, ∞, o) -type: rappels	97			
		5.4		100			
		5.5	Description des actions de l'algèbre de Hecke, de Z et du				
			Frobenius	101			
4	Pre	uve de	e la conjecture de Deligne-Carayol.	105			
	1	La cat	égorie $C_{(D^{\infty})^{\times},\Gamma_o}$ des représentations admissibles de $(D^{\infty})^{\times}\times\Gamma_o$.	105			
	2		spondance locale de Langlands d'après Laumon-Rapoport-				
		Stuhle	er	107			
	3	Les cy	rcles proches pour $\mathcal{E}ll_{X,\mathcal{D},I}$	109			
		3.1		109			
		3.2		111			
	4	Unifor	rmisation du complété formel le long de l'ensemble des points				
				112			
	5	=	, .	115			
		5.1	Les strates ouvertes non supersingulières ne contiennent				
			pas de cuspidale	115			
		5.2	Suites spectrales et points supersinguliers				

6	La représentation locale fondamentale revisitée.	 119
Bibliog	raphie.	123

Chapitre 1

Enoncé d'une conjecture de Deligne-Carayol.

Soit l un nombre premier. On fixe une clôture algébrique $\bar{\mathbb{Q}}_l$ de \mathbb{Q}_l .

1 Le groupe de Grothendieck des représentations de $GL_h(F) \times D_{F,h}^{\times} \times W_F$ sur $\bar{\mathbb{Q}}_l$.

1.1 Rappels sur les représentations lisses, admissibles.

Soit E un corps de caractéristique nulle. Soit G un groupe topologique unimodulaire, localement compact, totalement discontinu et séparé. On fixe une mesure de Haar, dg, sur G, que l'on supposera rationnelle sur \mathbb{Q} , c'est-à-dire telle que pour tout sous-groupe compact ouvert K de G, on a $\operatorname{vol}(K) \in \mathbb{Q}$. On note \mathcal{H} l'algèbre de Hecke de G, c'est-à-dire la \mathbb{Q} -algèbre de convolution pour la mesure de Haar dg sur G, des fonctions localement constantes à support compact sur G et à valeurs dans \mathbb{Q} . On note \mathcal{H}_K la sous-algèbre de \mathcal{H} , formée des fonctions invariantes à droite et à gauche par K. L'élément $e_K = \operatorname{vol}(K)^{-1}.1_K$, où 1_K est la fonction caractéristique de K, est un idempotent de \mathcal{H} . La sous-algèbre \mathcal{H}_K est égale à $\mathcal{H}_K = e_K.\mathcal{H}.e_K$, et e_K est une unité de \mathcal{H}_K .

Soit (V, π) une représentation de G sur un E-espace vectoriel.

Définition 1.1.1 Un vecteur $v \in V$ est dit **lisse** si son stabilisateur

$$\{g \in G \mid \pi(g)(v) = v\}$$

est un sous-groupe ouvert de G. La représentation (V, π) est dite **lisse** si tous ses vecteurs sont lisses.

Soit $\text{Rep}_{E,s}(G)$ la catégorie des représentations lisses définies sur E. La catégorie $\text{Rep}_{E,s}(G)$ est abélienne.

Pour toute \mathbb{Q} -algèbre \mathcal{A} , on note $\operatorname{Mod}_E(\mathcal{A})$ la catégorie abélienne des $(E \otimes \mathcal{A})$ modules à gauche. Un objet V de cette catégorie sera dit **non dégénéré** si, pour
tout $v \in V$, il existe un élément a de $E \otimes \mathcal{A}$ tel que v = a.v. On notera $\operatorname{Mod}_{E,nd}(\mathcal{A})$ la sous-catégorie pleine de $\operatorname{Mod}_E(\mathcal{A})$ dont les objets sont les $(E \otimes \mathcal{A})$ -modules à
gauche non dégénérés.

Soit (V,π) un objet de $\operatorname{Rep}_{E,s}(G)$. Pour tout $v \in V$ et tout $f \in \mathcal{H}$, l'intégrale

$$\pi(f)(v) = f.v = \int_G f(g)\pi(g)(v)dg$$

se ramène à une somme finie; elle est donc convergente. L'application

$$\mathcal{H} \longrightarrow \operatorname{End}(V)$$
 $f \longmapsto \pi(f),$

ainsi définie, munit V d'une structure de $(E \otimes \mathcal{H})$ -module à gauche. De plus si $\alpha: (V_1, \pi_1) \to (V_2, \pi_2)$ est un morphisme de $\text{Rep}_{E,s}(G)$, alors $\alpha: V_1 \to V_2$ est clairement $(E \otimes \mathcal{H})$ -linéaire.

On obtient donc un foncteur

$$\operatorname{Rep}_{E,\mathbf{s}}(G) \longrightarrow \operatorname{Mod}_{E}(\mathcal{H})$$
 (1.1.2)

qui induit une équivalence de catégories entre $\operatorname{Rep}_{E,s}(G)$ et $\operatorname{Mod}_{E,\operatorname{nd}}(\mathcal{H})$.

Définition 1.1.3 La représentation (V, π) est dite **admissible** si elle est lisse et si pour tout sous-groupe ouvert compact K de G, l'espace V^K des vecteurs de V invariants sous K est de dimension finie.

On note $\operatorname{Rep}_{E,a}(G)$ la sous-catégorie pleine de $\operatorname{Rep}_{E,s}(G)$ dont les objets sont les représentations admissibles de G. La catégorie $\operatorname{Rep}_{E,a}(G)$ est abélienne. Le foncteur (1.1.2) induit une équivalence de $\operatorname{Rep}_{E,a}(G)$ sur la catégorie $\operatorname{Mod}_{E,ad}(\mathcal{H})$ des $(E \otimes \mathcal{H})$ -modules admissibles, c'est-à-dire des $(E \otimes \mathcal{H})$ -modules à gauche M non dégénérés tels que, pour tout sous-groupe compact ouvert K de G, $e_K.M$ est un E-espace vectoriel de dimension finie.

On a un foncteur exact

$$\operatorname{Mod}_{E,\operatorname{nd}}(\mathcal{H}) \longrightarrow \operatorname{Mod}_{E}(\mathcal{H}_{K})$$
 (1.1.4)
 $M \longmapsto M^{K} := e_{K}.M$

qui envoie $\operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H})$ sur la sous-catégorie pleine $\operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H}_K)$ de $\operatorname{Mod}_E(\mathcal{H}_K)$, dont les objets sont les $(E \otimes \mathcal{H}_K)$ -modules de dimension finie sur E.

Proposition 1.1.5 (i) Le foncteur (1.1.4) induit une bijection de l'ensemble des classes d'isomorphie d'objets irréductibles M de $\operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H})$ tels que M^K est non nul, sur l'ensemble des classes d'isomorphie des $(E \otimes \mathcal{H}_K)$ -modules à gauche irréductibles.

(ii) Si M est un objet irréductible de $Mod_{E,ad}(\mathcal{H})$ avec M^K non nul alors l'homomorphisme naturel

$$\operatorname{End}_{E\otimes\mathcal{H}}(M)\longrightarrow\operatorname{End}_{E\otimes\mathcal{H}_K}(M^K)$$

est bijectif.

Preuve: (i) Si M est irréductible et si N^K est un $(E\otimes\mathcal{H}_K)$ -sous module de M^K , l'application

$$\mathcal{H}.e_K \otimes_{\mathcal{H}_K} N^K \longrightarrow M, \ f \otimes m \longmapsto \pi(f)(v)$$

est non nulle car en considérant les vecteurs invariants sous K, on retrouve l'inclusion $N^K \hookrightarrow M^K$. Comme M est irréductible, l'application ci-dessus est surjective. D'après l'exactitude du foncteur invariant sous K, on obtient $N^K = M^K$; M^K est donc irréductible.

Soient N_K un $(E \otimes \mathcal{H}_K)$ -module irréductible et $N := \mathcal{H}.e_K \otimes_{\mathcal{H}_K} N_K$. On considère $N_1 := \{n \in N \mid e_K.\mathcal{H}.n = (0)\}$; il s'agit du plus grand sous- $(E \otimes \mathcal{H})$ -module de N qui ne possède pas d'éléments invariants sous K. Soit N' un sous-module de N. Comme N_K est irréductible et engendre N, nécessairement N' = N ou bien $N' \subset N_1$. Ainsi $N_2 := N/N_1$ est irréductible et $(N_2)^K = N_K$.

(ii) Soit M un $(E \otimes \mathcal{H})$ -module irréductible tel que $M^K \neq (0)$; M^K est donc un $(E \otimes \mathcal{H}_K)$ -module irréductible. Tout élément non nul de $\operatorname{End}_{E \otimes \mathcal{H}_K}(M)$ et de $\operatorname{End}_{E \otimes \mathcal{H}_K}(M^K)$ est inversible, et l'homomorphisme naturel

$$\operatorname{End}_{E\otimes\mathcal{H}}(M)\longrightarrow\operatorname{End}_{E\otimes\mathcal{H}_K}(M^K)$$

est injectif. De plus tout endomorphisme du $(E \otimes \mathcal{H}_K)$ -module, M^K , induit un endomorphisme du $(E \otimes \mathcal{H})$ -module $M' := \mathcal{H}.e_K \otimes_{\mathcal{H}_K} M^K$, lequel stabilise le sous-module M'_1 défini comme ci-dessus, et donc induit un endomorphisme du $(E \otimes \mathcal{H})$ -module $M'/M'_1 \simeq M$. Cette construction définit un inverse à droite à l'homomorphisme injectif ci-dessus; c'est donc un isomorphisme.

Soit \mathcal{I} un ensemble de sous-groupes ouverts compacts de G, qui est un système fondamental de voisinages ouverts de l'élément neutre. Pour $K \subset K'$ deux éléments de \mathcal{I} , on a un morphisme de $(E \otimes \mathcal{H}_{K'})$ -modules

$$\pi_{K',K}: M^K \longrightarrow M^{K'}$$
 $m \longmapsto \frac{1}{\operatorname{vol}(K',dk')} \int_{K'} k' m.dk'$

9

où $\mathcal{H}_{K'}$ agit sur M^K à travers l'inclusion $\mathcal{H}_{K'} \subset \mathcal{H}_K$. Le morphisme $\pi_{K',K}$ induit alors un isomorphisme de $(E \otimes \mathcal{H}_{K'})$ -modules

$$e_{K'}.M^K \xrightarrow{\sim} M^{K'}.$$

Si $K \subset K' \subset K$ " sont des éléments de \mathcal{I} , on a

$$\pi_{K'',K} = \pi_{K'',K'} \circ \pi_{K',K}$$

Proposition 1.1.6 (i) Le foncteur $M \mapsto (M^K, \pi_{K',K})_{K,K' \in \mathcal{I}}$ induit une équivalence de la catégorie $\operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H})$ sur la catégorie

$$2-\underset{K}{\varprojlim} \operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H}_K)$$

définie comme suit. Les objets de 2- $\varprojlim_K \operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H}_K)$ sont les systèmes projectifs $(M_K, \pi_{K',K})$ où, pour tout élément K de \mathcal{I} , M_K est un objet de la catégorie $\operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H}_K)$, où, pour toute inclusion $K \subset K'$ d'éléments de \mathcal{I} , $\pi_{K',K}: M_K \to M_{K'}$ est un morphisme de $(E \otimes \mathcal{H}_{K'})$ -modules, $\mathcal{H}_{K'}$ agissant sur M_K à travers l'inclusion $\mathcal{H}_{K'} \subset \mathcal{H}_K$, tel que si $K \subset K' \subset K$ " sont des éléments quelconques de \mathcal{I} , on a

$$\pi_{K",K} = \pi_{K",K'} \circ \pi_{K',K}$$

et où on suppose que $\pi_{K',K}$ induit un isomorphisme de $(E \otimes \mathcal{H}_{K'})$ -modules

$$e_{K'}.M_K \xrightarrow{\sim} M_{K'}.$$

Les flèches de 2- $\varprojlim_K \operatorname{Mod}_{E,ad}(\mathcal{H}_K)$ sont les systèmes compatibles de flèches des catégories $\operatorname{Mod}_{E,ad}(\mathcal{H}_K)$.

Un foncteur quasi-inverse est donné par

$$(M_K)_{K\in\mathcal{I}}\longmapsto \varinjlim_K M_K$$

où la limite inductive est prise sur les inclusions $M_{K'} \simeq e_{K'}.M_K \subset M_K$ associées aux inclusions $K \subset K'$ dans \mathcal{I} .

(ii) Si M est un objet non nul de $\operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H})$ qui correspond à un système projectif $(M_K)_{K\in\mathcal{I}}$ dans l'équivalence précédente, alors M est irréductible si et seulement si M_K est irréductible en tant qu'objet de $\operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H}_K)$, pour tout élément K de \mathcal{I} tel que $M_K \neq (0)$.

Preuve : (i) Soient M un objet de $\operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H})$ et m un élément de M. Comme M est non dégénéré, il existe un sous-groupe ouvert compact K tel que m est un élément de M^K ; d'où $M \simeq \varinjlim_K M^K$. En outre pour tout élément m de $\varinjlim_K M_K$, il existe $K \in \mathcal{I}$ tel que $m \in M^K$; d'où $(\varinjlim_K M_K)^K \simeq M_K$.

(ii) D'après la proposition 1.1.5, si M est irréductible alors tous les M^K qui sont non nuls, sont irréductibles. Réciproquement soit N un sous-module de M admissible et soit K_0 un sous-groupe ouvert compact tel que N^{K_0} est non nul. Pour tout $K \subset K_0$, N^K est alors non nul et est un sous- \mathcal{H}_K -module de M^K , de sorte que $N^K = M^K$. Or on a $M = \bigcup_{K \subset K_0} M^K$ et $N = \bigcup_{K \subset K_0} N^K$ d'où N = M.

Pour deux corps $E \subset E'$ de caractéristique nulle, on a un foncteur d'extension des scalaires

$$\operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H}) \longrightarrow \operatorname{Mod}_{E',\operatorname{ad}}(\mathcal{H})$$

$$M_E \longmapsto M_{E'} := E' \otimes_E M_E$$

$$(u: M_E^1 \to M_E^2) \longmapsto (\operatorname{Id}_{E'} \otimes_E u: E' \otimes_E M_E^1 \to E' \otimes_E M_E^2).$$

$$(1.1.7)$$

Dans la suite, E désignera une extension finie de \mathbb{Q}_l contenue dans $\bar{\mathbb{Q}}_l$. On introduit alors la catégorie $\mathrm{Mod}_{\mathrm{ad}}(\mathcal{H})$ comme la sous-catégorie pleine de $\mathrm{Mod}_{\bar{\mathbb{Q}}_l,\mathrm{ad}}(\mathcal{H})$ dont les objets sont les objets M de $\mathrm{Mod}_{\bar{\mathbb{Q}}_l,\mathrm{ad}}(\mathcal{H})$ pour lesquels il existe une extension finie E de \mathbb{Q}_l dans $\bar{\mathbb{Q}}_l$ (qui dépend de M), telle que M est l'image d'un objet M_E de $\mathrm{Mod}_{E,\mathrm{ad}}(\mathcal{H})$ par le foncteur d'extension des scalaires de E à $\bar{\mathbb{Q}}_l$. Pour chaque extension finie E de \mathbb{Q}_l dans $\bar{\mathbb{Q}}_l$, on a un foncteur

$$\operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H}) \longrightarrow \operatorname{Mod}_{\operatorname{ad}}(\mathcal{H}).$$

Cette famille de foncteurs est compatible aux foncteurs d'extension des scalaires car $M_E \otimes_E \bar{\mathbb{Q}}_l = (M_E \otimes_E E') \otimes_{E'} \bar{\mathbb{Q}}_l$. On obtient donc un foncteur

$$2-\underset{E}{\lim} \operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H}) \longrightarrow \operatorname{Mod}_{\operatorname{ad}}(\mathcal{H}). \tag{1.1.8}$$

Lemme 1.1.9 Le foncteur (1.1.8) est une équivalence de catégories.

Preuve: Par définition de $\text{Mod}_{ad}(\mathcal{H})$, (1.1.8) est essentiellement surjectif. Pour montrer que (1.1.8) est pleinement fidèle, on commence par démontrer le lemme suivant.

Lemme 1.1.10 Pour toute inclusion de corps $E \subset E'$ (éventuellement de degré infini) dans $\bar{\mathbb{Q}}_l$, le morphisme naturel pour deux objets $M_{1,E}$ et $M_{2,E}$ de $\mathrm{Mod}_{E,\mathrm{ad}}(\mathcal{H})$

$$\operatorname{Hom}_{E \otimes \mathcal{H}}(M_{1,E}, M_{2,E}) \otimes_E E' \longrightarrow \operatorname{Hom}_{E' \otimes \mathcal{H}}(M_{1,E'}, M_{2,E'})$$

est un isomorphisme.

Preuve: Soient $M_{1,E}$ et $M_{2,E}$ des objets de $\operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H})$. D'après la proposition 1.1.6 (i), un élément de $\operatorname{Hom}_{E\otimes\mathcal{H}}(M_{1,E},M_{2,E})$ (resp. de $\operatorname{Hom}_{E'\otimes\mathcal{H}}(M_{1,E'},M_{2,E'})$) correspond à la donnée d'un système projectif

$$\varphi_{E,K} \in \operatorname{Hom}_{E \otimes \mathcal{H}_K}(M_{1,E}^K, M_{2,E}^K) \text{ (resp. } \in \operatorname{Hom}_{E' \otimes \mathcal{H}_K}(M_{1,E'}^K, M_{2,E'}^K)) \quad K \in \mathcal{I}.$$

Il suffit donc de vérifier que pour tout $K \in \mathcal{I}$, le morphisme naturel

$$\operatorname{Hom}_{E\otimes\mathcal{H}_K}(M_{1,E}^K, M_{2,E}^K)\otimes_E E'\longrightarrow \operatorname{Hom}_{E'\otimes\mathcal{H}_K}(M_{1,E'}^K, M_{2,E'}^K)$$

est un isomorphisme. On munit $\operatorname{Hom}_E(M_{1,E}^K, M_{2,E}^K)$ et $\operatorname{Hom}_{E'}(M_{1,E'}^K, M_{2,E'}^K)$ d'une structure de \mathcal{H}_K -module via la formule: $(h.\varphi)(m_1) = h.\varphi(h^{-1}m_1)$. On a alors

$$\operatorname{Hom}_{E \otimes \mathcal{H}_K}(M_{1,E}^K, M_{2,E}^K) = (\operatorname{Hom}_E(M_{1,E}^K, M_{2,E}^K))^{\mathcal{H}_K}$$

 et

$$\operatorname{Hom}_{E' \otimes \mathcal{H}_K}(M_{1,E'}^K, M_{2,E'}^K) = (\operatorname{Hom}_{E'}(M_{1,E'}^K, M_{2,E'}^K))^{\mathcal{H}_K}.$$

Le résultat se déduit du fait suivant. Pour V_E un E-espace vectoriel de dimension finie muni d'une structure de \mathcal{H}_K -module si on pose $V_{E'}:=V_E\otimes_E E'$ alors la flèche naturelle $V_E^{\mathcal{H}_K}\otimes_E E'\to V_{E'}^{\mathcal{H}_K}$ est un isomorphisme. Elle est clairement injective. Pour la surjectivité, soit $v_{E'}$ un élément de $V_{E'}^{\mathcal{H}_K}$ qui s'écrit comme une somme finie $v_{E'}=\sum_{\lambda}v_{E,\lambda}\otimes\lambda$ où les λ sont des éléments de E'. On considère une base $(\lambda_i)_{1\leqslant i\leqslant n}$ du sur-corps de degré fini de E engendré par les λ et on écrit $v_{E'}=\sum_{i=1}^n v_{E,i}\otimes\lambda_i$. Ainsi on a $v_{E'}=h.v_{E'}=\sum_{i=1}^n (h.v_{E,i})\otimes\lambda_i$. Les éléments λ_i pour $1\leqslant i\leqslant n$ formant une famille libre sur E, on a bien $h.v_{E,i}=v_{E,i}$, pour tout i tel que $1\leqslant i\leqslant n$; d'où le résultat.

Soient deux objets M_1 et M_2 de $\operatorname{Mod}_{\operatorname{ad}}(\mathcal{H})$. On choisit une extension finie E de \mathbb{Q}_l dans $\overline{\mathbb{Q}}_l$ telle qu'il existe deux objets $M_{1,E}$ et $M_{2,E}$ de $\operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H})$ pour lesquels $M_i = M_{i,E} \otimes_E \overline{\mathbb{Q}}_l$ pour i = 1, 2. Soit alors u un élément de $\operatorname{Hom}_{\overline{\mathbb{Q}}_l \otimes \mathcal{H}}(M_1, M_2)$. D'après le lemme précédent pour $E' = \overline{\mathbb{Q}}_l$, on a

$$\operatorname{Hom}_{\overline{\mathbb{Q}}_l \otimes \mathcal{H}}(M_1, M_2) \simeq \operatorname{Hom}_{E \otimes \mathcal{H}}(M_{1,E}, M_{2,E}) \otimes_E \overline{\mathbb{Q}}_l$$
.

Ainsi il existe une extension finie E' de E dans \mathbb{Q}_l telle que u appartienne à $\operatorname{Hom}_{E'\otimes\mathcal{H}}(M_{1,E'},M_{2,E'})$.

1.2 Représentations l-adique de W_F .

Soit F un corps local non archimédien, d'égale caractéristique p, pour p un nombre premier différent de l. Soient \mathcal{O} l'anneau des entiers de F, π une uniformisante, k son corps résiduel de cardinal q et |.| la valeur absolue de F normalisée par $|\pi| = 1/q$. Notons I_F le groupe d'inertie de $G_F = \operatorname{Gal}(\bar{F}/F)$. On rappelle qu'alors W_F est défini par le diagramme à lignes exactes

$$1 \longrightarrow I_F \longrightarrow W_F \xrightarrow{\text{deg}} \mathbb{Z} \longrightarrow 0$$

$$\downarrow = \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow I_F \longrightarrow G_F \longrightarrow \hat{\mathbb{Z}} \longrightarrow 0,$$

la topologie de W_F étant telle que I_F , avec sa topologie de Krull, est un sousgroupe ouvert de W_F , et que W_F/I_F est isomorphe à \mathbb{Z} muni de la topologie discrète. On fixe un élément Fr de W_F tel que deg(Fr) = 1.

Pour E une extension finie de \mathbb{Q}_l dans $\overline{\mathbb{Q}}_l$, on note $R_W(E)$ la catégorie des représentations continues de W_F sur un E-espace vectoriel de dimension finie, $GL(V_E)$ étant muni de la topologie l-adique. Pour $E \subset E'$ une extension de corps, on a un foncteur d'extension des scalaires de E à E'

$$R_W(E) \longrightarrow R_W(E')$$

 $V_E \longmapsto V_{E'} := V_E \otimes_E E'.$

On introduit la sous-catégorie pleine R_W de la catégorie des représentations de W_F sur un $\bar{\mathbb{Q}}_l$ -espace vectoriel de dimension finie dont les objets V_l sont ceux pour lesquels il existe une extension finie E de \mathbb{Q}_l dans $\bar{\mathbb{Q}}_l$ (qui dépend de V_l), telle que V_l est l'image d'un objet V_E de $R_W(E)$ par le foncteur d'extension des scalaires de E à $\bar{\mathbb{Q}}_l$. Les objets de R_W sont par définition les représentations l-adique. Pour chaque extension finie E de \mathbb{Q}_l dans $\bar{\mathbb{Q}}_l$, on a un foncteur

$$R_W(E) \longrightarrow R_W, \qquad V_E \longmapsto \bar{\mathbb{Q}}_l \otimes_E V_E.$$

Cette famille de foncteur est compatible aux foncteurs d'extension des scalaires et on obtient un foncteur

$$2-\underset{E}{\varinjlim} R_W(E) \longrightarrow R_W. \tag{1.2.1}$$

Lemme 1.2.2 Le foncteur (1.2.1) est une équivalence de catégories.

Preuve: Par définition de R_W , le foncteur (1.2.1) est essentiellement surjectif. Pour deux objets $V_{1,l}$ et $V_{2,l}$ de R_W , soit E une extension finie de \mathbb{Q}_l dans \mathbb{Q}_l telle qu'il existe deux objets $V_{1,E}$ et $V_{2,E}$ de $R_W(E)$ avec $V_{i,E} \otimes_E \mathbb{Q}_l = V_{i,l}$ pour i = 1, 2. Comme $V_{i,l}$ est un espace vectoriel de dimension finie, on peut reprendre la démonstration du lemme 1.1.10 et on obtient:

$$\operatorname{Hom}_{R_W}(V_{1,l}, V_{2,l}) \simeq \operatorname{Hom}_{R_W(E)}(V_{1,E}, V_{2,E}) \otimes_E \overline{\mathbb{Q}}_l.$$

Ainsi pour tout élément u de $\operatorname{Hom}_{R_W}(V_{1,l},V_{2,l})$, il existe une extension finie E' de E telle que u soit un élément de $\operatorname{Hom}_{R_W(E')}(V_{1,E'},V_{2,E'})$.

Soit E une extension finie de \mathbb{Q}_l dans $\overline{\mathbb{Q}}_l$, d'anneau des entiers \mathcal{O}_E . Soit (σ_E, V_E) une représentation continue de W_F sur un E-espace vectoriel V_E de

dimension finie. On cite un théorème de Grothendieck dont on pourra trouver une preuve dans [31].

Théorème 1.2.3 (Grothendieck) Il existe un sous-groupe ouvert U de I_F , distingué dans $Gal(\bar{F}/F)$, tel que la restriction de σ_E à U est unipotente.

Corollaire 1.2.4 Si la représentation σ_E est irréductible, il existe un sous-groupe ouvert U de I_F , distingué dans $Gal(\bar{F}/F)$, tel que la restriction de σ_E à U est triviale.

Preuve : D'après le théorème 1.2.3, soit U un sous-groupe ouvert de I_F , distingué dans $\operatorname{Gal}(\bar{F}/F)$, tel que la restriction de σ_E à U est unipotente. Pour tout élément u de U, soit V'_E le sous-espace propre de $\sigma_E(u)$. De l'égalité pour tout élément w de W_F ,

$$\sigma_E(u)\sigma_E(w^{-1}) = \sigma_E(w^{-1})\sigma_E(u)^{q^{\deg(w)}},$$

on en déduit que V_E' est un sous-espace stable de V_E . D'après l'irréductibilité de σ_E , on a alors $V_E' = V_E$. Ainsi pour tout élément u de U, $\sigma_E(u)$ est la matrice identité.

Si V_E est de dimension n alors $\Lambda^n \sigma_E$ est un caractère continu de W_F que l'on peut considérer comme un caractère ξ_E du plus grand quotient abélien W_F^{ab} de W_F . D'après la théorie locale du corps de classe abélien, W_F^{ab} est isomorphe à F^{\times} . Le caractère $\xi_E: F^{\times} \to E$ est appelé le caractère central de σ_E . La donnée de ξ_E est équivalente à la donnée du couple $(\xi_E', \xi_E(\pi))$, où $\xi_E':=\xi_{E|\mathcal{O}^{\times}}: \mathcal{O}^{\times} \to E^{\times}$ est continu et, d'après le corollaire 1.2.4, est d'ordre fini. Le caractère ξ_E est donc d'ordre fini si et seulement si $\xi_E(\pi)$ est une racine de l'unité.

Proposition 1.2.5 Soit σ_E une E-représentation continue de W_F , irréductible et de caractère central d'ordre fini. Il existe une base $(e_i)_{i=1,\dots,n}$ de V_E et un corps de nombre E_0 , tels que pour tout élément w de W_F , la matrice de $\sigma_E(w)$ dans la base $(e_i)_{i=1,\dots,n}$ est à coefficients dans E_0 .

Preuve: Soit U un sous-groupe ouvert de I_F distingué dans $\operatorname{Gal}(\bar{F}/F)$ tel que la restriction de σ_E à U est triviale. Le groupe I_F/U étant fini, une puissance du Frobenius, Fr^m , y agit trivialement par conjugaison. L'élément Fr^m de W_F est donc central dans W_F/U et d'après le lemme de Schur, $\sigma_E(\operatorname{Fr}^m)$ est scalaire: $\sigma_E(\operatorname{Fr}^m) = \mu$.Id. En prenant le produit extérieur n-ème, on obtient $\mu^n = \xi_E(\pi)^m$ et μ est une racine de l'unité. Il existe donc un entier m' tel que $\sigma_E(\operatorname{Fr}^{m'})$ est trivial. Ainsi la représentation σ_E se factorise à travers $(W_F/U)/(\operatorname{Fr}^{m'})^{\mathbb{Z}}$, qui est fini d'après la suite exacte

$$0 \to I_F/U \to (W_F/U)/(Fr^{m'})^{\mathbb{Z}} \to \mathbb{Z}/m'\mathbb{Z} \to 0.$$

Or pour un groupe fini, toute représentation de dimension finie est définie sur un corps de nombre, d'où le lemme.

Soit $(\sigma_{\mathbb{C}}, V_{\mathbb{C}})$ une représentation complexe continue de dimension n de W_F . On définit comme précédemment son caractère central $\xi_{\mathbb{C}}: F^{\times} \longrightarrow \mathbb{C}^{\times}$. La donnée de $\xi_{\mathbb{C}}$ est équivalente à la donnée du couple $(\xi'_{\mathbb{C}}, \xi_{\mathbb{C}}(\pi))$, où $\xi'_{\mathbb{C}}:=\xi_{\mathbb{Q}\mathcal{O}^{\times}}: \mathcal{O}^{\times} \to \mathbb{C}^{\times}$ est continu et se factorise donc par un quotient fini. On définit l'élément $s(\sigma_{\mathbb{C}})$ de $\mathbb{C}/\frac{2i\pi\mathbb{Z}}{\log(q)}$ par $\xi_{\mathbb{C}}(\pi)=q^{-s(\sigma_{\mathbb{C}})}$. Le caractère $\xi_{\mathbb{C}}$ est alors d'ordre fini si et seulement si $s(\sigma_{\mathbb{C}})$ appartient à $\frac{2\pi i\mathbb{Z}}{\log q}(\mathbb{Q}/\mathbb{Z})$.

Proposition 1.2.6 Si la représentation complexe $\sigma_{\mathbb{C}}$ est irréductible et de caractère central d'ordre fini, il existe une base (e_i) de $V_{\mathbb{C}}$ et un corps de nombre E_0 tel que pour tout élément w de W_F , la matrice de $\sigma_{\mathbb{C}}(w)$ dans la base (e_i) est à coefficients dans E_0 .

Preuve : En effet par continuité il existe un sous-groupe ouvert U de I_F distingué dans $\operatorname{Gal}(\bar{F}/F)$ tel que la restriction de $\sigma_{\mathbb{C}}$ à U soit triviale. Le reste de la preuve est identique à celle de la proposition 1.2.5.

On fixe un isomorphisme de corps: $\iota : \overline{\mathbb{Q}}_l \to \mathbb{C}$. On peut, via ι , passer des représentations l-adique aux représentations complexes. En effet, on a la proposition suivante qui résulte des propositions 1.2.5 et 1.2.6.

Proposition 1.2.7 L'application qui à une représentation l-adique ρ_l associe la représentation complexe $\iota \circ \rho_l$, établit une bijection de l'ensemble des classes d'isomorphie de représentations l-adiques irréductibles de W_F , de caractère central d'ordre fini, sur l'ensemble des classes d'isomorphie de représentations complexes continues irréductibles de W_F , de caractère central d'ordre fini.

Remarque: Pour une représentation complexe $\sigma_{\mathbb{C}}$ de W_F et un nombre complexe s, on note $\sigma_{\mathbb{C}}(s)$ la représentation $|.|^s\sigma_{\mathbb{C}}$. Le caractère central de $\rho_{\mathbb{C}}(s)$ est le caractère $\xi_{\mathbb{C}}(ns)$ associé au couple $(\xi'_{\mathbb{C}}, s(\xi_{\mathbb{C}}) + n.s)$, de sorte que la représentation $\sigma_{\mathbb{C}}(-s_{\mathbb{C}}/n)$ est de caractère central d'ordre fini. Quitte à tordre les représentations complexes par un caractère, on peut donc toujours se ramener au cas des représentations de caractère central d'ordre fini.

Dans la suite de ce chapitre, on pose $\Gamma := W_F$.

1.3 Représentations admissibles de $G \times \Gamma$.

Dans cette section, on va combiner les définitions et les résultats de 1.1 et 1.2 pour définir la notion de représentation admissible de $G \times \Gamma$, où G est un groupe du type de ceux de (1.1) et Γ est comme en (1.2), le groupe de Weil du corps F.

On reprend les notations de (1.1) et de (1.2). On désignera par E une extension finie de \mathbb{Q}_l contenue dans une clôture algébrique fixée $\overline{\mathbb{Q}}_l$ de \mathbb{Q}_l .

Définition 1.3.1 On appellera représentation admissible de $G \times \Gamma$ sur E toute représentation Π de $G \times \Gamma$ sur un E-espace vectoriel V_E telle que:

- (Π, V_E) est admissible en tant que représentation de G;
- pour tout sous-groupe ouvert compact K de G, l'action de Γ sur le E-espace vectoriel de dimension finie $(V_E)^K$ est continue au sens de 1.2.

Soit $C_{\rm ad}(E)$ la catégorie dont les objets sont les représentations admissibles de $G \times \Gamma$ sur E et dont les morphismes sont les morphismes entre E-représentations de $G \times \Gamma$. La catégorie $C_{\rm ad}(E)$ est abélienne.

Remarque: D'après le paragraphe 1.1, la catégorie $C_{\rm ad}(E)$ est équivalente à la catégorie des $(E \otimes \mathcal{H})$ -modules admissibles M_E , munis d'une action de Γ compatible à la structure de $(E \otimes \mathcal{H})$ -module, tels que, pour tout sous-groupe ouvert compact K de G, la représentation de Γ sur le E-espace vectoriel de dimension finie $e_K.M_E$, est continue. On notera encore $C_{\rm ad}(E)$ cette nouvelle catégorie et on utilisera pour désigner les objets de $C_{\rm ad}(E)$, la notation M_E ou (Π, V_E) selon que l'on se place du point de vue des modules ou des représentations. On introduit de la même manière la catégorie $C_{\rm ad}(E)$ des $(E \otimes \mathcal{H}_K)$ -modules non dégénérés de dimension finie en tant qu'espace vectoriel sur E, munis d'une action continue de Γ compatible à la structure de $(E \otimes \mathcal{H}_K)$ -module.

Comme au paragraphe 1.1, pour $K \subset K'$ deux éléments de \mathcal{I} , on a un morphisme de $(E \otimes \mathcal{H}_{K'})$ -modules qui commute à l'action de Γ

$$\pi_{K',K}: M_E^K \longrightarrow M_E^{K'}$$

$$m \longmapsto \frac{1}{\operatorname{vol}(K',dk')} \int_{K'} k' m.dk'$$

où $\mathcal{H}_{K'}$ agit sur M_E^K à travers l'inclusion $\mathcal{H}_{K'} \subset \mathcal{H}_K$. Le morphisme $\pi_{K',K}$ induit alors un isomorphisme de $(E \otimes \mathcal{H}_{K'})$ -modules qui commute à l'action de Γ

$$e_{K'}.M_E^K \xrightarrow{\sim} M_E^{K'}.$$

Si $K \subset K' \subset K$ " sont des éléments de \mathcal{I} , on a

$$\pi_{K",K} = \pi_{K",K'} \circ \pi_{K',K}.$$

Proposition 1.3.2 (i) Le foncteur

$$M_E \longrightarrow (M_E^K, \pi_{K',K})_{K,K' \in \mathcal{I}}$$

établit une équivalence de catégories de $C_{ad}(E)$ sur la catégorie

$$2-\lim_{K} C_{\mathrm{ad},K}(E)$$

définie comme suit. Les objets de $2-\lim_{K} C_{ad,K}(E)$ sont les systèmes projectifs $(M_{E,K}, \pi_{K',K})_{K,K'\in\mathcal{I}}$ où, pour tout élément K de \mathcal{I} , $M_{E,K}$ est un objet de la catégorie $C_{ad,K}(E)$, où, pour toute inclusion $K \subset K'$ d'éléments de \mathcal{I} , $\pi_{K',K}$: $M_{E,K} \to M_{E,K'}$ est un morphisme de $(E \otimes \mathcal{H}_{K'})$ -modules qui commute à l'action de Γ , $\mathcal{H}_{K'}$ agissant sur $M_{E,K}$ à travers l'inclusion $\mathcal{H}_{K'} \subset \mathcal{H}_{K}$, tel que si $K \subset K' \subset K$ " sont des éléments quelconques de \mathcal{I} , on a

$$\pi_{K",K} = \pi_{K",K'} \circ \pi_{K',K}$$

et où on suppose que $\pi_{K',K}$ induit un isomorphisme de $(E \otimes \mathcal{H}_{K'})$ -modules

$$e_{K'}.M_{E,K} \xrightarrow{\sim} M_{E,K'},$$

qui commute à l'action de Γ . Un foncteur quasi-inverse est donné par

$$(M_{E,K})_{K\in\mathcal{I}} \longrightarrow \varinjlim_{K} M_{E,K}$$

pour les inclusions $M_{E,K'} \simeq e_{K'}.M_{E,K} \subset M_{E,K}$ associées à $K \subset K'$.

- (ii) Si M_E est un objet non nul de $C_{ad}(E)$, alors il est irréductible si et seulement si M_E^K l'est pour tout élément K de \mathcal{I} tel que M_E^K est non nul.
- (iii) Pour tout élément K de \mathcal{I} , l'application $M_E \mapsto M_E^K$ induit une bijection de l'ensemble des classes d'isomorphie d'objets irréductibles de $C_{\mathrm{ad}}(E)$ tels que M_E^K est non nul, dans l'ensemble des classes d'isomorphie d'objets irréductibles de $C_{\mathrm{ad},K}(E)$.
- (iv) Si M_E est un objet non nul, irréductible de $C_{ad}(E)$, et si K est un sousgroupe ouvert compact élément de \mathcal{I} tel que M_E^K est non nul, alors $\operatorname{End}_{C_{ad}(E)}(M_E)$ est isomorphe à $\operatorname{End}_{C_{ad,K}(E)}(M_E^K)$; c'est donc une algèbre à division de dimension finie sur E.

Preuve : (i) C'est exactement la même preuve que celle de la proposition 1.1.6.

- (ii) Soit M_E un $(E \otimes \mathcal{H})$ -module muni de l'action de Γ , qui ne possède pas de sous- $(E \otimes \mathcal{H})$ -module stable sous l'action de Γ et soit M_E^K le $(E \otimes \mathcal{H}_K)$ -module muni d'une action de Γ qui lui correspond. Soit alors N_K un sous- $(E \otimes \mathcal{H}_K)$ -module de M_E^K stable sous l'action de Γ . Ainsi $N := \mathcal{H}.N_K$ est un sous- $(E \otimes \mathcal{H})$ -module de M_E qui est stable sous l'action de Γ et tel que $N^K = N_K$. Ainsi N est soit nul soit égal à M_E et donc N_K est soit nul, soit égal à M^K .
- (iii) Soit N_K un $(E \otimes \mathcal{H}_K)$ -module muni d'une action compatible de Γ , irréductible. Soient $N:=\mathcal{H}.e_K\otimes_{\mathcal{H}_K}N_K,\ N_1:=\{n\in N\mid e_k.\mathcal{H}.n=0\}$ et $N_2:=N/N_1$. Soit N' un sous- $(E\otimes\mathcal{H})$ -module muni d'une action compatible de Γ , de N. Comme N_K est irréductible et engendre N, on a N'=N ou $N'\subset N_1$. De plus on a $N_2^K\simeq N_K$, d'où le résultat.
- (iv) L'injection naturelle $\operatorname{End}_{E\otimes\mathcal{H}}(M_E)\hookrightarrow\operatorname{End}_{E\otimes\mathcal{H}_K}(M_E^K)$ est Γ-linéaire et est une bijection. Ainsi on a $\operatorname{End}_{E\otimes\mathcal{H}}(M_E)^{\Gamma}\simeq\operatorname{End}_{E\otimes\mathcal{H}_K}(M_E^K)^{\Gamma}$.

Pour une extension $E \subset E'$, on a un foncteur d'extension des scalaires

$$C_{\mathrm{ad}}(E) \longrightarrow C_{\mathrm{ad}}(E')$$

 $M_E \longrightarrow M_{E'} := M_E \otimes_E E'.$

On introduit la catégorie $C_{\rm ad}$ comme la sous-catégorie pleine des $(\bar{\mathbb{Q}}_l \otimes \mathcal{H})$ modules admissibles munis d'une action compatible de Γ dont les objets M sont
ceux pour lesquels il existe une extension finie E de \mathbb{Q}_l dans $\bar{\mathbb{Q}}_l$ (qui dépend de M), telle que M est l'image d'un objet M_E de $C_{\rm ad}(E)$ par le foncteur d'extension
des scalaires de E à $\bar{\mathbb{Q}}_l$. Pour chaque extension finie E de \mathbb{Q}_l dans $\bar{\mathbb{Q}}_l$, on a un
foncteur

$$C_{\rm ad}(E) \longrightarrow C_{\rm ad}.$$
 (1.3.3)

Cette famille de foncteurs est compatible aux foncteurs d'extension des scalaires et on obtient donc un foncteur

$$2-\underset{E}{\varinjlim} \operatorname{Mod}_{E,\operatorname{ad}}(\mathcal{H}) \longrightarrow \operatorname{Mod}_{\operatorname{ad}}(\mathcal{H}). \tag{1.3.4}$$

Lemme 1.3.5 Le foncteur (1.3.4) est une équivalence de catégories.

Preuve: Par définition de C_{ad} , le foncteur (1.3.4) est essentiellement surjectif. D'après la proposition 1.3.2, on a un lemme analogue au lemme 1.1.10.

Lemme 1.3.6 Soient $E \subset E'$ une extension de corps et $M_{1,E}$ et $M_{2,E}$ deux objets de $C_{ad}(E)$. Le morphisme naturel

$$\operatorname{Hom}_{E\otimes\mathcal{H}}(M_{1,E},M_{2,E})^{\Gamma}\otimes_{E}E'\longrightarrow \operatorname{Hom}_{E'\otimes\mathcal{H}}(M_{1,E'},M_{2,E'})^{\Gamma}$$

est un isomorphisme.

Preuve: Un élément φ de $\operatorname{Hom}_{C_{\operatorname{ad}}(E)}(M_{1,E}, M_{2,E})$ (resp. un élément φ_E de $\operatorname{Hom}_{C_{\operatorname{ad}}(E')}(M_{1,E'}, M_{2,E'})$) correspond, d'après la proposition (1.3.2 (i)), à la donnée d'un système projectif pour $K \in \mathcal{I}$

$$\varphi_{E,K} \in \operatorname{Hom}_{E \otimes \mathcal{H}_K}(M_{1,E}^K, M_{2,E}^K)^{\Gamma} \text{ (resp. } \varphi_{E',K} \in \operatorname{Hom}_{E' \otimes \mathcal{H}_K}(M_{1,E'}^K, M_{2,E'}^K)^{\Gamma} \text{).}$$

Or $M_{1,E'}^K = M_{1,E}^K \otimes_E E'$ et $M_{2,E'}^K = M_{2,E}^K \otimes_E E'$ sont des E'-espaces vectoriels de dimension finie. Ainsi les injections naturelles

$$\operatorname{Hom}_{E\otimes\mathcal{H}_K}(M_{1,E}^K,M_{2,E}^K)^{\Gamma}\otimes_E E'\hookrightarrow \operatorname{Hom}_{E'\otimes\mathcal{H}}(M_{1,E'}^K,M_{2,E'}^K)^{\Gamma}$$

sont en fait des bijections, comme on l'a déja noté dans la preuve du lemme (1.1.10). L'injection naturelle

$$\operatorname{Hom}_{C_{\operatorname{ad}}(E)}(M_{1,E}, M_{2,E}) \otimes_E E' \hookrightarrow \operatorname{Hom}_{C_{\operatorname{ad}}(E')}(M_{1,E'}, M_{2,E'})$$

est alors surjective.

Soient deux objets M_1 et M_2 de C_{ad} . On choisit une extension finie E de \mathbb{Q}_l dans $\bar{\mathbb{Q}}_l$ telle qu'il existe deux objets $M_{1,E}$ et $M_{2,E}$ de $C_{ad}(E)$ tels que $M_i = M_{i,E} \otimes_E \bar{\mathbb{Q}}_l$ pour i = 1, 2. Soit u un élément de $\operatorname{Hom}_{\bar{\mathbb{Q}}_l \otimes \mathcal{H}}(M_1, M_2)^{\Gamma}$. Le lemme précédent pour $E' = \bar{\mathbb{Q}}_l$ donne l'isomorphisme

$$\operatorname{Hom}_{\bar{\mathbb{Q}}_{l}\otimes\mathcal{H}}(M_{1},M_{2})^{\Gamma}\simeq \operatorname{Hom}_{E\otimes\mathcal{H}}(M_{1,E},M_{2,E})^{\Gamma}\otimes_{E}\bar{\mathbb{Q}}_{l}.$$

Ainsi il existe une extension finie E' de E dans \mathbb{Q}_l telle que u appartienne à $\operatorname{Hom}_{E'\otimes\mathcal{H}}(M_{1,E'},M_{2,E'})^{\Gamma}$.

On définit aussi $C_{\mathrm{ad},K}$ la catégorie 2-limite du système des catégories $C_{\mathrm{ad},K}(E)$ sur le système inductif des extensions finies E de \mathbb{Q}_l dans $\overline{\mathbb{Q}}_l$. Les catégories C_{ad} et $C_{\mathrm{ad},K}$ sont abéliennes.

1.4 Définition du groupe $K_{\rm ad}$.

Notons $K_{\mathrm{ad},K}$ le groupe de Grothendieck de la catégorie abélienne $C_{\mathrm{ad},K}$. Pour tout $K \subset K'$, le foncteur exact $M_K \mapsto (M_K)^{K'}$ induit un homomorphisme $K_{\mathrm{ad},K} \to K_{\mathrm{ad},K'}$. On pose

$$K_{\mathrm{ad}}:=\lim_{\stackrel{\longleftarrow}{K\in\mathcal{I}}}K_{\mathrm{ad},K}.$$

Lemme 1.4.1 Le groupe $K_{\rm ad}$ est naturellement isomorphe au groupe abélien des sommes formelles

$$\sum \lambda_M.[M]$$

où [M] décrit l'ensemble des classes d'isomorphismes d'objets irréductibles M de C_{ad} , et (λ_M) décrit l'ensemble des familles d'entiers telles que pour tout élément K de \mathcal{I} il n'y ait qu'un nombre fini de [M] pour lesquels $M^K \neq 0$ et $\lambda_M \neq 0$.

Preuve: Les représentations associées aux objets de $C_{ad,K}$ étant de dimension finie, le groupe de Grothendieck $K_{ad,K}$ est le groupe abélien libre de générateurs les objets irréductibles de $C_{ad,K}$. La proposition 1.3.2 permet alors de conlure.

Tout objet (Π, V) de C_{ad} a une classe associée $[(\Pi, V)]$ dans K_{ad} :

$$[(\Pi, V)] = \sum \lambda_M . [M]$$

où λ_M est la multiplicité de M^K dans V^K pour K n'importe quel sous-groupe compact tel que $M^K \neq 0$; en effet, d'après l'exactitude du foncteur $M_K \mapsto (M_K)^{K'}$, cette multiplicité ne dépend pas du compact K.

Remarque: Le groupe K_{ad} n'est pas le groupe de Grothendieck de la catégorie C_{ad} .

1.5 Description des objets irréductibles de $C_{\rm ad}$.

Dans toute catégorie abélienne, et donc en particulier dans $C_{ad}(E)$, on a les notions d'objets simples (ou irréductibles), isotypiques et semi-simples.

Définition 1.5.1 Soit (Π_E, V_E) un objet irréductible de $C_{ad}(E)$, on dira qu'il est absolument irréductible si son image $(\Pi_E \otimes_E \bar{\mathbb{Q}}_l, V_E \otimes_E \bar{\mathbb{Q}}_l)$ dans la catégorie C_{ad} par le foncteur (1.3.3) est irréductible. Un objet absolument isotypique de $C_{ad}(E)$ (resp. $C_{ad,K}(E)$) est un objet tel que son image dans la catégorie C_{ad} (resp. $C_{ad,K}$) par le foncteur (1.3.3) est isotypique.

De la même façon, une représentation σ_E (resp. π_E) de Γ (resp. de G) définie sur une extension finie E de \mathbb{Q}_l dans \mathbb{Q}_l , sera dite absolument irréductible si la \mathbb{Q}_l -représentation $\sigma_E \otimes_E \mathbb{Q}_l$ (resp. $\pi_E \otimes_E \mathbb{Q}_l$) est irréductible.

Remarque: Si M_E est un $(E \otimes \mathcal{H})$ -module semi-simple, $M_E \simeq M_1^{m_1} \times \cdots M_r^{m_r}$, alors $\operatorname{End}_{E \otimes \mathcal{H}}(M_E) \simeq M_{m_1}(\operatorname{End}_{E \otimes \mathcal{H}}(M_1)) \times \cdots M_{m_r}(\operatorname{End}_{E \otimes \mathcal{H}}(M_r))$. Le module M_E est isotypique (resp. absolument isotypique) si et seulement si $\operatorname{End}_{E \otimes \mathcal{H}}(M_E)$ est une algèbre simple (resp. centrale simple sur E) (cf. [3]).

Proposition 1.5.2 (i) Soit $(\sigma_E, V_{E,\sigma_E})$ (resp. (π_E, V_{E,π_E})) une représentation semi-simple de Γ (resp. de G), définie sur une extension finie E de \mathbb{Q}_l dans \mathbb{Q}_l , continue au sens de (1.2) (resp. π_E admissible). Le produit tensoriel

$$(\pi_E, V_{E,\pi_E}) \otimes (\sigma_E, V_{E,\sigma_E})$$

définit un objet semi-simple de $C_{ad}(E)$ et

$$\operatorname{End}_{C_{\operatorname{ad}}(E)}(V_{E,\pi_E} \otimes V_{E,\sigma_E}) \simeq \operatorname{End}_{E \otimes \mathcal{H}}(V_{E,\pi_E}) \otimes \operatorname{End}_E(V_{E,\sigma_E})^{\Gamma}.$$

De plus si V_{E,σ_E} et V_{E,π_E} sont absolument irréductibles alors $V_{E,\pi_E} \otimes V_{E,\sigma_E}$ est un objet absolument irréductible de $C_{ad}(E)$.

(ii) Soit (Π_E, V_E) un objet absolument irréductible de $C_{ad}(E)$, il existe alors une extension finie E' de E dans $\overline{\mathbb{Q}}_l$ et des représentations absolument irréductibles $(\sigma_{E'}, V_{E', \sigma_{E'}})$ et $(\pi_{E'}, V_{E', \pi_{E'}})$ de Γ et G définies sur E', avec $\sigma_{E'}$ continue et $\pi_{E'}$ admissible, telles que l'image de (Π_E, V_E) dans la catégorie $C_{ad}(E')$ par extension des scalaires de E à E', est isomorphe au produit tensoriel

$$(\pi_{E'}, V_{E',\pi_{E'}}) \otimes (\sigma_{E'}, V_{E',\sigma_{E'}}).$$

De plus le couple

$$\left((\sigma_{E'} \otimes_{E'} \bar{\mathbb{Q}}_l, V_{E',\sigma_{E'}} \otimes_{E'} \bar{\mathbb{Q}}_l), (\pi_{E'} \otimes_{E'} \bar{\mathbb{Q}}_l, V_{E',\pi_{E'}} \otimes_{E'} \bar{\mathbb{Q}}_l) \right)$$

est unique.

Preuve : (i) De l'égalité $(V_{E,\pi_E} \otimes V_{E,\sigma_E})^K = V_{E,\pi_E}^K \otimes V_{E,\sigma_E}$, on en déduit que $V_{E,\pi_E} \otimes V_{E,\sigma_E}$ est un objet de $C_{\rm ad}(E)$.

Notons D_{σ_E} (resp. D_{π_E}) l'algèbre à division de dimension finie sur E des endomorphismes Γ -linéaires (resp. G-linéaires) de V_{E,σ_E} (resp. de V_{E,π_E}). On peut alors écrire

$$V_{E,\pi_E} \otimes_E V_{E,\sigma_E} \simeq (V_{E,\sigma_E} \otimes_E D_{\pi_E}) \otimes_{D_{\pi_E}} V_{E,\pi_E}$$

et tout sous-espace de $V_{E,\pi_E} \otimes_E V_{E,\sigma_E}$ stable sous l'action de $G \times \Gamma$ est de la forme $W \otimes V_{E,\pi_E}$ où W est un sous-espace de $(V_{E,\sigma_E} \otimes_E D_{\pi_E})$ stable sous les actions de Γ et de D_{π_E} . On écrit encore

$$V_{E,\sigma_E} \otimes_E D_{\pi_E} \simeq (V_{E,\sigma_E} \otimes_{D_{\sigma_E}} D_{\sigma_E}) \otimes_E D_{\pi_E}$$
$$\simeq V_{E,\sigma_E} \otimes_{D_{\sigma_E}} (D_{\sigma_E} \otimes_E D_{\pi_E})$$

et W est de la forme $W' \otimes V_{E,\sigma_E}$ où W' est un sous-espace de $(D_{\sigma_E} \otimes_E D_{\pi_E})$ stable sous les actions de D_{σ_E} et D_{π_E} . Or $D_{\sigma_E} \otimes_E D_{\pi_E}$ est une algèbre semi-simple puisque D_{σ_E} et D_{π_E} le sont, et $V_{E,\pi_E} \otimes V_{E,\sigma_E}$ est un objet semi-simple de $C_{\text{ad}}(E)$.

L'isomorphisme

$$\operatorname{End}_{C_{\operatorname{ad}}(E)}(V_{E,\pi_E} \otimes V_{E,\sigma_E}) \simeq \operatorname{End}_{E \otimes \mathcal{H}}(V_{E,\pi_E}) \otimes \operatorname{End}_E(V_{E,\sigma_E})^{\Gamma}$$

découle de l'exactitude du foncteur \otimes_E en chacune des deux variables. Si $V_{E,\sigma_E} \otimes_E \bar{\mathbb{Q}}_l$ et $V_{E,\pi_E} \otimes_E \bar{\mathbb{Q}}_l$ sont irréductibles alors D_{σ_E} et D_{π_E} sont isomorphes à E, et $V_{E,\pi_E} \otimes V_{E,\sigma_E}$ est absolument irréductible.

- (ii) Comme toujours le principe est, grâce à l'admissibilité de Π_E , de se ramener en dimension finie où un résultat analogue est connu (cf. [3]).
 - Soit (Π_E, V_E) un objet absolument irréductible de $C_{ad}(E)$.
 - Soit K un élément de \mathcal{I} tel que V_E^K est non nul. D'après la proposition 1.1.6, V_E^K est irréductible et $\operatorname{End}_{C_{\operatorname{ad},K}(E)}(V_E^K) \simeq \operatorname{End}_{C_{\operatorname{ad}}(E)}(V_E) \simeq E$. Le $(E \otimes \mathcal{H}_K)$ -module V_E^K est donc absolument irréductible. Soit $\tilde{V}_{\sigma,E}$ un sousespace vectoriel de V_E^K qui est irréductible en tant que représentation de Γ . Soit $\tilde{V}_{\pi,E,K}$ un sous $(E \otimes \mathcal{H}_K)$ -module irréductible de $\operatorname{Hom}_{\Gamma}(\tilde{V}_{\sigma,E},V_E^K)$. On obtient ainsi une application non nulle

$$\tilde{V}_{\pi,E,K} \otimes \tilde{V}_{\sigma,E} \longrightarrow V_E^K$$

qui est surjective d'après l'irréductiblilité de V_E^K .

– Notons C_1 et C_2 (resp. d_1 et d_2) les centres respectifs (resp. les dimensions respectives, sur E) des algèbres $\operatorname{End}_{\Gamma}(\tilde{V}_{\sigma,E})$, et $\operatorname{End}_{E\otimes\mathcal{H}_K}(\tilde{V}_{\pi,E,K})$. En reprenant la preuve de (i), $\tilde{V}_{\pi,E,K}\otimes\tilde{V}_{\sigma,E}$ est semi-simple et $\operatorname{End}_{C_{\operatorname{ad},K}(E)}(\tilde{V}_{\pi,E,K}\otimes\tilde{V}_{\sigma,E})$ est isomorphe à

$$\operatorname{End}_{E\otimes\mathcal{H}_K}(\tilde{V}_{\pi,E,K})\otimes\operatorname{End}_{\Gamma}(\tilde{V}_{\sigma,E}).$$

On obtient alors que E est un quotient de $C_1 \otimes C_2$ et donc $C_1 = C_2 = E$. Ainsi $\tilde{V}_{\pi,E,K} \otimes \tilde{V}_{\sigma,E}$ est absolument isotypique et donc isomorphe à une puissance de V_E^K qui n'est autre que $d_1.d_2$. On obtient alors

$$(V_E^K)^{d_1.d_2} \simeq \tilde{V}_{\pi,E,K} \otimes \tilde{V}_{\sigma,E}$$
.

Il existe une extension finie E' de E telle que les algèbres centrales simples $\operatorname{End}_{\Gamma}(\tilde{V}_{\sigma,E})$ et $\operatorname{End}_{E\otimes\mathcal{H}_K}(\tilde{V}_{\pi,E,K})$ se scindent sur E' et on a

$$\tilde{V}_{\sigma,E} \otimes_E E' \simeq d_1.V_{E',\sigma_{E'}}$$

$$\tilde{V}_{\pi,E,K} \otimes_E E' \simeq d_2.V_{E',\pi_{E'},K}$$

où $V_{E',\sigma_{E'}}$ est un objet absolument irréductible de $R_W(E')$ et où $V_{E',\pi_{E'},K}$ est un $E'\otimes\mathcal{H}_K$ -module absolument irréductible. Comme V_E^K est absolument irréductible, des isomorphismes

$$(V_{E',\pi_{E'},K})^{d_2} \otimes V_{E',\sigma_{E'}}^{d_1} \simeq d_1.d_2V_{E',\pi_{E'},K} \otimes V_{E',\sigma_{E'}}$$

 et

$$(V_E^K)^{d_1.d_2} \simeq \tilde{V}_{\sigma,E} \otimes \tilde{V}_{\pi,E,K}$$

on en déduit

$$V_{E'}^K \simeq V_{E',\pi_{E'},K} \otimes V_{E',\sigma_{E'}}$$
.

En outre cette décomposition est unique à isomorphisme près car $\tilde{V}_{\pi,E,K} \otimes V_{\sigma,E}$ est isotypique en tant que représentation de Γ de type $V_{\sigma,E}$ tout comme V_E^K . De même $\tilde{V}_{\pi,E,K} \otimes V_{\sigma,E}$ en tant que \mathcal{H}_K -module est isotypique de type $\tilde{V}_{\pi,E,K}$ tout comme V_E^K .

– D'après le point (i) de la proposition (1.1.5), il existe une unique représentation irréductible, admissible $V_{E',\pi_{E'}}$ de G telle que

$$V_{E',\pi_{E'}}^K \simeq V_{E',\pi_{E'},K}.$$

Ainsi $V_{E',\pi_{E'}}\otimes V_{E',\sigma_{E'}}$ et $V_{E'}$ sont des objets irréductibles de $C_{\rm ad}(E')$ tels que leurs images par le foncteur (1.1.4) relativement au groupe K, sont isomorphes. D'après le point (iii) de la proposition (1.3.2) $V_{E'}$ est alors isomorphe à $V_{E',\pi_{E'}}\otimes V_{E',\sigma_{E'}}$.

En résumé on a la description suivante du groupe $K_{\rm ad}$ associé à la catégorie $C_{\rm ad}$.

Corollaire 1.5.3 Le groupe K_{ad} est isomorphe au groupe abélien des sommes formelles

$$\sum_{\pi \in \mathcal{T}_G, \ \sigma \in \mathcal{T}_{\Gamma}} \lambda_{\pi \otimes \sigma} [\pi \otimes \sigma]$$

où \mathcal{T}_{Γ} désigne l'ensemble des représentants des classes d'isomorphismes des représentations irréductibles l-adique de Γ (cf. 1.2), \mathcal{T}_G l'ensemble des représentants des classes d'isomorphismes des représentations admissibles, irréductibles de G, et $\lambda_{\pi \otimes \sigma}$ décrit l'ensemble des familles d'entiers telles que pour tout élément K de \mathcal{I} , il n'y ait qu'un nombre fini de couples $(\sigma, \pi) \in \mathcal{T}_{\Gamma} \times \mathcal{T}_G$ pour lesquels $(\pi \otimes \sigma)^K \neq (0)$ et $\lambda_{\pi \otimes \sigma} \neq 0$.

1.6 Les groupes $K_{GL,\Gamma}$ et $K_{GL,H,\Gamma}$.

Soient h un entier strictement positif et $D_{F,h}$ une algèbre à division centrale sur F d'invariant 1/h. On note H le groupe $D_{F,h}^{\times}$. Les groupes $GL_h(F) \times \Gamma$ et $GL_h(F) \times H \times \Gamma$ sont des groupes du type de ceux considérés en (1.3). On introduit les algèbres de Hecke \mathcal{H}_{GL} de $GL_h(F)$ et \mathcal{H}_H de H, par rapport à des mesures de Haar rationnelles sur \mathbb{Q} . On désignera par \mathcal{H} le produit tensoriel de ces algèbres de Hecke. L'ensemble \mathcal{I} des sous-groupes ouverts compacts K de $GL_h(F) \times H$ de la forme $K_1 \times K_2$, pour K_1 (resp. K_2) un sous-groupe ouvert compact de $GL_h(F)$ (resp. de H), forme un système fondamental de voisinages de l'élément neutre de $GL_h(F) \times H$. Soit K un élément de \mathcal{I} , on a alors $\mathcal{H}_K \simeq \mathcal{H}_{GL,K_1} \otimes \mathcal{H}_{H,K_2}$. On notera respectivement $C_{GL,\Gamma}$ et $C_{GL,H,\Gamma}$ les catégories des représentations admissibles de $GL_h(F) \times \Gamma$ et $GL_h(F) \times H \times \Gamma$. Notons \mathcal{T}_{GL} (resp. \mathcal{T}_H) l'ensemble des représentants des classes d'isomorphismes des représentations admissibles, irréductibles de $GL_h(F)$ (resp. de H). On rappelle que \mathcal{T}_{Γ} désigne l'ensemble des représentants des classes d'isomorphismes des représentations irréductibles l-adique de l. Soit l une extension finie de l.

- **Lemme 1.6.1** (i) Soient respectivement π_E et ρ_E des E-représentations admissibles semi-simples de $GL_h(F)$ et H. Le produit tensoriel $\pi_E \otimes_E \rho_E$ est une E-représentation admissible, semi-simple de $GL_h(F) \times H$. De plus si π_E et ρ_E sont absolument irréductibles, il en est de même de $\pi_E \otimes_E \rho_E$.
- (ii) Soit Π_E une E-représentation admissible de $GL_h(F) \times H$, absolument irréductible. Il existe une extension finie E' de E, un élément $\pi_{E'}$ de \mathcal{T}_{GL} et un élément $\rho_{E'}$ de \mathcal{T}_{H} définis sur E' tels que

$$\Pi_E \otimes_E E' \simeq \pi_{E'} \otimes_{E'} \rho_{E'}$$
.

Le couple $(\pi_{E'} \otimes_{E'} \bar{\mathbb{Q}}_l, \rho_{E'} \otimes_{E'} \bar{\mathbb{Q}}_l)$ est unique à isomorphisme près.

Preuve : (i) La preuve est identique à celle du point (i) de la proposition 1.5.2. (ii) On note M le $(E \otimes \mathcal{H})$ -module associé à Π_E . Soient respectivement K_1 et K_2 des sous-groupes ouverts compacts de $GL_h(F)$ et de H tels que $M^K \neq (0)$ $(K = K_1 \times K_2)$. D'aprés [3] il existe un $(E \otimes \mathcal{H}_{K_1}^1)$ -module irréductible M_{1,K_1} , un $(E \otimes \mathcal{H}_{K_2}^2)$ -module irréductible M_{2,K_2} et une surjection $M_{1,K_1} \otimes M_{2,K_2} \longrightarrow M^K$. On reprend rapidement la preuve du point (ii) de la proposition 1.5.2. Le $(E \otimes \mathcal{H}_K)$ -module $M_{1,K_1} \otimes M_{2,K_2}$ est semi-simple. Son algèbre des endomorphismes est isomorphe au produit tensoriel

$$\operatorname{End}_{E\otimes \mathcal{H}^1_{K_1}}(M_{1,K_1})\otimes_E \operatorname{End}_{E\otimes \mathcal{H}^2_{K_2}}(M_{2,K_2}).$$

Soient C_1 et C_2 les centres respectifs des algèbres simples $\operatorname{End}_{E\otimes \mathcal{H}_{K_1}^1}(M_{1,K_1})$ et $\operatorname{End}_{E\otimes \mathcal{H}_{K_2}^2}(M_{2,K_2})$. Le centre de $\operatorname{End}_{E\otimes \mathcal{H}_K}(M^K)$ est égal à E et est un quotient de $C_1\otimes_E C_2$. D'où on a $C_1=C_2=E$ et $M_{1,K_1}\otimes M_{2,K_2}$ est absolument isotypique, isomorphe à une puissance de M^K d'ordre le produit des dimensions de algèbres centrales simples $\operatorname{End}_{E\otimes \mathcal{H}_{K_1}^1}(M_{1,K_1})$ et $\operatorname{End}_{E\otimes \mathcal{H}_{K_2}^2}(M_{2,K_2})$. On considère une extension finie E' de E telle que les algèbres centrales simples $\operatorname{End}_{E\otimes \mathcal{H}_{K_1}^1}(M_{1,K_1})$ et $\operatorname{End}_{E\otimes \mathcal{H}_{K_2}^2}(M_{2,K_2})$ se scindent sur E'. Ainsi il existe un $(E'\otimes \mathcal{H}_{K_1}^1)$ -module absolument irréductible M'_{1,K_1} et un $(E'\otimes \mathcal{H}_{K_2}^2)$ -module absolument irréductible M'_{2,K_2} tels que

$$M^K \otimes_E E' \simeq M'_{1,K_1} \otimes_{E'} M'_{2,K_2}$$
.

D'après la proposition 1.1.5, il existe un $(E' \otimes \mathcal{H}^1)$ -module irréductible M'_1 et un $(E' \otimes \mathcal{H}^2)$ -module irréductible M'_2 tels que

$$(M_1')^{K_1} \simeq M_{1,K_1}' \qquad (M_2')^{K_2} \simeq M_{2,K_2}'.$$

Le $(E' \otimes \mathcal{H})$ -module $M'_1 \otimes M'_2$ est absolument irréductible et toujours d'après la proposition 1.1.5 on doit avoir

$$M \otimes_E E' \simeq M_1' \otimes M_2'$$
.

L'unicité de cette écriture découle du fait que $M^K \otimes_E E'$ en tant que $(E' \otimes \mathcal{H}^1)$ module est isotypique de type M'_{1,K_1} .

Notons $K_{GL,\Gamma}$ et $K_{GL,H,\Gamma}$ les groupes du paragraphe 1.4 associés respectivement aux catégories $C_{GL,\Gamma}$ et $C_{GL,H,\Gamma}$.

Proposition 1.6.2 (i) Le groupe $K_{GL,\Gamma}$ est isomorphe au groupe abélien des sommes formelles

$$\sum_{\pi \in \mathcal{T}_{GL}, \ \sigma \in \mathcal{T}_{\Gamma}} \lambda_{\pi \otimes \sigma} [\pi \otimes \sigma]$$

où $\lambda_{\pi \otimes \sigma}$ décrit l'ensemble des familles d'entiers telles que, pour tout sous-groupe compact ouvert K de $GL_h(F)$, il n'y ait qu'un nombre fini de couples $(\pi, \sigma) \in \mathcal{T}_{GL} \times \mathcal{T}_{\Gamma}$ pour lesquels $(\pi \otimes \sigma)^K \neq (0)$ et $\lambda_{\sigma \otimes \pi} \neq 0$.

(ii) Le groupe $K_{GL,H,\Gamma}$ est isomorphe au groupe abélien des sommes formelles

$$\sum_{\pi \in \mathcal{T}_{GL}, \ \rho \in \mathcal{T}_{H}, \ \sigma \in \mathcal{T}_{\Gamma}} \lambda_{\pi \otimes \rho \otimes \sigma} [\pi \otimes \rho \otimes \sigma]$$

où $\lambda_{\pi \otimes \rho \otimes \sigma}$ décrit l'ensemble des familles d'entiers telles que, pour tout élément K de \mathcal{I} , il n'y ait qu'un nombre fini de triplets $(\pi, \rho, \sigma) \in \mathcal{T}_{GL} \times \mathcal{T}_H \times \mathcal{T}_{\Gamma}$ pour lesquels $(\pi \otimes \rho \otimes \sigma)^K \neq (0)$ et $\lambda_{\pi \otimes \rho \otimes \sigma} \neq 0$.

Pour tout élément [V] de $K_{GL,\Gamma}$ (resp. de $K_{GL,H,\Gamma}$) et tout couple (π,σ) (resp. tout triplet (π,ρ,σ)) comme ci-dessus, on notera et on appelera **multiplicité de** $\pi \otimes \sigma$ (resp. de $\pi \otimes \rho \otimes \sigma$) dans [V], l'entier $\lambda_{\pi \otimes \rho \otimes \sigma}$ intervenant dans l'écriture en somme formelle de [V] dans le groupe $K_{GL,\Gamma}$ (resp. $K_{GL,H,\Gamma}$) (cf. la proposition ci-dessus). Pour tout sous-groupe compact K tel que $(\pi \otimes \sigma)^K$ (resp. $(\pi \otimes \rho \otimes \sigma)^K$) est non nul, l'entier $\lambda_{\pi \otimes \sigma}$ (resp. $\lambda_{\pi \otimes \rho \otimes \sigma}$) est la multiplicité usuelle de $(\pi \otimes \sigma)^K$ (resp. de $\pi \otimes \rho \otimes \sigma$) dans $[V^K]$.

1.7 Induction et cuspidalité.

Soient P un sous-groupe parabolique de $G = GL_h(F)$, N le radical unipotent de P et M un sous-groupe de Levi de P.

– Soit (π, V) une représentation lisse de G. La restriction de π à M le long de P est la représentation lisse $\operatorname{Res}_P^G(\pi)$ définie comme suit. Son espace est le quotient W:=V/V(N) où V(N) est le sous-espace vectoriel de V engendré par les éléments

$$\pi(n)(v) - v$$
 $v \in V, n \in N$.

L'action de M sur W est induite par l'homomorphisme

$$\delta_P^{-1/2}(-) \otimes \pi_{|M} : M \longrightarrow \operatorname{Aut}(V).$$

– Soit maintenant (ρ, W) une représentation lisse de M. La représentation induite de ρ à G le long de P est la représentation lisse $\operatorname{Ind}_P^G(\rho)$ définie comme suit. Son espace est l'espace vectoriel

$$V = \{ f : G \to W / f(pg) = \delta_P(p)^{1/2} \rho(p) f(g) \ \forall p \in P \ \forall g \in G \}$$

et tel que $\exists K$ compact ouvert tel que $f(gk) = f(g) \forall k \in K$ sur lequel on définit l'action de G par translation à droite.

Si les représentations π et ρ sont admissibles, il en est de même des représentations $\operatorname{Res}_P^G(\pi)$ et $\operatorname{Ind}_P^G(\rho)$ (cf. [24] Appendice D). Le foncteur Ind_P^G de $\operatorname{Rep}_s(M)$ dans $\operatorname{Rep}_s(G)$ est exact et est l'adjoint à droite du foncteur de restriction (réciprocité de Frobenius).

Pour P un sous-groupe parabolique de G et M un sous-groupe de Levi de P, on étend sans peine les notions de restriction et d'induction aux représentations admisibles de $G \times \Gamma$ et $M \times \Gamma$ que l'on note respectivement $\operatorname{Res}_{P \times \Gamma}^{G \times \Gamma}$ et $\operatorname{Ind}_{P \times \Gamma}^{G \times \Gamma}$. Le foncteur $\operatorname{Ind}_{P \times \Gamma}^{G \times \Gamma}$ de la catégorie $C_{M \times \Gamma}$ sur $C_{G \times \Gamma}$ est exact et est l'adjoint à droite du foncteur de restriction $\operatorname{Res}_{P \times \Gamma}^{G \times \Gamma}$.

On peut comme au paragraphe 1.4, introduire le groupe K_{GL} associé à la catégorie des représentations admissibles de $GL_h(F)$. Le groupe K_{GL} est isomorphe au groupe abélien des sommes formelles $\sum_{\pi \in \mathcal{T}_{GL}} \lambda_{\pi}[\pi]$ où λ_{π} décrit l'ensemble des familles d'entiers telles que, pour tout sous-groupe compact ouvert K de $GL_h(F)$, il n'y ait qu'un nombre fini d'éléments π de \mathcal{T}_{GL} pour lesquels $\pi^K \neq (0)$. Pour [V]un élément de K_{GL} et π un élément de \mathcal{T}_{GL} , on définit alors la multiplicité de π dans [V] comme l'entier λ_{π} intervenant dans l'écriture en somme formelle de [V].

Une représentation lisse irréductible (π, V) de $GL_h(F)$ est **cuspidale** si, pour tout sous-groupe parabolique propre P de $GL_h(F)$ et toute représentation ρ d'un Levi M de P, la multiplicité de π dans $\operatorname{Ind}_P^G \rho$ est nulle. On a alors le lemme suivant.

Lemme 1.7.1 Soient π une représentation admissible irréductible de $GL_h(F)$ et σ une représentation l-adique irréductible de Γ . Soit V une représentation admissible de $GL_h(F) \times \Gamma$ (V est un objet de $C_{GL \times \Gamma}$). On suppose que

- π est cuspidale;
- il existe un sous-groupe parabolique P de $GL_h(F)$, un sous-groupe de Levi M de P et une représentation W de $M \times \Gamma$ telle que

$$V = \operatorname{Ind}_{P \times \Gamma}^{G \times \Gamma} W$$
.

On a alors

$$\lambda_{\pi\otimes\sigma}(V)=0.$$

2 Correspondances de Jacquet-Langlands et de Langlands locales.

2.1 Correspondance de Jacquet-Langlands locale.

Soit $\mathcal{A}_{GL_h(F)}$ (resp. \mathcal{A}_H) l'ensemble des classes d'équivalence des représentations complexes admissibles, irréductibles de $GL_h(F)$ (resp. de $D_{F,h}^{\times}$) de caractère central d'ordre fini. On note \mathcal{A}_{GL}^0 le sous-ensemble de $\mathcal{A}_{GL_h(F)}$ constitué des représentations cuspidales.

Soit π un élément de $\mathcal{A}_{GL_h(F)}$. Pour tout élément f de l'algèbre de Hecke \mathcal{H} , l'opérateur $\pi(f)$ est de rang fini et admet donc une trace $\Theta_{\pi}(f)$. Soit $GL_h(F)_{rss}$ l'ouvert de $GL_h(F)$ formé des éléments réguliers semi-simples, i.e. des éléments dont le polynôme caractéristique est séparable et à racines (dans une clôture algébrique de F) deux à deux distinctes. La restriction de la distribution invariante $f \mapsto \Theta_{\pi}(f)$ à cet ouvert est donné par une fonction invariante localement constante que l'on notera encore Θ_{π} .

Soit ρ un élément de \mathcal{A}_H . L'espace sous-jacent à ρ est de dimension finie et pour tout élément δ de $D_{F,h}^{\times}$, on peut donc former la trace $\Theta_{\rho}(\delta)$ de $\rho(\delta)$.

On dira que δ correspond à un élément semi-simple γ de $GL_h(F)$ si le polynôme caractéristique réduit de δ coïncide au polynôme caractéristique de γ . Si γ est un élément semi-simple de $GL_h(F)$ qui correspond à un élément δ de $D_{F,h}^{\times}$, γ est alors automatiquement elliptique. Cette correspondance se décrit comme suit. Soient δ un élément de $D_{F,h}^{\times}$ et r le degré de l'extension $F[\delta]$ de F; r divise h. Soient A la matrice compagnon associée au polynôme minimal de δ et γ la matrice diagonale par blocs où les blocs sont tous égaux à A. L'élément δ correspond à γ . On remarquera que la classe de conjugaison définie par γ ne dépend que de la classe de conjugaison de δ .

Par définition, on dit que ρ correspond à π par la correspondance locale de Jacquet-Langlands si pour tout élément γ de $GL_h(F)_{rss}$ et tout élément δ de $D_{F,h}^{\times}$ correspondant à γ , on a

$$\Theta_{\pi}(\gamma) = (-1)^{h-1}\Theta_{o}(\delta)$$
.

Dans [18] (Appendice), Henniart montre que pour tout élément π de \mathcal{A}_{GL}^0 , il existe un unique élément ρ de \mathcal{A}_H qui corresponde à π au sens de la définition ci-dessus, on le notera $\mathfrak{J}_F(\pi)$.

Cette correspondance purement locale sera en fait exploitée dans un contexte global. Plus précisément, choisissons un corps global F et une place o de F telle que F_o soit le corps local précédement noté F (c'est possible). Soient ∞ une place de F distincte de la place o et S un ensemble fini de places contenant les places o et ∞ . Soit D une algèbre centrale simple sur F de dimension h^2 décomposée en dehors de S, telle qu'en toute place x de S, l'invariant de D_{F_x} est $\frac{\varepsilon_x}{h}$ avec

 $\varepsilon_x = \pm 1$. On suppose de plus que D_{F_o} est isomorphe à $D_{F,h}$. On note \mathbb{A} l'anneau des adèles de F et on pose $D_{\mathbb{A}} := \mathbb{A} \otimes_F D$.

Soit $L_{\text{cusp}}(GL_h(F)\backslash GL_h(\mathbb{A}))$ le \mathbb{C} -espace vectoriel des fonctions

$$\varphi: GL_h(F)\backslash GL_h(\mathbb{A}) \to \mathbb{C}$$

telles que:

 $-\exists K_{\varphi} \subset GL_h(\mathbb{A})$ un sous-groupe compact ouvert tel que $\varphi(gk) = \varphi(g), \ \forall g \in GL_h(F) \backslash GL_h(\mathbb{A}), \ \forall k \in K_{\varphi};$ - pour tout radical unipotent N d'un sous-groupe parabolique propre P de $GL_h(F)$ on a $\int_{N(F)\backslash N_{\mathbb{A}}} \varphi(ng) dn = 0, \ \forall g \in GL_h(F) \backslash GL_h(\mathbb{A}).$

Le groupe $GL_h(\mathbb{A})$ agit sur cet espace par translation à droite. Les représentations automorphes cuspidales de $GL_h(\mathbb{A})$ sont précisément les sous-représentations irréductibles de $L_{\text{cusp}}(GL_h(F)\backslash GL_h(\mathbb{A}))$.

De même soit $L(D^{\times}\backslash D_{\mathbb{A}}^{\times})$ le \mathbb{C} -espace vectoriel des fonctions $\varphi: D^{\times}(F)\backslash D_{\mathbb{A}}^{\times} \to \mathbb{C}$ telles que

$$\exists K_{\varphi} \subset D_{\mathbb{A}}^{\times} \text{ un sous-groupe compact ouvert tel que}$$
$$\varphi(gk) = \varphi(g), \ \forall g \in D^{\times} \backslash D_{\mathbb{A}}^{\times}, \ \forall k \in K_{\varphi}.$$

Le groupe $D_{\mathbb{A}}^{\times}$ agit sur cet espace vectoriel par translation à droite. Une représentation automorphe de $D_{\mathbb{A}}^{\times}$ est par définition une sous-représentation irréductible de $L(D^{\times}\backslash D_{\mathbb{A}}^{\times})$.

On fixe deux places v_1 et v_2 de F, qui n'appartiennent pas à S.

Lemme 2.1.1 (cf. [23] lemme 15.10) Soit π_o une représentation cuspidale de $GL_h(F_o)$, de caractère central d'ordre fini. Il existe une représentation automorphe cuspidale Π de $GL_h(\mathbb{A})$ telle que

$$\Pi_o \simeq \pi_o \quad \Pi_\infty \simeq St_\infty$$

$$\Pi_v \ est \ cuspidale \ \forall v \in (S \setminus \{\infty\}) \cup \{v_1, v_2\},\$$

où St_{∞} désigne la représentation de Steinberg de $GL_h(F_{\infty})$.

Henniart dans [18] Appendice (A-4), établit la correspondance de Jacquet-Langlands locale, pour les cuspidales. En modifiant trés légèrement la preuve de ce résultat, on obtient la proposition suivante.

Proposition 2.1.2 (cf. [18] Appendice (A-4)) Soit π_o une représentation cuspidale de $GL_h(F_o)$, de caractère central d'ordre fini. Soit Π une représentation automorphe cuspidale de $GL_h(\mathbb{A})$ qui vérifie les hypothèses du lemme ci-dessus. Il existe alors une unique représentation automorphe, à isomorphisme près, τ de $D_{\mathbb{A}}^{\times}$ telle que

$$\forall v \not\in S \qquad \Pi_v \simeq \tau_v.$$

On a alors

$$\tau_{\infty} \simeq 1_{\infty}$$
 et $\forall x \in S \ \tau_x = \mathfrak{J}_{F_o}(\Pi_x),$

en particulier on a $\tau_o = \mathfrak{J}_{F_o}(\pi_o)$. De plus la multiplicité $m(\tau)$ de τ dans $L(D^{\times} \backslash D_{\mathbb{A}}^{\times})$ est égale à 1.

Preuve: En utilisant la formule des traces simples de Deligne-Kazhdan, exactement comme dans [18], on arrive à l'égalité

$$\prod_{v \in S} \Theta_{\Pi_v} = \sum_{\tau \in \mathcal{A}(\Pi)} m(\tau) \prod_{v \in S} \Theta_{\tau_v},$$

où $\mathcal{A}(\Pi)$ est l'ensemble des représentations automorphes τ de $D_{\mathbb{A}}^{\times}$ telles que $\tau^{S} \simeq \Pi^{S}$. Pour tout $v \in S \setminus \{\infty\}$, Π_{v} est cuspidale, et d'après loc. cit., la correspondance de Jacquet-Langlands locale donne l'égalité

$$\Theta_{\Pi_v} = (-1)^{h-1} \Theta_{\mathfrak{J}_{F_v}(\Pi_v)}.$$

De plus $\Theta_{St_{\infty}}$ est égale à $(-1)^{h-1}\Theta_{1_{\infty}}$. De l'égalité $\sum_{v\in S} \varepsilon_v \in h.\mathbb{Z}$, on en déduit que le cardinal de S à la même parité que h. On obtient donc l'égalité suivante

$$\prod_{v \in S} \Theta_{\mathfrak{J}_{F_v}(\Pi_v)} = \sum_{\tau \in \mathcal{A}(\Pi)} m(\tau) \prod_{v \in S} \Theta_{\tau_v},$$

où désormais toutes les représentations qui interviennent sont des représentations de $\prod_{v \in S} D_v^{\times}$. La proposition découle alors de l'indépendance des caractères sur $\prod_{v \in S} D_v^{\times}$.

2.2 Correspondance de Langlands locale.

Pour tout ce qui concerne ce paragraphe, on renvoie à la présentation du sujet dans [20]. Pour tout entier $d \geq 1$, $\mathcal{G}_F^0(d)$ est l'ensemble des classes d'isomorphie des représentations l-adique irréductibles de dimension d de W_F , de caractère central d'ordre fini (ou de manière équivalente, l'ensemble des classes d'équivalence des représentations complexes irréductibles et admissibles de $GL_d(F)$). L'isomorphisme du corps de classe $W_F^{ab} \simeq F^{\times}$ normalisé de façon à faire correspondre aux Frobenius géométriques, les uniformisantes de F, induit une bijection de $\mathcal{A}_{GL_1(F)}^0$ sur $\mathcal{G}_F^0(1)$. Pour tout entier $d \geq 1$ et pour tout élément $\pi \in \mathcal{A}_{GL_d(F)}$, Godement et Jacquet définissent les facteurs $L(\pi)$ et $\varepsilon(\pi)$ (le facteur ε dépend du choix d'un caractère additif de F). Jacquet-Piatetski Shapiro associent à toute paire $(\pi, \pi') \in \mathcal{A}_{GL_d(F)} \times \mathcal{A}_{GL_d(F)}$), les facteurs $L(\pi, \pi')$ et $\varepsilon(\pi, \pi')$. De la même façon

si σ est un élément de $\mathcal{G}_F^0(d)$ (resp. $(\sigma, \sigma') \in \mathcal{G}_F^0(d) \times \mathcal{G}_F^0(d')$), on a des facteurs $L(\sigma)$ et $\varepsilon(\sigma)$ (resp. $L(\sigma, \sigma')$ et $\varepsilon(\sigma, \sigma')$) (cf. [33]).

Théorème 2.2.1 (cf. [23] théorème (15.7) correspondance de Langlands locale) Il existe une unique suite d'applications bijectives $(\mathfrak{L}_{d,F})_d$ de $\mathcal{A}^0_{GL_d(F)}$ dans $\mathcal{G}^0_F(d)$ telle que:

- pour tout π , $\pi' \in \mathcal{A}^0_{GL_d(F)}$, on a

$$L\left(\mathfrak{L}_{d,F}(\pi)\otimes\mathfrak{L}_{d',F}(\pi')\right)=L(\pi\otimes\pi');$$

- pour tout $\pi \in \mathcal{A}^0_{GL_d(F)}$, on a

$$\mathfrak{L}_{d,F}(\check{\pi}) = \check{\mathfrak{L}}_{d,F}(\pi).$$

De plus cette suite d'application vérifie les propriétés suivantes:

- pour tout $\pi \in \mathcal{A}^0_{GL_d(F)}$ et $\pi' \in \mathcal{A}^0_{GL_{d'}(F)}$ on a

$$L\left(\mathfrak{L}_{d,F}(\pi)\otimes\mathfrak{L}_{d',F}(\pi')\right)=L(\pi\otimes\pi')$$

$$\varepsilon \left(\mathfrak{L}_{d,F}(\pi) \otimes \mathfrak{L}_{d',F}(\pi') \right) = \varepsilon(\pi \otimes \pi');$$

- pour tout $\pi \in \mathcal{A}^0_{GL_d(F)}$, le déterminant de $\mathfrak{L}_{d,F}(\pi)$ correspond au caractère central de π par la théorie du corps de classe;
- pour tout $\pi \in \mathcal{A}^0_{GL_d(F)}$ et pour tout caractère d'ordre fini ξ de F^{\times} , on a

$$\mathfrak{L}_{d,F}(\pi \otimes \xi) = \mathfrak{L}_{d,F}(\pi) \otimes \mathfrak{L}_{1,F}(\xi \circ \det).$$

Remarque: Le théorème ci-dessus est obtenu via l'étude de la cohomologie du schéma de module des \mathcal{D} -faisceaux elliptiques (cf. chapitre 4 paragraphe 2). La correspondance de Langlands locale ne sera utilisé dans ce texte, que sous la forme du théorème 2.5 du chapitre 3, du à Laumon, Rapoport et Stulher.

3 La représentation locale fondamentale.

Dans cette partie on rappelle comment Deligne et Carayol construise une représentation l-adique, dite locale fondamentale, du groupe $GL_h(F) \times D_{F,h}^{\times} \times W_F$ et on énonce la conjecture de Deligne-Carayol que l'on prouvera au chapitre 4.

3.1 Les \mathcal{O} -modules formels et leurs déformations d'après Drinfel'd.

On reprend dans cette partie des définitions et des résultats présents dans [11].

3.1.1 Définition et propriétés des \mathcal{O} -modules formels.

Soit R un anneau. Un groupe formel (commutatif) sur R est par définition, une série formelle $f \in R[x,y]$ telle que

$$f(x,y) = f(y,x), \quad f(x,0) = x, \quad f(x,f(y,z)) = f(f(x,y),z).$$

Un homomorphisme d'un groupe formel f vers un groupe formel g, est une série formelle $\varphi \in R[[x]]$ telle que

$$\varphi(f(x,y)) = g(\varphi(x), \varphi(y)).$$

Les endomorphismes du R-groupe formel f, forment une R-algèbre notée End f. Pour tout groupe formel f sur R, on note D: End $f \to R$ l'homomorphisme canonique $\varphi \mapsto \varphi'(0)$.

Exemple - Le groupe additif est la série formelle

$$f(x,y) = x + y$$
.

Si R est de caractéristique p, on note τ l'endomorphisme de Frobenius qui correspond à la série $\varphi(x) = x^p$. L'anneau des endomorphismes du groupe additif est alors l'anneau non commutatif $R\{\{\tau\}\}$ muni de la loi de commutation $\tau r = r^p \tau$, pour tout élément r de R.

Soient \mathcal{O} un anneau et R une \mathcal{O} -algèbre. On note $\gamma: \mathcal{O} \to R$ l'homomorphisme naturel. Un \mathcal{O} -module formel sur R est un couple (f, ψ) où f est un groupe formel sur R et ψ est un homomorphisme de \mathcal{O} vers $\operatorname{End} f$, tel que $D \circ f = \gamma$. On notera encore ψ_a l'endomorphisme $\psi(a)$ de $\operatorname{End} f$. Une **isogénie** du groupe formel (f, ψ) est un endomorphisme φ du groupe formel f qui vérifie de plus pour tout élément $a \in \mathcal{O}$, $\psi_a(\varphi(x)) = \varphi(\psi_a(x))$.

Exemple - Le \mathcal{O} -module additif est le couple (f, ψ) où

$$f(x,y) = x + y$$
 et, $\forall a \in \mathcal{O}, \ \psi_a(x) = a.x.$

Un \mathcal{O} -module formel sur R tronqué en degré n, est une paire (f, ψ) où f appartient à $R[[x,y]]/(x,y)^n$ et où pour tout élément a de \mathcal{O} , ψ_a appartient à $R[[x]]/(x^n)$; les relations entre f et les ψ_a , pour $a \in \mathcal{O}$, sont les relations modulo deg n, qui proviennent de la définition de \mathcal{O} -module formel.

Considérons le foncteur de la catégorie des \mathcal{O} -algèbres dans la catégorie des ensembles qui à une \mathcal{O} -algèbre R associe l'ensemble des \mathcal{O} -modules formels sur R. Ce foncteur est représenté par une algèbre $\Lambda_{\mathcal{O}}$ de générateurs les coefficients indéterminés des séries f et $(\psi_a)_{a\in\mathcal{O}}$, les relations étant celles requises pour que (f,ψ) soit un \mathcal{O} -module formel. L'algèbre $\Lambda_{\mathcal{O}}$ est naturellement munie d'une graduation: $\Lambda_{\mathcal{O}} = \bigoplus_n \Lambda_{\mathcal{O}}^n$. L'ensemble des \mathcal{O} -modules formels sur R tronqués en degré n est canoniquement isomorphe à l'ensemble des homomorphismes de \mathcal{O} -modules $\psi: \bigoplus_{k=0}^{n-1} \Lambda_{\mathcal{O}}^k \longrightarrow R$ tels que $\psi(ab) = \psi(a)\psi(b)$ et $\psi(1) = 1$. Les éléments de la forme ab pour a et b appartenant à $\Lambda_{\mathcal{O}}$ avec deg a > 1 et deg b > 1, engendrent un idéal homogène que l'on note $D_{\mathcal{O}} = \bigoplus_n D_{\mathcal{O}}^n$. L'ensemble des homomorphismes de \mathcal{O} -modules $\Lambda_{\mathcal{O}}^n/D_{\mathcal{O}}^n \longrightarrow R$ est isomorphe à l'ensemble des homomorphismes de \mathcal{O} -modules $\psi: \bigoplus_{k=0}^n \Lambda_{\mathcal{O}}^k \longrightarrow R$ tels que $\psi(ab) = \psi(a)\psi(b)$, la restriction de ψ à $\bigoplus_{k=0}^{n-1} \Lambda_{\mathcal{O}}^k$ étant fixée à l'avance. Ce dernier ensemble est en bijection avec l'ensemble des \mathcal{O} -modules formels sur R tronqués en degré n, tels que leur réduction en degré (n-1) soit fixée à l'avance.

Dans la suite, \mathcal{O} désigne l'anneau des entiers d'un corps F local complet, d'égale caractéristique p. On choisit une uniformisante π et on note $\kappa = \mathcal{O}/(\pi)$ le corps résiduel, de cardinal q. On pourra trouver les preuves des résultats suivants dans [11].

Soient (f, ψ) et $(\tilde{f}, \tilde{\psi})$ deux \mathcal{O} -modules formels sur R tronqués en degré (n+1) tels que

$$(f, \psi) \equiv (\tilde{f}, \tilde{\psi}) \mod \deg n$$
.

Il existe alors un élément r de R tel que:

 $-\sin n$ 'est pas une puissance de q, on a

$$f(x,y) \equiv \tilde{f}(x,y) + r[(x+y)^n - x^n - y^n],$$

$$\psi_a(x) \equiv \tilde{\psi}_a(x) + r(a^n - a)x^n;$$

- si n est une puissance de q, on a

$$f(x,y) = \tilde{f}(x,y) + r/\pi[(x+y)^n - x^n - y^n],$$

$$\psi_a(x) = \tilde{\psi}_a(x) + r/\pi(a^n - a)x^n.$$

On fixe (f, ψ) un \mathcal{O} -module formel sur R tronqué en degré n et à $(\tilde{f}, \tilde{\psi})$, un \mathcal{O} module formel sur R tronqué en degré n tel que $(f, \psi) \equiv (\tilde{f}, \tilde{\psi})$ mod deg(n-1),
on lui associe l'élément r de R défini ci-dessus. On construit ainsi un morphisme
injectif de \mathcal{O} -modules $\mathcal{O} \longrightarrow \Lambda^n_{\mathcal{O}}/D^n_{\mathcal{O}}$.

Proposition 3.1.1.1 Le morphisme de \mathcal{O}_o -modules $\mathcal{O} \longrightarrow \Lambda^n_{\mathcal{O}}/D^n_{\mathcal{O}}$ défini cidessus, est un isomorphisme.

Considérons l'anneau de polynôme $\mathcal{O}[g_2, g_3, \cdots]$ en les indéterminées g_2, g_3, \cdots muni de la graduation deg $g_i = i - 1$. Soit n'importe quel morphisme d'algèbre graduée $\psi : \mathcal{O}[g_2, g_3, \cdots] \longrightarrow \Lambda_{\mathcal{O}}$ tel que pour tout $i \geq 2$, l'image de $\psi(g_i)$ dans $\Lambda_{\mathcal{O}}^i/D_{\mathcal{O}}^i \simeq \mathcal{O}$ est inversible.

Proposition 3.1.1.2 Le morphisme ψ est un isomorphisme d'algèbres graduées

$$\mathcal{O}[(g_i)_i] \xrightarrow{\sim} \Lambda_{\mathcal{O}}.$$

La preuve de cette proposition découle de la proposition suivante.

Proposition 3.1.1.3 Pour tout F-module formel (f, ψ) , il existe un unique isomorphisme s de (f, ψ) vers le module additif tel que s'(0) = 1. On obtient ainsi

$$\Lambda_F \simeq F[c_2, c_3, \cdots]$$

où les c_i sont les coefficients de l'isomorphisme $s = x + \sum_{i=2}^{\infty} c_i x^i$, deg $c_i = i - 1$.

Soient κ' un sur-corps de κ et (f,ψ) un \mathcal{O} -module formel sur κ' . Le groupe formel f étant isomorphe au groupe additif, on supposera que f(x,y)=x+y. Si φ est un endomorphisme non nul de (f,ψ) , il existe alors un entier h et une série formelle Φ tels que $\varphi(x)=\Phi(x^{q^h})$. L'entier h est appelé **la hauteur** de φ . La hauteur d'un \mathcal{O} -module formel sur κ' est par définition la hauteur de l'endomorphisme ψ_{π} .

Lemme 3.1.1.4 Il existe des O-modules formels de hauteur arbitraire.

Preuve: Le \mathcal{O} -module formel sur κ' associé à un homomorphisme $\lambda: \Lambda_{\mathcal{O}} \simeq \mathcal{O}[(g_i)_i] \longrightarrow \kappa'$ tel que $\lambda(g_{q^h-1}) \neq 0$ et $\lambda(g_i) = 0$ pour $i < q^h - 1$, est de hauteur h.

Un \mathcal{O} -module formel (f, ψ) de hauteur h est dit normal si les conditions suivantes sont satisfaites:

- $-\psi_{\pi}(x) = x^{q^h},$
- $-f \in \mathbb{F}_{q^h}[[x,y]], \ \psi_a(x) \in \mathbb{F}_{q^h}[[x]] \text{ pour } a \in \mathcal{O},$
- $-f(x,y) \equiv x + y \mod \deg q^h$; $\psi_a(x) \equiv ax \mod \deg q^h$.

Lemme 3.1.1.5 (cf. [11]) Tout \mathcal{O} -module formel de hauteur h sur $\bar{\kappa}$ est isomorphe à un \mathcal{O} -module formel de hauteur h, normal.

Proposition 3.1.1.6 Tous les \mathcal{O} -modules formels de hauteur h sur une clôture séparable de κ sont isomorphes. L'anneau des endomorphismes d'un tel \mathcal{O} -module formel est isomorphe à l'anneau des entiers d'une algèbre à division centrale $D_{F,h}$ sur F, d'invariant 1/h.

Dans la suite, tous les \mathcal{O} -modules formels (sur $\bar{\kappa}$) considérés seront normaux. En particulier, pour un tel \mathcal{O} -module formel (f, ψ) de hauteur h, l'action de la puissance h-ème du Frobenius de κ sur le groupe formel f est égale l'action de π .

3.1.2 Déformations des \mathcal{O} -modules formels.

Soit \mathcal{O}^{nr} l'extension non ramifiée maximale de \mathcal{O} et $\hat{\mathcal{O}}^{nr}$ la complétion de \mathcal{O}^{nr} . On considère la catégorie C dont les objets sont les $\hat{\mathcal{O}}^{nr}$ -algèbres locales complètes noethériennes, de corps résiduel isomorphe à $\bar{\kappa} = \hat{\mathcal{O}}^{nr}/(\pi)$. Les morphismes de C sont les homomorphismes locaux de $\hat{\mathcal{O}}^{nr}$ -algèbres. Soit $(\bar{f}, \bar{\psi})$ un \mathcal{O} -module formel sur $\bar{\kappa}$, de hauteur h, normal et R un objet de C.

Une **déformation** de $(\bar{f}, \bar{\psi})$ définie sur R est un \mathcal{O} -module formel (f, ψ) sur R tel que sa réduction modulo l'idéal maximal de R est $(\bar{f}, \bar{\psi})$. Des déformations (f_1, ψ_1) et (f_2, ψ_2) de $(\bar{f}, \bar{\psi})$ définies sur R sont dites isomorphes s'il existe un isomorphisme entre ces deux \mathcal{O} -modules formels sur R, induisant l'identité sur $(\bar{f}, \bar{\psi})$.

Proposition 3.1.2.1 (cf. [11]) Le foncteur de la catégorie C dans la catégorie des ensembles qui à un objet R de C associe l'ensemble des déformations à isomorphisme près, de $(\bar{f}, \bar{\psi})$ définies sur R, est représenté par l'algèbre $D_0^h \simeq \hat{\mathcal{O}}^{nr}[[t_1, \dots, t_{h-1}]]$.

Remarque: Si $(\bar{f}, \bar{\psi})$ correspond à l'application $\mathcal{O}[g_2, g_3, \cdots] \simeq \Lambda_{\mathcal{O}} \to \bar{\kappa}$ tel que l'image de g_i est nulle pour $i < q^h - 1$, alors la déformation universelle $\mathcal{O}[g_2, g_3, \cdots] \to \hat{\mathcal{O}}^{nr}[[t_1, \cdots, t_{h-1}]]$ est telle que l'image de g_i est nulle pour i qui n'est pas de la forme $q^j - 1$ et l'image de g_{q^j-1} est t_j pour $1 \leqslant j \leqslant h-1$.

Soit R un objet de la catégorie C, d'idéal maximal \mathfrak{m} . Soit (f, ψ) une déformation d'un \mathcal{O} -module formel $(\bar{f}, \bar{\psi})$ de hauteur h, définie sur R. L'idéal \mathfrak{m} est alors muni d'une structure de \mathcal{O} -module via la formule:

$$\forall m \in \mathfrak{m}, \ \forall a \in \mathcal{O}, \quad a.m = \psi_a(m).$$

Une structure de niveau n sur (f, ψ) , au sens de Drinfel'd, est un homomorphisme de \mathcal{O} -modules

$$\iota_n:(\pi^{-n}\mathcal{O}/\mathcal{O})^h\longrightarrow\mathfrak{m}$$

tel que $\psi_{\pi}(x)$ est divisible par $\prod_{\alpha \in (\pi^{-1}\mathcal{O}/\mathcal{O})^h} (x - \iota_n(\alpha))$.

Une déformation de niveau n de $(\bar{f}, \bar{\psi})$, définie sur R, est par définition une déformation (f, ψ) définie sur R et munie d'une structure de niveau n.

Proposition 3.1.2.2 Le foncteur qui à un objet R de C associe l'ensemble des déformations de niveau n de $(\bar{f}, \bar{\psi})$ à isomorphisme près, est représenté par un anneau D_n^h tel que:

- D_n^h est régulier,
- pour $m \leq n$, le morphisme $D_m^h \to D_n^h$ est fini et plat.

On rappelle que l'on a

$$\mathcal{D}_{F,h} = \{ \delta \in \bar{\kappa} \{ \{ \tau \} \} \ / \ \forall a \in \mathcal{O} \ \delta \bar{\psi}_a = \bar{\psi}_a \delta \}$$

et

$$D_{F,h} = \{ \delta \in \bar{\kappa}((\tau)) / \forall a \in \mathcal{O} \ \delta \bar{\psi}_a = \bar{\psi}_a \delta \}.$$

Pour tout entier n, on a sur D_n^h une action naturelle de $GL_h(\mathcal{O})$ et de $\mathcal{D}_{F,h}^{\times}$ que l'on définit sur la déformation universelle de niveau n, $((f, \psi), \iota_n)$, comme suit.

- Soit δ un élément de $\mathcal{D}_{F,h}^{\times} \subset \bar{\kappa}\{\{\tau\}\} \subset D_n\{\{\tau\}\}\}$. L'image de $((f,\psi),\iota_n)$ par δ est le couple

$$((\delta \circ f \circ \delta^{-1}, \delta \circ \psi \circ \delta^{-1}), \delta \circ \iota_n).$$

- Soit g un élément de $GL_h(\mathcal{O})$. Son action à droite (par g^{-1}) sur $(\pi^{-n}\mathcal{O}/\mathcal{O})^h$ définit un isomorphisme

$$g: (\pi^{-n}\mathcal{O}/\mathcal{O})^h \xrightarrow{(\times g^{-1})} (\pi^{-n}\mathcal{O}/\mathcal{O})^h.$$

L'image de $((f, \psi), \iota_n)$ par g est le couple

$$((f,\psi),\iota_n\circ g).$$

Le sous-groupe

$$K_{h,n}:=\operatorname{Ker}\left(GL_h(\mathcal{O})\longrightarrow GL_h(\mathcal{O}/(\pi^n))\right)$$

de $GL_h(\mathcal{O})$ agit trivialement sur D_n^h . On remarque que les actions de $GL_h(\mathcal{O})$ et de $\mathcal{D}_{F,h}^{\times}$ sur D_n^h , commutent et sont compatibles aux morphismes de restriction du niveau $D_m^h \longrightarrow D_n^h$, pour tout couple d'entiers (n,m) tels que $m \leq n$.

Le but du paragraphe suivant est de construire, à partir de cette représentation de $GL_h(\mathcal{O}) \times \mathcal{D}_{F,h}^{\times}$, une représentation de $GL_h(F) \times \mathcal{D}_{F,h}^{\times} \times W_F$.

3.2 Définition de la représentation locale fondamentale.

On fixe un caractère d'ordre fini ξ de F^{\times} à valeurs dans $\bar{\mathbb{Q}}_{l}^{\times}$ et on note ξ' sa restriction à \mathcal{O}^{\times} .

3.2.1 Cohomologie évanescente des algèbres D_n^h .

Fixons tout d'abord un entier $n \ge 1$. Pour tout entier $i \ge 0$, on considère la cohomologie l-adique

$$\Psi_n^{h,i} := H^i\left(\operatorname{Spec}(D_n^h \otimes_{\hat{\mathcal{O}}^{\operatorname{nr}}} \overline{\hat{F}^{\operatorname{nr}}}), \overline{\mathbb{Q}}_l\right).$$

La $\overline{\hat{F}}^{nr}$ -algèbre $D_n^h \otimes_{\hat{\mathcal{O}}^{nr}} \overline{\hat{F}}^{nr}$ étant de dimension h-1, d'après [31] I-4.2., si i est strictement supérieur à h-1, $\Psi_n^{h,i}$ est nul. On rappelle que $\operatorname{Gal}(\overline{\hat{F}}^{nr}/\hat{F}^{nr})$ est isomorphe à $\operatorname{Gal}(\overline{F}/F^{nr})$. En particulier $\operatorname{Gal}(\overline{F}/F^{nr})$ agit naturellement sur le $\overline{\mathbb{Q}}_i$ -espace vectoriel de dimension finie $\Psi_n^{h,i}$. De plus, les actions géométriques de $\mathcal{D}_{F,h}^{\times}$ et $GL_h(\mathcal{O})$ sur D_n^h , définies dans la section précédente, induisent, pour tout $i \geq 0$, une action de $GL_h(\mathcal{O}) \times \mathcal{D}_{F,h}^{\times}$ sur $\Psi_n^{h,i}$ qui commute à l'action de $\operatorname{Gal}(\overline{F}/F^{nr})$.

On note $\Psi_n^{h,i}(\xi')$ le quotient de $\Psi_n^{h,i}$ sur lequel le centre $\mathcal{O}^{\times} \subset GL_h(\mathcal{O})$ agit par ξ' . On remarque alors qu'un élément z de \mathcal{O}^{\times} , vu comme élément du centre $\mathcal{O}^{\times} \subset \mathcal{D}_{F,h}^{\times}$, agit sur $\Psi_n^{h,i}(\xi')$ via le scalaire $\xi'(z)^{-1}$. On pose

$$\Psi^{h,i}(\xi') = \lim_{\stackrel{\longrightarrow}{n}} \Psi^{h,i}_n(\xi')$$

où les flêches de transition sont induites par les morphismes de restriction du niveau $D_m^h \longrightarrow D_n^h$ $(m \leq n)$. Le $\bar{\mathbb{Q}}_l$ -espace vectoriel $\Psi^{h,i}(\xi')$ est muni d'une action du groupe produit $GL_h(\mathcal{O}) \times \mathcal{D}_{F,h}^{\times} \times \operatorname{Gal}(\bar{F}/F^{nr})$ et pour tout entier n, on a un isomorphisme $(GL_h(\mathcal{O}) \times \mathcal{D}_{F,h}^{\times} \times \operatorname{Gal}(\bar{F}/F^{nr}))$ -équivariant

$$(\Psi^{h,i}(\xi'))^{K_{h,n}} \simeq \Psi^{h,i}_n(\xi').$$

3.2.2 Correspondances de Hecke.

On note rn : $D_{F,h}^{\times} \to F^{\times}$ la norme réduite et cl : $W_F \twoheadrightarrow W_F^{ab} \xrightarrow{\sim} F^{\times}$ le morphisme de la théorie du corps de classe. On fixe un élément τ de W_F dont l'image dans F^{\times} est l'uniformisante π .

Soit

$$\mathfrak{P} \subset GL_h(F) \times D_{Fh}^{\times} \times W_F$$

le noyau de l'application

$$GL_h(F) \times D_{F,h}^{\times} \times W_F \longrightarrow \mathbb{Z}/h\mathbb{Z}$$

 $(g, \delta, w) \longmapsto \operatorname{val}(\det(g^{-1}).\operatorname{rn}(\delta).\operatorname{cl}(w)).$

Le sous-groupe \mathfrak{P} contient $GL_h(\mathcal{O}) \times \mathcal{D}_{F,h}^{\times} \times \operatorname{Gal}(\bar{F}/F^{nr})$. Dans une première étape, on rappelle comment Deligne et Carayol prolongent l'action du groupe $GL_h(\mathcal{O}) \times \mathcal{D}_{F,h}^{\times} \times \operatorname{Gal}(\bar{F}/F^{nr})$ sur $\Psi^{h,i}(\xi')$, au sous-groupe \mathfrak{P} .

On considère les éléments de $GL_h(F) \times D_{F,h}^{\times} \times W_F$ qui sont de la forme:

- a) $(z_1, z_2, 1)$ pour $z_1, z_2 \in F^{\times}$, où l'on identifie F^{\times} respectivement au centre de $GL_h(F)$ et de $D_{F,h}^{\times}$;
- b) $(g^{-1}, \delta^{-1}, 1)$ avec $g \in M_h(\mathcal{O}) \cap GL_h(F)$, $\delta \in D_{F,h}^{\times}$ et val $(\det g) = \operatorname{val}(\operatorname{rn}(\delta))$;

- c)
$$(g^{-1}, 1, \tau^{-r})$$
 avec $g \in M_h(\mathcal{O}) \cap GL_h(F)$ et $r = \text{val}(\det g)$.

Ces éléments constituent un ensemble générateur de \mathfrak{P} . On rappelle les actions de ces éléments sur $\Psi^{h,i}(\xi')$ et on laisse au lecteur le soin de vérifier que l'on obtient ainsi une action de \mathfrak{P} sur $\Psi^{h,i}(\xi')$.

- Eléments du type a): A l'élément $(z_1,z_2,1)$, on associe l'endomorphisme $\xi(z_1z_2^{-1})$ Id de $\Psi^{h,i}(\xi')$.

Pour les éléments de type b) et c), nous utiliserons la proposition suivante.

Proposition 3.2.2.1 (cf. [11]) Soit R une $\hat{\mathcal{O}}^{nr}$ -algèbre locale complète de corps résiduel isomorphe à $\bar{\kappa}$. Soit (f, ψ) un \mathcal{O} -module formel défini sur R et muni d'une structure de niveau n, ι_n . Soit $P \subset (\pi^{-n}\mathcal{O}/\mathcal{O})^h$ un sous-module. On définit

$$\alpha(X) := \prod_{p \in P} f(X, \iota_n(p)).$$

Il existe alors un unique \mathcal{O} -module formel (f_P, ψ_P) défini sur R tel que

$$\alpha \circ f(X,Y) = f_P(\alpha(X), \alpha(Y))$$
 et $\forall a \in \mathcal{O}, \ \alpha \circ \psi_a(X) = \psi_{P,a}(\alpha(X)).$

Si m est un entier tel que le morphisme naturel

$$\theta: (\pi^{-m}\mathcal{O}/\mathcal{O})^h \longrightarrow (\pi^{-n}\mathcal{O}/\mathcal{O})^h/P$$

est injectif, alors l'homomorphisme $\iota_n \circ \theta$ de $(\pi^{-m}\mathcal{O}/\mathcal{O})^h$ dans l'idéal maximal de R est une structure de niveau m sur f_P que l'on note $\iota_{P,m}$.

Soit g un élément de $M_h(\mathcal{O})$ de déterminant non nul. On choisit des entiers n et m tels que le noyau de l'application

$$g: (F/\mathcal{O})^h \longrightarrow (F/\mathcal{O})^h$$

est contenu dans $(\pi^{-n}\mathcal{O}/\mathcal{O})^h$ et tels que l'image de $(\pi^{-n}\mathcal{O}/\mathcal{O})^h$ par g contienne $(\pi^{-m}\mathcal{O}/\mathcal{O})^h$. Soit alors $((f,\psi),\iota_n)$ la déformation universelle de niveau n de $(\bar{f},\bar{\psi})$. Soit $(f_{\mathrm{Ker}\,g},\psi_{\mathrm{Ker}\,g})$ le \mathcal{O} -module formel de la proposition ci-dessus, associé à $\mathrm{Ker}\,g$, muni de sa structure de niveau m, $\iota_{\mathrm{Ker}\,g,m}$

- Eléments du type b): On vérifie que la quasi-isogénie

$$(\bar{f}, \bar{\psi}) \xrightarrow{\delta^{-1}} (\bar{f}, \bar{\psi}) \longrightarrow (\bar{f}_{\operatorname{Ker} g}, \bar{\psi}_{\operatorname{Ker} g})$$

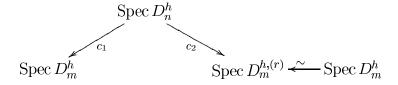
est un isomorphisme. En considérant $(f_{\text{Ker }g}, \psi_{\text{Ker }g})$ comme une déformation de niveau m de $(\bar{f}, \bar{\psi})$, définie sur D_n^d , on obtient alors un morphisme $[g, \delta]: D_m^h \longrightarrow D_n^h$. A l'élément $(g^{-1}, \delta^{-1}, 1)$, on associe la correspondance

où c_2 est induit par $[g, \delta]$ et c_1 est le morphisme de restriction du niveau. Cette correspondance définit, pour tout i, un endomorphisme du $\bar{\mathbb{Q}}_l$ -espace vectoriel $\Psi_m^{h,i}(\xi')$ et donc un endomorphisme de $\Psi^{h,i}(\xi')$.

- Eléments du type c): La quasi-isogénie

$$(\bar{f}, \bar{\psi})^{\tau^r} \xrightarrow{\tau^{-r}} (\bar{f}, \bar{\psi}) \longrightarrow (\bar{f}_{\mathrm{Ker}\,g}, \bar{\psi}_{\mathrm{Ker}\,g})$$

est un isomorphisme. On obtient alors un morphisme $[g,r]:D_m^{h,(r)}\longrightarrow D_n^h$, où $D_m^{h,(r)}$ est la $\hat{\mathcal{O}}^{\text{nr}}$ -algèbre associée aux déformations de $(\bar{f},\bar{\psi})^{\tau r}$, c'est-à-dire le produit tensoriel $D_m^h\otimes_{\hat{\mathcal{O}}^{\text{nr}},\alpha}\hat{\mathcal{O}}^{\text{nr}}$ où α est la puissance r-ème de l'inverse du relèvement canonique $\hat{\mathcal{O}}^{\text{nr}} \stackrel{\sim}{\longrightarrow} \hat{\mathcal{O}}^{\text{nr}}$ du Frobenius de κ . A l'élément $(g^{-1},1,\tau^{-r})$, on associe alors la correspondance



où c_2 est induit par [g,r] et c_1 est le morphisme de restriction du niveau. Cette correspondance définit, pour tout i, un endomorphisme de $\Psi^{h,i}(\xi')$.

Remarque : Le \mathcal{O} -module formel $(\bar{f}, \bar{\psi})$ défini sur $\bar{\kappa}$ (dont D_n^h représente les déformations) étant choisi normal, l'action de la puissance h-ème du Frobenius de κ sur \bar{f} est égale à $\bar{\psi}_{\pi}$. L'action de $(\pi^{-1}, 1, \tau^{-h})$ sur D_n^h est alors triviale.

Remarque : Les groupes $GL_h(F) \times \{1\} \times \{1\}$ et $\{1\} \times D_{F,h}^{\times} \times \{1\}$ sont contenus dans \mathfrak{P} . Un élément z du centre F^{\times} de $GL_h(F)$ (resp. de $D_{F,h}^{\times}$) agit sur $\Psi^{h,i}(\xi')$ par le scalaire $\xi(z)$ (resp. $\xi^{-1}(z)$). L'espace $\Psi^{h,i}(\xi')$ ainsi muni de l'action de \mathfrak{P} sera noté $\Psi^{h,i}(\xi)$.

3.2.3 La représentation locale fondamentale.

Le quotient $(GL_h(F) \times D_{F,h}^{\times} \times W_F)/\mathfrak{P}$ étant fini, on pose pour tout entier i,

$$\mathcal{U}^{h,i}(\xi) := \operatorname{Ind}_{\mathfrak{B}}^{GL_h(F) \times D_{F,h}^{\times} \times W_F} \Psi^{h,i}(\xi).$$

Lemme 3.2.3.1 Pour tout i, les représentations $\mathcal{U}^{h,i}(\xi)$ sont admissibles au sens de la définition 1.3.1 et constituent donc des objets de la catégorie $C_{GL,H,\Gamma}$.

Définition 3.2.3.2 La représentation $\mathcal{U}^{h,h-1}(\xi)$ est appelée la représentation locale fondamentale associée au caractère d'ordre fini ξ ; on la notera $\mathcal{U}_h(\xi)$.

4 Enoncé du théorème principal.

Théorème 4.1 Soient ξ un caractère d'ordre fini de F^{\times} , π une représentation irréductible admissible cuspidale de $GL_h(F)$ de caractère central ξ , ρ une représentation irréductible admissible de $D_{F,h}^{\times}$ et σ une représentation irréductible l-adique de W_F . Alors la multiplicité $\lambda_{\pi \otimes \rho \otimes \sigma}(\mathcal{U}^{h,i}(\xi))$ de la représentation irréductible $\pi \otimes \rho \otimes \sigma$ de $GL_h(F) \times D_{F,h}^{\times} \times W_F$ dans la représentation $\mathcal{U}^{h,i}(\xi)$, est nulle $si \neq h-1$ et sinon elle est donnée par

$$\lambda_{\pi \otimes \rho \otimes \sigma}(\mathcal{U}_h(\xi)) = \begin{cases} 1 \text{ si } \rho = \mathfrak{J}_F(\check{\pi}) \text{ et } \sigma = \mathfrak{L}_{h,F}(\pi) \\ 0 \text{ si } \rho \neq \mathfrak{J}_F(\check{\pi}) \text{ ou } \sigma \neq \mathfrak{L}_{h,F}(\pi), \end{cases}$$

où $\check{\pi}$ est la représentation contragrédiente de π .

Remarque : D'après la définition de l'action de $GL_h(F) \times D_{F,h}^{\times} \times \Gamma$ sur $\mathcal{U}^{h,i}(\xi)$, si $\lambda_{\pi \otimes \rho \otimes \sigma}(\mathcal{U}^{h,i}(\xi)) \neq 0$ pour un triplet (π, ρ, σ) de $\mathcal{T}_{GL} \times \mathcal{T}_H \times \mathcal{T}_{\Gamma}$ alors le caractère central de π (resp. de ρ) est ξ (resp. ξ^{-1}).

Chapitre 2

\mathcal{D} -faisceaux elliptiques, structures de niveaux, espaces de modules: rappels et compléments.

Notations.

Soit X une courbe projective, irréductible, lisse et géométriquement connexe, sur un corps fini \mathbb{F}_q . On notera F le corps des fonctions de X et |X| l'ensemble des points fermés de X.

Pour x un élément de |X| on note:

- $-F_x$ le complété x-adique de F,
- \mathcal{O}_x l'anneau des entiers de F_x ,
- $-\pi_x$ une uniformisante de \mathcal{O}_x ,
- $-\kappa(x)$ le corps résiduel de \mathcal{O}_x ,
- $\deg(x)$ le degré de $\kappa(x)$ sur \mathbb{F}_q ,
- $-v_x:F_x^{\times}\to\mathbb{Z}$ la valuation de F_x , telle que $v_x(\pi_x)=1$.

On notera \mathbb{A} l'anneau des adèles de F. Pour tout ensemble $T \subset |X|$, on note \mathbb{A}^T l'anneau des adèles en dehors de l'ensemble de places T et \mathbb{A}_T l'anneau des adèles sur l'ensemble de places T.

Tous les schémas considérés sont des schémas sur \mathbb{F}_q . Si Y, Z sont de tels schémas, $Y \times Z$ désignera leur produit sur \mathbb{F}_q . On utilisera une notation similaire pour le produit tensoriel sur \mathbb{F}_q . Pour tout schéma S, on désigne par Frob_S l'endomorphisme de Frobenius de S, qui est l'identité sur l'ensemble sous-jacent et l'élévation à la puissance q sur le faisceau structural \mathcal{O}_S .

Tout au long de ce chapitre et du suivant, dans les paragraphes qui traiteront de questions locales, \mathcal{O} désignera un anneau local d'égale caractéristique p, de corps des fractions F (à nouveau). On fixe une uniformisante π de \mathcal{O} . On note κ le corps résiduel $\mathcal{O}/(\pi)$ et q' son cardinal.

1 Rappels sur les \mathcal{D} -faisceaux elliptiques.

On reprend pour l'essentiel les définitions et résultats de [23].

1.1 Algèbre à division centrale sur F.

Fixons D une algèbre à division centrale sur F de dimension finie d^2 et une \mathcal{O}_X -algèbre \mathcal{D} , localement libre de rang d^2 en tant que \mathcal{O}_X -module dont la fibre générique est D. Il existe alors un ensemble fini de places $\operatorname{Bad} \subset |X|$ tel que, pour tout $x \in |X| \setminus \operatorname{Bad}$, $D \otimes F_x$ est isomorphe à $M_d(F_x)$ par un isomorphisme qui envoie \mathcal{D}_x sur $M_d(\mathcal{O}_x)$. On supposera que pour toute place x de Bad , D_x est une algèbre à division et que \mathcal{D}_x est l'ordre maximal dans D_x .

1.2 Définition des \mathcal{D} -faisceaux elliptiques.

Fixons une place ∞ de X, n'appartenant pas à Bad. Pour simplifier, on supposera dans la suite que ∞ est rationnelle sur le corps des constantes \mathbb{F}_q de X.

Soit S un schéma. Un \mathcal{D} -faisceau elliptique sur S est un diagramme commutatif

$$\cdots \longrightarrow \mathcal{E}_{i} \xrightarrow{j_{i}} \mathcal{E}_{i+1} \longrightarrow \cdots$$

$$\cdots \longrightarrow {}^{\tau}\mathcal{E}_{i} \xrightarrow{\tau_{j_{i}}} {}^{\tau}\mathcal{E}_{i+1} \longrightarrow \cdots$$

où:

- \mathcal{E}_i est un $\mathcal{D}_{X\times S}$ -module à droite localement libre de rang 1, et donc un $\mathcal{O}_{X\times S}$ -module localement libre de rang d^2 ;
- ${}^{\tau}\mathcal{E}_i$ est égal à $(\mathrm{Id}_X \times \mathrm{Frob}_S)^*\mathcal{E}_i$;
- j_i et t_i sont des injections $\mathcal{D}_{X\times S}$ -linéaires;
- $\mathcal{E}_{i+d} \simeq \mathcal{E}_i(\infty)$: = $\mathcal{E}_i \otimes_{\mathcal{O}_X} \mathcal{O}_X(\infty)$ et le composé $\mathcal{E}_i \to \mathcal{E}_{i+1} \to \cdots \to \mathcal{E}_{i+d}$ est induit par l'injection canonique $\mathcal{O}_X \hookrightarrow \mathcal{O}_X(\infty)$;

 $-(pr_S)_*(\mathcal{E}_i/\mathcal{E}_{i-1})$ est un \mathcal{O}_S -module localement libre de rang d où $pr_S: X \times S \to S$ est la projection canonique. De manière équivalente, $\mathcal{E}_i/\mathcal{E}_{i-1}$ est isomorphe, comme $\mathcal{O}_{X\times S}$ -module, à l'image directe $(i_{\infty})_*(\Gamma_{\infty,i})$ d'un \mathcal{O}_S -module $\Gamma_{\infty,i}$, localement libre de rang d, par la section ∞ :

$$(i_{\infty}^{\tilde{}}): S \longrightarrow X \times S \qquad s \longmapsto (\infty, s);$$

– l'image directe de Coker t_i est un \mathcal{O}_S -module localement libre de rang d. Le support de Coker t_i est disjoint de $(\{\infty\} \cup \text{Bad}) \times S$. De manière équivalente, Coker t_i est isomorphe, comme $\mathcal{O}_{X \times S}$ -module, à l'image directe $(\tilde{i_{0,i}})_*(\Gamma_{0,i})$ d'un \mathcal{O}_S -module $\Gamma_{0,i}$, localement libre de rang d, par la section

$$(i_{0,i}^{\sim}): S \xrightarrow{(i_{0,i},id_S)} X \times S$$

induite par un morphisme $i_{0,i}: S \to X$ tel que $i_{0,i}(S) \subset |X'|$.

Remarque: Les inclusions $\mathcal{E}_i \hookrightarrow \mathcal{E}_{i+1}$ étant des isomorphismes sur $(X \setminus \{\infty\}) \times S$ et le support de Coker t_i étant disjoint de $\infty \times S$, on en déduit que la donnée des morphismes $(t_i)_i$ est équivalente à la donnée d'un seul t_i . Les morphismes $i_{0,i}$ sont indépendants de i; on le note i_0 , le zéro du \mathcal{D} -faisceau elliptique.

Notations: Dans la suite on notera un tel \mathcal{D} -faisceau elliptique sous la forme $(\mathcal{E}_i, j_i, t_i)$. Lorsque $i_0(S)$ est un point fermé o de X', on dira que $(\mathcal{E}_i, j_i, t_i)$ est de pure caractéristique o. On notera alors Γ_o et i_o pour Γ_0 et i_0 .

1.3 φ -faisceaux, schémas Gr et application aux \mathcal{D} -faisceaux elliptiques.

On commence par rappeler la définition du foncteur Gr de Drinfel'd (cf. [14]).

1.3.1 Rappels sur les φ -faisceaux et sur le foncteur Gr.

Soit S un \mathbb{F}_q -schéma.

Définition 1.3.1.1 (cf. [14]) Un φ -faisceau sur S est un faisceau \mathcal{F} , en \mathcal{O}_S module, localement libre de rang fini et muni d'une application \mathcal{O}_S -linéaire

$$\varphi: \operatorname{Frob}_S^* \mathcal{F} \longrightarrow \mathcal{F}.$$

Soit $\mathbb{V}(\mathcal{F})$ le fibré vectoriel associé à \mathcal{F}^* , c'est-à-dire

$$\mathbb{V}(\mathcal{F}) = \operatorname{Spec}(\operatorname{Sym}_{\mathcal{O}_S}(\mathcal{F}^*)).$$

Le morphisme φ (resp. Frob_S) induit une application linéaire (resp. q-linéaire) entre S-schémas

$$\mathbb{V}(\varphi): \mathbb{V}(\mathcal{F}) \longrightarrow \operatorname{Frob}_{S}^{*} \mathbb{V}(\mathcal{F}),$$
(resp. $\operatorname{Frob}_{S}: \mathbb{V}(\mathcal{F}) \longrightarrow \operatorname{Frob}_{S}^{*} \mathbb{V}(\mathcal{F})$).

Définition 1.3.1.2 On définit le S-schéma $Gr(\mathcal{F})$ comme le fibré vectoriel associé à l'ensemble

$$\{u \in \mathcal{F}^* / u(\varphi(x)) = u(x)^q \ \forall x \in \mathcal{F}\},$$

c'est-à-dire

$$Gr(\mathcal{F}) := Ker(\mathbb{V}(\varphi) - Frob_S).$$

Proposition 1.3.1.3 (cf. [14]) - Pour tout φ -faisceau \mathcal{F} , le S-schéma $Gr(\mathcal{F})$ est fini et localement libre; si \mathcal{F} est de rang n alors $Gr(\mathcal{F})$ est d'ordre égal à q^n .

- Le faisceau Lie* $Gr(\mathcal{F})$ (l'image inverse du faisceau $\Omega^1_{Gr(\mathcal{F})/S}$ relativement à la section nulle $0_S: S \longrightarrow Gr(\mathcal{F})$) est canoniquement isomorphe au conoyau du morphisme $\varphi: \operatorname{Frob}_S^* \mathcal{F} \longrightarrow \mathcal{F}$.

Preuve: Les questions étant de nature locale, on suppose $S = \operatorname{Spec} R$ affine et \mathcal{F} libre de rang n sur S. On fixe une base $(e_i)_{1 \leqslant i \leqslant n}$ de $\mathcal{F} \simeq R^n$, et on note $(m_{i,j})_{1 \leqslant i,j \leqslant n}$ les coefficients de la matrice de l'application $\varphi : \operatorname{Frob}_S^* \mathcal{F} \longrightarrow \mathcal{F}$ dans cette base, c'est-à-dire

$$\varphi\left(\sum_{i=1}^n (x_i e_i) \otimes \lambda_i\right) = \sum_{j=1}^n \left(\sum_{i=1}^n m_{i,j} x_i^q \lambda_i\right) e_j,$$

avec $(x_i e_i) \otimes 1 = e_i \otimes x_i^q$.

Soit $(e_i)_{1 \leq i \leq n}^*$ la base de \mathcal{F}^* duale de la base $(e_i)_{1 \leq i \leq n}$; on a

$$(e_{i_0} \otimes 1)^* \left(\sum_{i=1}^n (x_i e_i) \otimes \lambda_i \right) = \lambda_{i_0} x_{i_0}^q.$$

L'application $\varphi^*: \mathcal{F}^* \longrightarrow \operatorname{Frob}_S^* \mathcal{F}^*$ est alors donnée par une matrice que l'on écrit sous la forme $(m_{i,i'}^*)_{1 \leqslant i,i' \leqslant n}$ telle que

$$\varphi^*(e_{i_0}^*) = \sum_{i,k} m_{i,i_0}^*(e_i \otimes 1)^*.$$

On calcule les $m_{i,i'}^*$ de la façon suivante:

$$\varphi^*(e_{i_0}^*) \left(\sum_{i=1}^n (x_i e_i) \otimes \lambda_i \right) = e_{i_0}^* \left(\varphi(\sum_{i=1}^n (x_i e_i) \otimes \lambda_i) \right) \\
= e_{i_0}^* \left(\sum_{i=1}^n \sum_{i'=1}^n \lambda_{i'} x_{i'}^q m_{i,i'} \right) e_i \right) \\
= \sum_{i=1}^n \lambda_i x_i^q m_{i_0,i}$$

La matrice de φ^* dans la base $(e_i^*)_{1 \leq i \leq n}$ est ainsi la transposée de la matrice $(m_{i,i'})_{1 \leq i,i' \leq n}$ et le S-schéma $Gr(\mathcal{F})$ est le sous-schéma fermé de $\mathbb{G}_{a,R}^n$, défini par le système d'équations

$$x_j^q - \sum_{i=1}^n m_{j,i} x_i = 0$$
 $1 \le j \le n;$

d'où la proposition.

1.3.2 Définition des schémas $Gr(\mathcal{F}_{o,n})$.

Soient S un schéma et $(\mathcal{E}_i, j_i, t_i)$ un \mathcal{D} -faisceau elliptique défini sur S. On fixe une place o de X' et on note r le degré de l'extension $\kappa(o)$ sur \mathbb{F}_q .

Equivalence de Morita: Dans les lignes qui suivent, on décrit l'équivalence de Morita appliquée aux \mathcal{D} -faisceaux elliptiques en la place o. On introduit des notations que nous utiliserons largement dans toute la suite. Le $(\mathcal{O}_o \boxtimes \mathcal{O}_S)$ -module localement libre de rand d^2 , $\mathcal{E}_i \otimes \mathcal{O}_o$ est indépendant de i; on le note \mathcal{E}_o . On fixe un isomorphisme $\mathcal{D}_o \simeq \mathbb{M}_d(\mathcal{O}_o)$ et on désigne par $E_{1,1}$ l'idempotent de $\mathbb{M}_d(\mathcal{O}_o)$ associé au premier vecteur de base. Soit \mathcal{F}_o le $(\mathcal{O}_o \boxtimes \mathcal{O}_S)$ -module localement libre de rang d défini par $E_{1,1}\mathcal{E}_o$. Par équivalence de Morita, on a $\mathcal{E}_o \simeq \mathcal{F}_o^d$ où l'action de \mathcal{D}_o est donnée par l'action naturelle de $\mathbb{M}_d(\mathcal{O}_o)$. Les morphismes t_i étant \mathcal{D}_o -équivariant, ils induisent un morphisme $t_o' : {}^{\tau}\mathcal{F}_o \longrightarrow \mathcal{F}_o$.

Pour tout entier n, on note $\mathcal{F}_{o,n}:=\mathcal{F}_o\otimes_{\mathcal{O}_o}\mathcal{O}_o/\mathfrak{m}_o^n$. L'image directe de $\mathcal{F}_{o,n}$ relativement à la projection $\operatorname{Spec}\mathcal{O}_o/\mathfrak{m}_o^n\times S\longrightarrow S$, muni de l'application \mathcal{O}_S -linéaire induite par $t'_{o,n}$, est alors un φ -faisceau sur S; on le notera encore $(\mathcal{F}_{o,n},t'_{o,n})$.

Définition 1.3.2.1 Soit $Gr(\mathcal{F}_{o,n})$, le S-schéma associé par le foncteur Gr du paragraphe précédent, au φ -faisceau $(\mathcal{F}_{o,n}, t'_{o,n})$. On définit alors

$$Gr_o(\mathcal{F}_o):= \underset{n}{\varinjlim} Gr(\mathcal{F}_{o,n}).$$

D'après le paragraphe précédent, on a la proposition suivante.

Proposition 1.3.2.2 Pour tout entier n, $Gr(\mathcal{F}_{o,n})$ est un S-schéma fini d'ordre q^{rnd} , en \mathcal{O}_o -modules tel que:

- il existe un entier N tel que, en tant que S-schéma en $\kappa(o)$ -espaces vectoriels ($\kappa(o) \subset \mathcal{O}_o$), $Gr(\mathcal{F}_{o,n})$ peut, localement pour la topologie étale sur S, s'injecter dans \mathbb{G}_a^N ;

- la suite de S-schémas en \mathcal{O}_o -modules

$$0 \longrightarrow Gr(\mathcal{F}_{o,n}) \xrightarrow{i_n} Gr(\mathcal{F}_{o,n+1}) \xrightarrow{\pi_o^n} Gr(\mathcal{F}_{o,n+1})$$

est exacte.

Dans la suite de ce paragraphe, on donne une expression explicite de $Gr(\mathcal{F}_{o,n})$.

Proposition 1.3.2.3 Il existe un recouvrement ouvert de S par des schémas affines $\operatorname{Spec} R \to S$ tels que le $\operatorname{Spec} R$ -schéma en \mathcal{O}_o -module, $\operatorname{Gr}(\mathcal{F}_{o,n}) \times_S \operatorname{Spec} R$ s'écrit

Spec
$$R[(x_i^k)_{\substack{1 \le i \le d \\ 0 \le k \le n}}]/({}_n^t A_o' X - X^q),$$
 (1.3.2.4)

où ${}_{n}A'_{o}$ est une matrice par blocs de la forme (resp. X est le vecteur colonne)

$$\begin{pmatrix} A'_{o,0} & 0 & \dots & 0 \\ A'_{o,1} & A'_{o,0} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots \\ A'_{o,n-1} & \dots & A'_{o,1} & A'_{o,0} \end{pmatrix}, \quad (resp. \begin{pmatrix} x_1^0 \\ \vdots \\ x_d^0 \\ x_1^1 \\ \vdots \\ x_d^{n-1} \end{pmatrix})$$

les matrices $A'_{o,k}$ étant de taille $d \times d$, et où $\binom{t}{n}A'_{o}X - X^{q}$ désigne l'idéal de $R[(x_{i}^{k})_{\substack{1 \leq i \leq d \\ 0 \leq k < n}}]$ engendré par les nd polynômes qui constituent les composantes du vecteur colonne ${}_{n}^{t}A'_{o}X - X^{q}$. Dans l'écriture de la formule 1.3.2.4, on retrouve la structure de \mathcal{O}_{o} -module où l'action de π_{o} est donnée par

$$x_i^k \longrightarrow x_i^{k+1} \ pour \ k < n-1 \quad \ et \ x_i^{n-1} \longrightarrow 0.$$

L'injection $Gr(\mathcal{F}_{o,n}) \hookrightarrow Gr(\mathcal{F}_{o,n+1})$ est donnée par la surjection:

$$\begin{array}{ccc} R_{n+1} & \longrightarrow & R_n \\ x_i^k & \mapsto & x_i^k \\ x_i^n & \mapsto & 0 \end{array},$$

avec $R_n := R[(x_i^k)_{\substack{1 \le i \le d \ 0 \le k < n}}]/({}_n^t A_o' X - X^q).$

Preuve: Le $(\mathcal{O}_o\hat{\otimes}_{\kappa(o)}R)$ -module $M'_o:=\mathcal{F}_o\otimes_{(\mathcal{O}_o\otimes_{\kappa(o)}R)}(\mathcal{O}_o\hat{\otimes}_{\kappa(o)}R)$ est libre de rang d; on en fixe une base $(m_i)_{1\leqslant i\leqslant d}$. On identifie $\mathcal{O}_o\hat{\otimes}_{\kappa(o)}R$ à R[[T]]. L'application $t'_o:{}^{\tau}\mathcal{F}_o\to\mathcal{F}_o$ induit une application R[[T]]-linéaire ${}^{\tau}M'_o\to M'_o$ que l'on

note encore t'_o . On définit la matrice $A'_o = (a'_{i,j})_{1 \leq i,j \leq d}$ à coefficients dans R[[T]] telle que $t'_o(1 \otimes m_i) = \sum_{j=1}^d a'_{i,j} m_j$. On a alors

$$\forall (b_i)_{1 \le i \le d} \in R^d, \quad t'_o((\sum_{i=1}^d b_i . m_i) \otimes 1) = \sum_{i=1}^d (\sum_{i=1}^d a'_{i,j} b_i^q) m_j.$$

On écrit la matrice A'_o sous la forme $\sum_{n=0}^{\infty} A'_{o,n}.T^n$ où $A'_{o,n}$ est une matrice à coefficients dans R. On introduit également la matrice ${}_nA'_o$ qui est une matrice par blocs $({}_nA'_o(k,k'))_{1\leqslant k,k'\leqslant n}$ où chaque bloc est de taille $d\times d$ et ${}_nA'_o(k,k')=A'_{o,k-k'}$ si k-k' est positif et nulle sinon:

$${}_{n}A'_{o} = \begin{pmatrix} A'_{o,0} & 0 & \dots & 0 \\ A'_{o,1} & A'_{o,0} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots \\ A'_{o,n-1} & \dots & A'_{o,1} & A'_{o,0} \end{pmatrix}.$$

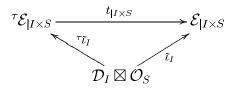
Le résultat découle alors de la preuve de la proposition 1.3.1.3.

1.4 Structures de niveaux en dehors de la caractéristique.

On pose $A = \Gamma(X \setminus \{\infty\}, \mathcal{O}_X)$. Soient S un schéma et $(\mathcal{E}_i, j_i, t_i)$ un \mathcal{D} -faisceau elliptique défini sur S, de caractéristique $i_0: S \to X'$. Soit I un idéal de A tel que $i_0(S) \cap V(I)$ est vide. Dans [23], une I-structure de niveau sur un \mathcal{D} -faisceau elliptique défini sur S est un isomorphisme de $\mathcal{D}_{I \times S}$ -modules à droite

$$\tilde{\iota}_I: \mathcal{D}_I \boxtimes \mathcal{O}_S \xrightarrow{\sim} \mathcal{E}_{I \times S}$$

tel que le diagramme suivant est commutatif



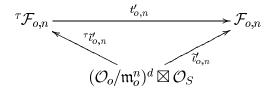
Remarque : Pour $I = \prod_x \mathfrak{m}_x^{n_x}$, la donnée d'une I-structure de niveau est équivalente à la donnée de $\mathfrak{m}_x^{n_x}$ -structures de niveaux $\tilde{\iota}_{x,n_x}$, pour $x \in V(I)$. Dans le cas où o appartient à $i_0(S)$, avec cette définition, il n'existe pas de \mathfrak{m}_o^n -structure de niveau car $t_{|\mathfrak{m}_o^n \times S|}$ n'est plus un isomorphisme.

Dans le cas où o est une place de X' ($o \notin i_0(S)$), on choisit un isomorphisme $\mathcal{D}_o \simeq \mathbb{M}_d(\mathcal{O}_o)$. Soit, comme au paragraphe précédent, $\mathcal{F}_{o,n}$ le $(\mathcal{O}_o/\mathfrak{m}_o^n \boxtimes \mathcal{O}_S)$ -module localement libre de rang d, tel que $\mathcal{E}_{o,n} \simeq \mathcal{F}_{o,n}^d$ où l'action de $\mathcal{D}_{o,n} := \mathcal{D}_{\mathfrak{m}_o^n}$

est donnée par l'action naturelle de $\mathbb{M}_d(\mathcal{O}_o/\mathfrak{m}_o^n)$ sur les d facteurs. L'isomorphisme $\tilde{\iota}_{o,n}$ fournit alors un isomorphisme de $\mathcal{O}_{\mathfrak{m}_o^n \times S}$ -modules:

$$\tilde{\iota}'_{o,n}: (\mathcal{O}_o/\mathfrak{m}_o^n)^d \boxtimes \mathcal{O}_S \xrightarrow{\sim} \mathcal{F}_{o,n}$$

tel que le diagramme suivant est commutatif



Le foncteur

$$Sch/S \longrightarrow \mathcal{O}_o - \text{module}$$

 $T/S \longmapsto \text{Ker}(H^0(T, t'_{o,n} - \text{Id}))$

est représenté par le schéma $G_{o,n}$, qui, localement pour la topologie étale sur S, est de la forme

$$\operatorname{Spec} R[(x_i^k)_{1 \leq i \leq d \atop 0 \leq k \leq n}] / ({}_{n}A'_{o}({}^{\tau}X) - X)$$

(cf. la preuve de la proposition 1.3.2.3). L'isomorphisme $\tilde{\iota}'_{o,n}$ fournit alors un isomorphisme de S-schémas en \mathcal{O}_o -modules

$$(\mathcal{O}_o/\mathfrak{m}_o^n)^d \times S \xrightarrow{\sim} G_{o,n}. \tag{1.4.1}$$

On rappelle que l'on a aussi défini le S-schéma $Gr(\mathcal{F}_{o,n})$ qui localement pour la topologie étale sur S, est donné par

Spec
$$R[(x_i^k)_{\substack{1 \le i \le d \ 0 \le k < n}}]/({_n^t A_o' X} - {^{\tau}X}).$$

Comme o n'appartient pas à $i_0(S)$, la matrice ${}_nA'_o$ est inversible. Ainsi l'ensemble des isomorphismes 1.4.1 est en bijection avec l'ensemble des isomorphismes de S-schémas en \mathcal{O}_o -modules

$$(\mathcal{O}_o/\mathfrak{m}_o^n)^d \times S \xrightarrow{\sim} Gr(\mathcal{F}_{o,n}).$$

La donnée d'un tel isomorphisme est équivalente à la donnée d'un isomorphisme de \mathcal{O}_o -modules

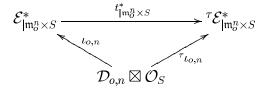
$$\iota'_{o,n}: (\mathcal{O}_o/\mathfrak{m}_o^n)^d \boxtimes \mathcal{O}_S \xrightarrow{\sim} (\mathcal{F}_o \otimes_{\mathcal{O}_o} \mathcal{O}_o/\mathfrak{m}_o^n)^*$$

tel que le diagramme ci-dessous commute

$$(\mathcal{F}_o \otimes_{\mathcal{O}_o} \mathcal{O}_o / \mathfrak{m}_o^n)^* \xrightarrow{t_{o,n}^*} {}^{\tau} (\mathcal{F}_o \otimes_{\mathcal{O}_o} \mathcal{O}_o / \mathfrak{m}_o^n)^*$$

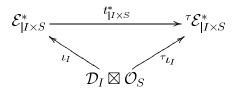
$$(\mathcal{O}_o / \mathfrak{m}_o^n)^d$$

L'isomorphisme $\iota'_{o,n}$ fournit alors un isomorphisme de \mathcal{D}_o -modules $\mathcal{D}_{o,n} \boxtimes \mathcal{O}_S \longrightarrow \mathcal{E}_o^* \otimes_{\mathcal{O}_o} \mathcal{O}_o/\mathfrak{m}_o^n$ tel que le diagramme ci-dessous est commutatif



On introduit alors la définition suivante de I-structure de niveau.

Définition 1.4.2 Soit I un idéal de A tel que $V(I) \cap i_0(S)$ est vide. Une Istructure de niveau sur $(\mathcal{E}_i, j_i, t_i)/S$, est un isomorphisme de \mathcal{D}_I -modules à droite $\iota_I : \mathcal{D}_I \boxtimes \mathcal{O}_S \longrightarrow \mathcal{E}_I^*$ tel que le diagramme suivant est commutatif



C'est cette définition que l'on généralisera dans le cas de mauvaise réduction (cf. paragraphe 3).

Remarque : Cette définition bien que différente de celle donnée dans [23], donne les même champs classifiant et on peut reprendre tous les résultats de loc. cit., en oubliant cette différence.

1.5 Schéma de module, propreté.

Soient I un idéal non nul de A et $\mathfrak{E}ll_{X,\mathcal{D},I}$ la catégorie fibrée sur la catégorie des \mathbb{F}_q -schémas, dont les objets sont les \mathcal{D} -faisceaux elliptiques munis d'une I-structure de niveau, et les morphismes sont les isomorphismes entre deux tels objets.

Proposition 1.5.1 (cf. [23]) Pour tout idéal I de A, $\mathfrak{E}ll_{X,\mathcal{D},I}$ est représentable par un champ algébrique (au sens de Deligne-Mumford) $\mathcal{E}ll_{X,\mathcal{D},I}$, lisse et de dimension relative d-1 sur $X' \setminus V(I)$.

Le groupe \mathbb{Z} agit sur $\mathcal{E}ll_{X,\mathcal{D},I}$ via la formule:

$$[n](\mathcal{E}_i, j_i, t_i) = (\mathcal{E}_{i+n}, j_{i+n}, t_{i+n}).$$

Les auteurs de [23] montrent que si $I \neq A$ alors $(\mathcal{E}ll_{X,\mathcal{D},I}/\mathbb{Z})$ est une réunion disjointe de schémas de type fini qui sont de plus quasi-projectif.

Remarque: Le foncteur qui à $(\mathcal{E}_i, j_i, t_i) \in ob(\mathcal{E}ll_{X,\mathcal{D},I}(S))$ associe le morphisme $i_0: S \to X$ définit un morphisme de champs (ou de schémas si $I \neq A$)

zéro:
$$\mathcal{E}ll_{X,\mathcal{D},I} \to X$$

qui se factorise à travers $X' \setminus V(I) \subset X$.

Remarque : Pour des idéaux I, J tels que $V(I) \subset V(J) \subset X'$, on a des morphismes de champs algébriques

$$r_{J,I}: \mathcal{E}ll_{X,\mathcal{D},J} \to \mathcal{E}ll_{X,\mathcal{D},I}$$

en restreignant à I la J-structure de niveau. Le morphisme $r_{J,I}$ est appelé le morphisme de restriction du niveau de J à I. Le diagramme suivant est alors commutatif:

$$\begin{array}{c|c}
\mathcal{E}ll_{X,\mathcal{D},J} & \xrightarrow{\text{z\'ero}} X' \backslash V(J) \\
\downarrow^{r_{J,I}} & & \downarrow^{Id} \\
\mathcal{E}ll_{X,\mathcal{D},I} & \xrightarrow{\text{z\'ero}} X' \backslash V(J)
\end{array}$$

Citons deux résultats de [23] et qui nous serons utiles par la suite.

Lemme 1.5.2 Le morphisme $r_{J,I}$ est étale.

Proposition 1.5.3 Le morphisme $(\mathcal{E}ll_{X,\mathcal{D},I}/\mathbb{Z}) \to X' \setminus V(I)$ est propre.

1.6 Déformations des \mathcal{D} -faisceaux elliptiques.

Dans [23], les auteurs montrent que $\mathcal{E}ll_{X,\mathcal{D},I} \to X' \backslash V(I)$ est lisse de dimension relative d-1. Dans l'optique de prouver le théorème de Serre-Tate, nous allons redémontrer ce résultat en étudiant directement les déformations des \mathcal{D} -faisceaux elliptiques.

Soient S le spectre d'un anneau local R artinien et $\bar{S} \subset S$ le sous-schéma fermé défini par un idéal \mathfrak{m} de carré nul. Soit $(\bar{\mathcal{E}}_i, \bar{j}_i, \bar{t}_i)$ un \mathcal{D} -faisceau elliptique défini sur \bar{S} , de caractéristique $\bar{i}_0: \bar{S} \to X$. Soit $o \in |X'|$, l'image par $\bar{i}_o: = \bar{i}_0$, du point fermé de \bar{S} ; R est donc une \mathcal{O}_o -algèbre telle que l'image de π_o est nilpotente. On note \tilde{i}_o le morphisme $\bar{S} \xrightarrow{(\bar{i}_o, id)} X \times \bar{S}$. On a alors la suite exacte suivante

$$0 \longrightarrow {}^{\tau}\bar{\mathcal{E}}_0 \xrightarrow{\bar{t}_0} \bar{\mathcal{E}}_1 \longrightarrow (\tilde{i}_o)_*(\bar{\Gamma}_o) \longrightarrow 0 \tag{1.6.1}$$

où $\bar{\Gamma}_o$ est un \bar{R} -module libre de rang d. On cherche à relever $(\bar{\mathcal{E}}_i, \bar{j}_i, \bar{t}_i)$ en un \mathcal{D} -faisceau elliptique $(\mathcal{E}_i, j_i, t_i)$ défini sur S. On montrera en fait que ce problème revient à relever la suite exacte 1.6.1

Proposition 1.6.2 Il n'y a pas d'obstruction à relever le $\mathcal{D}_{X \times \bar{S}}$ -module à droite localement libre de rang d, \mathcal{E}_i . L'ensemble des relèvements est un torseur sous le groupe

$$\operatorname{Ext}^1_{\mathcal{D}\boxtimes\mathcal{O}_{\mathcal{S}}}(\bar{\mathcal{E}}_i,\bar{\mathcal{E}}_i\otimes_{\bar{R}}\mathfrak{m}).$$

Preuve: D'après les résultats de [21], l'obstruction à relever le $\mathcal{D}_{X \times S}$ -module à droite localement libre de rang d, \mathcal{E}_i , se trouve dans le groupe $\operatorname{Ext}^2_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}(\bar{\mathcal{E}}_i,\bar{\mathcal{E}}_i\otimes_{\bar{R}}\mathfrak{m})$. Lorsque cette obstruction est nulle, l'ensemble des relèvements est alors un torseur sous le groupe $\operatorname{Ext}^1_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}(\bar{\mathcal{E}}_i,\bar{\mathcal{E}}_i\otimes_{\bar{R}}\mathfrak{m})$. La proposition découle alors du lemme suivant.

Lemme 1.6.3 Le groupe $\operatorname{Ext}^2_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}(\bar{\mathcal{E}}_i,\bar{\mathcal{E}}_i\otimes_{\bar{R}}\mathfrak{m})$ est trivial.

Preuve : Comme $\bar{\mathcal{E}}_i$ est un $(\mathcal{D} \boxtimes \mathcal{O}_{\bar{S}})$ -module localement libre de rang 1, les faisceaux $Ext^n_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}(\bar{\mathcal{E}}_i,\bar{\mathcal{E}}_i\otimes_{\bar{R}}\mathfrak{m})$ sont nuls pour $n\geqslant 1$. Comme \bar{S} est le spectre d'une algèbre artinienne, $X\times\bar{S}$ est de dimension 1 et la suite spectrale locale-globale pour les Ext^n , donne la nullité de $\operatorname{Ext}^2_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}(\bar{\mathcal{E}}_1,\bar{\mathcal{E}}_1\otimes_{\bar{R}}\mathfrak{m})$.

Proposition 1.6.4 Il n'y a pas d'obstruction à relever le \mathcal{D} -faisceau elliptique $(\bar{\mathcal{E}}_i, \bar{j}_i, \bar{t}_i)$ ci-dessus, en un \mathcal{D} -faisceau elliptique $(\mathcal{E}_i, j_i, t_i)$ defini sur Spec R tel que sa réduction modulo \mathfrak{m} redonne $(\bar{\mathcal{E}}_i, \bar{j}_i, \bar{t}_i)$. L'ensemble des relèvements est un torseur sous le groupe

$$\operatorname{Ext}^1_{\mathcal{D}_o\boxtimes\mathcal{O}_{\bar{S}}}(\bar{\Gamma}_o,\bar{\mathcal{E}}_{1,o}\otimes_{\bar{R}}\mathfrak{m}),$$

lequel, après équivalence de Morita, est isomorphe à $\operatorname{Ext}^1_{\mathcal{O}_o\boxtimes\mathcal{O}_{\bar{S}}}(\bar{R},\bar{\mathcal{F}}_{1,o}\otimes_{\bar{R}}\mathfrak{m}).$

Preuve : (i) Soit r un élément de R. Comme $\mathfrak{m}^2=(0)$, l'image de r par le morphisme Frobenius ne dépend que de la classe de r modulo \mathfrak{m} . En d'autres termes, le morphisme Frob $_S:S\to S$ se factorise par \bar{S} :

$$S \xrightarrow{\operatorname{Frob}_{S,\bar{S}}} S$$

$$Frob_{S,\bar{S}} \downarrow \bar{S}$$

Ainsi pour tout i, les ${}^{\tau}\mathcal{E}_i$ d'un éventuel relèvement \mathcal{E}_i de $\bar{\mathcal{E}}_i$, sont donnés par:

$$^{\tau}\mathcal{E}_i = (\mathrm{Id}_X \times \mathrm{Frob}_{S,\bar{S}})^*(\bar{\mathcal{E}}_i).$$

De la même façon, les applications ${}^{\tau}j_i$ sont indépendantes du relèvement j_i et sont données par

$$^{\tau}j_i = (\mathrm{Id}_X \times \mathrm{Frob}_{S,\overline{S}})^*(j_i).$$

(ii) Considérons la suite exacte longue associée au foncteur $\operatorname{Hom}_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}(\bullet,\bar{\mathcal{E}}_1\otimes_{\bar{R}}\mathfrak{m})$ et à la suite exacte courte

$$0 \longrightarrow {}^{\tau}\bar{\mathcal{E}}_0 \longrightarrow \bar{\mathcal{E}}_1 \longrightarrow (\tilde{i}_{\varrho})_*(\bar{\Gamma}_{\varrho}) \longrightarrow 0;$$

soit

$$0 \to \operatorname{Hom}_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}\left((\tilde{\bar{i}}_{o})_{*}(\bar{\Gamma}_{o}), \bar{\mathcal{E}}_{1} \otimes_{\bar{R}} \mathfrak{m}\right) \to \operatorname{Hom}_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}(\bar{\mathcal{E}}_{1}, \bar{\mathcal{E}}_{1} \otimes_{\bar{R}} \mathfrak{m}) \longrightarrow$$

$$\operatorname{Hom}_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}({}^{\tau}\bar{\mathcal{E}}_{0}, \bar{\mathcal{E}}_{1} \otimes_{\bar{R}} \mathfrak{m}) \to \operatorname{Ext}^{1}_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}\left((\tilde{\bar{i}}_{o})_{*}(\bar{\Gamma}_{o}), \bar{\mathcal{E}}_{1} \otimes_{\bar{R}} \mathfrak{m}\right) \longrightarrow$$

$$\operatorname{Ext}^{1}_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}(\bar{\mathcal{E}}_{1}, \bar{\mathcal{E}}_{1} \otimes_{\bar{R}} \mathfrak{m}) \to \operatorname{Ext}^{1}_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}({}^{\tau}\bar{\mathcal{E}}_{0}, \bar{\mathcal{E}}_{1} \otimes_{\bar{R}} \mathfrak{m}) \to \operatorname{Ext}^{2}_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}\left((\tilde{\bar{i}}_{o})_{*}(\bar{\Gamma}_{o}), \bar{\mathcal{E}}_{1} \otimes_{\bar{R}} \mathfrak{m}\right).$$

La condition nécessaire et suffisante pour l'existence d'un diagramme commutatif de la forme

$$0 \longrightarrow^{\tau} \bar{\mathcal{E}}_{0} \otimes_{\bar{R}} \mathfrak{m} \longrightarrow^{\tau} \mathcal{E}_{0} \longrightarrow^{\tau} \bar{\mathcal{E}}_{0} \longrightarrow 0$$

$$f_{1} \downarrow \qquad \qquad f \downarrow \qquad \qquad f_{0} \downarrow$$

$$0 \longrightarrow^{\bar{\mathcal{E}}_{1}} \otimes_{\bar{R}} \mathfrak{m} \longrightarrow^{\bar{\mathcal{E}}_{1}} \longrightarrow^{\bar{\mathcal{E}}_{1}} \longrightarrow 0$$

est qu'il existe une extension \mathcal{E}_1 de $\bar{\mathcal{E}}_1$ par $\bar{\mathcal{E}}_1 \otimes_{\bar{R}} \mathfrak{m}$ telle que l'extension $\mathcal{E}_1 * f_0$ de ${}^{\tau}\bar{\mathcal{E}}_0$ par $\bar{\mathcal{E}}_1 \otimes_{\bar{R}} \mathfrak{m}$ est égale à $f_1 * {}^{\tau}\mathcal{E}_0$. L'obstruction à cette existence est liée à la non surjectivité de l'application

$$\operatorname{Ext}^1_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}(\bar{\mathcal{E}}_1,\bar{\mathcal{E}}_1\otimes_{\bar{R}}\mathfrak{m})\to\operatorname{Ext}^1_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}({}^{\tau}\bar{\mathcal{E}}_0,\bar{\mathcal{E}}_1\otimes_{\bar{R}}\mathfrak{m})$$

et se situe donc dans le groupe

$$\operatorname{Ext}^2_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}\left((\tilde{\bar{i}}_o)_*(\bar{\Gamma}_o),\bar{\mathcal{E}}_1\otimes_{\bar{R}}\mathfrak{m}\right).$$

Le même argument que celui de la preuve du lemme 1.6.3 donne la nullité de $\operatorname{Ext}^2_{\mathcal{D}\boxtimes\mathcal{O}_{\overline{S}}}\left((\tilde{i}_o)_*(\bar{\Gamma}_o),\bar{\mathcal{E}}_1\otimes_{\bar{R}}\mathfrak{m}\right)$, ainsi que l'isomorphisme

$$\operatorname{Ext}^1_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}\left((\tilde{i}_o)_*(\bar{\Gamma}_o),\bar{\mathcal{E}}_1\otimes_{\bar{R}}\mathfrak{m}\right)\simeq H^1(X\times\bar{S},Ext^1_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}\left((\tilde{i}_o)_*(\bar{\Gamma}_o),\bar{\mathcal{E}}_1\otimes_{\bar{R}}\mathfrak{m}\right).$$

Le faisceau $(\tilde{i}_o)_*(\bar{\Gamma}_o)$ étant concentré au point o, on a alors

$$\operatorname{Ext}^{1}_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}\left((\tilde{i}_{o})_{*}(\bar{\Gamma}_{o}), \bar{\mathcal{E}}_{1}\otimes_{\bar{R}}\mathfrak{m}\right) \simeq \operatorname{Ext}^{1}_{\mathcal{D}_{o}\boxtimes\mathcal{O}_{\bar{S}}}(\bar{\Gamma}_{o}, \bar{\mathcal{E}}_{1,o}\otimes_{\bar{R}}\mathfrak{m}). \tag{1.6.4}$$

(iii) On a donc construit \mathcal{E}_1 ainsi que l'application $t_0: {}^{\tau}\mathcal{E}_0 \to \mathcal{E}_1$ qui relève l'application \bar{t}_0 . En outre pour tout i, on connait les $\mathcal{D}_{X\times S}$ -modules ${}^{\tau}\mathcal{E}_i$ et les applications ${}^{\tau}j_i$. Les places o et ∞ étant distinctes, il existe alors un unique diagramme commutatif

$$\cdots \longrightarrow \mathcal{E}_{i} \xrightarrow{j_{i}} \mathcal{E}_{i+1} \longrightarrow \cdots$$

$$\cdots \longrightarrow {}^{\tau}\mathcal{E}_{i} \xrightarrow{\tau_{j_{i}}} {}^{\tau}\mathcal{E}_{i+1} \longrightarrow \cdots$$

qui contienne la ligne

$$\cdots^{\tau} \mathcal{E}_{i} \xrightarrow{\tau_{j_{i}}} \mathcal{E}_{i+1} \cdots$$

ainsi que la diagonale ${}^{\tau}\mathcal{E}_0 \xrightarrow{t_0} \mathcal{E}_1$. Clairement pour tout i, \mathcal{E}_i est un $\mathcal{D}_{X\times S}$ -module à droite localement libre de rang 1 et j_i , t_i sont des injections $\mathcal{D}_{X\times S}$ -linéaires. La condition de périodicité $\mathcal{E}_{i+d} \simeq \mathcal{E}_i \otimes_{\mathcal{O}_X} \mathcal{O}_X(\infty)$ découle de la périodicité des ${}^{\tau}\mathcal{E}_i$. Pour tout i, on a une suite exacte courte

$$0 \to {}^{\tau}\mathcal{E}_i \to \mathcal{E}_{i+1} \to \mathcal{F}_i \to 0$$

et d'après le lemme de Nakayama, $(pr_S)_*(\mathcal{F}_i)$ est un R-module libre de rang d, soit $\mathcal{F}_i = (\tilde{i}_o)_*(\Gamma_{o,i})$ où $\Gamma_{o,i}$ est un R-module libre de rang d. De la même façon on a pour tout i, une suite exacte courte

$$0 \to \mathcal{E}_i \to \mathcal{E}_{i+1} \to \mathcal{G}_i \to 0$$

où $(pr_S)_*(\mathcal{G}_i)$ est un R-module libre de rang d, soit $\mathcal{G}_i = (\tilde{i}_{\infty})_*(\Gamma_{\infty,i})$, où $\Gamma_{\infty,i}$ est un R-module libre de rang d. Finalement, le diagramme $(\mathcal{E}_i, j_i, t_i)$ est un \mathcal{D} -faisceau elliptique qui est une déformation de $(\bar{\mathcal{E}}_i, \bar{j}_i, \bar{t}_i)$.

(iv) Calculons l'espace des relèvements. Tout d'abord l'ensemble des classes d'isomorphie des extensions \mathcal{E}_1 telles que $\mathcal{E}_1 * f_0 = f_1 * {}^{\tau}\mathcal{E}_0$ est un torseur sous

$$\operatorname{Ext}^1_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}\left((\tilde{\bar{i}}_o)_*(\bar{\Gamma}_o),\bar{\mathcal{E}}_1\otimes_{\bar{R}}\mathfrak{m}\right)/\operatorname{Im}\left(\operatorname{Hom}_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}({}^{\tau}\bar{\mathcal{E}}_0,\bar{\mathcal{E}}_1\otimes_{\bar{R}}\mathfrak{m})\right).$$

L'extension \mathcal{E}_1 étant fixé l'ensemble des classes d'isomorphie des applications $t_0: {}^{\tau}\mathcal{E}_0 \to \mathcal{E}_1$ est donné par:

$$\operatorname{Hom}_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}({}^{\tau}\bar{\mathcal{E}}_{0},\bar{\mathcal{E}}_{1}\otimes_{\bar{R}}\mathfrak{m})/\operatorname{Im}\left(\operatorname{Hom}_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}(\bar{\mathcal{E}}_{1},\bar{\mathcal{E}}_{1}\otimes_{\bar{R}}\mathfrak{m})\right).$$

Ce dernier ensemble est par ailleurs isomorphe à Im $(\operatorname{Hom}_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}({}^{\tau}\bar{\mathcal{E}}_{0},\bar{\mathcal{E}}_{1}\otimes_{\bar{R}}\mathfrak{m}))$. Ainsi l'ensemble des relèvements du \mathcal{D} -faisceau elliptique $(\bar{\mathcal{E}}_{i},\bar{j}_{i},\bar{t}_{i})$ est un torseur sous $\operatorname{Ext}^{1}_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}\left((\tilde{i}_{o})_{*}(\bar{\Gamma}_{o}),\bar{\mathcal{E}}_{1}\otimes_{\bar{R}}\mathfrak{m}\right)$, qui d'après 1.6.4 est isomorphe à

$$\operatorname{Ext}^1_{\mathcal{D}_o\boxtimes\mathcal{O}_{\bar{S}}}(\bar{\Gamma}_o,\bar{\mathcal{E}}_{1,o}\otimes_{\bar{R}}\mathfrak{m}).$$

Corollaire 1.6.5 $\mathcal{E}ll_{X,\mathcal{D},A}$ est lisse sur \mathbb{F}_q , de dimension d.

Preuve : On considère un point géométrique de la fibre en o de $\mathcal{E}ll_{X,\mathcal{D},A}$ ($\bar{R} = \bar{\kappa}(o)$). L'ensemble de ses relèvements est un torseur sous $\operatorname{Ext}^1_{\mathcal{O}_o\boxtimes\mathcal{O}_{\bar{S}}}(\bar{\kappa}(o), \bar{\mathcal{F}}_{1,o}\otimes_{\bar{R}}\mathfrak{m})$ lequel groupe, après complétion, est isomorphe à

$$\operatorname{Ext}^1_{\hat{\mathcal{O}}_o^{\operatorname{nr}}}(\bar{\kappa}(o),(\hat{\mathcal{O}}_o^{\operatorname{nr}})^d).$$

On applique le foncteur $\operatorname{Hom}(\bullet,\hat{\mathcal{O}}_{o}^{\operatorname{nr}})$ à la suite exacte courte:

$$0 \to \hat{\mathcal{O}}_o^{\text{nr}} \xrightarrow{\pi_o} \hat{\mathcal{O}}_o^{\text{nr}} \to \bar{\kappa}(o) \to 0$$

ce qui donne la suite exacte longue suivante

$$0 = \operatorname{Hom}_{\hat{\mathcal{O}}_o^{\operatorname{nr}}}(\hat{\mathcal{O}}_o^{\operatorname{nr}}/(\pi_o), (\hat{\mathcal{O}}_o^{\operatorname{nr}})^d) \to \operatorname{Hom}_{\hat{\mathcal{O}}_o^{\operatorname{nr}}}(\hat{\mathcal{O}}_o^{\operatorname{nr}}, (\hat{\mathcal{O}}_o^{\operatorname{nr}})^d) \xrightarrow{\pi_o} \\ \operatorname{Hom}_{\hat{\mathcal{O}}_o^{\operatorname{nr}}}(\hat{\mathcal{O}}_o^{\operatorname{nr}}, (\hat{\mathcal{O}}_o^{\operatorname{nr}})^d) \longrightarrow \operatorname{Ext}_{\hat{\mathcal{O}}_o^{\operatorname{nr}}}^1(\hat{\mathcal{O}}_o^{\operatorname{nr}}/(\pi_o), (\hat{\mathcal{O}}_o^{\operatorname{nr}})^d) \longrightarrow \operatorname{Ext}_{\hat{\mathcal{O}}_o^{\operatorname{nr}}}^1(\hat{\mathcal{O}}_o^{\operatorname{nr}}, (\hat{\mathcal{O}}_o^{\operatorname{nr}})^d)$$

Or comme $\hat{\mathcal{O}}_o^{\text{nr}}$ est un $\hat{\mathcal{O}}_o^{\text{nr}}$ module projectif on a $\operatorname{Ext}^1_{\hat{\mathcal{O}}_o^{\text{nr}}}(\hat{\mathcal{O}}_o^{\text{nr}},(\hat{\mathcal{O}}_o^{\text{nr}})^d)=0$ d'où

$$\operatorname{Ext}^1_{\hat{\mathcal{O}}_o^{\operatorname{nr}}}(\hat{\mathcal{O}}_o^{\operatorname{nr}}/(\pi_o),(\hat{\mathcal{O}}_o^{\operatorname{nr}})^d) \simeq (\hat{\mathcal{O}}_o^{\operatorname{nr}}/(\pi_o))^d = \bar{\kappa}(o)^d.$$

Corollaire 1.6.6 L'application tangente au morphisme $\mathcal{E}ll_{X,\mathcal{D},A} \longrightarrow \operatorname{Spec} A$ en un point fermé de la fibre en o est donnée par le morphisme

$$\operatorname{Ext}^{1}_{\mathcal{D}\boxtimes\mathcal{O}_{\overline{S}}}\left((\tilde{i}_{o})_{*}(\overline{\Gamma}_{o}), \overline{\mathcal{E}}_{1}\otimes_{\overline{R}}\mathfrak{m}\right) \longrightarrow \operatorname{Ext}^{1}_{\mathcal{D}\boxtimes\mathcal{O}_{\overline{S}}}\left((\tilde{i}_{o})_{*}(\overline{\Gamma}_{o}), (\tilde{i}_{o})_{*}(\overline{\Gamma}_{o})\otimes_{\overline{R}}\mathfrak{m}\right) (1.6.7)$$

Ce morphisme est surjectif et $\mathcal{E}ll_{X,\mathcal{D},A} \longrightarrow \operatorname{Spec} A$ est lisse de dimension relative d-1. L'anneau local de $\mathcal{E}ll_{X,\mathcal{D},A}$ en un point géométrique de la fibre en o est alors isomorphe à

$$\hat{\mathcal{O}}_o^{\text{nr}}[[t_2,\cdots,t_d]] \simeq \bar{\kappa}(o)[[t_1,\cdots,t_d]],$$

 $où t_1$ est une uniformisante de $\hat{\mathcal{O}}_o^{nr}$.

Preuve: En appliquant le foncteur $\operatorname{Hom}_{\mathcal{D}\otimes\bar{R}}\left((\tilde{\bar{i}}_o)_*(\bar{\Gamma}_o), \bullet\right)$ à la suite exacte

$$0 \longrightarrow {}^{\tau}\bar{\mathcal{E}}_0 \otimes_{\bar{R}} \mathfrak{m} \longrightarrow \bar{\mathcal{E}}_1 \otimes_{\bar{R}} \mathfrak{m} \longrightarrow (\tilde{i}_o)_*(\bar{\Gamma}_o) \otimes_{\bar{R}} \mathfrak{m} \longrightarrow 0,$$

on en déduit que le conoyau de l'application 1.6.7 est un quotient du groupe

$$\operatorname{Ext}^2_{\mathcal{D}\boxtimes\mathcal{O}_{S}}\left((\tilde{\overline{i}}_o)_*(\bar{\Gamma}_o),{}^{\tau}\mathcal{E}_0\otimes_{\bar{R}}\mathfrak{m}\right).$$

Par un argument identique à celui du point (ii) de la preuve de la proposition 1.6.4 montre que ce dernier groupe est nul, d'où le corollaire.

Remarque: On rappelle aussi que d'après le lemme 1.5.2, le morphisme de restriction du niveau est étale en dehors du niveau. Ainsi les résultats précédents sont valides pour $\mathcal{E}ll_{X,\mathcal{D},I}$ et o n'appartenant pas à V(I).

2 O-module de Dieudonné, O-modules divisible et théorème de Serre-Tate.

Soit $(\mathcal{E}_i, j_i, t_i)$ un \mathcal{D} -faisceau elliptique défini sur le spectre S d'un anneau local artinien B, de caractérisitque $i_0: S \to X$. Soit alors le point fermé o de X', image par i_0 du point fermé de S. Le but de ce paragraphe est de construire le \mathcal{O}_o -module divisible $Gr_o(\mathcal{F}_{o,0}) \to \operatorname{Spec} B$ associé à $(\mathcal{E}_i, j_i, t_i)$ et de démontrer le théorème de Serre-Tate pour les \mathcal{D} -faisceaux elliptiques. Dans un premier temps, on rappelle des résultats locaux sur les \mathcal{O} -modules de Dieudonné et les \mathcal{O} -modules divisibles.

2.1 Rappels sur le module de coordonnées des \mathcal{O} -modules formels.

Dans ce paragraphe, B est une \mathcal{O} -algèbre dans laquelle l'image de π est nilpotente. On suppose que κ est un sur-corps de \mathbb{F}_q et on note r le degré de cette
extension $(q' = q^r)$. On reprend les résultats de [16] à la précision près que dans
ce travail, un \mathcal{O} -module formel sur B est un groupe formel lisse X sur B de
dimension 1, muni d'une action de \mathcal{O} telle que l'action induite sur Lie X coincide avec celle provenant de la structure de B-module de Lie X (cf. chapitre 1
paragraphe 3.1.1).

Soit X un \mathcal{O} -module formel sur B. On considère le B-module

$$M_X = \operatorname{Hom}(X, \mathbb{G}_{a,B}),$$

lequel est muni par fonctorialité d'une action de \mathcal{O} . Soient

$$\operatorname{Frob}_q: B \longrightarrow B \qquad (\text{resp.} \quad \operatorname{Frob}_{q^r}: B \longrightarrow B)$$

 $x \longmapsto x^q \qquad \qquad x \longmapsto x^{q^r}$

le morphisme de Frobenius de la \mathbb{F}_q -algèbre (resp. \mathbb{F}_{q^r} -algèbre) B, et τ_q (resp. τ_{q^r}) l'isogénie de Frobenius

$$\mathbb{G}_{a,B} \longrightarrow \operatorname{Frob}_{a,*} \mathbb{G}_{a,B} \qquad (\text{resp. } \mathbb{G}_{a,B} \longrightarrow \operatorname{Frob}_{a^r,*} \mathbb{G}_{a,B}).$$

La multiplication à gauche par τ_q sur M_X est Frob_q -semi-linéaire et induit donc un morphisme

$$F: \operatorname{Frob}_q^* M_X \longrightarrow M_X.$$

Via cette application F, on peut considérer M_X comme un $B[[\tau_q]]$ -module localement libre de rang 1 (=dim X). Le $(\mathcal{O} \otimes_{\mathbb{F}_q} B)$ -module M_X est muni de deux actions de κ . Celles-ci induisent une graduation

$$M_X = \bigoplus_{i \in \mathbb{Z}/r\mathbb{Z}} M_{X,i}$$

avec

$$M_{X,i} = \{ m \in M_X / (\lambda^{q^i} \otimes 1) m = (1 \otimes \lambda) m \}.$$

La multiplication à gauche par τ_q est de degré 1 pour cette graduation et induit des morphismes B-linéaires: $F_{q,i}: \operatorname{Frob}_q^* M_{X,i} \longrightarrow M_{X,i+1}$. Pour tout $n \geq 0$, on note $F_{q^n,i}: (\operatorname{Frob}_q^n)^* M_{X,i} \longrightarrow M_{X,i+n}$, le morphisme

$$F_{q,i+n-1} \circ \operatorname{Frob}_q^* F_{q,i+n-2} \circ \cdots \circ (\operatorname{Frob}_q^{n-1})^* F_{q,i}$$

induit par la multiplication à gauche par τ_q^n . Les deux actions de κ sur (Lie X) $^\vee = \bigoplus_{i=0}^{r-1}$ Coker $F_{q,i}$ coïncident et le B-module gradué (Lie X) $^\vee$ est donc concentré en degré zéro. Le morphisme $F_{q,i}$ est injectif et les morphismes $F_{q,i}$ ($0 \le i \le r-2$) sont des isomorphismes. Le B-module gradué $M_X = \bigoplus_{i \in \mathbb{Z}/r\mathbb{Z}} M_{X,i}$, muni du Frobenius

$$\bigoplus F_{q,i}: \operatorname{Frob}_{q}^{*} \bigoplus_{i \in \mathbb{Z}/r\mathbb{Z}} M_{X,i} \longrightarrow \bigoplus_{i \in \mathbb{Z}/r\mathbb{Z}} M_{X,i}$$

s'identifie au *B*-module gradué $\bigoplus_{i=0}^{r-1} (\operatorname{Frob}_q^i)^* M_{X,0}$, muni du Frobenius

$$F_0: = \operatorname{Frob}_q^* \left(\bigoplus_{i=0}^{r-1} (\operatorname{Frob}_q^i)^* M_{X,0} \right) \longrightarrow \bigoplus_{i=0}^{r-1} (\operatorname{Frob}_q^i)^* M_{X,0}$$
$$(m_0, \dots, m_{r-1}) \longmapsto (F(m_{r-1}), m_0, \dots, m_{r-2}).$$

Soit $\varphi: X \longrightarrow Y$ une isogénie de \mathcal{O} -modules formels. Le morphisme $M(\varphi)$ est un morphisme de modules gradués. Les morphismes

$$F_{q,i}: (\operatorname{Frob}_q^i)^* \operatorname{Coker} M(\varphi)_0 \longrightarrow \operatorname{Coker} M(\varphi)_i$$

sont des isomorphismes et les modules localement libres Coker $M(\varphi)_i$ sont donc tous de même rang. En résumé, se donner (M_X, F) est équivalent à se donner $(M_{X,0}, F_0)$.

De plus $M_{X,0}$ est un $B[[\tau_{q^r}]]$ -module localement libre de rang 1 et s'identifie à la limite projective des B-modules Coker $F_{q^{rm},0} \simeq B[[\tau_{q^r}]]/B[[\tau_{q^r}]].\tau_{q^r}^m$. Il résulte du fait que l'image de l'uniformisante π de \mathcal{O} dans B est nilpotente, que l'action de $\pi \otimes 1 \in \mathcal{O} \otimes_{\kappa} B$ sur Coker $F_{q^{rm},0}$ est nilpotente. Le séparé complété $\mathcal{O} \hat{\otimes}_{\kappa} B$ de $\mathcal{O} \otimes_{\kappa} B$ pour la topologie $\pi \otimes 1$ -adique, agit donc encore sur $M_{X,0}$.

Définition 2.1.1 Le foncteur module des coordonnées sur B est le foncteur M_B qui à un \mathcal{O} -module formel X sur B, associe le $(\mathcal{O} \hat{\otimes}_{\kappa} B)$ -module $M_{X,0} \otimes_{(\mathcal{O} \otimes_{\kappa} B)}$ $(\mathcal{O} \hat{\otimes}_{\kappa} B)$ muni du Frobenius F_0 .

On note i le morphisme structural de la \mathcal{O} -algèbre B et Γ le morphisme

$$\begin{array}{ccc}
\mathcal{O} \hat{\otimes}_{\kappa} B & \longrightarrow B \\
a \hat{\otimes} b & \longmapsto i(a).b
\end{array}$$

Soit $\operatorname{Mod} \mathcal{C}(B)$ la sous-catégorie pleine de celle des $(\mathcal{O} \hat{\otimes}_{\kappa} B)$ -modules localement libres et munis d'un Frobenius

$$F: (\mathrm{Id}_{\mathcal{O}} \hat{\otimes}_{\kappa} \mathrm{Frob}_{q^r})^* M \longrightarrow M,$$

formée des objets tels que:

- il existe un B-module localement libre de rang 1, ω tel que

$$\operatorname{Coker} F = \Gamma_*(\omega);$$

- il existe un entier n tel que le morphisme

$$F^n: (\mathrm{Id}_{\mathcal{O}} \hat{\otimes}_{\kappa} \mathrm{Frob}_{q^r}^n)^* M/\pi M \longrightarrow M/\pi M$$

est le morphisme nul.

Théorème 2.1.2 (cf. [16]) Le foncteur module des coordonnées M_B , de la catégorie des \mathcal{O} -modules formels (dim X=1) sur B, dans la catégorie $\operatorname{Mod} \mathcal{C}(B)$, est une anti-équivalence de catégories.

Remarque: Il suffit de remarquer dans [16], que $M_{X,0}$ est un $B[[\tau_{q^r}]]$ -module localement libre de rang celui de Coker F. Le B-module ω est donné par (Lie X) $^{\vee}$.

On rappelle aussi que la formation de M_B est compatible au changement de base, d'où la proposition suivante.

Proposition 2.1.3 (cf. [16]) Soient X un \mathcal{O} -module formel sur B, C une Balgèbre et $X \otimes_B C$, le \mathcal{O} -module formel sur C obtenu par extension des scalaires,
on a alors l'isomorphisme

$$M_C(X \otimes_B C) \simeq (\mathcal{O} \hat{\otimes}_{\kappa} C) \otimes_{(\mathcal{O} \hat{\otimes}_{\kappa} B)} M_B(X).$$

Remarque : Le foncteur quasi-inverse est G_B tel que pour tout B-algèbre R:

$$G_B(M, F)(R) = \{g \in \text{Hom}_B(M, R) / g(F(m)) = g(m)^{q^r}, \forall m \in M\}.$$

2.2 \mathcal{O} -modules de Dieudonné et \mathcal{O} -modules divisibles.

Soit B une \mathcal{O} -algèbre locale d'idéal maximal \mathfrak{m} nilpotent. Comme au paragraphe précédent, soit q^r le cardinal de κ . On note $\operatorname{Frob}_{\kappa}$ le morphisme de Frobenius de la \mathbb{F}_{q^r} -algèbre B (noté $\operatorname{Frob}_{q^r}$ au paragraphe précédent).

2.2.1 \mathcal{O} -modules de Dieudonné sur un corps κ' .

Pour tout ce qui concerne ce paragraphe, on renvoie à [24]. On fixe une clôture algébrique $\bar{\kappa}$ de κ et soit κ' un sur-corps de κ inclus dans $\bar{\kappa}$. On note $\mathcal{O}_{\kappa'}$ la complétion de l'extension non ramifiée de \mathcal{O} de corps résiduel κ' et $F_{\kappa'}$ son corps des fractions. Soit

$$\sigma \in \operatorname{Gal}(F_{\kappa'}/F)$$

le relèvement canonique du Frobenius arithmétique de κ'/κ .

Définition 2.2.1.1 Un F-module de Dieudonné sur κ' est un $F_{\kappa'}$ -module N, de rang fini, muni d'une application σ -linéaire bijective: $F: N \longrightarrow N$.

Un \mathcal{O} -module de Dieudonné sur κ' est un $\mathcal{O}_{\kappa'}$ -module libre, M, de rang fini, muni d'une application σ -linéaire injective: $F: M \longrightarrow M$ telle que le conoyau de F est de longueur finie sur $\mathcal{O}_{\kappa'}$, c'est-à-dire de dimension finie en tant que κ' -espace vectoriel; le rang de (M,F) est le rang de M en tant que $\mathcal{O}_{\kappa'}$ -module.

Un morphisme entre \mathcal{O} -modules de Dieudonné (resp. F-modules de Dieudonné) sur κ' est une application linéaire qui commute avec F.

Exemple - Soient r, s deux entiers positifs premiers entre eux. On pose

$$M_{r,s} = (\mathcal{O}_{\kappa'})^r$$

et

$$F_{r,s}(e_i) = \begin{cases} e_{i+1} & \text{si } i = 1, \dots, r-1, \\ \pi^s e_1 & \text{si } i = r, \end{cases}$$

où (e_1, \dots, e_r) est la base canonique de $M_{r,s}$, et où on étend $F_{r,s}$ à $M_{r,s}$ par σ -linéarité; $(M_{r,s}, F_{r,s})$ est un \mathcal{O} -module de Dieudonné sur κ' de rang r.

Proposition 2.2.1.2 (cf. [24]) Soit (M, F) un \mathcal{O} -module de Dieudonné sur κ' . Il existe une unique décomposition

$$(M,F) = (M^{et}, F^{et}) \oplus (M^c, F^c)$$

où (M^{et}, F^{et}) et (M^c, F^c) sont des \mathcal{O} -modules de Dieudonné sur κ' tels que

$$F^{et}(M^{et}) = M^{et}$$

et

$$(F^c)^n(M^c) \subset \pi M^c$$

pour un entier n assez grand.

On a le lemme suivant sur les $\mathcal{O}_{\kappa'}$ -modules de Dieudonné "cyclique".

Lemme 2.2.1.3 Soit (M^c, F^c) un \mathcal{O} -module de Dieudonné sur κ' tel que F^c est topologiquement nilpotent et Coker F^c est de dimension 1. Il existe alors une uniformisante π' de $\mathcal{O}_{\kappa'}$ et une base $(e_i)_{1 \leqslant i \leqslant h}$ tel que $F^c(e_i) = e_{i+1}$ pour $1 \leqslant i < h$ et $F^c(e_h) = \pi'e_1$.

Remarque : Classiquement, l'application σ -linéaire F peut aussi être considérée comme un morphisme de Frobenius du $(\mathcal{O} \hat{\otimes}_{\kappa} \kappa')$ -module M:

$$F: (\mathrm{Id}_{\mathcal{O}} \hat{\otimes}_{\kappa} \mathrm{Frob}_{\kappa})^* M \longrightarrow M.$$

2.2.2 \mathcal{O} -modules de Dieudonné sur une \mathcal{O} -algèbre locale artinienne.

Comme précédemment, on note i le morphisme structural de la \mathcal{O} -algèbre B et Γ le morphisme

$$\begin{array}{ccc}
\mathcal{O} \hat{\otimes}_{\kappa} B & \longrightarrow B \\
a \hat{\otimes} b & \longmapsto i(a).b
\end{array}$$

Définition 2.2.2.1 Un \mathcal{O} -module de Dieudonné de rang d sur B est un $(\mathcal{O} \hat{\otimes}_{\kappa} B)$ module M, libre de rang d, muni d'un morphisme de Frobenius

$$F: (Id_{\mathcal{O}} \hat{\otimes}_{\kappa} \operatorname{Frob}_{\kappa})^* M \longrightarrow M$$

tel que Coker $F \simeq \Gamma_*(\omega)$ où ω est un B-module libre de type fini. Le Frobenius F sera dit topologiquement nilpotent s'il existe un entier n pour lequel

$$F^n: (Id_{\mathcal{O}} \hat{\otimes}_{\kappa} \operatorname{Frob}_{\kappa}^n)^* M / \pi M \longrightarrow M / \pi M$$

est le morphisme nul.

Remarque : Soit (M, F) un \mathcal{O} -module de Dieudonné tel que F est topologiquement nilpotent. Soit A la matrice de F dans une certaine base. Il existe alors un entier n tel que $A({}^{\tau}A) \cdots ({}^{\tau^n}A)$ appartienne à $\mathbb{M}_h((\pi \mathcal{O}) \hat{\otimes}_{\kappa} k')$.

Proposition 2.2.2.2 Soit (M, F) un \mathcal{O} -module de Dieudonné sur B. Il existe des \mathcal{O} -modules de Dieudonné sur B, (M^{et}, F^{et}) , (M^c, F^c) et une suite exacte:

$$0 \longrightarrow (M^{et}, F^{et}) \longrightarrow (M, F) \longrightarrow (M^c, F^c) \longrightarrow 0$$

tels que $F^{et}: (Id_{\mathcal{O}} \hat{\otimes}_{\kappa} \operatorname{Frob}_{\kappa})^* M^{et} \longrightarrow M^{et}$ est bijectif, et $F^c: (Id_{\mathcal{O}} \hat{\otimes}_{\kappa} \operatorname{Frob}_{\kappa})^* M^c \longrightarrow M^c$ est topologiquement nilpotent.

Preuve : Soient $\kappa' := B/\mathfrak{m}$ et $(\bar{M}, \bar{F}) := (M, F) \otimes_B B/\mathfrak{m}$ qui est alors un \mathcal{O} module de Dieudonné sur κ' . D'après la proposition 2.2.1.2, on a $\bar{M} = \bar{M}^{et} \oplus \bar{M}^c$,
le morphisme de Frobenius \bar{F} étant donné par une matrice \bar{Q} de la forme

$$\left(\begin{array}{cc} \bar{A}^c & 0\\ 0 & \bar{A}^{et} \end{array}\right)$$

où \bar{A}^{et} est inversible et \bar{A}^c topologiquement nilpotente. Si P est une matrice de passage, la matrice de F dans la nouvelle base est alors donnée par $P^{-1}Q(^{\tau}P)$. La proposition découle alors du lemme suivant.

Lemme 2.2.2.3 Soient R une \mathcal{O} -algèbre locale artinienne et \bar{R} le quotient de R défini par un idéal \mathfrak{m} de carré nul. On suppose qu'il existe une base de M telle que la matrice $Q \otimes_R \bar{R}$ de $F \otimes_R \bar{R}$ dans $M \otimes_R \bar{R}$, est de la forme

$$\begin{pmatrix}
\bar{A}^c & 0 \\
\bar{A}^{ext} & \bar{A}^{et}
\end{pmatrix}$$

où \bar{A}^{et} est inversible et \bar{A}^c topologiquement nilpotent. Il existe alors une matrice de passage P de la forme Id + P' où P' est une matrice à coefficients dans \mathfrak{m} , telle que $P^{-1}Q({}^{\tau}P)$ est de la forme

$$\left(\begin{array}{cc}
A^c & 0 \\
A^{ext} & A^{et}
\end{array}\right)$$

avec A^{et} inversible et A^{c} topologiquement nilpotent.

Preuve : Comme \mathfrak{m} est de carré nul, on en déduit que pour toute matrice P' à coefficient dans \mathfrak{m} , la matrice ${}^{\tau}(I_d+P')$ est la matrice identité. On cherche donc une matrice P' à coefficients dans \mathfrak{m} , telle que $(I_d+P')Q$ soit de la forme indiquée. On écrit Q sous la forme

$$\left(\begin{array}{cc} Q_1 & Q_2 \\ Q_3 & Q_4 \end{array}\right),\,$$

où la matrice Q_4 est inversible. En prenant $P' = \begin{pmatrix} Id & -Q_2Q_4^{-1} \\ 0 & Id \end{pmatrix}$, $P = I_d + P'$, la matrice $P^{-1}Q(^{\tau}P)$ est de la forme désirée.

2.2.3 \mathcal{O} -module divisible associé à un \mathcal{O} -module de Dieudonné: compléments sur le module de coordonnées.

Définition 2.2.3.1 (cf [11]) Un \mathcal{O} -module divisible sur une $\hat{\mathcal{O}}^{nr}$ -algèbre locale R, complète noethérienne et de corps résiduel isomorphe à $\bar{\kappa}$, est un couple (G, ψ) où G est un schéma formel en groupe sur Spec R, muni d'un homomorphisme $\psi: \mathcal{O} \longrightarrow \operatorname{End} G$, tel que G^c est un \mathcal{O} -module formel sur R et

$$G/G^c \simeq \operatorname{Spf} R \times (F/\mathcal{O})^j$$

pour un certain entier j

Soit $\operatorname{Mod} \mathcal{B}(B)$ la sous-catégorie pleine de celle des \mathcal{O} -modules de Dieudonné sur B, telle que

$$\operatorname{Coker} F \simeq \Gamma_*(\omega)$$

où ω est un *B*-module libre ω de rang 1, ou 0.

Proposition 2.2.3.2 Le foncteur M_B induit une anti-équivalence de catégorie, de la catégorie des \mathcal{O} -modules divisibles sur B, dans la catégorie $\operatorname{Mod} \mathcal{B}(B)$ qui prolonge l'équivalence du théorème 2.1.2.

Preuve: On commence par une proposition sur les Spec B-schémas en groupes.

Proposition 2.2.3.3 (cf. [16]) Soient G_1, G_2, G_3 des Spec B-schémas en groupes finis, plats, de présentation finie, qui, localement pour la topologie f.p.q.c. sur Spec B, se plongent dans $\mathbb{G}^N_{a,B}$, pour un certain entier N. On suppose que l'on a la suite exacte

$$1 \longrightarrow G_1 \xrightarrow{u} G_2 \xrightarrow{v} G_3 \longrightarrow 1$$

(ce qui signifie que u est un noyau de v dans la catégorie des schémas en groupes affines commutatifs et que v est plat surjectif). On a alors la suite exacte

$$0 \longrightarrow M_{G_3} \longrightarrow M_{G_2} \longrightarrow M_{G_1} \longrightarrow 0$$
.

Ainsi d'après le théorème 2.1.2, pour montrer la proposition, il suffit de montrer que M_B établit une équivalence de catégorie des \mathcal{O} -modules divisibles étales sur Spec B ($G^c = 0$), dans la catégorie des \mathcal{O} -modules de Dieudonné (M, F) tels que $M^c = 0$. Le résultat découle alors de la proposition suivante.

Proposition 2.2.3.4 (cf. [24] proposition (2.4.11)) Les foncteurs contravariants $G_{\kappa'}$ et $M_{\kappa'}$ entre la catégorie des \mathcal{O} -modules de Dieudonné (M,F) sur κ' tels que Coker F est nul ou de dimension 1 (en tant que κ' -espace vectoriel), et la catégorie des \mathcal{O} -modules divisibles G sur κ' , sont quasi-inverses l'un de l'autre. De plus $G_{\kappa'}(M,F)$ est étale (resp. connexe) si et seulement si $M^c = 0$ (resp. $M^{et} = 0$).

Remarque: Un \mathcal{O} -module divisible sur $\overline{\kappa}'$ est ici un \mathcal{O} -module divisible G sur κ' au sens de [24], tel que si G^c est non nul alors il est de dimension 1; ce qui explique la condition supplémentaire sur la dimension de Coker F par rapport à l'énoncé tel que l'on peut le trouver dans [24].

2.3 Modules divisibles associés à un \mathcal{D} -faisceau elliptique.

Soient o une place de X' et r le degré de $\kappa(o)$ sur \mathbb{F}_q . Soit $(\mathcal{E}_i, j_i, t_i)$ un \mathcal{D} -faisceau elliptique sur une \mathcal{O}_o -algèbre locale artinienne B. On fixe un isomorphisme $\mathcal{D}_o \simeq \mathbb{M}_d(\mathcal{O}_o)$ et soit \mathcal{F}_o le $(\mathcal{O}_o \otimes_{\mathbb{F}_q} B)$ -module libre de rang d tel que $\mathcal{E}_o \simeq \mathcal{F}_o^d$ où l'action de \mathcal{D}_o est donnée par l'action naturelle de $\mathbb{M}_d(\mathcal{O}_o)$ (cf. paragraphe 1.3.2). Avec les notations du paragraphe 2.1, soit $\mathcal{F}_{o,0}$ le $(\mathcal{O}_o \otimes_{\kappa(o)} B)$ -module associé, muni du Frobenius $t'_{o,0}$ déduit du morphisme $t'_o: {}^{\tau}\mathcal{F}_o \to \mathcal{F}_o$.

Définition 2.3.1 Le \mathcal{O}_o -module de Dieudonné sur B associé à $(\mathcal{E}_i, j_i, t_i)$ est le couple (M_o, F_o) où

$$M_o: = \mathcal{F}_{o,0} \otimes_{(\mathcal{O}_o \otimes_{\kappa(o)} B)} (\mathcal{O}_o \hat{\otimes}_{\kappa(o)} B)$$

et $F_o: (Id_{\mathcal{O}_o} \hat{\otimes}_{\kappa(o)} \operatorname{Frob}_{\kappa(o)})^* M_o \longrightarrow M_o$ est le morphisme de Frobenius induit par $t'_{o,0}$.

L'image directe de Coker t'_o étant un B-module libre de rang 1 (cf. le paragraphe 1.2), on a alors la proposition suivante.

Proposition 2.3.2 Le \mathcal{O}_o -module de Dieudonné (M_o, F_o) associé à $(\mathcal{E}_i, j_i, t_i)$, est un objet de Mod $\mathcal{B}(B)$. Le \mathcal{O}_o -module divisible sur B associé au \mathcal{O}_o -module de Dieudonné (M_o, F_o) selon la proposition 2.2.3.2, est la limite inductive

$$Gr_o(\mathcal{F}_{o,0}) := \underset{n}{\varinjlim} Gr(\mathcal{F}_{o,n,0})$$

des Spec B-schémas en \mathcal{O}_o -modules $Gr(\mathcal{F}_{o,n,0})$ associés aux φ -faisceaux $\mathcal{F}_{o,n,0}$: = $\mathcal{F}_{o,0} \otimes_{\mathcal{O}_o} \mathcal{O}_o/\mathfrak{m}_o^n$ par le foncteur Gr du paragraphe 1.3.1.

On notera $Gr^c(\mathcal{F}_{o,n,0})$ le \mathcal{O}_o -module formel sur B associé à (M_o^c, F_o^c) .

2.4 Anneau universel des déformations d'un \mathcal{O} -module divisible et théorème de Serre-Tate.

Les calculs du paragraphe 1.6 laissent à penser que déformer un \mathcal{D} -faisceau elliptique est un problème de nature locale en la caractéristique du \mathcal{D} -faisceau elliptique. Le but de cette section est de prouver l'analogue du théorème de Serre-Tate, pour les \mathcal{D} -faisceaux elliptiques (cf le corollaire 2.4.2.2).

2.4.1 Déformations des O-modules de Dieudonné.

Soit (\bar{M}, \bar{F}) un objet de la catégorie $\operatorname{Mod} \mathcal{B}(\bar{\kappa})$; \bar{M} est alors un $\hat{\mathcal{O}}^{\operatorname{nr}}$ -module libre \bar{M} , muni d'un Frobenius $\bar{F}: (\operatorname{Id}_{\hat{\mathcal{O}}^{\operatorname{nr}}} \hat{\otimes}_{\bar{\kappa}} \operatorname{Frob}_{\kappa})^* \bar{M} \longrightarrow \bar{M}$. Soit R une $\hat{\mathcal{O}}^{\operatorname{nr}}$ -algèbre locale complète noethérienne, de corps résiduel isomorphe à $\bar{\kappa}$, telle que

le morphisme structural $i: \hat{\mathcal{O}}^{nr} \longrightarrow R$ est un homomorphisme local de $\hat{\mathcal{O}}^{nr}$ algèbres. Une déformation (M, F) sur R de (\bar{M}, \bar{F}) , est un $\hat{\mathcal{O}}^{nr} \hat{\otimes}_{\bar{\kappa}} R$ -module libre M, muni d'un morphisme de Frobenius $F: (\mathrm{Id}_{\hat{\mathcal{O}}^{nr}} \hat{\otimes}_{\bar{\kappa}} \mathrm{Frob}_{\kappa})^* M \longrightarrow M$, tel que la réduction de (M, F) modulo l'idéal maximal de R est égale à (\bar{M}, \bar{F}) . Des résultats de Drinfel'd (cf [11]) et de la proposition 2.2.3.2, on en déduit le corollaire suivant.

Corollaire 2.4.1.1 Soit (\bar{M}, \bar{F}) un objet de la catégorie $\operatorname{Mod} \mathcal{B}(\bar{\kappa})$, de rang h+j où $h \geqslant 1$ est le rang de \bar{M}^c . Le foncteur qui à une $\hat{\mathcal{O}}^{\operatorname{nr}}$ -algèbre locale R, complète noethérienne et de corps résiduel isomorphe à $\bar{\kappa}$, associe l'ensemble des déformations sur R de (\bar{M}, \bar{F}) à isomorphisme près, est représenté par l'algèbre $E_0^{h,j} \simeq D_o^h[[d_1^0, \dots, d_j^0]]$ où $D_0^h \simeq \hat{\mathcal{O}}^{\operatorname{nr}}[[a_2, \dots, a_h]]$ représente les déformations de (\bar{M}^c, \bar{F}^c) .

Dans le but de décrire la déformation universelle, on redémontre directement ce résultat. Soient B une \mathcal{O} -algèbre locale artinienne, \bar{B} le quotient de B défini par un idéal \mathfrak{m} de carré nul et (\bar{M}, \bar{F}) un \mathcal{O} -module de Dieudonné défini sur \bar{B} . On a une suite exacte courte

$$0 \longrightarrow {}^{\tau}\bar{M} \stackrel{\bar{F}}{\longrightarrow} \bar{M} \longrightarrow \bar{N} \longrightarrow 0$$

où \bar{N} est de la forme $\bar{\Gamma}_*(\bar{\omega})$ avec $\bar{\omega}$ un \bar{B} -module libre de type fini. En appliquant le foncteur $\mathrm{Hom}_{\mathcal{O}_o\hat{\otimes}_\kappa\bar{B}}(\bullet,\bar{M}\otimes_{\bar{B}}\mathfrak{m})$ à cette suite exacte, de manière analogue à la preuve de la proposition 1.6.4, on obtient la proposition suivante.

Proposition 2.4.1.2 Il n'y a pas d'obstruction à déformer $(\overline{M}, \overline{F})$ en un \mathcal{O} module de Dieudonné défini sur B. L'espace des relèvements est alors un torseur
sous le groupe

$$\operatorname{Ext}^1_{\mathcal{O}_o\hat{\otimes}_{\kappa}\bar{B}}\left(\bar{N},\bar{M}\otimes_{\bar{B}}\mathfrak{m}\right)$$

lequel est isomorphe à

$$\operatorname{Hom}_{\mathcal{O}_o \hat{\otimes}_{\kappa} \bar{B}}({}^{\tau} \bar{M}, \bar{M} \otimes_{\bar{B}} \mathfrak{m}) / \left(\operatorname{Hom}_{\mathcal{O}_o \hat{\otimes}_{\kappa} \bar{B}}(\bar{M}, \bar{M} \otimes_{\bar{B}} \mathfrak{m})\right) \circ \bar{F}.$$

On peut alors démontrer directement le corollaire 2.4.1.1 et donner la déformation universelle de (\bar{M}, \bar{F}) .

Proposition 2.4.1.3 La déformation universelle de $(\overline{M}, \overline{F})$ sur $E_0^{h,j}$ est le couple $(M_{\text{univ}}, F_{\text{univ}})$, où M_{univ} est un $(\hat{\mathcal{O}}^{\text{nr}} \hat{\otimes}_{\overline{\kappa}} \hat{\mathcal{O}}^{\text{nr}}[[a_2, \dots, a_{h+j}]])$ -module libre de rang h+j $(a_{h+i}=d_i^0 \text{ pour } 1 \leqslant i \leqslant j)$, muni d'un morphisme de Frobenius $F_{\text{univ}}: (Id_{\hat{\mathcal{O}}^{\text{nr}}} \hat{\otimes}_{\overline{\kappa}} \operatorname{Frob}_{\kappa})^* M_{\text{univ}} \longrightarrow M_{\text{univ}}$, dont la matrice dans une certaine base est

$$\begin{pmatrix} 0 & \cdots & \pi' \otimes 1 - 1 \otimes \pi' & 0 & \cdots & 0 \\ 1 & \cdots & a_2 & \vdots & & \vdots \\ 0 & \cdots & a_h & 0 & \cdots & 0 \\ 0 & \cdots & a_{h+1} & b_{1,1} & \cdots & b_{1,j} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & a_{j+h} & b_{j,1} & \cdots & b_{j,j} \end{pmatrix},$$

où π' est une uniformisante de $\hat{\mathcal{O}}^{nr}$ et où la matrice des $(b_{k,l})_{1 \leq k,l \leq j}$ est un relèvement de la matrice inversible de \bar{F}^{et} .

Preuve : Le \mathcal{O} -module de Dieudonné (\bar{M}^c, \bar{F}^c) étant cyclique, on choisit une base de \bar{M} telle que la matrice de \bar{F} dans cette base soit de la forme:

$$\left(\begin{array}{cc} A^c & 0\\ 0 & A^{et} \end{array}\right)$$

avec

$$A^{c} = \left(\begin{array}{ccc} 0 & \cdots & \pi' \\ 1 & \ddots & 0 \\ 0 & \ddots & 0 \end{array}\right),$$

où π' est une uniformisante de $\hat{\mathcal{O}}^{nr}$ (cf. le lemme 2.2.1.3). Soit alors (M,F) une déformation sur R de (\bar{M},\bar{F}) . Le morphisme structural $i:\hat{\mathcal{O}}^{nr}\longrightarrow R$ étant un homomorphisme local de $\hat{\mathcal{O}}^{nr}$ -algèbres, la proposition précédente montre alors, par récurrence sur r, qu'il existe une base de M dans laquelle la matrice de F modulo \mathfrak{m}^r (\mathfrak{m} l'idéal maximal de R), est de la forme indiquée; par continuité, la proposition en découle.

2.4.2 Théorème de Serre-Tate.

Soient S le spectre d'un anneau R local artinien, et $\bar{S} \subset S$ le sous-schéma fermé défini par un idéal \mathfrak{m} de carré nul. Soit $(\bar{\mathcal{E}}_i, \bar{j}_i, \bar{t}_i)$ un \mathcal{D} -faisceau elliptique défini sur \bar{R} , de caractéristique $i_0: \bar{S} \to X'$. Soient alors le point fermé o de X', image par $i_o:=i_0$ du point fermé de \bar{S} et (\bar{M}_o, \bar{F}_o) le $(\mathcal{O}_o \hat{\otimes}_{\kappa(o)} \bar{R})$ -module de Dieudonné associé à ce \mathcal{D} -faisceau elliptique.

Proposition 2.4.2.1 L'application qui à une déformation $(\mathcal{E}_i, j_i, t_i)$ définie sur R de $(\bar{\mathcal{E}}_i, \bar{j}_i, \bar{t}_i)$ associe la déformation (M_o, F_o) définie sur R de (\bar{M}_o, \bar{F}_o) , est un isomorphisme entre les deux espaces de déformation.

Preuve : Avec les notations des paragraphes précédents, on rappelle que l'on a la suite exacte

$$0 \to {}^{\tau}\bar{\mathcal{E}}_0 \longrightarrow \bar{\mathcal{E}}_1 \longrightarrow (\tilde{i}_o)_*(\bar{\Gamma}_o) \to 0$$

et que (\bar{M}_o, \bar{F}_o) est donné par le couple $(\mathcal{F}_{o,0}, t'_{o,0})$ obtenu à partir de (\mathcal{F}_o, t'_o) par la construction du paragraphe 2.1. On fixe une déformation $(\mathcal{E}_i^0, j_i^0, t_i^0)$ et soit (M_o^0, F_o^0) la déformation de (\bar{M}_o, \bar{F}_o) qui lui correspond. Par rapport à ces points bases, les déformations de $(\bar{\mathcal{E}}_i, \bar{j}_i, \bar{t}_i)$ (resp. de (\bar{M}_o, \bar{F}_o)) sont en bijection avec le groupe

$$\operatorname{Ext}^1_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}\left((\tilde{\bar{i}}_o)_*(\bar{\Gamma}_o),\bar{\mathcal{E}}_1\otimes_{\bar{R}}\mathfrak{m}\right) \quad (\text{resp. } \operatorname{Ext}^1_{\mathcal{O}_o\otimes_{\bar{R}}}(\operatorname{Coker}\bar{F}_o,\mathcal{F}_{o,0}\otimes_{\bar{R}}\mathfrak{m})).$$

L'application de la proposition induit alors le morphisme canonique (localisation, équivalence de Morita puis complétion)

$$\operatorname{Ext}^1_{\mathcal{D}\boxtimes\mathcal{O}_{\bar{S}}}\left((\tilde{i}_o)_*(\bar{\Gamma}_o),\bar{\mathcal{E}}_1\otimes_{\bar{R}}\mathfrak{m}\right)\longrightarrow\operatorname{Ext}^1_{\mathcal{O}_o\otimes\bar{R}}(\operatorname{Coker}\bar{F}_o,\mathcal{F}_{o,0}\otimes_{\bar{R}}\mathfrak{m}),$$

qui, comme on l'a déjà remarqué au paragraphe 1.6, est un isomorphisme; d'où la proposition.

D'après la proposition 2.2.3.2, on a le corollaire suivant.

Corollaire 2.4.2.2 (Serre-Tate) L'application qui à une déformation $(\mathcal{E}_i, j_i, t_i)$ définie sur R de $(\bar{\mathcal{E}}_i, \bar{j}_i, \bar{t}_i)$ associe la déformation $Gr_o(\mathcal{F}_{o,0})$ définie sur R de $Gr_o(\bar{\mathcal{F}}_{o,0})$ est un isomorphisme entre les deux espaces de déformation.

3 Extension aux niveaux divisant la caractéristique.

Dans cette partie S désigne un schéma arbitraire. Soient $(\mathcal{E}_i, j_i, t_i)$ un \mathcal{D} faisceau elliptique défini sur S, de caractéristique $i_0: S \to X'$ et I un idéal de A.
Dans le cas où $V(I) \cap i_0(S)$ est vide, au paragraphe 1.4 on a rappelé la définition
de I-structure de niveau sur $(\mathcal{E}_i, j_i, t_i)$. Le but de cette partie est, en reprenant
les idées de Drinfel'd (cf. [11]), d'étendre cette définition sans aucune restriction
sur l'idéal I.

3.1 Bases de Drinfeld.

3.1.1 Cas des \mathcal{O} -modules divisibles: rappels.

On reprend les résultats de Drinfel'd donnés dans [11] dont on pourra trouver une présentation dans [5]. Soient R une $\hat{\mathcal{O}}^{nr}$ -algèbre locale complête, noethérienne, de corps résiduel isomorphe à $\bar{\kappa}$ et G un \mathcal{O} -module divisible (G^c est de dimension 1) sur R de hauteur d = h + j (i.e. le \mathcal{O} -module de Dieudonné associé (M, F) est de rang d et (M^c, F^c) est de rang h (cf. 2.2.3.2)). On note G_n le Spec R-schéma en groupe des points de \mathfrak{m}^n -torsion. Si P est un point de $G_n(R)$, on note [P] le sous-schéma fermé de G_n qu'il définit. Pour (P_i) une famille finie de tels points, on note $\sum [P_i]$ le sous-schéma de G_n défini par l'idéal produit des idéaux définissant les $[P_i]$.

Définition 3.1.1.1 Une base de Drinfel'd de niveau n sur G est un homomorphisme de \mathcal{O} -modules

$$\iota_n: (\mathfrak{m}^{-n}/\mathcal{O})^d \longrightarrow G_n(R)$$

tel que le sous-schéma $\sum_{\alpha \in (\mathfrak{m}^{-n}/\mathcal{O})^d} [\iota_n(\alpha)]$ de G_n coïncide avec G_n .

– Dans le cas où $G = (f, \psi)$ est un \mathcal{O} -module formel sur R (de dimension 1) de hauteur h, la donnée d'une base de Drinfel'd de niveau n sur G est la donnée d'un homomorphisme

$$\iota_n: (\mathfrak{m}^{-n}/\mathcal{O})^h \longrightarrow \mathfrak{N} = G(R)$$

où $\mathfrak N$ est l'idéal maximal de R muni de la structure de $\mathcal O$ -module déduite de G, tel que les séries formelles

$$\psi_{\pi}(X)$$
 et $\prod_{\alpha \in (\mathfrak{m}^{-1}/\mathcal{O})^h} (X - \iota_n(\alpha))$

se déduisent l'une de l'autre par multiplication par une unité de R[[X]]. En particulier si $R=\bar{\kappa}$, un tel homomorphisme est forcément trivial.

– Dans le cas général, G est une extension de $(F/\mathcal{O})^j$ par G^c . On a ainsi une suite exacte

$$0 \longrightarrow G_n^c(R) \longrightarrow G_n(R) \longrightarrow (\mathfrak{m}^{-n}/\mathcal{O})^j.$$

Le morphisme ι_n est alors une base de Drinfel'd si et seulement si les deux conditions suivantes sont vérifiées:

- le composé $(\mathfrak{m}^{-n}/\mathcal{O})^{j+h} \xrightarrow{\iota_n} G_n(R) \longrightarrow (\mathfrak{m}^{-n}/\mathcal{O})^j$ est surjectif; son noyau K est alors un facteur direct dans $(\mathfrak{m}^{-n}/\mathcal{O})^d$, isomorphe à $(\mathfrak{m}^{-n}/\mathcal{O})^h$;
- la restricition de ι_n à K est une base de Drinfel'd sur G_n^c .

Remarque: Soit (M, F) le module des coordonées $M_R(G)$ du \mathcal{O} -module divisible G. Pour tout élément z de $(\mathfrak{m}^{-n}/\mathcal{O})^d$, on considèrera $\iota_n(z)$ comme un élément m^* de M_n^* $(M_n := M \otimes_{\mathcal{O}} \mathcal{O}/\mathfrak{m}^n)$, tel que $m^* \circ F = (m^*)^{q'}$, où q' est le cardinal de κ .

3.1.2 Structures de niveaux en les places de mauvaise réduction.

Soient $(\mathcal{E}_i, j_i, t_i)$ un \mathcal{D} -faisceau elliptique défini sur S et o une place de X' telle que o appartient à $i_0(S)$. Un isomorphisme $\mathcal{D}_o \simeq \mathbb{M}_d(\mathcal{O}_o)$ étant fixé, soit $Gr(\mathcal{F}_{o,n})$ le S-schéma en \mathcal{O}_o -module associé à $(\mathcal{E}_i, j_i, t_i)$ (cf. paragraphe 1.3.2). Comme dans le paragraphe précédent, si P est un R-point d'un schéma Y, on note [P] le sous-R-schéma de Y qu'il définit. Pour (P_i) une famille finie de tels points, on note $\sum [P_i]$ le sous-schéma de Y défini par le faisceau d'idéaux produit des faisceaux d'idéaux définissant les $[P_i]$.

Définition 3.1.2.1 Une \mathfrak{m}_o^n -structure de niveau sur $(\mathcal{E}_i, j_i, t_i)/S$ est un homomorphisme de \mathcal{O}_o -modules

$$\iota'_{o,n}: (\mathcal{O}_o/\mathfrak{m}_o^n)^d \longrightarrow Gr(\mathcal{F}_{o,n})(S)$$

tel que le sous-schéma $\sum_{z \in (\mathcal{O}_o/\mathfrak{m}_o^n)^d} [\iota'_{o,n}(z)]$ de $Gr(\mathcal{F}_{o,n})$ coïncide avec $Gr(\mathcal{F}_{o,n})$. Une

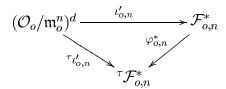
structure de niveau infinie locale en o sur $(\mathcal{E}_i, j_i, t_i)$ est un système inductif $\iota'_{o,\infty} = \underset{n}{\lim} \iota'_{o,n}$ où pour tout n, $\iota'_{o,n}$ est une \mathfrak{m}_o^n -structure de niveau.

Remarque : Si S est le spectre d'une \mathcal{O}_o -algèbre locale artinienne B, avec les notations du paragraphe 2.1, la donnée du morphisme $\iota'_{o,n}: (\mathcal{O}_o/\mathfrak{m}_o^n)^d \longrightarrow Gr(\mathcal{F}_{o,n})(S)$ est équivalente à la donnée du morphisme $\iota'_{o,n,0}: (\mathcal{O}_o/\mathfrak{m}_o^n)^d \longrightarrow Gr(\mathcal{F}_{o,n,0})(S)$. Le morphisme $\iota_{o,n,0}$ est alors une structure de niveau n sur $Gr(\mathcal{F}_{o,n,0})$ au sens du paragraphe précédent.

Remarque : Soient S un schéma, $(\mathcal{E}_i, j_i, t_i)$ un \mathcal{D} -faisceau elliptique défini sur S et $\iota'_{o,n}$ un homomorphisme de \mathcal{O}_o -modules $(\mathcal{O}_o/\mathfrak{m}_o^n)^d \longrightarrow Gr(\mathcal{F}_{o,n})(S)$. Pour tout élément z de $(\mathcal{O}_o/\mathfrak{m}_o^n)^d$, $\iota'_{o,n}(z)$ est un élément de $\mathcal{F}_{o,n}^*$ tel que

$$\varphi_{o,n}^*(\iota'_{o,n}(z)) = \iota'_{o,n}(z)^q.$$

Le morphisme $\iota'_{o,n}$ fournit un homomorphisme de \mathcal{O}_o -modules $(\mathcal{O}_o/\mathfrak{m}_o^n)^d \longrightarrow \mathcal{F}_{o,n}^*$ que l'on note encore $\iota'_{o,n}$ tel que le diagramme ci-dessous commute



On voit ainsi que cette définition généralise celle du paragraphe 1.4. Précisons un peu plus cette généralisation.

Soient $i_0: S \to X$ le morphisme zéro et S^o l'ouvert $i_0^{-1}(\operatorname{Spec} \kappa(o))$.

Proposition 3.1.2.2 Si le morphisme $\iota'_{o,n}$ est une \mathfrak{m}_o^n -structure de niveau, alors $\iota'_{o,n} \otimes_{\mathcal{O}_S} \mathcal{O}_S(S^o)$ induit un isomorphisme de \mathcal{O}_o -modules

$$(\mathcal{O}_o/\mathfrak{m}_o^n)^d \boxtimes \mathcal{O}_S(S^o) \longrightarrow (\mathcal{F}_{o,n} \otimes_{\mathcal{O}_S} \mathcal{O}_S(S^o))^*$$
.

Preuve : Le morphisme $\iota'_{o,n}$ étant une \mathfrak{m}_o^n -structure de niveau définie sur S, le sous-schéma $\sum_{z\in (\mathcal{O}_o/\mathfrak{m}_o^n)^d} [\iota'_{o,n}(z)] \times_S S^o$ de $Gr(\mathcal{F}_{o,n}) \times_S S^o$ coïncide avec $Gr(\mathcal{F}_{o,n}) \times_S S^o$. Le schéma $Gr(\mathcal{F}_{o,n}) \times_S S^o$ étant fini étale sur S^o , on en déduit que les éléments $(\iota'_{o,n}(z) \otimes_{\mathcal{O}_S} \mathcal{O}_S(S^o))_{z\in (\mathcal{O}_o/\mathfrak{m}_o^n)^d}$ forment une base de $(\mathcal{F}_{o,n} \otimes_{\mathcal{O}_S} \mathcal{O}_S(S^o))^*$, d'où la proposition.

Réciproquement on a la proposition suivante.

Proposition 3.1.2.3 On suppose que S est un schéma intègre et que S^o est un ouvert non vide de S. Si l'homomorphisme de \mathcal{O}_o -modules $\iota'_{o,n}: (\mathcal{O}_o/\mathfrak{m}_o^n)^d \longrightarrow Gr(\mathcal{F}_{o,n})(S)$ induit un isomorphisme

$$\iota'_{o,n} \otimes_{\mathcal{O}_S} \mathcal{O}_S(S^o) : (\mathcal{O}_o/\mathfrak{m}_o^n)^d \boxtimes \mathcal{O}_S(S^o) \xrightarrow{\sim} (\mathcal{F}_{o,n} \otimes_{\mathcal{O}_S} \mathcal{O}_S(S^o))^*,$$

alors $\iota'_{o,n}$ est une \mathfrak{m}^n_o -structure de niveau.

Preuve : On note \mathfrak{A} le faisceau d'anneau de $Gr(\mathcal{F}_{o,n})$ et \mathfrak{I} le faisceau d'idéaux de \mathfrak{A} sous-jacent au S-schéma $\sum_{z \in (\mathcal{O}_o/\mathfrak{m}_o^n)^d} [\iota'_{o,n}(z)].$ Par hypothèse $\mathfrak{I} \otimes_{\mathcal{O}_S} \mathcal{O}_{S^o}$ est le sous-faisceau nul de $\mathfrak{A} \otimes_{\mathcal{O}_S} \mathcal{O}_{S^o}$ et comme S est intègre on en déduit que \mathfrak{I} est le

sous-faisceau nul de $\mathfrak{A} \otimes \mathcal{O}_S$ \mathcal{O}_S et comme S est integre on en deduit que S est insous-faisceau nul de \mathfrak{A} , d'où la proposition.

On notera $\iota_{o,n}:\mathcal{D}_{o,n}\longrightarrow\mathcal{E}_{o,n}^*$ le morphisme induit par $\iota'_{o,n}$ (équivalence de Morita).

3.2 Représentabilité relative.

3.2.1 Deux lemmes généraux sur les bases de Drinfel'd.

Soient S un schéma et Z/S un S-schéma fini. Pour $S' \to S$ un S-schéma, on note $B_{dr}(S')$ l'ensemble des familles de sections P_1, \dots, P_N de Z(S') telles que $\sum_{i=1}^N [P_i]$ en tant que sous-schéma de Z coïncide avec Z.

Lemme 3.2.1.1 B_{Dr} est un faisceau sur le gros site étale $(Sch/S)_{et}$.

Preuve: Soient $S'_2 \to S'_1$ un morphisme étale de S-schémas et (P_1, \dots, P_N) un élément de $B_{Dr}(S'_1)$. Si \mathcal{I} désigne le faisceau d'idéaux de $\mathcal{O}_{Z\times_SS'_1}$ produit des faisceaux d'idéaux définissant les $[P_i]$, alors \mathcal{I} est nul. Ainsi $\mathcal{I}(S'_2)$ est nul et $(P_1 \times_{S'_1} S'_2, \dots, P_N \times_{S'_1} S'_2)$ appartient à $B_{Dr}(S'_2)$. L'application B_{Dr} se prolonge alors en un foncteur de la catégorie $(Sch/S)_{et}$ dans la catégorie des ensembles et constitue donc un préfaisceau. De même soit $(S_i)_i$ un recouvrement ouvert d'un S-schéma S'. Pour tout i, soit (P_1^i, \dots, P_n^i) un élément de $B_{Dr}(S_i)$ tel que l'on ait la condition de recollement. Soient P_1, \dots, P_N des sections de Z(S') telles que pour tout i et j, $P_j \times_{S'} S_i$ est la section P_j^i de $Z(S_i)$. Soit \mathcal{I} le faisceau d'idéaux de $\mathcal{O}_{Z\times_SS'}$ associé à $\sum_{i=1}^N [P_i]$. D'après les hypothèses, pour tout i, $\mathcal{I}(S_i)$ est nul dans $\mathcal{O}_{Z\times_SS'}(S_i)$. Ainsi \mathcal{I} est le sous-faisceau nul de $\mathcal{O}_{Z\times_SS'}$ ce qui montre que B_{Dr} est un faisceau.

Soient Z un S-schéma fini et P_1, \dots, P_N des S-points de Z.

Lemme 3.2.1.2 Il existe un sous-schéma fermé S_0 de S vérifiant la condition suivante: pour tout morphisme $S' \to S$, le sous-schéma

$$\sum_{i=1}^{N} [P_i \times_S S']$$

de $Z \times_S S'$ coïncide avec $Z \times_S S'$, si et seulement si le morphisme de S' dans S se factorise par S_0 .

Preuve: D'après le lemme précédent, on se ramène à supposer $S=\operatorname{Spec} R$ affine et Z libre sur $\operatorname{Spec} R$ et à ne considérer que des $S'=\operatorname{Spec} R'$ affines. On choisit un isomorphisme $\mathcal{O}_Z\simeq R^m$ et on note J l'idéal de \mathcal{O}_Z définissant le sous-schéma

 $\sum_{i=1}^{\infty} [P_i]$ de Z. On choisit un système de générateurs (f_i) du sous-R-module de R^m

sous-jacent à J. Pour R' une R-algèbre, le sous-schéma $\sum_{i=1}^{N} [P_i \times_R R']$ coïncide avec $Z \times_R R'$ si et seulement si l'idéal $J \otimes_R R'$ de $\mathcal{O}_Z \otimes_R R'$ est nul. Cela équivaut au fait que toutes les composantes des f_i aient une image nulle dans R'. La conclusion du lemme est donc satisfaite par le sous-schéma S_0 de S défini par l'idéal engendré par les composantes des f_i .

3.2.2 Définition de $\mathcal{E}ll_{X,\mathcal{D},I}$ au dessus de X'.

Pour tout idéal I de A, on note $\mathfrak{C}ll_{X,\mathcal{D},I}$ la catégorie fibrée sur la catégorie des \mathbb{F}_q -schémas, dont les objets sont les \mathcal{D} -faisceaux elliptiques munis d'une I-structure de niveau. Les morphismes de $\mathfrak{C}ll_{X,\mathcal{D},I}(S)$ sont les isomorphismes entre deux tels objets. Par rapport au paragraphe 1.5, le morphisme caractéristique permet de définir le morphisme $z\acute{e}ro$ de catégorie fibrée: $\mathfrak{C}ll_{X,\mathcal{D},I} \longrightarrow X'$.

Proposition 3.2.2.1 Pour tout idéal I de A, le morphisme $\mathfrak{E}ll_{X,\mathcal{D},I} \longrightarrow \mathfrak{E}ll_{X,\mathcal{D},A}$ est relativement représentable.

Preuve: Soient $(\mathcal{E}_i, j_i, t_i)$ un \mathcal{D} -faisceau elliptique défini sur T et $Gr(\mathcal{F}_{o,n})$ le T-schéma en \mathcal{O}_o -modules qui lui est associé. Soit $\iota_{o,n,\text{univ}}$ l'homomorphisme universel sur $S := \text{Hom}_{(\mathcal{O}_o \otimes \mathcal{O}_S)-mod}((\mathcal{O}_o/\mathfrak{m}_o^n)^d, Gr(\mathcal{F}_{o,n}))$. Le foncteur de la catégorie des T-schémas dans celle des ensembles qui à un T-schéma T', associe l'ensemble des \mathfrak{m}_o^n -structures de niveaux définis sur T' de $(\mathcal{E}_i, j_i, t_i)$, est alors représenté par le sous-schéma fermé S_0 de S du lemme 3.2.1.2.

Ainsi d'après la proposition 1.5.1, on en déduit le corollaire suivant.

Corollaire 3.2.2.2 Pour tout idéal I de A, $\mathfrak{E}ll_{X,\mathcal{D},I}$ est représentable par un champ algébrique au sens de Deligne-Mumford, $\mathcal{E}ll_{X,\mathcal{D},I}$, de dimension relative d-1 sur X', lisse sur $X' \setminus V(I)$.

Corollaire 3.2.2.3 Si V(I) contient au moins deux éléments alors $\mathcal{E}ll_{X,\mathcal{D},I}$ est un schéma sur X'.

Preuve: D'après la proposition 1.5.1, $\mathcal{E}ll_{X,\mathcal{D},J}$ est un schéma sur $X'\backslash V(J)$ dès que V(J) n'est pas vide. Si o et o' sont des places distinctes de V(I), on note I^o (resp. I^o) l'idéal de A tel que $I=I^o\mathfrak{m}_o^{n_o}$ (resp. $I=I^o'\mathfrak{m}_o^{n_o'}$) avec $o\not\in V(I^o)$ (resp. $o'\not\in I^o'$). Soit, d'après la proposition ci-dessus, $(\mathcal{E}ll_{X,\mathcal{D},I})_o$ le $\mathcal{E}ll_{X,\mathcal{D},I^o}$ -schéma sur $X'\backslash V(I^o)$ (resp. $(\mathcal{E}ll_{X,\mathcal{D},I})_{o'}$ le $\mathcal{E}ll_{X,\mathcal{D},I^o'}$ -schéma sur $X'\backslash V(I^o')$) correspondant aux $\mathfrak{m}_o^{n_o}$ -structures de niveaux (resp. aux $\mathfrak{m}_o^{n_o'}$ -structures de niveaux). Les schémas $(\mathcal{E}ll_{X,\mathcal{D},I})_o$ et $(\mathcal{E}ll_{X,\mathcal{D},I})_{o'}$ coïncident sur $X'\backslash V(I)$ et définissent donc un schéma sur $(X'\backslash V(I))\cup (\{o,o'\}\cap X')$.

3.3 Anneau universel des déformations d'un \mathcal{O} -module divisible muni d'une structure de niveau n et propriétées locales de $\mathcal{E}ll_{X,\mathcal{D},I}$.

On reprend ce qui a été fait au paragraphe 2.4 en y ajoutant les structures de niveaux.

3.3.1 Déformation des \mathcal{O} -modules divisibles avec structure de niveau, selon Drinfel'd.

On rappelle que C est la catégorie dont les objets sont les $\hat{\mathcal{O}}^{nr}$ -algèbres locales complètes noethériennes dont le corps résiduel est isomorphe à $\bar{\kappa}$. Les morphismes de C sont les homomorphismes locaux de $\hat{\mathcal{O}}^{nr}$ -algèbres.

Théorème 3.3.1.1 (cf. [11]) Soit G un \mathcal{O} -module divisible sur $\bar{\kappa}$, de hauteur h+j ($h\geqslant 1$ étant la hauteur de G^c), muni d'une base de Drinfel'd de niveau n, ι_n . Le foncteur qui à un objet R de C associe l'ensemble des déformations sur R du couple (G,ι_n) est représentable par l'anneau $E_n^G=E_n^{h,j}$. L'anneau $E_n^{h,j}$ est régulier et pour $m\leqslant n$, le morphisme naturel $E_m^{h,j}\to E_n^{h,j}$ est fini et plat.

Pour la preuve, on renvoie à [11]. Donnons simplement quelques précisions qui nous serons utiles par la suite. Au premier chapitre 3.1.2, on donne E_n^G dans le cas où G est un \mathcal{O}_o -module formel. Dans ce cas on note cet anneau D_n^h où h est la hauteur de G^c . L'anneau D_n^h est régulier et les morphismes $D_m^h \to D_n^h$ sont finis et plats. Drinfel'd montre alors que $E_n^{h,j} = D_n^h[[d_1^n, \dots, d_j^n]]$.

3.3.2 Retour sur le théorème de Serre-Tate.

Soient S le spectre d'un anneau local artinien R et $\bar{S} \subset S$ le sous-schéma fermé défini par un idéal \mathfrak{m} de carré nul $(\bar{R} = R/\mathfrak{m})$. Soient I un idéal de A et $((\bar{\mathcal{E}}_i, \bar{j}_i, \bar{t}_i), \bar{\iota}_I)$ un \bar{R} -point de $\mathcal{E}ll_{X,\mathcal{D},I}$, de caractéristique $i_0: \bar{S} \to X'$. Soient o le point fermé de X', image par $i_o: = i_0$ du point fermé de \bar{S} , et $(Gr_o(\bar{\mathcal{F}}_{o,0}), \bar{t}'_{o,n,0})$, le \mathcal{O}_o -module divisible muni de sa structure de niveau n associé, où n est la multiplicité de o dans I.

D'après la proposition 2.4.2, on sait que déformer $(((\bar{\mathcal{E}}_i, \bar{j}_i, \bar{t}_i), \bar{\iota}_{I'})$ $(I = \mathfrak{m}_o^n I')$, est équivalent à déformer le \mathcal{O}_o -module divisible, $Gr_o(\bar{\mathcal{F}}_{o,0})$. Par définition $\iota_{o,n}$ est égale à $\iota'_{o,n}$ qui d'après le paragraphe 2.1 est équivalente à la donnée de $\iota'_{o,n,0}$, d'où le corollaire suivant.

Corollaire 3.3.2.1 (du théorème de Serre-Tate 2.4.2) L'application qui à une déformation $((\mathcal{E}_i, j_i, t_i), \iota_I)$, définie sur R, de $((\bar{\mathcal{E}}_i, \bar{j}_i, \bar{t}_i), \bar{\iota}_I)$ associe la déformation $(Gr_o(\mathcal{F}_{o,0}), \iota'_{o,n,0})$ de $(Gr_o(\bar{\mathcal{F}}_{o,0}), \bar{\iota}'_{o,n,0})$, est un isomorphisme entre les deux espaces de déformation.

3.3.3 Propriétées locales.

Soient o une place de X' et I' un idéal de A tel que o n'appartient pas à V(I'). Soient x un point de la fibre spéciale $\mathcal{E}ll_{X,\mathcal{D},I'}\otimes_A \overline{\kappa}(o)$ et y un point de la fibre spéciale $\mathcal{E}ll_{X,\mathcal{D},I',\mathfrak{m}_o^n}\otimes_A \overline{\kappa}(o)$ tels que $r_{I',\mathfrak{m}_o^n,I'}(y)=(x)$. On note $(\widehat{\mathcal{E}ll_{X,\mathcal{D},I'}})_{(x)}$ (resp. $(\mathcal{E}l\widehat{l}_{X,\mathcal{D},I'.\mathfrak{m}_o^n})_{(y)})$ le complété de l'hensélisé de $\mathcal{E}ll_{X,\mathcal{D},I'}$ en x (resp. de $\mathcal{E}ll_{X,\mathcal{D},I'.\mathfrak{m}_o^n}$ en y). D'après le théorème de Serre-Tate ci-dessus, on a un diagramme commutatif

$$(\mathcal{E}\widehat{ll_{X,\mathcal{D},I',\mathfrak{m}_{o}^{n}}})_{(y)} \xrightarrow{\sim} \operatorname{Spec} E_{n}^{h,j}$$

$$\downarrow^{r_{I',\mathfrak{m}_{o}^{n},I'}} \qquad \qquad \downarrow$$

$$(\mathcal{E}\widehat{ll_{X,\mathcal{D},I'}})_{(x)} \xrightarrow{\sim} \operatorname{Spec} E_{0}^{h,j}$$

où h+j (resp. h) est la hauteur de $Gr_o(\mathcal{F}_{o,0})$ (resp. $Gr_o^c(\mathcal{F}_{o,0})$).

Proposition 3.3.3.1 Pour tout idéal I de A, $\mathcal{E}ll_{X,\mathcal{D},I}$ est régulier. Pour tous les idéaux I,J de A tels que $J \subset I$, le morphisme de restriction du niveau

$$r_{J,I}: \mathcal{E}ll_{X,\mathcal{D},J} \longrightarrow \mathcal{E}ll_{X,\mathcal{D},I}$$

est fini et plat.

Preuve: On rappelle les critères généraux de platitude suivant (cf. [25]). Soit $A \to B$ un homomorphisme d'anneau. Alors B est un A-module plat si et seulement si pour tout idéal premier \mathcal{P} de A et tout idéal premier P de B au dessus de \mathcal{P} , B_P est un $A_{\mathcal{P}}$ -module plat, ce qui est équivalent au fait que \hat{B}_P est un $\hat{A}_{\mathcal{P}}$ -module plat. La proposition découle alors du théorème 3.3.1.1.

De la finitude du morphisme $(\mathcal{E}ll_{X,\mathcal{D},I}/\mathbb{Z}) \to (\mathcal{E}ll_{X,\mathcal{D},A}/\mathbb{Z})$ et de la propreté de $(\mathcal{E}ll_{X,\mathcal{D},A}/\mathbb{Z}) \to X'$, on en déduit la proposition suivante.

Proposition 3.3.3.2 Pour tout idéal I de A, le morphisme $(\mathcal{E}ll_{X,\mathcal{D},I}/\mathbb{Z}) \to X'$ est propre.

3.4 Correspondances de Hecke.

3.4.1 Algèbre de Hecke globale.

On peut identifier \mathcal{D} à une collection d'ordres $\mathcal{D}_x \subset D \otimes F_x$ telle que pour toute place x de X, il existe une F-base N telle que $\mathcal{D}_x = \mathcal{O}_x.N$. On fixe alors les notations suivantes:

- $-D_{\mathbb{A}}^{\times}=D^{\times}\otimes_{F}\mathbb{A};$
- pour tout sous-ensemble fini $T \subset |X|, (D^T)^{\times} = D^{\times} \otimes_F \mathbb{A}^T;$
- $-K: = \mathcal{D}^{\times} = \prod_{x \in |X|} \mathcal{D}_x^{\times}, \text{ soit } K = \varprojlim_{I} N_I^{\times};$

$$-K^T:=(\mathcal{D}^T)^{\times}=\prod_{x\in |X|\setminus T}\mathcal{D}_x^{\times}\subset (D^T)^{\times}, \text{ soit } K^T=\varprojlim_{I\cap T=\emptyset}N_I^{\times};$$

- pour un idéal I de A, on note K_I le noyau de l'homomorphisme surjectif

$$K \longrightarrow N_I^{\times}$$
.

De la même façon pour I un idéal de A tel $V(I) \cap T$ est vide, on définit

$$K_I^T := \operatorname{Ker} \left(K^T \longrightarrow (N_I^T)^{\times} \right).$$

Par exemple, on note $K_{x,0} = (\mathcal{D}_x)^{\times}$ et $K_{x,n} = \operatorname{Ker}(\mathcal{D}_x^{\times} \to (\mathcal{D}_x/\mathfrak{m}_x^n \mathcal{D}_x)^{\times})$.

Remarque: Le groupe K (resp. K^T) est un sous-groupe ouvert compact de $D_{\mathbb{A}}^{\times}$ (resp. $(D^T)^{\times}$) et K_I (resp. K_I^T) est un sous-groupe ouvert compact d'indice fini dans K (resp. K^T).

Le groupe localement compact $D_{\mathbb{A}}^{\times}$ (resp. $(D^T)^{\times}$) étant unimodulaire, soit $dg_{\mathbb{A}}$ (resp. $dg_{\mathbb{A}}^T$) la mesure de Haar sur $D_{\mathbb{A}}^{\times}$ (resp. $(D^T)^{\times}$) qui donne le volume 1 au sous-groupe K (resp. K^T). De même pour tout élément x de T, K_x étant un sous-groupe ouvert compact de D_x^{\times} , on considère dg_x la mesure de Haar sur D_x^{\times} pour laquelle K_x est de volume 1. On a

$$dg_{\mathbb{A}} = dg_{\mathbb{A}}^T \times \prod_{x \in T} dg_x.$$

Définition 3.4.1.1 On appelle algèbre de Hecke de $D_{\mathbb{A}}^{\times}$ (resp. $(D^T)^{\times}$, resp. D_x^{\times}) et on note \mathcal{H} (resp. \mathcal{H}^T , resp. \mathcal{H}_x) la \mathbb{Q} -algèbre de convolution pour la mesure $dg_{\mathbb{A}}$ (resp. $dg_{\mathbb{A}}^T$, resp. dg_x) des fonctions localement constantes à support compact de $D_{\mathbb{A}}^{\times}$ (resp. $(D^T)^{\times}$, resp. D_x^{\times}) dans \mathbb{Q} .

Pour tout idéal I de A (resp. de A tel que $V(I) \cap T$ est vide), on note \mathcal{H}_I (resp. \mathcal{H}_I^T) la sous-algèbre de \mathcal{H} (resp. de \mathcal{H}^T) des fonctions invariantes à gauche et à droite par K_I (resp. K_I^T).

Remarque: On a $\mathcal{H} = \mathcal{H}^T \times \prod_{x \in T} \mathcal{H}_x$ et $\mathcal{H}_I = \mathcal{H}_I^T \times \prod_{x \in T} \mathcal{H}_x$. De plus \mathcal{H} (resp. \mathcal{H}^T) est la réunion filtrante des \mathcal{H}_I (resp. \mathcal{H}_I^T).

3.4.2 Correspondances géométriques de Hecke.

L'objet de ce paragraphe est de définir les correspondances géométriques associées aux éléments de l'algèbre de Hecke de $(D^{\infty})^{\times}$. On note

$$\mathcal{E}ll_{X,\mathcal{D}}:=\varprojlim_{I}\mathcal{E}ll_{X,\mathcal{D},I}$$

où la limite est prise sur tous les idéaux I de A.

Une section de $\mathcal{E}ll_{X,\mathcal{D}}$ sur un schéma S est la donnée d'un \mathcal{D} -faisceau elliptique $(\mathcal{E}_i, j_i, t_i)$ sur S et de structures de niveaux locales pour tout $x \neq \infty$,

$$\iota_x = \varinjlim_n \, \iota_{x,n}$$

où pour x n'appartenant pas à Bad, $\iota_{x,n}$ est induit (équivalence de Morita) par l'homomorphisme de \mathcal{O}_x -modules

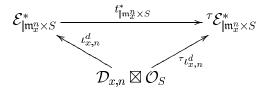
$$\iota'_{x,n}: (\mathcal{O}_x/\mathfrak{m}_x^n)^d \longrightarrow Gr(\mathcal{F}_{x,n_x})(S)$$

tel que $\sum_{z \in (\mathcal{O}_x/\mathfrak{m}_x^n)^d} [\iota'_{x,n}(z)]$ en tant que sous-schéma de $Gr(\mathcal{F}_{x,n_x})$, coïncide avec

 $Gr(\mathcal{F}_{x,n})$, et pour x un élément de Bad, l'homomorphisme de \mathcal{D}_x -modules à droite

$$\iota_{x,n_x}: \mathcal{D}_{x,n_x} \boxtimes \mathcal{O}_S \xrightarrow{\sim} \mathcal{E}_x^* \otimes_{\mathcal{O}_x} \mathcal{O}_x/\mathfrak{m}_x^n$$

est tel que le diagramme suivant est commutatif



a) Action naturelle de $(\mathcal{D}^{\infty})^{\times}$ sur $\mathcal{E}ll_{X,\mathcal{D}}$: Soient g un élément de $(\mathcal{D}^{\infty})^{\times}$ et $((\mathcal{E}_i, j_i, t_i), \iota)$ un S-point de $\mathcal{E}ll_{X,\mathcal{D}}$. L'image par g de ce S-point est le couple $((\mathcal{E}_i^1, j_i^1, t_i^1), \iota^1)$ défini comme suit:

$$(\mathcal{E}_i^1, j_i^1, t_i^1) = (\mathcal{E}_i, j_i, t_i)$$

et

$$\iota_x^1 = \iota_x \circ g_x,$$

où \mathcal{D}_x^{\times} agit à droite sur \mathcal{D}_{x,n_x} . On a alors

$$\mathcal{E}ll_{X,\mathcal{D},I} = (\mathcal{E}ll_{X,\mathcal{D}})^{K_I}.$$
(3.4.2.1)

b) Action de $F^{\times}\setminus (\mathbb{A}^{\infty})^{\times}$ sur $\mathcal{E}ll_{X,\mathcal{D}}$: On note $\mathrm{Pic}_{X,o,n}(\mathbb{F}_q)$ l'ensemble des faisceaux inversibles \mathcal{L} sur X munis d'une \mathfrak{m}_o^n -structure de niveau

$$\psi_{o,n}: \mathcal{O}_o/\mathfrak{m}_o^n \xrightarrow{\sim} \mathcal{L} \otimes (\mathcal{O}_o/\mathfrak{m}_o^n).$$

Pour un idéal I de A, soit $\operatorname{Pic}_{X,I} := \prod_{x \in V(I)} \operatorname{Pic}_{X,x,n_x}$, où n_x est la multiplicité de x dans I. Soit

$$\operatorname{Pic}_{X,\infty}(\mathbb{F}_q) = \lim_{\stackrel{\longleftarrow}{I}} \operatorname{Pic}_{X,I}(\mathbb{F}_q)$$

où la limite est prise sur tous les idéaux I de A. On a un isomorphisme

$$\operatorname{Pic}_{X,\infty}(\mathbb{F}_q) \simeq F^{\times} \backslash (\mathbb{A}^{\infty})^{\times},$$

où, à l'idèle de composante en x égale à une uniformisante π_x et toutes les autres composantes triviales, correspond le faisceau inversible $\mathcal{O}_X(-x)$ muni de structures de niveaux locales nulles en dehors de la place x, et ι_x est donnée par la

multiplication par π_x . L'action de $F^{\times} \setminus (\mathbb{A}^{\infty})^{\times}$ sur $\mathcal{E}ll_{X,\mathcal{D}}$ sera donné, via l'isomorphisme ci-dessus, par l'action de $\operatorname{Pic}_{X,\infty}(\mathbb{F}_q)$.

Soient donc I un idéal de A, o une place de X différente de la place ∞ et n_o la multiplicité de o dans I. Soit $((\mathcal{E}_i, j_i, t_i), \iota_I)$ le \mathcal{D} -faisceau elliptique, muni de la I-structure de niveau universelle sur $S := \mathcal{E}ll_{X,\mathcal{D},I}$. Son image par l'élément $(\mathcal{L}, \psi_{o,n})$ de $\mathrm{Pic}_{X,o,n}$, pour $n \geq n_o$, est le couple $((\mathcal{E}_i^1, j_i^1, t_i^1), \iota_I^1)$ tel que

$$(\mathcal{E}_i^1, j_i^1, t_i^1) = (\mathcal{E}_i \otimes_{\mathcal{O}_S} \mathcal{L}, j_i \otimes_{\mathcal{O}_S} \operatorname{Id}_{\mathcal{L}}, t_i \otimes_{\mathcal{O}_S} \operatorname{Id}_{\mathcal{L}}), \quad \iota_{x,n_x}^1 = \iota_{x,n_x} \text{ pour } x \neq \infty, o,$$

 ι'_{o,n_o} étant défini comme suit. L'isomorphisme $\psi_{o,n_o}:=\psi_{o,n}\otimes_{\mathcal{O}_o/(\pi_o^n)}\mathcal{O}_o/(\pi_o^{n_o})$ induit un isomorphisme $\mathcal{E}_{o,n_o}\overset{\sim}{\longrightarrow}\mathcal{E}^1_{o,n_o}$ qui définit un isomorphisme de S-schémas $Gr(\mathcal{F}_{o,n_o})\overset{\sim}{\longrightarrow}Gr(\mathcal{F}^1_{o,n_o})$. L'application $\iota^{1,\prime}_{o,n_o}$ est alors définie par la commutativité du diagramme

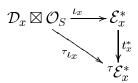
$$(\mathcal{O}_o/\mathfrak{m}_o^{n_o})^d \xrightarrow{l'_{o,n_o}} Gr(\mathcal{F}_{o,n_o})(S)$$

$$(\mathcal{O}_o/\mathfrak{m}_o^{n_o})^d \xrightarrow{l_{o,n_o}^{1,\prime}} Gr(\mathcal{F}_{o,n_o}^1)(S)$$

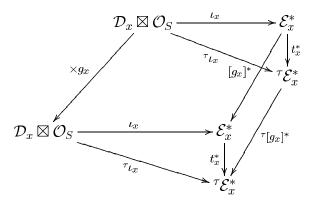
D'après la proposition 3.1.2.2, $\iota'_{o,n_o} \times_{X'} (X' \setminus \{o\})$ est un isomorphisme. Ainsi $\iota^{1'}_{o,n_o} \times_{X'} (X' \setminus \{o\})$ est aussi un isomorphisme et d'après la proposition 3.1.2.3 (S étant régulier), $\iota^{1'}_{o,n_o}$ est une $\mathfrak{m}^{n_o}_o$ -structure de niveau sur $(\mathcal{E}^1_i, j^1_i, t^1_i)$.

Remarque : Si z est un élément de $(\mathbb{A}^{\infty})^{\times}$, son action telle que l'on vient de la définir correspond à l'action de l'élément diagonal z^{-1} dans $(\mathcal{D}^{\infty})^{\times}$ (compatibilité entre a) et b)).

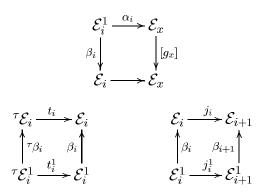
- c) Action du semi-groupe $\Gamma := (D^{\infty})^{\times} \cap \mathcal{D}^{\infty}$ sur $\mathcal{E}ll_{X,\mathcal{D}}$: Le but est d'étendre les actions précédentes, c'est-à-dire qu'il faut que l'action de $(\mathcal{D}^{\infty})^{\times} \subset \Gamma$ soit donnée par a) et que l'action de $F^{\times} \setminus (\mathbb{A}^{\infty})^{\times} = \Gamma \cap (\mathbb{A}^{\infty})^{\times}$ soit donnée par b). On procède place par place. Soient S un schéma et $((\mathcal{E}_i, j_i, t_i), \iota)$ un S-point de $\mathcal{E}ll_{X,\mathcal{D}}$ de zéro i_0 .
- c1) Action de $D_x^{\times} \cap \mathcal{D}_x$ pour $x \notin i_0(S)$: La limite inductive $\iota_x = \varinjlim_{n} \iota_{x,n}$ fournit un isomorphisme $\mathcal{D}_x \xrightarrow{\sim} \mathcal{E}_x^*$ que l'on note encore ι_x tel que le diagramme suivant est commutatif



Soit g_x un élément de $D_x^{\times} \cap \mathcal{D}_x$. L'action de g_x^{-1} sur \mathcal{D}_x est donnée par la multiplication à droite par g_x . On obtient donc (via ι_x) un endomorphisme de \mathcal{E}_x^* , que l'on note $[g_x]^*$, et un diagramme commutatif



On note $((\mathcal{E}_i^1, j_i^1, t_i^1), \iota^1)$ l'image de $((\mathcal{E}_i, j_i, t_i), \iota)$ par g_x^{-1} , laquelle est définie par les diagrammes commutatifs



Le morphisme $\alpha_i \otimes \operatorname{Id} : \mathcal{E}_o^1 \longrightarrow \mathcal{E}_o$ est un isomorphisme \mathcal{D}_o -équivariant. On définit alors le morphisme $\iota_{o,n}^1 : \mathcal{D}_{o,n} \xrightarrow{\sim} (\mathcal{E}'_{o,n})^*$ comme le composé $(\alpha_i \otimes \operatorname{Id})^{-1} \circ \iota_{o,n}$.

Remarque : Si g_x est un élément de \mathcal{D}_x^{\times} alors $[g_x]$ est un isomorphisme et on retrouve l'action définie en a). De même si g_x est un élément de $\mathcal{O}_x \cap F_x^{\times}$, alors $\mathcal{E}_i^1 = \mathcal{E}_i \otimes \mathcal{O}_X(g_x^{-1})$ et on reconnait l'action définie en b).

c2) Action de $D_o^{\times} \cap \mathcal{D}_o$ pour $o \in i_0(S)$: Soit g_o un élément de $D_o^{\times} \cap \mathcal{D}_o$. On pose $S = \mathcal{E}ll_{X,\mathcal{D}}$ et $S^o := i_0^{-1}(\operatorname{Spec}(A \setminus \{o\}))$. D'après c1), g_o^{-1} définit un morphisme $S^o \longrightarrow S^o$ et donc un morphisme $S^o \longrightarrow S$. On veut montrer que ce morphisme que l'on note $[g_o]^o$ se prolonge en un morphisme $[g_o]: S \longrightarrow S$. Le schéma S^o étant ouvert dans S, il y est dense et un tel prolongement est forcément unique. Il suffit alors de montrer que pour tout recouvrement ouvert $S = \cup U_i$, le morphisme $[g_o]^o \times_{S^o} U_i^o : U_i^o \longrightarrow U_i$ se prolonge en un morphisme $[g_o]_i : U_i \longrightarrow U_i$, la condition de recollement étant automatique d'après l'unicité du prolongement. Soit donc $U = \operatorname{Spec} R$ un ouvert de S et R^o le localisé de R correspondant à U^o . Le schéma S étant régulier, R est intègre et s'injecte dans R^o . On note $(\mathcal{E}_i, j_i, t_i)$ le \mathcal{D} -faisceau elliptique universel sur R. Le morphisme $\iota_o = \varinjlim_{i=1}^{\infty} \iota_{o,n}$ fournit un

diagramme commutatif

$$\mathcal{D}_o \boxtimes R \xrightarrow{\iota_o} \mathcal{E}_o^*$$

$$\downarrow^{t_o^*}$$

$$\tau \mathcal{E}_o^*$$

tel que d'après la proposition 3.1.2.2,

$$\iota_o \otimes_R R^o : \mathcal{D}_o \boxtimes R^o \longrightarrow \mathcal{E}_o^* \otimes_R R^o$$

est un isomorphisme. Comme dans le cas c1), on définit l'endomorphisme $[g_o]^*$ de $\mathcal{E}_o^* \otimes_R R^o$ tel que le diagramme suivant est commutatif

$$\mathcal{D}_{o} \boxtimes R^{o} \xrightarrow{\iota_{o}^{d} \otimes_{R} R^{o}} \mathcal{E}_{o}^{*} \otimes_{R} R^{o}$$

$$\downarrow^{\times g_{o}} \qquad \qquad \downarrow^{[g_{o}]^{*}}$$

$$\mathcal{D}_{o} \boxtimes R^{o} \xrightarrow{\iota_{o}^{d} \otimes_{R} R^{o}} \mathcal{E}_{o}^{*} \otimes_{R} R^{o}.$$

Soit r un élément de R tel que $[g_o \otimes r]^*$ est défini sur \mathcal{E}_o^* . On définit alors $(\mathcal{E}_i^1, j_i^1, t_i^1)$ via $[g_o \otimes r]^*$ comme dans c1). Le morphisme α_i induit un isomorphisme $\mathcal{F}_o^1 \stackrel{\sim}{\longrightarrow} \mathcal{F}_o$ et on définit $\iota_{o,n}^{1,'}: (\mathcal{O}_o/\mathfrak{m}_o^n)^d \longrightarrow (\mathcal{F}_{o,n}^1)^*$ comme l'application induite par le composé $(\alpha_i \otimes \mathrm{Id})^{-1} \circ \iota_{o,n}$. Le morphisme $\iota_{o,n}' \times_R R^o$ étant un isomorphisme, il en est de même de $\iota_{o,n}^{1,'} \times_R R^o: (\mathcal{O}_o/\mathfrak{m}_o^n)^d \boxtimes R^o \longrightarrow (\mathcal{F}_{o,n}^1 \otimes_R R^o)^*$. Ainsi d'après la proposition 3.1.2.3, $\iota_{o,n}^{1,'}$ est une \mathfrak{m}_o^n -structure de niveau sur $(\mathcal{E}_i^1, j_i^1, t_i^1)$. Il suffit alors montrer que $\mathcal{E}_i^1 \otimes_R R^o$ est isomorphe à $\mathcal{E}_i' \otimes_R R^o$ tel qu'il est défini par c1). Pour cela il suffit de vérifier que dans c1), pour définir \mathcal{E}_i' , on aurrait pu prendre $g_x \otimes r$ au lieu de g_x . Cette propriété découle du lemme suivant.

Lemme 3.4.2.2 Soient \mathcal{E}_i' et $\tilde{\mathcal{E}}_i'$ définis par la commutativité des diagrammes suivants

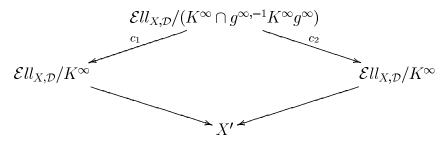
$$\begin{array}{ccc}
\tilde{\mathcal{E}}'_{i} \longrightarrow \mathcal{E}_{i,o} & \mathcal{E}'_{i} \longrightarrow \mathcal{E}_{i,o} \\
\downarrow^{\tilde{g}'} & \downarrow^{r.g} & \downarrow^{g'} & \downarrow^{g} \\
\mathcal{E}_{i} \longrightarrow \mathcal{E}_{i,o} & \mathcal{E}_{i} \longrightarrow \mathcal{E}_{i,o}
\end{array}$$

où \mathcal{E}_i est un $\mathcal{O}_{X \times \operatorname{Spec} R}$ -module localement libre de rang fini et où g est un morphisme de $\mathcal{O}_{X \times \operatorname{Spec} R}$ -module. Alors \mathcal{E}'_i et $\tilde{\mathcal{E}}'_i$ sont isomorphes.

Preuve: On a $\mathcal{E}'_i \simeq \operatorname{Im} g' \subset \mathcal{E}_i$, $\tilde{\mathcal{E}}'_i \simeq \operatorname{Im} \tilde{g}' \subset \mathcal{E}_i$ et $\operatorname{Im} \tilde{g}' \simeq r$. Im g'. L'anneau R étant intègre, pour tout $\mathcal{O}_{X \times \operatorname{Spec} R}$ -module localement libre de rang fini \mathcal{F} , le morphisme $\mathcal{F} \longrightarrow r.\mathcal{F} \quad m \longmapsto r.m$ est un isomorphisme de \mathcal{F} sur $r.\mathcal{F}$, d'où le lemme.

On laisse au lecteur le soin de vérifier que ces définitions sont compatibles et définissent une action de $(D^{\infty})^{\times}$ sur $\mathcal{E}ll_{X,\mathcal{D}}$.

Correspondance de Hecke: Soient $K^{\infty} \subset (D^{\infty})^{\times}$ un sous-groupe compact ouvert, et g^{∞} un élément de $(D^{\infty})^{\times}$. Les actions définies ci-dessus donnent une correspondance géométrique sur X':



où le morphisme c_1 (resp c_2) est induit par l'inclusion $(K^{\infty} \cap g^{\infty,-1}K^{\infty}g^{\infty}) \subset K^{\infty}$ (resp $(K^{\infty} \cap g^{\infty,-1}K^{\infty}g^{\infty}) \xrightarrow{Ad(g^{\infty})} K^{\infty}$). Les morphismes c_1 , c_2 sont finis, et étales au dessus des places x de X' telles que g_x apppartienne à \mathcal{D}_x^{\times} .

Chapitre 3

Vérification d'une conjecture de Rapoport.

Pour tout idéal I de A, on a vu que $\mathcal{E}ll_{X,\mathcal{D},I}$ est de dimension relative d-1 sur X', lisse au dessus de $X' \setminus V(I)$. Pour x une place de X', on note $\mathcal{E}ll_{X,\mathcal{D},I,x}$ la fibre de $\mathcal{E}ll_{X,\mathcal{D},I}$ en x, c'est-à-dire $\mathcal{E}ll_{X,\mathcal{D},I,x}$: = $\mathcal{E}ll_{X,\mathcal{D},I} \times_{X'}$ Spec $\kappa(x)$. Le but de ce chapitre est de donner une stratification de ces fibres, notamment pour les places x de V(I).

1 φ -faisceaux sur une base S et stratification de S.

Soient S un schéma et (V, φ) , un φ -faisceau sur S, c'est-à-dire que V est un \mathcal{O}_S -module localement libre de rang fini n, muni d'une application \mathcal{O}_S -linéaire

$$\varphi : \operatorname{Frob}_S^* V \longrightarrow V$$
.

Soient $(v_i)_{1 \leq i \leq n}$ une base de V et $M = (m_{i,j})_{1 \leq i,j \leq n}$ la matrice de φ dans cette base,

$$\varphi(\sum_{i=1}^n r_i \otimes v_i) = \sum_{1 \leqslant i,j \leqslant n} m_{i,j} r_i^q v_j.$$

Si $(v_i')_{1 \leq i \leq n}$ est une autre base de V et si P est la matrice de passage de $(v_i)_{1 \leq i \leq n}$ à $(v_i')_{1 \leq i \leq n}$, la matrice de φ dans la nouvelle base $(v_i')_{1 \leq i \leq n}$ est donnée par $M' = P^{-1}M({}^{\tau}P)$. Pour tout entier h tel que $1 \leq h \leq n$, on définit

$$M^{!h}:=M({}^{\tau}M)\cdots({}^{\tau^{h-1}}M).$$

Pour $q \leq n$, on note \mathcal{F}_n^q l'ensemble des parties à q éléments de $\{1, \dots, n\}$. Pour I et J deux éléments de \mathcal{F}_n^q et M une matrice carré d'ordre n, on note M_{IJ} la

matrice carré d'ordre q extraite de M, constituée des éléments $m_{i,j}$ pour $i \in I$ et $j \in J$.

Proposition 1.1 Soient (V, φ) un φ -faisceau sur S, $(v_i)_{1 \leqslant i \leqslant n}$ une base de V et M est la matrice de φ dans cette base. Pour tout entier h tel que $1 \leqslant h \leqslant n$, soit $S^{\geqslant h}$ le sous-schéma fermé de S sous-jacent au faisceau d'idéaux engendré, pour tous les entiers i tels que $1 \leqslant i \leqslant h$, par les déterminants

$$\det(M_{I,J}^{!i})$$

des matrices d'ordre (n-i+1) extraites de la matrice $M^{!i}$, I et J décrivant \mathcal{F}_n^{n-i+1} . Cette définition est indépendante du choix de la base $(v_i)_{1\leqslant i\leqslant n}$ de V et pour tout entier h tel que $1\leqslant h\leqslant n$, $S^{\geqslant h}$ est un sous-schéma fermé de $S^{\geqslant h-1}$ (où l'on a posé $S^{\geqslant 0}=S$).

Preuve: Soient deux bases $(v_i)_{1 \leq i \leq n}$ et $(v'_i)_{1 \leq i \leq n}$ de V et M, M' les matrices de φ relativement à ces bases. On note P la matrice de passage de $(v_i)_{1 \leq i \leq n}$ à $(v'_i)_{1 \leq i \leq n}$. On a alors $M' = P^{-1}M({}^{\tau}P)$. On rappelle la formule de Cauchy-Binet.

Lemme 1.2 (formule de Cauchy-Binet) Soit A un anneau commutatif. Pour tous $X, Y \in \mathbb{M}_n(A)$, pour tout entier $q \leq n$ et pour tous $L, H \in \mathcal{F}_n^q$, on a l'égalité

$$\det(YX)_{LH} = \sum_{K \in \mathcal{F}_n^q} \det Y_{LK}. \det X_{KH}.$$

On note \mathfrak{I} (resp. \mathfrak{I}') le faisceau d'idéaux de \mathcal{O}_S engendré par les éléments $\det(M_{I,J}^{!i})$ (resp. $\det(M_{I,J}^{!i})$) pour tous les entiers i tels que $1 \leq i \leq n$ et tous les éléments I et J de \mathcal{F}_n^{n-i+1} . La formule de Cauchy-Binet montre alors que $\mathfrak{I} = \mathfrak{I}'$ et le schéma $S^{\geqslant h}$ est donné par le faisceau d'idéaux \mathfrak{I} .

2 Stratification de l'anneau universel des déformations d'un \mathcal{O} -module divisible.

2.1 Définition des anneaux $E_0^{h,j,\geqslant h'}$.

Soit $(M, F) = (M_{h,1}, F_{h,1}) \oplus (M_{j,0}, F_{j,0})$ le \mathcal{O} -module de Dieudonné sur $\bar{\kappa}$ défini au paragraphe 2.2.1, c'est-à-dire tel que la matrice de F dans la base canonique de $M = (\hat{\mathcal{O}}^{nr})^d$, s'écrit

$$\begin{pmatrix} 0 & \cdots & \pi & 0 & \cdots & 0 \\ 1 & \ddots & 0 & \vdots & & \vdots \\ 0 & \ddots & 0 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 1 & 0 & \cdots \\ \vdots & & \vdots & 0 & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & 1 \end{pmatrix}.$$

D'après le paragraphe 2.4.1 du chapitre 2, la déformation universelle $(M_{\text{univ}}^c, F_{\text{univ}}^c)$ de $(M_{h,1}, F_{h,1})$ est définie sur $D_0^h = \hat{\mathcal{O}}^{\text{nr}}[[a_2, \cdots, a_h]]; M_{\text{univ}}^c$ est un $(\hat{\mathcal{O}}^{\text{nr}} \hat{\otimes}_{\bar{\kappa}} D_0^h)$ module libre de rang h, muni d'un morphisme de Frobenius

$$F_{\mathrm{univ}}^c: (\mathrm{Id}_{\hat{\mathcal{O}}^{\mathrm{nr}}} \hat{\otimes}_{\bar{\kappa}} \mathrm{Frob}_{\kappa})^* M_{\mathrm{univ}}^c \longrightarrow M_{\mathrm{univ}}^c$$

dont la matrice dans une certaine base (que l'on notera $(e_i)_{1 \leq i \leq h}$), est

$$A_{\mathrm{univ}}^c \left(egin{array}{cccc} 0 & \cdots & 0 & \pi \otimes 1 - 1 \otimes \pi \ 1 & 0 & \cdots & a_2 \ 0 & \ddots & \ddots & dots \ 0 & \cdots & 1 & a_h \end{array}
ight).$$

Quant à la déformation universelle $(M_{\text{univ}}, F_{\text{univ}})$ de (M, F), elle est définie sur la D_0^h -algèbre $E_0^{h,j} \simeq D_0^h[[d_1^0, \dots, d_j^0]]$. La matrice A_{univ} de F_{univ} dans une certaine base (que l'on notera $(e_i)_{1 \leq i \leq h+j}$) est

$$\begin{pmatrix} A_{\text{univ}}^c & 0 \\ A_{\text{ext}} & I_i \end{pmatrix},$$

où $A_{\rm ext}$ a toutes ses colonnes nulles sauf la h-ème qui est égale à

$$\left(\begin{array}{c} a_{h+1} \\ \vdots \\ a_{j+h} \end{array}\right),$$

où, pour $1 \leq i \leq j$, on a posé $a_{i+h} = d_i^0$.

Pour tout entier n, on pose

$$(M_{\mathrm{univ},n}, F_{\mathrm{univ},n}) := (M_{\mathrm{univ}}, F_{\mathrm{univ}}) \otimes_{(\hat{\mathcal{O}}^{\mathrm{nr}} \hat{\otimes}_{\bar{\kappa}} E_o^{h,j})} (\hat{\mathcal{O}}^{\mathrm{nr}}/(\pi^n) \hat{\otimes}_{\bar{\kappa}} E_0^{h,j})$$

$$(M_{\mathrm{univ},n}^c, F_{\mathrm{univ},n}^c) := (M_{\mathrm{univ}}^c, F_{\mathrm{univ}}^c) \otimes_{(\hat{\mathcal{O}}^{\mathrm{nr}} \hat{\otimes}_{\bar{\kappa}} D_0^h)} (\hat{\mathcal{O}}^{\mathrm{nr}}/(\pi^n) \hat{\otimes}_{\bar{\kappa}} D_0^h).$$

On considère alors $(M_{\text{univ},1}, F_{\text{univ},1})$ $(resp.\ (M_{\text{univ},1}^c, F_{\text{univ},1}^c))$ comme un φ -faisceau sur $E_0^{h,j}$ $(resp.\ sur\ D_0^h)$ de rang h+j $(resp.\ h)$. Pour tout entier h' tel que $0 \leq h' \leq h$, on notera $E_0^{h,j,\geqslant h'}$ $(resp.\ D_0^{h,\geqslant h'})$ l'anneau $(E_0^{h,j})^{\geqslant h'}$ $(resp.\ (D_0^h)^{\geqslant h'})$ défini au paragraphe précédent.

Proposition 2.1.1 Pour tout entier h' tel que $0 \le h' \le h$, on a

$$D_0^{h,\geqslant h'}:=\begin{cases} D_0^h\otimes_{\hat{\mathcal{O}}^{\mathrm{nr}}}\bar{\kappa} & h'=0\\ D_0^h\otimes_{\hat{\mathcal{O}}^{\mathrm{nr}}}\bar{\kappa} & h'=1\\ (D_0^h\otimes_{\hat{\mathcal{O}}^{\mathrm{nr}}}\bar{\kappa})/(a_2,\cdots,a_{h'}) & 2\leqslant h'\leqslant h\\ 0 & h'>h. \end{cases}$$

Preuve : La matrice $(A_{\text{univ},1}^c)^{!h'}$ associée à $F_{\text{univ},1}^c$, dans la base $(e_i \otimes_{\hat{\mathcal{O}}^{nr}} \bar{\kappa})_{1 \leqslant i \leqslant h}$, est de la forme

$$\begin{pmatrix} 0_{h',h-h'} & * \\ 1_{h-h'} & * \end{pmatrix}$$

De plus la (h - h' + 1)-ème colonne de $(A_{\text{univ},1}^c)^{!h'}$ est la matrice colonne $\begin{pmatrix} a_1 \\ \vdots \\ a_h \end{pmatrix}$

 $(a_1 = -1 \otimes \pi)$. Pour tous les entiers i, j compris entre 1 et h, on note $m_{i,j}$ le coefficient de la i-ème ligne et j-ème colonne de $(A^c_{\text{univ},1})^{!h'}$. On a alors

$$\forall \ 1 \leqslant i \leqslant h' \leqslant j \leqslant h \qquad m_{i,j} \in (a_1, \dots, a_i),$$

où (a_1, \dots, a_i) désigne l'idéal de D_0^h engendré par a_1, \dots, a_i .

Proposition 2.1.2 Pour tout entier h' > h, $E_n^{h,j,\geqslant h'}$ est nul et pour $0 \leqslant h' \leqslant h$, on a

$$E_0^{h,j,\geqslant h'} = E_0^{h,j} \otimes_{D_0^h} D_0^{h,\geqslant h'} \simeq D_0^{h,\geqslant h'}[[d_1^0,\cdots,d_j^0]].$$

En particulier $E_n^{h,j,\geqslant 1}$ est égal à $E_n^{h,j} \otimes_{\mathcal{O}^{nr}} \bar{\kappa}$.

Preuve: Pour tout h', la matrice $(A_{\text{univ},1})^{!h'}$, dans la base $(e_i \otimes_{\hat{\mathcal{O}}^{nr}} \bar{\kappa})_{1 \leqslant i \leqslant h+j}$, est de la forme

$$\begin{pmatrix} (A_{\text{univ},1}^c)!h' & 0\\ A_{\text{ext,h'}} & I_j \end{pmatrix}.$$

Ainsi $E_0^{h,j,\geqslant h'}$ est nul pour h'>h. Pour $h'\leqslant h$, demander la nullité de tous les mineures d'ordre h+j-h'+1 de $(A_{\mathrm{univ},1})^{!h'}$ est équivalent à demander la nullité de tous les mineures d'ordre h-h' de $(A_{\mathrm{univ},1}^c)^{!h'}$, d'où la proposition.

Pour tout entier h' tel que $0 \le h' \le h$, on pose

$$(M_{\mathrm{univ}}^{-h'}, F_{\mathrm{univ}}^{-h'}) := (M_{\mathrm{univ}}, F_{\mathrm{univ}}) \otimes_{(\hat{\mathcal{O}}^{\mathrm{nr}} \hat{\otimes}_{\bar{\kappa}} E_{\alpha}^{h,j})} (\hat{\mathcal{O}}^{\mathrm{nr}} \hat{\otimes}_{\bar{\kappa}} E_{0}^{h,j,=h'}).$$

Corollaire 2.1.3 Pour tout entier h' tel que $0 \le h' \le h$, $(M_{\text{univ}}^{=h'}, F_{\text{univ}}^{=h'})$ admet le dévissage

$$0 \longrightarrow (M_{\mathrm{univ}}^{=h',et},F_{\mathrm{univ}}^{=h',et}) \longrightarrow (M_{\mathrm{univ}}^{=h'},F_{\mathrm{univ}}^{=h'}) \longrightarrow (M_{\mathrm{univ}}^{=h',c},F_{\mathrm{univ}}^{=h',c}) \longrightarrow 0$$

où $M_{\text{univ}}^{=h',et}$ (resp. $M_{\text{univ}}^{=h',c}$) est un $(\hat{\mathcal{O}}^{\text{nr}} \hat{\otimes}_{\bar{\kappa}} E_0^{h,j,=h'})$ -module libre de rang constant égal à j+h-h' (resp. h') et $F_{\text{univ}}^{=h',et}: (Id_{\hat{\mathcal{O}}^{\text{nr}}} \hat{\otimes}_{\bar{\kappa}} \operatorname{Frob}_{\kappa})^* M_{\text{univ}}^{=h',et} \longrightarrow M_{\text{univ}}^{=h',et} = st$ bijectif (resp. $F_{\text{univ}}^{=h',c}: (Id_{\hat{\mathcal{O}}^{\text{nr}}} \hat{\otimes}_{\bar{\kappa}} \operatorname{Frob}_{\kappa})^* M_{\text{univ}}^{=h',c} \longrightarrow M_{\text{univ}}^{=h',c} = st$ topologiquement nilpotent).

Preuve : Le résultat découle de la forme de la matrice $A_{\text{univ}} \otimes_{E_0^{h,j}} E_0^{h,j,=h'}$ donnée ci-dessus et du fait que l'élément $a_{h'+1}$ de $E_0^{h,j,=h'}$ est inversible.

En termes de \mathcal{O} -modules divisibles, la situation se décrit comme suit. Soit $G^{h,j}$ le \mathcal{O} -module divisible universel sur Spec $E_0^{h,j}$. Pour tout entier h' tel que $0 \leqslant h' \leqslant h$, soit $G^{h,j,\geqslant h'}$ la restriction de $G^{h,j}$ au fermé

$$\operatorname{Spec}(E_0^{h,j,\geqslant h'}) \hookrightarrow \operatorname{Spec}(E_0^{h,j}).$$

Sur l'ouvert

$$\operatorname{Spec}(E_0^{h,j,=h'}) \hookrightarrow \operatorname{Spec}(E_0^{h,j,\geqslant h'}),$$

 $G^{h,j,=h'}=G^{h,j,h'}\times_{\operatorname{Spec}(E_0^{h,j,h'})}\operatorname{Spec}(E_0^{h,j,=h'})$ admet le dévissage

$$0 \longrightarrow (G^{h,j,=h'})^c \longrightarrow G^{h,j,=h'} \longrightarrow (G^{h,j,=h'})^{et} \longrightarrow 0$$

où $(G^{h,j,=h'})^{et}$ est étale et $(G^{h,j,=h'})^c$ est, en tout point fermé de Spec $E_0^{h,j,=h'}$, un \mathcal{O} -module formel de hauteur h'.

2.2 Composantes Spec $(E_n^{h,j,=h'})_A$ de Spec $(E_n^{h,j,=h'})$.

Pour tout entier n positif, on définit $D_n^{h,\geqslant h'}$ et $E_n^{h,j,\geqslant h'}$ par changement de base

$$D_n^{h,\geqslant h'}:=D_0^{h,\geqslant h'}\otimes_{D_0^h}D_n^h,\quad E_n^{h,j,\geqslant h'}:=E_0^{h,j,\geqslant h'}\otimes_{E_0^{h,j}}E_n^{h,j}.$$

Pour tout n, $E_n^{h,j}$ est isomorphe à $D_n^h[[d_1^n,\cdots,d_j^n]]$, en tant que D_n^h -algèbre (cf. le paragraphe 3.3.1), d'où

$$E_n^{h,j,\geqslant h'}\simeq D_n^{h,\geqslant h'}[[d_1^n,\cdots,d_i^n]].$$

Remarque: Avec ces notations on a

$$E_n^{h,j,\geqslant 1} = E_n^{h,j} \otimes_{\hat{\mathcal{O}}^{nr}} \bar{\kappa} \simeq (D_n^h \otimes_{\hat{\mathcal{O}}^{nr}} \bar{\kappa})[[d_1^n, \cdots, d_i^n]].$$

Lemme 2.2.1 Pour tous les entiers positifs m, n tels que $m \le n$, le morphisme de restriction du niveau

$$E_n^{h,j,\geqslant h'} \longrightarrow E_n^{h,j,\geqslant h'}$$

est fini et plat.

On munit (M, F) d'une structure de niveau n, ι_n tel que le noyau $A_{1\to h} \subset (\mathfrak{m}^{-n}/\mathcal{O})^{h+j}$ de ι_n est engendré par les h-premiers vecteurs de la base canonique. Après le changement de base $E_0^{h,j} \longrightarrow E_n^{h,j}$, $(M_{\text{univ}}, F_{\text{univ}})$ est muni d'une structure de niveau n universelle, $\iota_{n,\text{univ}}$ qui relève ι_n . Pour tout élément z de $(\mathfrak{m}^{-n}/\mathcal{O})^{h+j}$, $\iota_{n,\text{univ}}(z)$ est un élément m^* de $(M_{\text{univ},n})^*$ tel que $m^* \circ F_{\text{univ}} = (m^*)^{q'}$, où q' est le cardinal de κ (la condition de Drinfel'd s'exprime sur le \mathcal{O} -module divisible universel sur $E_n^{h,j}$). On considère alors le morphisme $\iota_{n,\text{univ}}^{=h',et}$:

$$(\mathfrak{m}^{-n}/\mathcal{O})^{h+j} \times \operatorname{Spec} E_n^{h,j,=h'} \longrightarrow \{m^* \in (M_{\operatorname{univ},n}^{=h',et})^* \mid m^* \circ F_{\operatorname{univ}}^{=h',et} = (m^*)^{q'}\},$$

qui à un élément z de $(\mathfrak{m}^{-n}/\mathcal{O})^{h+j}$ associe la restriction de $\iota_{n,\mathrm{univ}}(z)$ à $M_{\mathrm{univ},n}^{=h',et}$. D'après le corollaire 2.1.3,

$$\{m^* \in (M_{\text{univ},n}^{=h',et})^* \mid m^* \circ F_{\text{univ}}^{=h',et} = (m^*)^{q'}\}$$

est un faisceau en \mathcal{O} -modules sur Spec $E_n^{h,j,=h'}$, de fibre $(\mathfrak{m}^{-n}/\mathcal{O})^{h+j-h'}$. La condition sur $\iota_{n,\mathrm{univ}}$ d'être un structure de niveau n, entraine que $\iota_{n,\mathrm{univ}}^{=h',et}$ est surjectif (cf. le paragraphe 3.1.1). Le noyau K de $\iota_{n,\mathrm{univ}}^{=h',et}$ est alors un sous- $(\mathcal{O}/\mathfrak{m}^n)$ -module facteur direct de rang h' dans $(\mathfrak{m}^{-n}/\mathcal{O})^{h+j} \times \operatorname{Spec} E_n^{h,j,=h'}$ contenu dans $A_{1\to h}$. Si $h' \geqslant 1$, il est donc de la forme

$$\coprod_{A \in \mathfrak{P}(h+j,h',n,A_{1 \to h})} \{A\} \times \operatorname{Spec}(E_n^{h,j,=h'})_A$$

où $\mathfrak{P}(h+j,h',n)$ est l'ensemble des facteurs directs de $(\mathfrak{m}^{-n}/\mathcal{O})^{h+j}$ de rang h' contenu dans $A_{1\to h}$.

Rappels: Pour tous les entiers positifs $s \leq t$, l'ensemble des facteurs directs de $(\mathfrak{m}^{-n}/\mathcal{O})^t$ de rang s est en bijection avec l'ensemble quotient

$$GL_t(\mathcal{O}/\mathfrak{m}^n)/P_{t,s,n}$$

où $P_{t,s,n}$ est le sous-groupe parabolique de $GL_t(\mathcal{O}/\mathfrak{m}^n)$ associé aux s premiers vecteurs e_1, \dots, e_s de la base canonique. Cette bijection associe à un élément \bar{g} de $GL_t(\mathcal{O}/\mathfrak{m}^n)/P_{t,s,n}$, le $(\mathcal{O}/\mathfrak{m}^n)$ -module engendré par les $e_i.g^{-1}$ pour $1 \leq i \leq s$, où g est un élément quelconque de $GL_t(\mathcal{O}/\mathfrak{m}^n)$ dans la classe de \bar{g} .

En ce qui concerne $E_n^{h,j,=h'}$, un élément A de $GL_h(\mathcal{O}/\mathfrak{m}^n)/P_{h,h',n}$ est considéré comme un sous-module de $A_{1\to h}$.

Proposition 2.2.2 Pour tous les entiers n, j et h' tel que $1 \le h' \le h$, on a

$$\operatorname{Spec}(E_n^{h,j,=h'}) = \coprod_{A \in GL_h(\mathcal{O}/\mathfrak{m}^n)/P_{h,h',n}} \operatorname{Spec}(E_n^{h,j,=h'})_A.$$

De plus tous les $\operatorname{Spec}(E_n^{h,j,=h'})_A$ sont isomorphes et sont permutés sous l'action naturelle de $P_h(\mathcal{O}/\mathfrak{m}^n)$.

Proposition 2.2.3 Pour tout élément z de $(\mathfrak{m}^{-n}/\mathcal{O})^{j+h}$, dans $E_n^{h,j,=h'}$ on a

$$\iota_{n,\text{univ}}^{=h',\text{et}}(z) = 0 \iff (\iota_{n,\text{univ}}^{=h'}(z))^{(q')^{nh'}} = 0.$$

Preuve: Pour $0 \le k \le n-1$, soit $f_{ni+k} = (\pi^k \otimes 1)e_i$, où $(e_i)_{1 \le i \le j+h}$ est la base de M_{univ} adaptée à F_{univ} (cf le début du paragraphe précédent). La matrice $A_{\text{univ},n}^{=h'}$ de $F_{\text{univ}}^{=h'}$, dans la base $(f_i)_{1 \le i \le n(j+h)}$ de $M_{\text{univ},n}^{=h'}$, est de la forme

$$\left(\begin{array}{cc} A & 0 \\ C & B \end{array}\right)$$

où B est inversible de rang n(j+h-h') et $A^{!nh'}$ est nulle (cf. le corollaire 2.1.3). De même on écrit $\iota_{n,\mathrm{univ}}^{=h'}(z)$ sous la forme $(\alpha \mid \beta)$. La matrice ligne associée à $(\iota_{n,\mathrm{univ}}^{=h'})^{(q')^{nh'}}$ est alors égale à $(\alpha \mid \beta)(A_{\mathrm{univ}}^{=h'})^{!nh'} = (\beta C' \mid \beta B^{!nh'})$.

Lemme 2.2.4 Soient h'_1, h'_2 des entiers tels que $h'_1 \leq h'_2$ et A_1 un élément de $GL_h(\mathcal{O}/\mathfrak{m}^n)/P_{h,h'_1,n}$. Pour A_2 un élément de $GL_h(\mathcal{O}/\mathfrak{m}^n)/P_{h,h'_2,n}$, Spec $(E_n^{h,j,=h'_2})_{A_2}$ est dans l'adhérence de Spec $(E_n^{h,j,=h'_1})_{A_1}$ si et seulement si $A_1 \subset A_2$.

Pour j=0, en accord avec les notations précédentes, on pose $(D_n^{h,=h'})_A=(E_n^{h,0,=h'})_A$. La décomposition de la proposition 2.2.2 et l'isomorphisme $E_n^{h,j,\geqslant h'}\simeq D_n^{h,\geqslant h'}[[d_1^n,\cdots,d_j^n]]$, donne la proposition suivante.

Proposition 2.2.5 Pour tout élément A de $GL_h(\mathcal{O}/\mathfrak{m}^n)/P_{h,h',n}$, on a

$$\operatorname{Spec}(E_n^{h,j,=h'})_A = \operatorname{Spec}\left((D_n^{h,=h'})_A \hat{\times}_{\bar{\kappa}} \bar{\kappa}[[d_1^n, \dots, d_j^n]]\right).$$

Pour tout entier i tel que $1 \le i \le h$, on note e_i le i-ème vecteur de la base canonique de $(\mathfrak{m}^{-n}/\mathcal{O})^h$ et u_i l'élément de l'idéal maximal \mathfrak{m}_n^h de D_n^h , correspondant à $\iota_n(e_i)$.

Proposition 2.2.6 (cf [11]) Les éléments u_1, \dots, u_h constituent un système local régulier de paramètres locaux pour l'anneau régulier D_n^h .

Le morphisme naturel

$$\bar{\kappa}[[u_1,\cdots,u_h]] \longrightarrow D_n^{h,\geqslant 1} = D_n^h \otimes_{\hat{\mathcal{O}}^{nr}} \bar{\kappa},$$

est donc surjectif. On note $\mathbb{A}_{(0)}^{\widehat{h}}$ le schéma $\operatorname{Spec} \overline{\kappa}[[u_1, \cdots, u_h]]$. Pour tout élément A de $GL_h(\mathcal{O}/\mathfrak{m}^n)/P_{h,h',n}$, soit $\operatorname{Spec}(D_n^{h,\geqslant h'})_A$ l'adhérence de $\operatorname{Spec}(D_n^{h,\Rightarrow h'})_A$ dans $\operatorname{Spec} D_n^{h,\geqslant h'}$. On peut alors décrire l'image de $\operatorname{Spec}(D_n^{h,\geqslant h'})_A$ dans $\mathbb{A}_{(0)}^{\widehat{h}}$ par un certain nombre d'équations. Pour illustration, prouvons la proposition suivante, où $(D_n^{h,\geqslant h'})_{A,\mathrm{red}}$ est le réduit de $(D_n^{h,\geqslant h'})_A$.

Proposition 2.2.7 Pour tout élément A de $GL_h(\mathcal{O}/\mathfrak{m}^n)/P_{h,h',n}$, on choisit des éléments

$$(\lambda_i^j)_{1\leqslant i \leqslant h'}\in \mathcal{O},$$

tels que pour tout j, l'idéal $(\lambda_1^j, \dots, \lambda_h^i)$ de \mathcal{O} est égal à \mathcal{O} et tels que les éléments

$$v_i = \lambda_1^i u_1 + \dots + \lambda_h^i u_h \qquad 1 \leqslant i \leqslant h$$

de $(\mathfrak{m}^{-n}/\mathcal{O})^h$, forment une base de A. L'image de $\operatorname{Spec}(D_n^{h,\geqslant h'})_{A,\operatorname{red}}$ dans $\mathbb{A}_{(0)}^{\widehat{h}}$ est alors donnée par $\operatorname{Spec} \overline{\kappa}[[u_1,\cdots,u_h]]/\mathfrak{J}_A$ où \mathfrak{J}_A est l'idéal de $\overline{\kappa}[[u_1,\cdots,u_h]]$ engendré par les h' éléments

$$1 \leqslant j \leqslant h'$$
 $\bar{\lambda}_1^j u_1 + \dots + \bar{\lambda}_h^j u_h$.

En particulier les $\operatorname{Spec}(D_n^{h,\geqslant h'})_{A,\operatorname{red}}$ sont lisses sur $\bar{\kappa}$ et les $\operatorname{Spec}(D_n^{h,\geqslant h'})_A$ (A décrivant $\operatorname{GL}_h(\mathcal{O}/\mathfrak{m}^n)/P_{h,h',n}$) constituent les composantes irréductibles de $\operatorname{Spec}(D_n^{h,\geqslant h'})$.

Preuve: En reprenant les notations du premier chapitre, soit (F, f_{λ}) le \mathcal{O} -module formel de hauteur h universel avec

$$F(X,Y) = X + Y + \cdots$$
 et pour tout $\lambda \in \mathcal{O}_o$, $f_{\lambda}(X) = i(\lambda)X + \cdots$

où i est l'injection naturelle $\mathcal{O} \to D_0^h$. On note \mathfrak{J}_A l'idéal de $\bar{\kappa}[[u_1, \cdots, u_h]]$ engendré par les h' éléments

$$F\left(f_{\lambda_1^j}(u_1),\cdots,F(f_{\lambda_{h-1}^j}(u_{h-1},f_{\lambda_h^j}(u_h))\cdots\right),$$

de sorte que $\operatorname{Spec}(D_n^{h,\geqslant h'})_A \hookrightarrow \operatorname{Spec} \bar{\kappa}[[u_1,\cdots,u_h]]/\mathfrak{J}_A$. Pour tout j tel que $1\leqslant j\leqslant h'$, les équations

$$F\left(f_{\lambda_1^j}(u_1), F(f_{\lambda_2^j}(u_2), \cdots, F(f_{\lambda_{h-1}^j}(u_{h-1}, f_{\lambda_h^j}(u_h)) \cdots\right) = 0.$$

s'écrivent sous la forme

$$\bar{\lambda}_1^j u_1 + \dots + \bar{\lambda}_h^j u_h + \text{ termes de degré } > 1.$$

La matrice $(h \times h')$ des $(\bar{\lambda}_i^j)_{1 \leq i \leq h'}$ étant de rang h', l'idéal \mathfrak{J}_A de $\bar{\kappa}[[u_1, \dots, u_h]]$ est alors engendré par les h' éléments

$$1 \leqslant j \leqslant h'$$
 $\bar{\lambda}_1^j u_1 + \dots + \bar{\lambda}_h^j u_h$.

Le schéma $\operatorname{Spec}(D_n^{h,\geqslant h'})_{A,\operatorname{red}}$ étant de dimension h-h', il est donc isomorphe à $\operatorname{Spec} \bar{\kappa}[[u_1,\cdots,u_h]]/\mathfrak{J}_A\simeq\operatorname{Spec} \bar{\kappa}[[w_1,\cdots,w_{h-h'}]]$, d'où la proposition.

Remarque: En particulier l'intersection entre deux composantes $\operatorname{Spec}(D_n^{h,=h'})_{A_1}$ et $\operatorname{Spec}(D_n^{h,=h'})_{A_2}$ est caractérisée par l'intersection $A_1 \cap A_2$.

3 Stratification des fibres de $\mathcal{E}ll_{X,\mathcal{D},I}$.

On applique ce qui précède au cas des \mathcal{D} -faisceaux elliptiques. Pour éviter les problèmes de champs, on supposera dans la suite que l'idéal I de A est tel que V(I) contienne au moins deux points fermés distincts.

3.1 Définition des strates $\mathcal{E}ll_{X,\mathcal{D},I,x}^{\geqslant h}$ pour $x \in X'$.

Soient S le schéma $\mathcal{E}ll_{X,\mathcal{D},I}$ et (\mathcal{E}_i,j_i,t_i) le \mathcal{D} -faisceau elliptique universel défini sur S, muni de sa I-structure de niveau, ι_I . Soit x une place de X' et $q_x = \operatorname{card} \kappa(x)$. Pour tout i, les fibres $\mathcal{E}_{i,x}$ sont isomorphes et après équivalence de Morita, l'application $t'_{i,x}: {}^{\tau}\mathcal{F}_{i,x} \longrightarrow \mathcal{F}_{i+1,x}$ permet de considérer $\mathcal{F}_{i,x} \otimes_{\mathcal{O}_x} \kappa(x)$ comme un φ -faisceau sur S de rang d (cf. le paragraphe 1.3.2 du chapitre 2).

Définition 3.1.1 Pour tout entier h tel que $0 \le h \le d$, on définit $\mathcal{E}ll_{X,\mathcal{D},I,x}^{\geqslant h}$ comme le sous-schéma fermé $S^{\geqslant h}$ introduit dans la proposition 1.1. On définit aussi l'ouvert $\mathcal{E}ll_{X,\mathcal{D},I,x}^{=h}$ de $\mathcal{E}ll_{X,\mathcal{D},I,x}^{\geqslant h}$ comme le complémentaire de $\mathcal{E}ll_{X,\mathcal{D},I,x}^{\geqslant h}$ dans $\mathcal{E}ll_{X,\mathcal{D},I,x}^{\geqslant h}$.

Avec les notations introduites, on a donc

$$\mathcal{E}ll_{X,\mathcal{D},I,x}^{\geqslant d} = \mathcal{E}ll_{X,\mathcal{D},I,x}^{=d} \text{ et } \mathcal{E}ll_{X,\mathcal{D},I,x}^{\geqslant 1} = \mathcal{E}ll_{X,\mathcal{D},I,x}.$$

Remarque: Dans le cas où V(I) contient moins de deux éléments, on peut définir $\mathcal{E}ll_{X,\mathcal{D},I}^{\geqslant h}$ et $\mathcal{E}ll_{X,\mathcal{D},I}^{=h}$ de la manière suivante. Soit J un idéal de A contenu dans I et tel que V(J) contienne au moins deux éléments. On définit $\mathcal{E}ll_{X,\mathcal{D},I,x}^{\geqslant h}$ comme l'image $r_{J,I}(\mathcal{E}ll_{X,\mathcal{D},J,x}^{\geqslant h})$ où $r_{J,I}$ est le morphisme de restriction du niveau de J à I (cette image ne dépend pas du choix de l'idéal J).

Proposition 3.1.2 Soit z un point géométrique de $\mathcal{E}ll_{X,\mathcal{D},I,x}^{=h}$. L'entier h est alors la hauteur du \mathcal{O}_o -module formel $Gr_x^c(\mathcal{F}_x)$ associé et pour tout entier h' tel que $0 \leq h' \leq h$, l'isomorphisme du théorème de Serre-Tate

$$(\mathcal{E}\widehat{ll_{X,\mathcal{D},I,x}})_z \xrightarrow{\sim} \operatorname{Spec}(E_n^{h,d-h})$$

où n est la multiplicité de x dans I, induit un isomorphisme

$$(\widehat{\mathcal{E}ll_{X,\mathcal{D},I,x}})_z \times_{\mathcal{E}ll_{X,\mathcal{D},I,x}} \mathcal{E}ll_{X,\mathcal{D},I,x}^{\geqslant h'} \simeq \operatorname{Spec} E_n^{h,j,\geqslant h'}.$$

D'après le lemme 2.2.1, on a le corollaire suivant.

Corollaire 3.1.3 Pour touts les idéaux I, J de A tels que $J \subset I$, le morphisme de restriction du niveau sur la h-ième strate $r_{J,I} : \mathcal{E}ll_{X,\mathcal{D},J,x}^{\geqslant h} \longrightarrow \mathcal{E}ll_{X,\mathcal{D},I,x}^{\geqslant h}$ est fini et plat.

3.2 Décomposition des strates dans le cas de mauvaise réduction.

Soient o une place de V(I) et n la multiplicité de o dans I. Soit $\iota'_{o,n}$ la \mathfrak{m}_o^n structure de niveau universelle sur $S := \mathcal{E}ll_{X,\mathcal{D},I}$. Pour tout $z \in (\mathfrak{m}_o^n/\mathcal{O}_o)^d$, $\iota'_{o,n}(z)$ est un élément m^* de $\mathcal{F}_{o,n}^*$ tel que $m^* \circ F_o = (m^*)^q$. La proposition 2.2.3 motive la définition suivante.

Définition 3.2.1 Soit A un élément de $GL_d(\mathcal{O}_o/\mathfrak{m}_o^n)/P_{d,h,n}$. On définit le sousschéma fermé $(\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h})_A$ de $\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h}$, comme le lieu d'annulation des sections $\iota'_{o,n}(a)^{q^{nh}}$ de $\mathcal{F}_{o,n}^* \times_S S^{=h}$, pour a décrivant A.

Proposition 3.2.2 Soient A_h un élément de $GL_d(\mathcal{O}_o/\mathfrak{m}_o^n)/P_{d,h,n}$ et z un point géométrique de $(\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h})_{A_h}$. Pour tout entier h' tel que $0 \leq h' \leq h$ et pour tout élément A de $GL_h(\mathcal{O}_o/\mathfrak{m}_o^n)/P_{h,h',n}$ (on considère A comme un sous-module de A_h), l'isomorphisme de la proposition 3.1.2 induit l'isomorphisme

$$(\widehat{\mathcal{E}ll_{X,\mathcal{D},I,o}})_z \times_{\mathcal{E}ll_{X,\mathcal{D},I}} (\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h'})_A \simeq \operatorname{Spec}(E_n^{h,d-h,=h'})_A.$$

On a alors la décomposition de la h-ème strate

$$\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h} = \coprod_{A \in GL_d(\mathcal{O}_o/\mathfrak{m}_o^n)/P_{d,h,n}} (\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h})_A.$$

Preuve: A tout point géométrique z de $\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h}$ est associé un élément A de $GL_d(\mathcal{O}_o/\mathfrak{m}_o^n)/P_{d,h,n}$ tel que z est un point géométrique de $(\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h})_A$. La proposition découle alors de la proposition 2.2.3 et du théorème de Serre-Tate. En effet imposer que $\iota'_{o,n}(a)^{q^{nh}}$ est nulle vu comme élément de $\mathcal{F}^*_{o,n}$ est équivalent à imposer que $\iota'_{o,n,0}(a)^{q^{rnh}}$ est nulle vu comme élément de $\mathcal{F}^*_{o,n,0}$, où r est le degré de $\kappa(o)$ sur \mathbb{F}_q (cf le paragraphe 2.1 du chapitre 2).

Ces définitions sont compatibles aux morphismes de restriction du niveau, c'est-à-dire que pour $n \ge n'$ et $A_0 \in GL_d(\mathcal{O}_o/\mathfrak{m}_o^{n'})/P_{d,h',n}$, on a

$$r_{I'\mathfrak{m}_o^n,I'\mathfrak{m}_o^{n'}}^{-1}\left((\mathcal{E}ll_{X,\mathcal{D},I'\mathfrak{m}_o^{n'}}^{=h'})_{A_0}\right) = \coprod_{A \in \mathfrak{G}(A_0,n)} (\mathcal{E}ll_{X,\mathcal{D},I'\mathfrak{m}_o^n}^{=h'})_A,$$

où $\mathfrak{G}(A_0, n)$ est l'ensemble des éléments A de $GL_d(\mathcal{O}_o/\mathfrak{m}_o^n)/P_{d,h',n}$ qui ont pour image A_0 modulo $\mathfrak{m}_o^{n'}$.

Remarque : Dans le cas où $I=\mathfrak{m}_o^n$, on définit $(\mathcal{E}ll_{X,\mathcal{D},I,o}^{\geqslant h})_A$ comme l'image $r_{J,I,o}((\mathcal{E}ll_{X,\mathcal{D},J,o}^{\geqslant h})_A)$ où J est un idéal de A contenu dans I et tel que V(J) contienne au moins deux éléments .

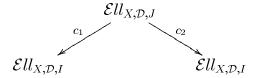
Lemme 3.2.3 Soient h_1, h_2 des entiers tels que $h_1 \leq h_2$ et A_1 un élément de $GL_d(\mathcal{O}_o/\mathfrak{m}_o^n)/P_{d,h_1,n}$. Pour A_2 un élément de $GL_d(\mathcal{O}_o/\mathfrak{m}_o^n)/P_{d,h_2,n}$, le schéma $(\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h_2})_{A_2}$ est dans l'adhérence de $(\mathcal{E}ll_{X,\mathcal{D},I,o}^{\geqslant h_1})_{A_1}$ si et seulement si $A_1 \subset A_2$.

On note $(\mathcal{E}ll_{X,\mathcal{D},I,o}^{\geqslant h})_A$ l'adhérence schématique de $(\mathcal{E}ll_{X,\mathcal{D},I,o}^{\rightleftharpoons h})_A$ dans $\mathcal{E}ll_{X,\mathcal{D},I,o}^{\geqslant h}$. D'après la proposition 2.2.7, le réduit de $(\mathcal{E}ll_{X,\mathcal{D},I,o}^{\geqslant h})_A$ est lisse sur Spec $\bar{\kappa}(o)$. De manière identique à ce qui est fait pour les courbes elliptiques (cf. [22]), il est possible de décrire les équations des anneaux locaux de $(\mathcal{E}ll_{X,\mathcal{D},I,o}^{\geqslant h})_A$. Les intersections entre deux composantes $(\mathcal{E}ll_{X,\mathcal{D},I,o}^{\geqslant h_1})_{A_1}$ et $(\mathcal{E}ll_{X,\mathcal{D},I,o}^{\geqslant h_2})_{A_2}$, sont caractérisées par $A_1 \cap A_2$.

4 Les strates non supersingulières sont induites.

On a vu que les stratifications des fibres $\mathcal{E}ll_{X,\mathcal{D},I,x}$ introduites dans les deux paragraphes précédents sont compatibles aux morphismes de restriction du niveau $r_{J,I}$. En ce qui concerne les correspondances de Hecke, on a les deux propositions suivantes.

Proposition 4.1 Les stratifications $\mathcal{E}ll_{X,\mathcal{D},I,x}^{\geqslant h}$ définies dans les paragraphes précédents, sont compatibles aux correspondances de Hecke



c'est-à-dire qu'en tant que sous-schémas fermés de $\mathcal{E}ll_{X,\mathcal{D},J}$, on a

$$c_2^{-1}(\mathcal{E}ll_{X,\mathcal{D},I}^{\geqslant h}) = c_1^{-1}(\mathcal{E}ll_{X,\mathcal{D},I}^{\geqslant h}) = \mathcal{E}ll_{X,\mathcal{D},J}^{\geqslant h}.$$

Preuve: Soit g un élément de $(D^{\infty})^{\times}$. Si $(\mathcal{E}_i, j_i, t_i)$ est le \mathcal{D} -faisceau elliptique universel sur $\mathcal{E}ll_{X,\mathcal{D},J}$, alors $(\mathcal{E}_i^1, j_i^1, t_i^1) = c_2((\mathcal{E}_i, j_i, t_i))$ est, d'après le paragraphe 3.4.2, isomorphe à $(\mathcal{E}_i, j_i, t_i)$. Il suffit alors de remarquer que le sous-schéma fermé $\mathcal{E}ll_{X,\mathcal{D},I,o}^{\geqslant h}$ (resp. $\mathcal{E}ll_{X,\mathcal{D},J,o}^{\geqslant h}$) est le lieu où $t_o^{1} \otimes_{\mathcal{O}_o} \kappa(o)$ (resp. $t_o' \otimes_{\mathcal{O}_o} \kappa(o)$) est de rang inférieur ou égal à d-h.

On note P_h le parabolique de GL_d associé aux h-premiers vecteurs. Avec les notations précédentes, on a $P_{d,h,n} = P_h(\mathcal{O}_o/\mathfrak{m}_o^n)$.

Proposition 4.2 Si $I = \mathfrak{m}_o^n I'$ avec $o \notin V(I')$, alors pour tout élément A de $GL_d(\mathcal{O}_o/\mathfrak{m}_o^n)/P_{d,h,n}$, les correspondances de Hecke associées aux éléments de $A^{-1}P_h(F_o)A$ agissent sur $(\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h})_A$, c'est-à-dire

$$c_2^{-1}((\mathcal{E}ll_{X,\mathcal{D},I}^{=h})_A) = c_1^{-1}((\mathcal{E}ll_{X,\mathcal{D},I}^{=h})_A) = \coprod_{A' \in \mathfrak{G}(A,m)} (\mathcal{E}ll_{X,\mathcal{D},J}^{=h})_{A'},$$

où $J = I'\mathfrak{m}_o^m$ avec m assez grand (cf. la preuve) et où $\mathfrak{G}(A, m)$ est l'ensemble des éléments A' de $GL_d(\mathcal{O}_o/\mathfrak{m}_o^m)/P_{d,h,m}$ qui ont pour image A modulo \mathfrak{m}_o^n .

Preuve: Soit g_o un élément de $GL_d(F_o)\cap \mathbb{M}_d(\mathcal{O}_o)$. Le morphisme c_2 du paragraphe 3.4.2, qui correspond à l'action de g_o^{-1} , est défini comme suit. Les idéaux I et J sont tels que $I = I'\mathfrak{m}_o^n$ et $J = I'\mathfrak{m}_o^m$ avec $o \notin V(I')$, où m est tel que le noyau de l'application $g_o: (F_o/\mathcal{O}_o)^d \longrightarrow (F_o/\mathcal{O}_o)^d$ est contenu dans $(\mathfrak{m}_o^{-m}/\mathcal{O}_o)^d$ et l'image de $(\mathfrak{m}_o^{-m}/\mathcal{O}_o)^d$ par g_o contient $(\mathfrak{m}_o^{-n}/\mathcal{O}_o)^d$. Soit $(\mathcal{E}_{i,\text{univ}}, j_{i,\text{univ}}, t_{i,\text{univ}})$ le \mathcal{D} -faisceau elliptique universel sur $S:=\mathcal{E}ll_{X,\mathcal{D},J}$ muni de sa \mathfrak{m}_o^m -structure de niveau

universelle $\iota'_{o,m,\text{univ}}$. Il existe alors un recouvrement ouvert de S par des ouverts affines $\operatorname{Spec} R_i$ et des éléments r_i de R_i tels que l'on a le diagramme commutatif

$$(\mathfrak{m}_{o}^{-m}/\mathcal{O}_{o})^{d} \xrightarrow{\iota'_{o,m,\mathrm{univ}}} \mathcal{F}_{o,m,\mathrm{univ}} \otimes R_{i}$$

$$\downarrow^{g_{o}} \qquad \qquad \downarrow^{[g_{o} \otimes r_{i}]}$$

$$(\mathfrak{m}_{o}^{-m}/\mathcal{O}_{o})^{d} \xrightarrow{\iota'_{o,m,\mathrm{univ}}} \mathcal{F}_{o,m,\mathrm{univ}} \otimes R_{i}.$$

Le \mathcal{D} -faisceau elliptique $(\mathcal{E}'_i, j'_i, t'_i)$ défini par le morphisme c_2 (cf. le paragraphe 3.4.2) est tel que $\mathcal{F}'_o \times_S \operatorname{Spec} R_i$ est isomorphe à l'image $[g_o \otimes r_i](\mathcal{F}_{o,\operatorname{univ}} \times_S \operatorname{Spec} R_i)$ et la structure de niveau n sur $(\mathcal{E}'_i, j'_i, t'_i)$ est définie sur chaque ouvert $\operatorname{Spec} R_i$, par la composée

$$(\mathfrak{m}_o^{-n}/\mathcal{O}_o)^d \otimes R_i \xrightarrow{g_o \otimes r_i} (\mathfrak{m}_o^{-n}/\mathcal{O}_o)^d \times \operatorname{Spec} R_i \longrightarrow \mathcal{F}'_{o,n} \otimes R_i$$

où la deuxième application est donnée par la restriction de $\iota_{o,m,\text{univ}} \times_S \operatorname{Spec} R_i$ à $(\mathfrak{m}_o^{-n}/\mathcal{O}_o)^d \times \operatorname{Spec} R_i$. La proposition se déduit alors immédiatement de cette description et de la proposition 3.2.2.

Proposition 4.3 Soient o une place de X'. Pour tout entier h tel que $1 \leq h \leq d$, l'action de $GL_d(F_o)$ sur $\mathcal{E}ll_{X,\mathcal{D},o}^{=h}$ se décrit à partir de l'action de $P_h(F_o)$ sur $(\mathcal{E}ll_{X,\mathcal{D},o}^{=h})_{\bar{1}} = \varprojlim_{\bar{I}} (\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h})_{\bar{1}}$ comme l'induite

$$\mathcal{E}ll_{X,\mathcal{D},o}^{=h} = \operatorname{Ind}_{P_h(F_o)}^{GL_d(F_o)} (\mathcal{E}ll_{X,\mathcal{D},o}^{=h})_{\overline{1}}.$$

Preuve: On commence par démontrer le lemme suivant.

Lemme 4.4 Soient V un κ -espace vectoriel muni d'une action d'un groupe G et P un sous-groupe de G. On suppose que V se décompose comme une somme directe de sous-espaces vectoriels

$$V = \bigoplus_{\overline{g} \in G/P} V_{\overline{g}}$$

telle que pour tout élément g' de G, on a

$$g'(V_{\overline{g}}) \subset V_{\overline{g'g}} \quad \forall \overline{g} \in G/P.$$

On a alors une bijection G-équivariante

$$V = \operatorname{Ind}_P^G(V_{\overline{1}}).$$

Preuve: (du lemme) A un élément $(v_{\bar{q}})_{\bar{q}\in G/P}$ on associe la fonction

$$\begin{array}{ccc} f:G & \to V_{\overline{1}} \\ g & \mapsto g.v_{\overline{q-1}}. \end{array}$$

L'espace vectoriel V est alors isomorphe à l'ensemble

$$\{f: G \longrightarrow V_{\bar{1}} / \forall g \in G \ \forall p \in P \ f(pg) = p.f(g)\},\$$

d'où le lemme.

On applique ce lemme avec $\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h}$ muni de l'action de $GL_d(\mathcal{O}_o/\mathfrak{m}_o^n)$ où n est la multiplicité de o dans I. Le sous-espace $(\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h})_{\bar{1}}$ est stable sous l'action de $P_h(\mathcal{O}_o/\mathfrak{m}_o^n)$ et on a

$$\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h}=\mathrm{Ind}_{P_h(\mathcal{O}_o/\mathfrak{m}_o^n)}^{GL_d(\mathcal{O}_o/\mathfrak{m}_o^n)}\left((\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h})_{\bar{1}}\right).$$

La stratification étant compatible aux morphismes de restriction du niveau, en passant à la limite on obtient

$$\mathcal{E}ll_{X,\mathcal{D},o}^{=h} = \operatorname{Ind}_{P_h(\mathcal{O}_o)}^{GL_d(\mathcal{O}_o)} (\mathcal{E}ll_{X,\mathcal{D},o}^{=h})_{\overline{1}}.$$

D'après la proposition 4.2, $P_h(F_o)$ agit sur $(\mathcal{E}ll_{X,\mathcal{D},o}^{=h})_{\bar{1}}$. La décomposition d'Iwasawa $GL_d(F_o)/P_h(F_o) \simeq GL_d(\mathcal{O}_o)/P_h(\mathcal{O}_o)$ et le lemme précédent, donnent alors le résultat.

5 Description adélique des points supersinguliers.

Soient o une place de X' et $\bar{\kappa}(o)$ une clôture algébrique de $\kappa(o)$. Dans cette section, on montre que l'ensemble des points supersinguliers $\mathcal{E}ll_{X,\mathcal{D},I,o}^{=d}(\bar{\kappa}(o))$ est non vide. On en déduit alors que les strates $\mathcal{E}ll_{X,\mathcal{D},I,o}^{>h}$ sont non vides et purement de dimension d-h (résultat conjecturé par Rapoport). On donne ensuite une description adélique de cet ensemble de points supersinguliers et on décrit les actions des correspondances de Hecke de $(D^{\infty})^{\times}$.

5.1 Rappels sur les φ -espaces et φ -paires.

On présente dans ce paragraphe un certain nombre de résultats dont on pourra trouver les preuves dans [23]. Par rapport au paragraphe 2.2.1 du chapitre 2, pour toute place x de F, un F_x -module de Dieudonné sur $\bar{\kappa}(o)$ est ici un $F_x \hat{\otimes}_{\mathbb{F}_q} \bar{\kappa}(o)$ -module et non un $F_x \hat{\otimes}_{\kappa(x)} \bar{\kappa}(o)$ -module: classiquement les deux points de vue sont équivalents (cf. le paragraphe 2.1 du chapitre 2).

Définition 5.1.1 Un φ -espace (V, φ) sur $\bar{\kappa}(o)$, est un $F \otimes_{\mathbb{F}_q} k$ -espace vectoriel V de dimension finie, muni d'une application $F \otimes_{\mathbb{F}_q} \operatorname{Frob}_q$ -semi-linéaire bijective,

$$\varphi:V\longrightarrow V.$$

A un \mathcal{D} -faisceau elliptique $(\mathcal{E}_i, j_i, t_i)$ de caractéristique o défini sur $\bar{\kappa}(o)$, on associe un φ -espace (V, φ) et un homomorphisme de F-algèbre

$$\lambda: D^{op} \longrightarrow \operatorname{End}(V, \varphi)$$

de la façon suivante. Soit V la fibre générique de \mathcal{E}_0 . Via les morphismes j_i , on peut identifier V à la fibre générique de \mathcal{E}_i pour tout i. Les applications t_i induisent alors une application bijective $F \otimes \operatorname{Frob}_q$ -semi-linéaire $\varphi : V \longrightarrow V$ et (V, φ) est un φ -espace sur $\bar{\kappa}(o)$. L'action de D sur V commute avec φ et fournit le morphisme λ . Le triplet (V, φ, λ) est appelé la fibre générique du \mathcal{D} -faisceau elliptique $(\mathcal{E}_i, j_i, t_i)$. Deux \mathcal{D} -faisceaux elliptiques sont dits isogènes si leurs fibres génériques sont isomorphes.

Si x est une place de F, on considère le F_x -module de Dieudonné (V_x, φ_x) : = $(F_x \hat{\otimes}_F V, F_x \hat{\otimes}_F \varphi)$ muni du morphisme de F_x -algèbre $\lambda_x : D_x^{op} \longrightarrow \operatorname{End}(V_x, \varphi_x)$. On pose $M_x = H^0(\operatorname{Spec}(\mathcal{O}_x \hat{\otimes} \bar{\kappa}(o)), \mathcal{E}_0)$, qui est un \mathcal{D}_x -réseau de V_x stable sous $\lambda_x(D_x^{op})$.

Proposition 5.1.2 (cf. [23]) La construction ci-dessus définit une bijection entre l'ensemble des classes d'isomorphismes des \mathcal{D} -faisceaux elliptiques sur $\bar{\kappa}(o)$ et l'ensemble des classes d'isomorphismes des paires

$$((V,\varphi,\lambda),(M_x)_{x\in |X|})$$

où (V,φ) est un φ -espace de rang d^2 sur $F \otimes \bar{\kappa}(o)$, $\lambda : D^{op} \to \operatorname{End}(V,\varphi)$ est un morphisme de F algèbre et $(M_x)_{x \in |X|}$ est une collection de \mathcal{D}_x -réseaux des F_x -modules de Dieudonné $(V_x,\varphi_x) = (F_x \hat{\otimes}_F V, F_x \hat{\otimes}_F \varphi)$ qui vérifient les propriétés suivantes:

- (i) si $x = \infty$, on a $\varphi_{\infty}(M_{\infty}) \supset M_{\infty},$ $\varphi_{\infty}^{d}(M_{\infty}) = \pi_{\infty}^{-1} M_{\infty},$ $\dim_{\overline{E}(a)}(\varphi_{\infty}(M_{\infty})/M_{\infty}) = d,$

(où l'on a supposé pour simplifier que $deg(\infty) = 1$);

- (ii) $si \ x = o, on \ a$

$$\pi_o M_o \subset \varphi_o(M_o) \subset M_o$$

le $\kappa(o) \otimes \bar{\kappa}(o)$ -module $M_o/\varphi_o(M_o)$ est de longueur d et il est supporté par la composante connexe de $\operatorname{Spec}(\kappa(o) \otimes \bar{\kappa}(o))$ qui correspond à l'inclusion $\kappa(o) \hookrightarrow \bar{\kappa}(o)$;

- (iii) $si \ x \neq 0, \infty, \ on \ a$

$$\varphi_x(M_x) = M_x;$$

- (iv) toute base du $F \otimes \overline{\kappa}(o)$ -espace vectoriel V appartient et engendre le $\mathcal{O}_x \hat{\otimes} \overline{\kappa}(o)$ -sous-module M_x de V_x pour presque toutes les places $x \neq o, \infty$ de F.

Définition 5.1.3 Une φ -paire $(\tilde{F}, \tilde{\Pi})$ est un couple formé d'une F-algèbre \tilde{F} , commutative de dimension finie et d'un élément $\tilde{\Pi} \in \tilde{F}^{\times} \otimes \mathbb{Q}$ qui satisfait à la propriété suivante: pour toute F-sous-algèbre propre F' de \tilde{F} , $\tilde{\Pi}$ n'appartient pas à $F'^{\times} \otimes \mathbb{Q} \subset \tilde{F}^{\times} \otimes \mathbb{Q}$.

A tout φ -espace (V, φ) , Drinfeld associe une φ -paire (cf. [23]).

Proposition 5.1.4 (cf. [23]) Soit $(\tilde{F}, \tilde{\Pi})$ la φ -paire associée au φ -espace (V, φ) . On a alors les propriétés suivantes:

- (i) \tilde{F} est un corps et $[\tilde{F}:F]$ divise d;
- (ii) $F_{\infty} \otimes_F \tilde{F}$ est un corps et si $\tilde{\infty}$ est l'unique place de \tilde{F} divisant ∞ , on a l'éqalité $\deg(\tilde{\infty})\tilde{\infty}(\tilde{\Pi}) = -[\tilde{F}:F]/d$;
- (iii) il existe une unique place $\tilde{o} \neq \tilde{\infty}$ de \tilde{F} telle que $\tilde{o}(\tilde{\Pi}) \neq 0$; de plus \tilde{o} divise o;
- (iv) on a l'égalité $h = d[\tilde{F}_{\tilde{o}} : F_o]/[\tilde{F} : F]$, où h est l'indice de la strate à laquelle $(\mathcal{E}_i, j_i, t_i)$ appartient.

Corollaire 5.1.5 L'algèbre $\operatorname{End}(V,\varphi,\lambda)$ est une algèbre à division centrale sur \tilde{F} de dimension $(d/[\tilde{F}:F])^2$ dont les invariants sont donnés comme suit:

$$\operatorname{inv}_{\tilde{x}}(\operatorname{End}(V,\varphi,\lambda)) = \begin{cases} [\tilde{F}:F]/d & si \ \tilde{x} = \tilde{\infty} \\ -[\tilde{F}:F]/d & si \ \tilde{x} = \tilde{o} \\ [\tilde{F}_{\tilde{x}}:F_x]\operatorname{inv}_{x}(D) & sinon \end{cases}$$

pour tout place x de F et toute place \tilde{x} de \tilde{F} divisant x.

Définition 5.1.6 Un (D, ∞, o) -type est une φ -paire $(\tilde{F}, \tilde{\Pi})$ telle que:

- (i) \tilde{F} est un corps et $[\tilde{F}:F]$ divise d:
- (ii) $F_{\infty} \otimes_F \tilde{F}$ est un corps et si $\tilde{\infty}$ est l'unique place de \tilde{F} divisant ∞ , on a

$$\deg(\tilde{\infty})\tilde{\infty}(\tilde{\Pi}) = -[\tilde{F}:F]/d;$$

- (iii) il existe une unique place $\tilde{o} \neq \tilde{\infty}$ de \tilde{F} telle que $\tilde{o}(\tilde{\Pi}) \neq 0$; de plus \tilde{o} divise o;
- (iv) pour toute place x de F et toute place \tilde{x} de \tilde{F} divisant x, on a

$$(d[\tilde{F}_{\tilde{x}}:F_x]/[\tilde{F}:F])$$
 inv_x $(D) \in \mathbb{Z}$.

Théorème 5.1.7 (cf. [23]) L'application composée

$$(\mathcal{E}_i, j_i, t_i) \longmapsto (V, \varphi, \lambda) \longmapsto (\tilde{F}, \tilde{\Pi}),$$

qui à un \mathcal{D} -faisceau elliptique défini sur $\bar{\kappa}(o)$ associe son (D, ∞, o) -type, induit une bijection de l'ensemble des classes d'isogénie des \mathcal{D} -faisceaux elliptiques définis sur $\bar{\kappa}(o)$ sur l'ensemble des classes d'isomorphismes des (D, ∞, o) -types.

5.2 Existence de points supersinguliers et dimension des strates.

Proposition 5.2.1 Pour tout idéal I, la strate $\mathcal{E}ll_{X,\mathcal{D},I,o}^{\geqslant d}$ est non vide.

Preuve: D'après le théorème 5.1.7, il suffit de montrer qu'il existe un (D, ∞, o) -type associé à des points supersinguliers (h=d). Les points de la jacobienne de X, à valeurs dans un corps fini, étant tous d'ordre fini, soit m un entier strictement positif tel que $m.[o - \deg(o)\infty] = 0$ ($\deg \infty = 1$). Il existe alors un élément f de F tel que $\infty(f) = -\deg(o)m$, o(f) = m et x(f) = 0 pour toute place x de F distincte des places o et ∞ . On pose $\tilde{\Pi}_F = f \otimes 1/\deg(o)md$ de sorte que le couple $(F, \tilde{\Pi})$ est un (D, ∞, o) -type correspondant à des points supersinguliers.

Remarque : On verra au paragraphe 5.4, qu'à isomorphisme près, le couple $(F, \tilde{\Pi}_F)$ construit ci-dessus, est le seul (D, ∞, o) -type associé à des points supersinguliers.

Proposition 5.2.2 (Conjecture de Rapoport) Pour tout entier h tel que $1 \leq h \leq d$, les strates $\mathcal{E}ll_{X,\mathcal{D},I,x}^{\geqslant h}$ sont non vides, purement de dimension d-h et lisses sur $\kappa(x)$ si $x \notin V(I)$.

 $\begin{array}{l} \textit{Preuve}: \text{Pour tout } h, \; \mathcal{E} ll_{X,\mathcal{D},I,x}^{\geqslant h} \; \text{contient } \; \mathcal{E} ll_{X,\mathcal{D},I,x}^{\geqslant d} \; \text{qui est non vide d'après la proposition précédente. Soient alors } z \; \text{un point géométrique de } \mathcal{E} ll_{X,\mathcal{D},I,x}^{\geqslant h} \; \text{et } h' \geqslant h \; \text{tel que } z \; \text{appartient à } \mathcal{E} ll_{X,\mathcal{D},I,x}^{=h'}. \; \text{D'après la proposition 3.1.2, l'anneau local } (\widehat{\mathcal{E} ll_{X,\mathcal{D},I,x}^{\geqslant h}})_z \; \text{est isomorphe à } \operatorname{Spec}(E_n^{h',d-h',\geqslant h}) \; \text{où } n \; \text{est la multiplicité de } x \; \text{dans } I. \; \text{L'anneau } E_n^{h',d-h',\geqslant h} \; \text{est de dimension } d-h, \; \text{d'où la proposition.} \end{array}$

5.3 Description adélique des points supersinguliers suivant leur (D, ∞, o) -type: rappels.

On commence par citer une proposition dont on pourra trouver la preuve dans [23] (proposition (B.10)).

Proposition 5.3.1 Supposons que (V_x, φ_x) est un F_x -module de Dieudonné isomorphe à $(N_{x,d,1}, \varphi_{x,d,1})$, c'est-à-dire

$$N_{x,d,1} = (F_x \hat{\otimes}_{\kappa(x)} \overline{\kappa}(o))^d \qquad \varphi_{x,d,1}(e_i) = \begin{cases} e_{i+1} & i = 1, \dots, d-1 \\ \pi_x e_1 & i = d \end{cases}$$

où $(e_i)_{1 \leq i \leq d}$ est la base canonique de $N_{x,d,1}$. L'ensemble des réseaux M de V_x tels que

$$\varphi_x(M) \subset M \quad (resp. \ M \subset \varphi_x(M))$$

est un espace principal homogène sur $\mathbb Z$ où un élément m de $\mathbb Z$ agit par

$$M \longmapsto \varphi_x^m(M)$$
.

De plus tout réseau de cet ensemble vérifie

$$\begin{cases} \varphi_x^n(M) \subset \pi_x M \\ \dim_{\mathcal{R}(o)}(M/\varphi_x(M)) = 1 \end{cases} \quad (resp. \begin{cases} M \subset \pi_x \varphi_x^n(M) \\ \dim_{\mathcal{R}(o)}(\varphi_x(M)/M) = 1 \end{cases})$$

pour toute uniformisante π_x de \mathcal{O}_x et pour un certain entier n.

Remarque: L'action naturelle du groupe multiplicatif de $\operatorname{End}(V_x, \varphi_x)$ sur l'ensemble des réseaux M de V_x tels que

$$\varphi_x(M) \subset M \quad \text{(resp. } M \subset \varphi_x(M)\text{)}$$

peut être décrite de la manière suivante. On a un homomorphisme de groupe

$$\operatorname{End}(V_x, \varphi_x)^{\times} \xrightarrow{\operatorname{rn}} F_x^{\times \operatorname{deg}(x)x(-)} \mathbb{Z},$$

$$(\operatorname{resp.} \operatorname{End}(V_x, \varphi_x)^{\times} \xrightarrow{\operatorname{rn}} F_x^{\times} \xrightarrow{\operatorname{deg}(x)x(-)} \mathbb{Z})$$

où r
n est la norme réduite. Un élément δ de $\mathrm{End}(V_x,\varphi_x)^\times$ envoi
e le réseau M sur le réseau $\varphi_x^m(M)$ où

$$m = \deg(x)x(\operatorname{rn}(\delta))$$
 (rep. $m = -\deg(x)x(\operatorname{rn}(\delta))$).

Soit (V, φ, λ) un φ -espace muni d'une action de D qui a pour (D, ∞, o) -type, $(\tilde{F}, \tilde{\Pi})$ et soit $\Delta = \operatorname{End}(V, \varphi, \lambda)$. On note \mathcal{Y}_x l'ensemble des \mathcal{D}_x -réseaux de V_x : $= F_x \hat{\otimes}_F V$ qui satisfont la propriété 5.1.2 (i) si $x = \infty$, 5.1.2 (ii) si x = o et 5.1.2 (iii) si $x \neq \infty$, o. Soit

$$\mathcal{Y}_0^{\infty,o} \subset \prod_{x
eq o, \infty} \mathcal{Y}_x$$

l'ensemble des familles de réseaux qui satisfont la condition supplémentaire 5.1.2 (iv). On a une action naturelle de Δ^{\times} sur l'ensemble

$$\mathcal{Y}_{\mathbb{A},0}:=\mathcal{Y}_{\infty} imes\mathcal{Y}_{0}^{\infty,o} imes\mathcal{Y}_{o},$$

et d'après le théorème 5.1.7, on a une bijection naturelle

$$\mathcal{E}ll_{X,\mathcal{D},o}(\bar{\kappa}(o))_{(\tilde{F},\tilde{\Pi})} \xrightarrow{\sim} \Delta^{\times} \backslash \mathcal{Y}_{\mathbb{A},0}.$$

Les auteurs de [23] donnent une description plus explicite que l'on rappelle ciaprès dans le cas h=d (points supersinguliers):

- l'algèbre Δ vérifie les propriétés du corollaire 5.1.5 avec h=d;
- soit $(M_x \subset V_x)_{x \neq \infty, o}$ un point base de $\mathcal{Y}_0^{\infty, o}$. On considère alors le produit restreint $(V^{\infty, o}, \varphi^{\infty, o})$ des (V_x, φ_x) par rapport aux M_x pour $x \neq \infty, o$. D'après la propriété 5.1.2 (iv) ce produit restreint est indépendant du choix du point base et d'après la propriété 5.1.2 (iii), l'application canonique

$$(V^{\infty,o})^{\varphi^{\infty,o}} \hat{\otimes}_{\mathbb{F}_q} \bar{\kappa}(o) \longrightarrow V^{\infty,o}$$

est bijective. Clairement, $(V^{\infty,o})^{\varphi^{\infty,o}}$ est un $D^{\infty,o}$ -module à droite libre de rang 1, on en fixe une base. On obtient de cette façon une action à gauche de $(D^{\infty,o})^{\times}$ sur $\mathcal{Y}_0^{\infty,o}$ qui est transitive, d'où un isomorphisme

$$\mathcal{Y}_0^{\infty,o} \xrightarrow{\sim} (D^{\infty,o})^{\times}/(\mathcal{D}^{\infty,o})^{\times};$$

 Δ^{\times} agit à gauche sur cet ensemble via l'inclusion $\Delta^{\times} \hookrightarrow (D^{\infty,o})^{\times}$ que l'on obtient en identifiant $\mathbb{A}^{\infty,o} \otimes_F \Delta^{\times}$ au centralisateur de $\mathbb{A}^{\infty,o} \otimes_F \tilde{F} \hookrightarrow D^{\infty,o}$;

- on a une décomposition de Morita

$$(V_{\infty}, \varphi_{\infty}) = (V_{\infty}', \varphi_{\infty}')^d$$

et \mathcal{Y}_{∞} s'identifie à l'ensemble des réseaux M'_{∞} de V'_{∞} tels que

$$\begin{cases} M'_{\infty} \subset \varphi'_{\infty}(M'_{\infty}) \\ (\varphi'_{\infty})^{d}(M'_{\infty}) = \pi_{\infty}^{-1}M'_{\infty} \\ \dim_{\mathbb{R}(o)}(\varphi'_{\infty}(M'_{\infty})/M'_{\infty}) = 1 \end{cases}$$

(par hypothèse $\deg(\infty) = 1$). D'après la proposition 5.3.1, l'ensemble \mathcal{Y}_{∞} est un ensemble principal homogène sous l'action de \mathbb{Z} (un élément m de \mathbb{Z} envoie M'_{∞} sur $\varphi^m_{\infty}(M'_{\infty})$),

$$\mathcal{Y}_{\infty} \simeq \mathbb{Z}$$

et Δ^{\times} y agit par l'application composée

$$\Delta^{\times} \xrightarrow{\operatorname{rn}} F_{\infty}^{\times} \xrightarrow{-\infty(-)} \mathbb{Z};$$

– on a à nouveau une équivalence de Morita $(V_o, \varphi_o) = (V'_o, \varphi'_o)^d$ et on identifie \mathcal{Y}_o à l'ensemble des réseaux M'_o de V'_o tels que

$$\begin{cases} \pi_o M_o' \subset \varphi_o'(M_o') \subset M_o' \\ \dim_{\bar{\kappa}(o)}(M_o'/\varphi_o'(M_o')) = 1 \end{cases}$$

où le support de $M'_o/\varphi'_o(M'_o)$ est la composante connexe de

$$\operatorname{Spec}(\kappa(o) \otimes \bar{\kappa}(o)) \subset \operatorname{Spec}(\mathcal{O}_o \otimes \bar{\kappa}(o))$$

qui correspond à l'inclusion $\kappa(o) \hookrightarrow \bar{\kappa}(o)$. D'après la proposition 5.3.1, l'ensemble \mathcal{Y}_o est alors un espace principal homogène sous \mathbb{Z} où un élément m de \mathbb{Z} envoie M'_o sur $(\varphi'_o)^{m.\deg(o)}(M'_o)$ (le terme $\deg(o)$ provient de la condition sur le support). Ainsi Δ^{\times} agit sur \mathcal{Y}_o par l'application composée

$$\Delta^{\times} \xrightarrow{\operatorname{rn}} F_o^{\times} \xrightarrow{o(-)} \mathbb{Z}.$$

Finalement pour un (D, ∞, o) -type de points supersinguliers (h = d), on a la description ensembliste

$$\mathcal{E}ll_{X,\mathcal{D},o}(\bar{\kappa}(o))_{(\tilde{F},\tilde{\Pi})} \xrightarrow{\sim} \Delta^{\times} \backslash Y_{\mathbb{A}}$$

où l'on a posé

$$Y_{\mathbb{A}} = ((D^{\infty,o})^{\times}/(\mathcal{D}^{\infty,o})^{\times}) \times \mathcal{Y}_{\infty} \times \mathcal{Y}_{o}.$$

A niveau fini, si I est un idéal de A, on a

$$\mathcal{E}ll_{X,\mathcal{D},I,o}(\bar{\kappa}(o))_{(\tilde{F},\tilde{\Pi})} \xrightarrow{\sim} \Delta^{\times} \backslash Y_{\mathbb{A},I},$$

où l'on a posé

$$Y_{\mathbb{A},I} = ((D^{\infty,o})^{\times}/K_I^{\infty,o}) \times \mathcal{Y}_{\infty} \times \mathcal{Y}_{o}.$$

5.4 Unicité du (D, ∞, o) -type des points supersinguliers.

Dans la preuve de la proposition 5.2.1, on a construit un (D, ∞, o) -type correspondant à des points supersinguliers. Le but de cette section est de montrer qu'à isomorphisme près ce couple est unique.

Proposition 5.4.1 Tous les points supersinguliers sont dans une même classe d'isogénie.

Preuve : Soit $(\tilde{F}, \tilde{\Pi})$ un (D, ∞, o) -type d'un point supersingulier. D'après 5.1.4, la φ -paire $(\tilde{F}, \tilde{\Pi})$ vérifie les propriétés suivantes:

- (i) \tilde{F} est un corps et $[\tilde{F}:F]$ divise d;
- (ii) $F_{\infty} \otimes_F \tilde{F}$ est un corps et si $\tilde{\infty}$ est l'unique place de \tilde{F} divisant ∞ , on a $\deg(\tilde{\infty})\tilde{\infty}(\tilde{\Pi}) = -[\tilde{F}:F]/d;$
- (iii) $F_o \otimes_F \tilde{F}$ est un corps et si \tilde{o} est l'unique place de \tilde{F} divisant o, on a $\deg(\tilde{o})\tilde{o}(\tilde{\Pi}) = [\tilde{F}:F]/d$ et \tilde{o} est l'unique place \tilde{x} de \tilde{F} telle que $\tilde{x}(\tilde{\Pi}) \neq 0$;
- (iv) pour toute place x de F et toute place \tilde{x} de \tilde{F} divisant x, on a

$$(d[\tilde{F}_{\tilde{x}}:F_x]/[\tilde{F}:F])\operatorname{inv}_x(D) \in \mathbb{Z}.$$

Ainsi on peut considérer \tilde{F} comme une F-sous-algèbre de \bar{D} . En outre d'après le corollaire 5.1.5 l'algèbre Δ associée au (D, ∞, o) -type, $(\tilde{F}, \tilde{\Pi})$, est une algèbre à division centrale sur \tilde{F} de dimension $(d/[\tilde{F}:F])^2$ dont les invariants sont donnés comme suit

$$\operatorname{inv}_{\tilde{x}}(\operatorname{End}(V,\varphi,\lambda)) = \begin{cases} [\tilde{F}:F]/d & \text{si } \tilde{x} = \tilde{\infty} \\ -[\tilde{F}:F]/d & \text{si } \tilde{x} = \tilde{o} \\ [\tilde{F}_{\tilde{x}}:F_x]\operatorname{inv}_x(D) & \text{sinon} \end{cases}$$

pour tout place x de F et toute place \tilde{x} de \tilde{F} divisant x. Ainsi on peut identifier Δ au centralisateur de \tilde{F} dans \bar{D} . Montrons que $\tilde{F}=F$ et donc que $\Delta=\bar{D}$. Pour cela on rappelle les lemmes suivant sur les φ -paires.

Lemme 5.4.2 Si $(\tilde{F}, \tilde{\Pi})$ est une φ -paire et si N est un entier non nul tel que $\tilde{\Pi}^N \in \tilde{F}^{\times}$, alors $\tilde{F} = F[\tilde{\Pi}^N]$.

Preuve: Soit
$$F' = F[\tilde{\Pi}^N] \subset \tilde{F}$$
, alors $\tilde{\Pi} \in F'^{\times} \otimes \mathbb{Q}$, d'où $\tilde{F} = F'$.

Lemme 5.4.3 Si $(\tilde{F}, \tilde{\Pi})$ est une φ -paire, alors \tilde{F} est une F-algèbre étale.

Preuve : Il suffit de vérifier que $\tilde{F} = F[\tilde{F}^p]$. Si on pose $F' = F[\tilde{F}^p]$ alors F' est une F-sous-algèbre de \tilde{F} et $\tilde{\Pi}^p \in F'^{\times} \otimes \mathbb{Q}$ et $\tilde{\Pi} \in F'^{\times} \otimes \mathbb{Q}$, d'où $F' = \tilde{F}$. \square

fin de la preuve de la proposition: Soit σ un F-automorphisme de \tilde{F} et soit N un entier tel que $\tilde{\Pi}^N$ appartient à \tilde{F}^{\times} . Comme \tilde{o} et $\tilde{\infty}$ sont les seules places \tilde{x} de \tilde{F} telles que $\tilde{x}(\tilde{\Pi}^N) \neq 0$ et comme $\sigma(\tilde{\infty}) = \tilde{\infty}$ et $\sigma(\tilde{o}) = \tilde{o}$, les éléments $\tilde{\Pi}^N$ et $\sigma(\tilde{\Pi}^N)$ de \tilde{F}^{\times} ont les mêmes valuations en toutes les places \tilde{x} de \tilde{F} . Ainsi $\tilde{\Pi}^N/\sigma(\tilde{\Pi}^N)$ appartient à \mathbb{F}_q^{\times} et est une racine de l'unité. Il existe donc un entier $N' \geqslant N$ tel que $\tilde{\Pi}^{N'} = \sigma(\tilde{\Pi}^{N'})$. Or d'après le lemme précédent on a $\tilde{F} = F[\tilde{\Pi}^N] = F[\tilde{\Pi}^{N'}]$, d'où σ est l'identité. L'extension \tilde{F}/F étant séparable, on en déduit $\tilde{F} = F$.

Finalement pour tout idéal I de A, $\mathcal{E}ll_{X,\mathcal{D},I,o}^{=d}(\bar{\kappa}(o))$ est en bijection avec le quotient

$$\bar{D}^{\times} \setminus \left[(\bar{D}^{\infty,o})^{\times} / K_I^{\infty,o} \times \mathcal{Y}_{\infty} \times \mathcal{Y}_o \right]$$
.

5.5 Description des actions de l'algèbre de Hecke, de $\mathbb Z$ et du Frobenius.

Nous avons montré précédement que les correspondances géométriques associées aux éléments de l'algèbre de Hecke de $(D^{\infty})^{\times}$, agissent sur l'ensemble des points supersinguliers. Le but de ce paragraphe est de décrire ces actions dans la description ensembliste du paragraphe précédent.

– Un élément n de \mathbb{Z} agit sur $(\mathcal{E}_i, j_i, t_i)$ par translation sur les indices i (cf. le paragraphe 1.5 du chapitre 2). Ainsi l'image d'un élément

$$((V,\varphi,\lambda),(M_x)_{x\in |X|},(\alpha_x)_{x\in |X|\setminus \{\infty\}})$$

de $Y_{\mathbb{A},I}$ sous l'action de n est

$$((V,\varphi,\lambda),(\varphi_{\infty}^n(M_{\infty}),(M_x)_{x\in |X|\setminus \{\infty\}},(\alpha_x)_{x\in |X|}).$$

Dans la description adélique

$$\mathcal{E}ll_{X,\mathcal{D},I,o}^{=d}(\bar{\kappa}(o)) \simeq \bar{D}^{\times} \setminus \left[(\bar{D}^{\infty,o})^{\times} / K_I^{\infty,o} \times \mathcal{Y}_{\infty} \times \mathcal{Y}_o \right],$$

un élément m de $\mathbb Z$ y opère par translation de valeur m sur la composante $\mathcal Y_\infty\simeq\mathbb Z$.

- De la même façon, le Frobenius géométrique en o envoie

$$((V,\varphi,\lambda),(M_x)_{x\in |X|},(\alpha_x)_{x\in |X|\setminus\{\infty\}})$$

sur

$$((V,\varphi,\lambda),(M'_x)_{x\in |X|},(\alpha'_x)_{x\in |X|\setminus \{\infty\}})$$

avec

$$(M'_x, \alpha'_x) = \begin{cases} (M_x, \alpha_x) & \forall x \neq \infty, o \\ (\varphi_o^{deg(o)}(M_o), \varphi_o^{deg(o)}\alpha_o) & x = o \end{cases}$$

et $M'_{\infty} = \varphi_{\infty}^{\deg(o)}(M_{\infty})$. Dans la description adélique de $\mathcal{E}ll_{X,\mathcal{D},I,o}^{=d}(\bar{\kappa}(o))$ précédente, le Frobenius géométrique en o y agit par la translation de vecteur $(\deg(o),1)$ sur le facteur $\mathcal{Y}_{\infty} \times \mathcal{Y}_{\tilde{o}}$.

– Soient I un idéal de A et y un élément de V(I) distinct de o, de multiplicité n'_y dans I. Soient g_y un élément de $D_y^{\times} \cap \mathcal{D}_y$ et J un idéal de A tel que

$$K_I^{\infty,o} \subset K_I^{\infty,o} \cap g_y K_I^{\infty,o} g_y^{-1}$$
.

On note n_y la multiplicité de y dans J. La correspondance de Hecke

associée à g_y^{-1} (cf. le paragraphe 3.4.2 du chapitre 2) se décrit comme suit au niveau des points supersinguliers. Soit $((V, \varphi, \lambda), (M_x)_{x \in |X|}, (\alpha_x)_{x \in V(J)})$ un élément de $\mathcal{E}ll_{X,\mathcal{D},I,o}^{=d}(\bar{\kappa}(o))$. On a un isomorphisme

$$\alpha_y: \mathcal{D}_{y,n_y} \xrightarrow{\sim} \mathfrak{m}_y^{n_y} M_y^{\varphi_y} \backslash M_y^{\varphi_y}.$$

A l'élément g_y^{-1} qui opère sur \mathcal{D}_{y,n_y} par multiplication à droite par g_y , est associé une application $[g_y]: V_y \longrightarrow V_y$ telle que le diagramme suivant est commutatif

$$\mathcal{D}_{y,n_y} \xrightarrow{\alpha_y} \mathfrak{m}_y^{n_y} M_y^{\varphi_y} \backslash M_y^{\varphi_y} \\
\downarrow g_y \qquad \qquad \downarrow [g_y] \\
\mathcal{D}_{y,n_y} \xrightarrow{\alpha_y} \mathfrak{m}_y^{n_y} M_y^{\varphi_y} \backslash M_y^{\varphi_y}.$$

L'image $c_2(((V, \varphi, \lambda), (M_x)_{x \in |X|}, (\alpha_x)_{x \in V(J)}))$ est le triplet

$$((V, \varphi, \lambda), (M'_x)_{x \in |X|}, (\alpha'_x)_{x \in V(J)})$$

défini comme suit. Pour $x \neq y$, on a $M'_x = M_x$ et $\alpha'_x = \alpha_x$ et pour y, M'_y est l'image $[g_y](M_y)$ et α'_y est donnée par la composée

$$\mathcal{D}_{y,n'_y} \xrightarrow{g_y} \mathcal{D}_{y,n'_y} \longrightarrow \mathfrak{m}_y^{n'_y} M'_y \varphi_y \backslash M'_y \varphi_y$$

où la deuxième application est la restriction de α_y à \mathcal{D}_{y,n'_y} . En termes de la description adélique du paragraphe précédent, cette correspondance s'écrit

$$\begin{array}{c} \bar{D}^{\times}\backslash\left[(\bar{D}^{\infty,o})^{\times}/K_{J}^{\infty,o}\times\mathcal{Y}_{\infty}\times\mathcal{Y}_{o}\right]\\ \downarrow^{c_{1}}\\ \bar{D}^{\times}\backslash\left[(\bar{D}^{\infty,o})^{\times}/K_{I}^{\infty,o}\times\mathcal{Y}_{\infty}\times\mathcal{Y}_{o}\right] & \bar{D}^{\times}\backslash\left[(\bar{D}^{\infty,o})^{\times}/K_{I}^{\infty,o}\times\mathcal{Y}_{\infty}\times\mathcal{Y}_{o}\right] \end{array}$$

où c_1 est induit par l'inclusion $K_J^{\infty,o} \subset K_I^{\infty,o}$ et c_2 est induit par la multiplication à droite de g_y sur D_y^{\times} .

– Pour tout idéal I de A, l'action d'un élément g_o de $GL_d(F_o)$ sur $\bar{D}^{\times} \setminus \mathcal{Y}_{\mathbb{A},I}^{\infty}$ est donnée par son action sur $\mathcal{Y}_o \simeq \mathbb{Z}$. Le groupe $PSL_d(F_o)$ étant simple, l'endomorphisme de \mathbb{Z} associé à g_o est la translation de valeur -k. val $(\det(g_o))$, pour un certain entier k. De plus si g_o est l'élément du centre π_o , alors d'après la \mathcal{O}_o -linéarité de la structure de niveau, on a $[\pi_o](M'_o) = M'_o\pi_o^{-1}$, d'où k = 1.

En définitive, pour tout idéal I de A, $\operatorname{Sing}_I(\bar{\kappa}(o)) := (\mathcal{E} ll_{X,\mathcal{D},I,o}^{=d}/\mathbb{Z})(\bar{\kappa}(o))$ est en bijection avec le quotient

$$\bar{D}^{\times} \setminus \left[(\bar{D}^{\infty,o})^{\times} / K_I^{\infty,o} \times \mathbb{Z} \right],$$

le Frobenius géométrique en o agissant par la translation de vecteur 1 sur la composante \mathbb{Z} .

La correspondance de Hecke associée à un élément g^{∞} de $(D^{\infty})^{\times}$

$$(\mathcal{E}ll_{X,\mathcal{D},J,o}^{=d}/\mathbb{Z})(\bar{\kappa}(o))$$

$$(\mathcal{E}ll_{X,\mathcal{D},I,o}^{=d}/\mathbb{Z})(\bar{\kappa}(o)) \leftarrow (\mathcal{E}ll_{X,\mathcal{D},I,o}^{=d}/\mathbb{Z})(\bar{\kappa}(o))$$

où J est un idéal de A tel que $K_J^{\infty,o}\subset K_I^{\infty,o}\cap (g^{\infty,o})^{-1}K_I^{\infty,o}g^{\infty,o}$, induit une correspondance

$$\bar{D}^{\times} \setminus [(\bar{D}^{\infty,o})^{\times}/K_{J}^{\infty,o} \times \mathbb{Z}]$$

$$c_{1} \downarrow \qquad c_{2}$$

$$\bar{D}^{\times} \setminus [(\bar{D}^{\infty,o})^{\times}/K_{L}^{\infty,o} \times \mathbb{Z}] \longleftarrow \bar{D}^{\times} \setminus [(\bar{D}^{\infty,o})^{\times}/K_{L}^{\infty,o} \times \mathbb{Z}]$$

où c_1 est induit par l'inclusion $K_J^{\infty,o} \subset K_I^{\infty,o}$ et c_2 est induit par la multiplication à droite de $(g^{\infty,o})^{-1}$ sur $(D^{\infty,o})^{\times}$ et la translation de valeur $-\operatorname{val}(\det(g_o))$ sur \mathbb{Z} .

En passant à la limite sur tous les idéaux I de A, $(\mathcal{E}ll_{X,\mathcal{D},o}^{=d}/\mathbb{Z})(\bar{\kappa}(o))$, que l'on note $\mathrm{Sing}(\bar{\kappa}(o))$, est alors isomorphe au quotient

$$\bar{D}^{\times} \setminus \left[(\bar{D}^{\infty,o})^{\times} / (\mathcal{D}^{\infty,o})^{\times} \times \mathbb{Z} \right],$$

l'action d'un élément g^{∞} de $(D^{\infty,o})^{\times}$ étant donnée par la multiplication à droite de $(g^{\infty,o})^{-1}$ sur $(D^{\infty,o})^{\times}$ et par la translation de valeur $-\operatorname{val}(\det(g_o))$ sur la composante \mathbb{Z} .

Chapitre 4

Preuve de la conjecture de Deligne-Carayol.

Afin de prouver la conjecture de Deligne-Carayol (cf. le théorème 4.1), on fixe un corps global F et deux places ∞ , o de F rationnelles sur le corps des constantes \mathbb{F}_q de X, telles que F_o est isomorphe au corps local F du premier chapitre. On choisit comme au paragraphe 1.1 du chapitre 2, une algèbre à division centrale D sur F de dimension finie d^2 dont les invariants sont donnés comme suit:

$$inv_x(D) = \begin{cases} 1/d & x = x_1 \\ -1/d & x = x_2 \\ 0 & sinon, \end{cases}$$

où x_1 et x_2 sont deux places de F distinctes des places ∞ , o (Bad = $\{x_1, x_2\}$). Soit \mathcal{D} un faisceau d'ordres maximaux de D sur le modèle projectif lisse X de F. On fixe deux places x_3, x_4 de F distinctes des places ∞ , o, x_1, x_2 . Dans la suite I désignera un idéal de $A = \Gamma(X \setminus \{\infty\}, \mathcal{O}_X)$ variable mais tel que V(I) contient les places x_3 et x_4 .

Nous allons dans un premier temps énoncer le résultat de [23] qui décrit la cohomologie de la fibre générique des schémas de modules $(\mathcal{E}ll_{X,\mathcal{D},I}/\mathbb{Z})$. A partir de ce résultat de nature globale, nous étudierons la cohomologie des cycles proches associée à la spécialisation de $(\mathcal{E}ll_{X,\mathcal{D},I}/\mathbb{Z})$ en o, notament lorsque $o \in V(I)$. Nous montrerons que la représentation locale fondamentale introduite au premier chapitre, intervient dans ces cycles proches et que le résultat global de [23] permet de décrire sa partie cuspidale.

1 La catégorie $C_{(D^{\infty})^{\times},\Gamma_o}$ des représentations admissibles de $(D^{\infty})^{\times} \times \Gamma_o$.

Dans le premier chapitre, on a introduit pour un corps local F, la catégorie $C_{GL,\Gamma}$ des représentations admissibles de $GL_h(F) \times \Gamma$ au sens de la définition

1.3, où Γ désigne le groupe de Weil de F. A cette catégorie $C_{GL,\Gamma}$ correspond le groupe $K_{GL,\Gamma}$ dont la description est donnée dans la proposition 1.6.2 du premier chapitre. De manière analogue, pour le corps global F, on introduit la catégorie $C_{(D^{\infty})^{\times},\Gamma_o}$ des représentations admissibles de $(D^{\infty})^{\times} \times \Gamma_o$ où Γ_o désigne le groupe de weil de F_o . On note $K_{(D^{\infty})^{\times},\Gamma_o}$ le groupe associé à cette catégorie.

Proposition 1.1 Le groupe $K_{(D^{\infty})^{\times},\Gamma_o}$ est isomorphe au groupe abélien des sommes formelles

$$\sum_{\tau^{\infty} \in \mathcal{T}_{2,alob}^{\infty}, \sigma_{o} \in \mathcal{T}_{1,o}} \lambda_{\tau^{\infty} \otimes \sigma_{o}} [\tau^{\infty} \otimes \sigma_{o}]$$

où $\mathcal{T}_{1,o}$ désigne l'ensemble des représentations continues, irréductibles de Γ_o , $\mathcal{T}_{2,glob}^{\infty}$ est l'ensemble des représentations admissibles, irréductibles de $(D^{\infty})^{\times}$ et $\lambda_{\tau^{\infty}\otimes\sigma_o}$ décrit l'ensemble des familles d'entiers telles que pour tout sous-groupe compact ouvert K de $(D^{\infty})^{\times}$, il n'y ait qu'un nombre fini de couples $(\tau^{\infty}, \sigma_o) \in \mathcal{T}_{2,glob}^{\infty} \times \mathcal{T}_{1,o}$, pour lesquels $(\tau^{\infty}\otimes\sigma_o)^K \neq (0)$ et $\lambda_{\tau^{\infty}\otimes\sigma_o} \neq 0$.

Avec les notations du premier chapitre $(D_o^{\times} \simeq GL_d(F_o))$, on a un foncteur $C_{(D^{\infty})^{\times},\Gamma_o} \longrightarrow C_{GL,\Gamma}$. Pour un objet M de $C_{(D^{\infty})^{\times},\Gamma_o}$, π_o une représentation admissible irréductible de $GL_d(F_o)$ et σ_o une représentation l-adique irréductible de Γ_o , on notera $\lambda_{\pi_o\otimes\sigma_o}(M)$, la multiplicité dans $K_{GL,\Gamma}$ associée à l'image de M dans la catégorie $C_{GL,\Gamma}$. On a alors l'égalité numérique

$$\lambda_{\pi_o \otimes \sigma_o}(M) = \sum_{\Pi^{\infty} \in \mathcal{A}_{glob}^{\infty}(\pi_o)} \lambda_{\Pi^{\infty} \otimes \sigma_o}(M), \tag{1.2}$$

où $\mathcal{A}_{glob}^{\infty}(\pi_o)$ est l'ensemble des représentations admissibles irréductibles Π^{∞} de $(D^{\infty})^{\times}$ telles que $(\Pi^{\infty})_o \simeq \pi_o$. En particulier si $\lambda_{\pi_o \otimes \sigma_o}(M)$ est nul alors $\lambda_{\Pi^{\infty} \otimes \sigma_o}(M)$ est nul pour tout élément Π^{∞} de $\mathcal{A}_{glob}^{\infty}(\pi_o)$.

2 Correspondance locale de Langlands d'après Laumon-Rapoport-Stuhler.

Soient $\eta = \operatorname{Spec} F$ le point générique de X et \overline{F} une clôture algébrique de F. On considère les groupes de cohomologie l-adique

$$H_{n,I}^n = H^n((\mathcal{E}ll_{X,\mathcal{D},I}/\mathbb{Z}) \times_{X'} \operatorname{Spec} \bar{F}, \bar{\mathbb{Q}}_l).$$

Pour tout entier n, $H^n_{\eta,I}$ est un $\bar{\mathbb{Q}}_l$ -espace vectoriel de dimension finie qui possède une \mathbb{Q}_l -structure. En fait les $H^n_{\eta,I}$ sont nuls sauf pour $0 \le n \le 2d-2$. Sur chaque $H^n_{\eta,I}$, on a une action de $\mathrm{Gal}(\bar{F}/F)$ qui est définie sur \mathbb{Q}_l et qui est continue pour la topologie de Krull sur $\mathrm{Gal}(\bar{F}/F)$ et la topologie l-adique sur $H^n_{\eta,I}$. On choisit une clôture algébrique \bar{F}_o de F_o contenant \bar{F} et on considère un diagramme

où $\bar{\mathcal{O}}_o$ est la normalisation de \mathcal{O}_o dans \bar{F}_o et $\bar{\kappa}(o)$ est le corps résiduel de $\bar{\mathcal{O}}_o$. On note

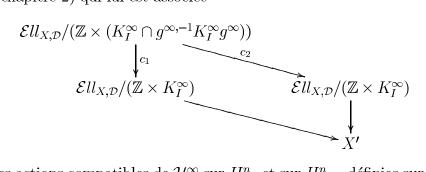
$$H^n_{\eta_o,I}:=H^n((\mathcal{E}ll_{X,\mathcal{D},I}/\mathbb{Z})\times_{X'}\operatorname{Spec}\bar{F}_o,\bar{\mathbb{Q}}_l).$$

D'après le théorème de changement de base propre, on a, pour tout n, un isomorphisme canonique de $\bar{\mathbb{Q}}_l$ -espaces vectoriels

$$H_{\eta,I}^n \simeq H_{\eta_0,I}^n$$

qui est compatible à l'action de $\operatorname{Gal}(\bar{F}/F) \longrightarrow \operatorname{Gal}(\bar{F}_o/F_o)$.

Soit g^{∞} un élément de $(D^{\infty})^{\times}$, la correspondance de Hecke (cf. le paragraphe 3.4.2 du chapitre 2) qui lui est associée



définit des actions compatibles de \mathcal{H}_I^{∞} sur $H_{\eta,I}^n$ et sur $H_{\eta_o,I}^n$, définies sur \mathbb{Q}_l et qui commutent aux actions des groupes de Galois. On considère les limites directes

$$H^n_{\eta}:=\varinjlim_I H^n_{\eta,I} \text{ et } H^n_{\eta_o}:=\varinjlim_I H^n_{\eta_o,I},$$

où la limite est prise sur tous les idéaux stricts I de A tels que V(I) contienne les places x_3, x_4 et où les morphismes de transition sont induits par les morphismes

de restriction du niveau $r_{J,I}$. Ces $\bar{\mathbb{Q}}_l$ -espaces vectoriels $H^n_{\eta} \simeq H^n_{\eta_o}$ sont alors munis d'actions compatibles de $(D^{\infty})^{\times}$. Les morphismes de transitions étant injectifs, pour tout idéal I, on considère respectivement $H^n_{\eta,I}$ et $H^n_{\eta_o,I}$ comme des sous-espaces vectoriels de H^n_{η} et $H^n_{\eta_o}$. On a ainsi

$$H_{\eta,I}^{n} = (H_{\eta}^{n})^{K_{I}^{\infty}} \qquad H_{\eta_{0},I}^{n} = (H_{\eta_{0}}^{n})^{K_{I}^{\infty}},$$

où respectivement l'action de \mathcal{H}_I^{∞} sur $H_{\eta,I}^n$ et $H_{\eta_o,I}^n$, coïncide avec l'action induite de \mathcal{H}_I^{∞} sur les vecteurs de H_{η}^n et $H_{\eta_o}^n$ invariants sous K_I^{∞} .

Dans la suite, on remplacera l'action du groupe de Galois $\operatorname{Gal}(\bar{F}_o/F_o)$ sur $H^n_{\eta_o,I}$ par l'action du groupe de Weil Γ_o . Comme $H^n_{\eta_o,I}$ est de dimension finie, on en déduit le lemme suivant.

Lemme 2.1 La représentation $H^n_{\eta_o}$ de $(D^{\infty})^{\times} \times \Gamma_o$ est un objet de la catégorie $C_{(D^{\infty})^{\times},\Gamma_o}$.

On note $[H^n_{\eta_o}]$ l'image de $H^n_{\eta_o}$ dans le groupe $K_{(D^\infty)^\times,\Gamma_o}$ et pour $\tau^\infty \in \mathcal{T}^\infty_{2,glob}$ et $\sigma_o \in \mathcal{T}_{1,o}$, soit $\lambda_{\tau^\infty \otimes \sigma_o}(H^n_{\eta_o})$ la multiplicité de $\tau^\infty \otimes \sigma_o$ dans $H^n_{\eta_o}$.

Soit St_{∞} la représentation de Steinberg de D_{∞}^{\times} .

Théorème 2.2 ([23]) Si τ^{∞} est une représentation admissible, irréductible de D^{∞} , de dimension infinie, pour laquelle il existe un entier n et une représentation σ_o , continue, irréductible de Γ_o telle que $\lambda_{\tau^{\infty}\otimes\sigma_o}(H^n_{\eta_o})\neq (0)$ alors n=d-1 et $St_{\infty}\otimes\tau^{\infty}$ est une représentation automorphe de $D^{\infty}_{\wedge}/\pi^{\infty}_{\infty}$.

Soit π_o une représentation irréductible, cuspidale de $GL_d(F_o)$, de caractère central d'ordre fini. On rappelle le lemme suivant de [23] dont nous avons fait mention au paragraphe 2.1 du premier chapitre.

Lemme 2.3 (cf. [23]) Il existe une sous-représentation cuspidale Π de

$$L_{cusp}(GL_d(F)F_{\infty}^{\times}\backslash GL_d(\mathbb{A})),$$

telle que $\Pi_{\infty} \simeq St_{\infty}$, $\Pi_o \simeq \pi_o$, et Π_{x_i} est cuspidale, irréductible, admissible pour $i = 1, \dots, 4$.

Proposition 2.4 (cf. [18]) Soit Π un élément de $L_{cusp}(GL_d(F)F_{\infty}^{\times}\backslash GL_d(\mathbb{A}))$ vérifiant les hypothèses du lemme ci-dessus. Il existe alors un et un seul à isomorphisme près, élément τ de $L(D^{\times}F_{\infty}^{\times}\backslash D_{\mathbb{A}}^{\times})$ tel que

$$\tau_y \simeq \Pi_y \qquad \forall y \neq x_1, x_2.$$

De plus la multiplicité $m(\tau)$ de τ dans $L(D^{\times}F_{\infty}^{\times}\backslash D_{\mathbb{A}}^{\times})$ est égale à 1.

Théorème 2.5 (cf. [23]) Soit τ comme dans la proposition ci-dessus. On a alors

$$\lambda_{\tau^{\infty}\otimes\sigma_o}(H_{\eta_o}^{d-1}) = \begin{cases} 0 & \sigma_o \neq \mathfrak{L}_{d,F_o}(\pi_o) \\ 1 & \sigma_o = \mathfrak{L}_{d,F_o}(\pi_o), \end{cases}$$

où \mathcal{L}_{d,F_o} désigne la correspondance locale de Langlands (cf. paragraphe 2.2 du premier chapitre).

3 Les cycles proches pour $\mathcal{E}ll_{X,\mathcal{D},I}$.

Dans la suite on notera \mathcal{M}_I le schéma $(\mathcal{E}ll_{X,\mathcal{D},I}/\mathbb{Z}) \times_{X'} \operatorname{Spec} \mathcal{O}_o$. Comme précédemment, $\mathcal{M}_{I,o}$ désigne la fibre en o de \mathcal{M}_I et on note $\mathcal{M}_{I,\bar{o}} := \mathcal{M}_{I,o} \otimes_{\kappa(o)} \bar{\kappa}(o)$.

3.1 Rappels sur les cycles proches.

Pour tout ce qui concerne ces rappels, on se réfèrera à [32]. Pour tout idéal I ($\{x_3, x_4\} \subset V(I)$), les schémas \mathcal{M}_I sont de type fini et propres sur Spec \mathcal{O}_o . On considère le complexe des cycles proches (resp. des cycles évanescents) $R\Psi_{\eta_o}(\bar{\mathbb{Q}}_I)$ (resp. $R\Phi_{\eta_o}(\bar{\mathbb{Q}}_I)$) sur $\mathcal{M}_{I,\bar{o}}$, muni de son action de Γ_o qui relève l'action du Frobenius en o sur $\mathcal{M}_{I,\bar{o}}$.

Propriétés des $R^i\Psi_{\eta_0}(\bar{\mathbb{Q}}_l)$:

- pour tout i, les faisceaux $R^i\Psi_{\eta_o}(\bar{\mathbb{Q}}_l)$ et $R^i\Phi_{\eta_o}(\bar{\mathbb{Q}}_l)$ appartiennent à $D^b_c(\mathcal{M}_{I,\bar{o}},\bar{\mathbb{Q}}_l)$;
- si o n'appartient pas à V(I), \mathcal{M}_I est lisse sur Spec \mathcal{O}_o et donc les $R^i\Phi_{\eta_o}(\bar{\mathbb{Q}}_I)$ sont tous nuls;
- pour tout point géométrique \bar{z} de $\mathcal{M}_{I,\bar{o}}$, la fibre de $R^i\Psi_{\eta_o}(\bar{\mathbb{Q}}_l)$ en ce point, est égale à

$$H^i(\mathcal{M}_{I,(\bar{z})}\otimes_{F_o^{nr}}\bar{F}_o,\bar{\mathbb{Q}}_l),$$

où $\mathcal{M}_{I,(\bar{z})}$ est l'hensélisé strict de \mathcal{M}_I en \bar{z} .

- Pour tout entier i tel que $0 \le i \le d$, on a

$$\dim \operatorname{Supp} R^i \Psi_{\eta_o}(\bar{\mathbb{Q}}_l) \leqslant d - 1 - i.$$

On note $\widehat{\mathcal{M}_{I,(\overline{z})}}$ le complété de $\mathcal{M}_{I,(\overline{z})}.$

Lemme 3.1.1 (Berkovich cf. [1]) Pour tout entier i et tout point géométrique \bar{z} de $\mathcal{M}_{I,\bar{o}}$, le morphisme de restriction

$$H^{i}(\mathcal{M}_{I,(\bar{z})} \otimes_{F_{o}^{nr}} \bar{F}_{o}, \bar{\mathbb{Q}}_{l}) \longrightarrow H^{i}(\widehat{\mathcal{M}_{I,(\bar{z})}} \otimes_{F_{o}^{nr}} \bar{F}_{o}, \bar{\mathbb{Q}}_{l})$$

est un isomorphisme

On pose

$$EV_{o,I}^i:=\mathbb{H}^i(\mathcal{M}_{I,\bar{o}},R\Psi_{\eta_o}(\bar{\mathbb{Q}}_l)).$$

Le morphisme de schéma $\mathcal{M}_I \longrightarrow \operatorname{Spec} \mathcal{O}_o$ étant propre, on en déduit un isomorphisme Γ_o -équivariant

$$H^i_{\eta_o,I} \simeq EV^i_{o,I} \tag{3.1.2}$$

Les $\bar{\mathbb{Q}}_I$ -espaces vectoriels $EV_{o,I}^i$ sont munis d'une action de \mathcal{H}_I^{∞} que l'on définit comme suit. Si $(\mathcal{M}_J, c_1, c_2)$ est une correspondance géométrique sur \mathcal{M}_I associée à un élément de \mathcal{H}_I^{∞} , on rappelle qu'alors c_1 et c_2 sont finis et la correspondance cohomologique associée est définie par la composée des trois applications ci-dessous obtenues d'après les propriétés de fonctorialité de $R\Psi_{\eta_o}$:

- $-c_1^*R\Psi_{\eta_o}(\bar{\mathbb{Q}}_l) \longrightarrow R\Psi_{\eta_o}(c_1^*(\bar{\mathbb{Q}}_l)),$ par changement de base;
- $-R\Psi_{\eta_o}(c_1^*(\bar{\mathbb{Q}}_l)) \longrightarrow R\psi_{\eta_o}(c_2^!(\bar{\mathbb{Q}}_l))$, que l'on obtient par fonctorialité de $R\Psi_{\eta_o}$ à partir de l'adjointe de la flèche

$$\bar{\mathbb{Q}}_l \longrightarrow c_{1,*}c_1^!(\bar{\mathbb{Q}}_l) = c_{1,*}c_2^!(\bar{\mathbb{Q}}_l).$$

En effet le morphisme $f: \mathcal{M}_I \longrightarrow \operatorname{Spec} \mathbb{F}_q$ étant lisse, on a $f^!(\bar{\mathbb{Q}}_l) = f^*(\bar{\mathbb{Q}}_l(d)[2d])$ (cf. [28] exposé XVIII). Comme $f \circ c_1 = f \circ f_2$, on a alors $c_1^! \circ f^! = c_2^! \circ f^!$ et $c_1^!(\bar{\mathbb{Q}}_l)$ est isomorphe à $c_2^!(\bar{\mathbb{Q}}_l)$;

 $-R\Psi_{\eta_o}(c_2^!(\bar{\mathbb{Q}}_l)) \longrightarrow c_2^!R\Psi_{\eta_o}(\bar{\mathbb{Q}}_l)$, par changement de base.

Cette action est définie sur \mathbb{Q}_l et commute à l'action de Γ_o . L'isomorphisme 3.1.2 est alors $\mathcal{H}_I^{\infty} \times \Gamma_o$ -équivariant. La limite directe sur le système inductif paramétré par les idéaux I de A, les morphismes de transition étant induits par les morphismes de restriction du niveau $r_{J,I}$,

$$EV_o^i = \lim_{\longrightarrow} EV_{o,I}^i,$$

est alors muni d'une action de \mathcal{H}^{∞} , définie sur \mathbb{Q}_l et commutant à l'action de Γ_o . Les morphismes de transition étant injectifs, pour tout idéal I de A, on considère $EV_{o,I}^i$ comme un sous-espace vectoriel de EV_o^i et on a

$$EV_{o,I}^i = (EV_o^i)^{K_I^\infty},$$

où l'action de \mathcal{H}_I^{∞} sur $EV_{o,I}^i$, correspond à l'action induite de \mathcal{H}_I^{∞} sur les vecteurs de EV_o^i invariants sous K_I^{∞} . L'isomorphisme 3.1.2 fournit un isomorphisme $(D^{\infty})^{\times} \times \Gamma_o$ -équivariant

$$H_{n_o}^i \simeq EV_o^i \tag{3.1.3}$$

Pour tout idéal I, les \mathbb{Q}_l -espaces vectoriels $EV_{o,I}^i$ étant de dimension finie, on a le lemme suivant.

Lemme 3.1.4 Pour tout entier i, EV_o^i , en tant qu'objet de la catégorie $C_{(D^\infty)^\times,\Gamma_o}$, est isomorphe à $H_{\eta_o}^i$.

3.2 Supports et germes des cycles proches de $\mathcal{E}ll_{X,\mathcal{D},I,o}$.

Proposition 3.2.1 Le support de $R^i\Psi_{\eta_o}$ est contenu dans la i+1-ème strate $\mathcal{M}_{I,o}^{\geqslant i+1}$ de $\mathcal{M}_{I,\bar{o}}$. De plus si \bar{z} est un point géométrique de $\mathcal{M}_{I,\bar{o}}^{=i+1}$, la fibre de $R^i\Psi_{\eta_o}$ en \bar{z} est donnée par

$$\Psi_n^{i,i-1} = H^{i-1}(\operatorname{Spec}(D_n^i \otimes_{\hat{\mathcal{O}}_n^{\operatorname{nr}}} \bar{F}^{\operatorname{nr}}), \bar{\mathbb{Q}}_l).$$

Preuve : Pour tout entier i, on a dim $\operatorname{Supp}(R^i\Psi_{\eta_o}) \leqslant d-1-i$. D'après le lemme 3.1.1, pour tout point géométrique \bar{z} de $\mathcal{M}_{I,\bar{o}}^{=h}$, la fibre de $R^i\Psi_{\eta_o}$ en \bar{z} est égale à $H^i(\widehat{\mathcal{M}_{I,(\bar{z})}} \otimes_{F_o^{nr}} \bar{F}_o, \bar{\mathbb{Q}}_l)$. D'après le théorème de Serre-Tate, $\widehat{\mathcal{M}_{I,(\bar{z})}}$ est isomorphe à

Spec
$$(D_n^h \hat{\otimes}_{\bar{\kappa}(o)} \bar{\kappa}(o)[[t_1, \dots, t_{d-h}]])$$
.

Cette fibre ne dépend ainsi que de la strate à laquelle \bar{z} appartient. Les strates $\mathcal{M}_{I,o}^{\geqslant h}$ étant de dimension d-h, on en déduit que le support de $R^i\Psi_{\eta_o}$ est inclus dans $\mathcal{M}_{I,o}^{\geqslant i+1}$. De plus d'après le théorème de changement de base lisse en cohomologie étale, la cohomologie de $D_n^h \hat{\otimes}_{\bar{\kappa}(o)} \bar{\kappa}(o)[[t_1, \dots, t_{d-h}]]$ est la même que celle de D_n^h .

4 Uniformisation du complété formel le long de l'ensemble des points supersinguliers.

Le but de ce paragraphe est de décrire $\widehat{\mathcal{M}_{I,\mathrm{Sing}}}$, le complété formel de

$$\mathcal{M}_I = (\mathcal{E}ll_{X,\mathcal{D},I}/\mathbb{Z}) \times_{X'} \operatorname{Spec} \mathcal{O}_o$$

le long des points supersinguliers. De manière équivalente, cela revient à décrire le complété formel de $\mathcal{M}_I \otimes_{\mathcal{O}_o} \mathcal{O}_o^{\text{nr}}$ le long de $\mathcal{M}_{I,\bar{o}}^{=d}$ muni de l'action du Frobenius en o.

Soit G_o un \mathcal{O}_o -module formel normal sur $\bar{\kappa}(o)$, de hauteur d. On note D_n^d son anneau des déformations universelles. Pour tout entier m, on pose

$$D_n^{d,(m)} = D_n^d \otimes_{\hat{\mathcal{O}}_n^{\mathrm{nr}},\alpha} \hat{\mathcal{O}}_o^{\mathrm{nr}}$$

où α est la puissance m-ème de l'inverse du relèvement canonique $\hat{\mathcal{O}}_o^{\operatorname{nr}} \xrightarrow{\sim} \hat{\mathcal{O}}_o^{\operatorname{nr}}$ du Frobenius de $\kappa(o)$. On rappelle (cf. le paragraphe 3.2.2 du premier chapitre) que $D_n^{d,(m)}$ est l'anneau des déformations universelles de Frob $_o^m(G_o)$. L'action du sous-groupe \mathfrak{P} de $GL_d(F_o) \times \bar{D}_o^{\times} \times \Gamma_o$ sur $\varinjlim_n \operatorname{Spec} D_n^d$, donnée au paragraphe 3.2.2 du premier chapitre, peut s'interpréter en disant que

$$\coprod_{m \in \mathbb{Z}} \varinjlim_{n} \operatorname{Spec} D_{n}^{d,(m)}$$

est muni d'une action $GL_d(F_o) \times \bar{D}_o^{\times} \times \operatorname{Frob}_o^{\mathbb{Z}}$. L'action de Frob_o est alors donné par les isomorphismes canoniques d'anneaux (et non de $\hat{\mathcal{O}}_o^{\operatorname{nr}}$ -algèbre)

$$\operatorname{Spec} D_n^{d,(m)} \xrightarrow{\sim} \operatorname{Spec} D_n^{d,(m+1)}, \quad m \in \mathbb{Z}.$$

A tout élément g_o (resp. δ_o) de $GL_d(F_o)$ (resp. de \bar{D}_o^{\times}) est associé un isomorphisme

$$\underset{n}{\lim} \operatorname{Spec} D_n^{d,(m)} \xrightarrow{\sim} \underset{n}{\lim} \operatorname{Spec} D_n^{d,(m+r)}, \qquad m \in \mathbb{Z}$$

où $r = -\operatorname{val}(\det g_o)$ (resp. $r = \operatorname{val}(\operatorname{rn}(\delta_o))$). Le \mathcal{O}_o -module formel G_o étant choisi normal, $(\pi_o^{-1}, 1, \operatorname{Frob}_o^{-d})$ agit trivialement.

Proposition 4.1 Pour tout idéal I de A, on a un isomorphisme

$$\widehat{\mathcal{M}_{I,\operatorname{Sing}}^{\widehat{}}} \xrightarrow{\sim} \bar{D}^{\times} \setminus \left[(D^{\infty,o})^{\times} / K_I^{\infty,o} \times \coprod_{m \in \mathbb{Z}} \operatorname{Spec} D_n^{d,(m)} \right]. \tag{4.2}$$

compatible à l'action de Frobo ainsi qu'aux morphismes de restriction du niveau.

Preuve: D'après le paragraphe 5.4 du chapitre précédent, il existe un seul (D, ∞, o) -type pour les points supersinguliers, $(F, \tilde{\Pi}_F)$ (cf. le proposition 5.2.1 du chapitre précédent). Soit alors (V, φ, λ) , un φ -espace muni d'une action de D qui a $(F, \tilde{\Pi}_F)$ pour (D, ∞, o) -type (cf. le paragraphe 5.3 du chapitre précédent). On note $\mathcal{Y}_{\mathbb{A},I}^{\infty} = \mathcal{Y}_I^{\infty,o} \times \mathcal{Y}_o$ (cf loc. cit.), l'ensemble, pour toutes les places x de F, des \mathcal{D}_x -réseaux M_x de V_x muni d'une structure de niveau α_{x,n_x} $(I = \prod_x \mathfrak{m}_x^{n_x})$, qui vérifient les conditions (i)-(iv) de la proposition 5.1.2 du chapitre précédent. L'ensemble des points supersinguliers $\operatorname{Sing}_I(\bar{\kappa}(o))$ est alors isomorphe à $\bar{D}^\times \backslash \mathcal{Y}_{\mathbb{A},I}^\infty$ où $\bar{D} = \operatorname{End}(V,\varphi)$ (cf. le paragraphe 5.5 du chapitre précédent).

On fixe un point base $s_0 = (M_x(s_0), \alpha_x(s_0))_{x \in |X|}$ de $\mathcal{Y}_{\mathbb{A},I}^{\infty}$ tel que le \mathcal{O}_o -module formel G_o associé au \mathcal{D}_o -réseau $M_o(s_0)$ est normal. Le choix de ce point base donne un isomorphisme

$$\mathcal{Y}^{\infty}_{\mathbb{A},I} \simeq (D^{\infty,o})^{\times}/K_I^{\infty,o} \times \mathbb{Z}.$$

On note $(\bar{\mathcal{E}}_i(s_0), \bar{j}_i(s_0), \bar{t}_i(s_0))$ le \mathcal{D} -faisceau elliptique défini sur $\bar{\kappa}(o)$, muni d'une I-structure de niveau $\bar{\iota}_I(s_0)$, tel que pour tout place x de F, $\mathcal{E}_{0,x}(s_0) = M_x(s_0)$ et $\iota_x(s_0) = \alpha_x(s_0)$. Pour un point supersingulier \bar{s} et $s = (\bar{d}^{\infty,o}, m)$ un élément de $\mathcal{Y}_{\mathbb{A},I}^{\infty}$ dans la classe de \bar{s} , on a un isomorphisme

$$\widehat{\mathcal{M}_{I,(\overline{s})}} \longrightarrow \operatorname{Spec} D_n^{d,(m)},$$

(n est la multiplicit'e de o dans I), donné par le théorème de Serre-Tate en considérant $\widehat{\mathcal{M}_{L(\overline{s})}}$ comme représentant les déformations de

$$(\overline{d}^{\infty,o},\operatorname{Frob}_o^m)((\overline{\mathcal{E}}_i(s_0),\overline{j}_i(s_0),\overline{t}_i(s_0)),\iota_I(s_0)).$$

On obtient alors un isomorphisme

$$\coprod_{s \in \mathcal{Y}_{\mathbb{A},I}^{\infty}} \widehat{\mathcal{M}_{I,(\overline{s})}} \longrightarrow (D^{\infty,o})^{\times} / K_I^{\infty,o} \times \coprod_{m \in \mathbb{Z}} \operatorname{Spec} D_n^{d,(m)},$$
(4.3)

compatible à l'action de Frob_o et aux morphismes de restriction du niveau. L'action de \bar{D}_o^{\times} sur le membre de droite de 4.3 permet de définir une action de \bar{D}_o^{\times} sur le membre de gauche de 4.3 de sorte que l'action de $\bar{D}^{\times} \subset \bar{D}_o^{\times}$ ainsi définie, relève l'action de \bar{D}^{\times} sur $\mathcal{Y}_{\mathbb{A},I}^{\infty}$. L'isomorphisme 4.2 découle alors de l'isomorphisme $\widehat{\mathcal{M}_{I,\mathrm{Sing}}} \simeq \coprod_{x \in \mathrm{Sing}_{I}(\bar{E}(o))} \widehat{\mathcal{M}_{I,(x)}}$.

Proposition 4.4 En passant à la limite sur tous les idéaux I de A, les isomorphismes 4.2 donnent un isomorphisme $(D^{\infty})^{\times}$ -équivariant

$$\underset{I}{\varinjlim} \mathcal{M}_{I,\operatorname{Sing}} \xrightarrow{\sim} \bar{D}^{\times} \setminus \left[(D^{\infty,o})^{\times} / (\mathcal{D}^{\infty,o})^{\times} \times \coprod_{m \in \mathbb{Z}} \underset{n}{\varinjlim} \operatorname{Spec} D_n^{d,(m)} \right], \tag{4.5}$$

 $où (D^{\infty,o})^{\times} opère à droite sur <math>(D^{\infty,o})^{\times}/(\mathcal{D}^{\infty,o})^{\times}$.

Preuve: L'isomorphisme de l'énoncé est clairement $(D^{\infty,o})^{\times}$ -équivariant. Soit donc g_o un élément de $GL_d(F_o) \cap \mathbb{M}_d(\mathcal{O}_o)$. L'action de g_o sur le membre de droite de 4.5 (resp. sur le membre de gauche de 4.5) donne pour tout m des morphismes $g_o^{drt}(m)$ (resp. $g_o^{gch}(m)$)

$$\underset{n}{\varinjlim}\operatorname{Spec} D_n^{d,(m)} \longrightarrow \underset{n}{\varinjlim}\operatorname{Spec} D_n^{d,(m+r)}$$

où $r = -\operatorname{val}(\det g_o)$. Il faut vérifier que, pour tout $m, g_o^{gch}(m) = g_o^{drt}(m)$. Un point base s_0 de $\mathcal{Y}_{\mathbb{A},I}^{\infty}$ étant fixé comme dans la preuve de la proposition précédente, soit $s = (\bar{d}^{\infty,o}, m)$ l'élément de $\mathcal{Y}_{\mathbb{A},I}^{\infty}$, image du point base s_0 par $(\bar{d}^{\infty,o}, m)$. Soit $((\mathcal{E}_i, j_i, t_i), \iota_I)$ la déformation universelle, définie sur $S = \operatorname{Spec} D_n^{d,(m)}$ (n est la multiplicité de o dans I), de $(\bar{d}^{\infty,o}, \operatorname{Frob}_o^m)((\bar{\mathcal{E}}_i(s_0), \bar{j}_i(s_0), \bar{t}_i(s_0)), \bar{\iota}_I(s_0))$. On note $((\mathcal{E}_i^1, j_i^1, t_i^1), \iota_I^1)$ le \mathcal{D} -faisceau elliptique du paragraphe 3.4.2 du deuxième chapitre, image de $((\mathcal{E}_i, j_i, t_i), \iota_I)$ par g_o^{-1} . Sur le point générique η de S, $(\mathcal{F}_o^1)^* \times_S \eta$ est isomorphe à $\operatorname{Ker}[g_o]^* \times_S \eta \subset \mathcal{F}_o^* \times_S \eta$ (cf. le cas c2) du dit paragraphe) et le \mathcal{O}_o -module formel $Gr_o(\mathcal{F}_o) \times_S \eta$ est alors isomorphe au \mathcal{O}_o -module formel $Gr_o(\mathcal{F}_o)_{\operatorname{Ker} g_o} \times_S \eta$ (cf. les notations du paragraphe 3.2.2 du premier chapitre). On a alors, pour tout m, $g_o^{gch}(m) \times_S \eta = g_o^{drt}(m) \times_S \eta$, d'où $g_o^{gch}(m) = g_o^{drt}(m)$.

114

5 Calcul des coefficients $\lambda_{\tau^{\infty} \otimes \sigma_o}(H_{\eta_o}^n)$, pour τ_o cuspidale.

On rappelle que pour tout idéal I de A, on a posé $\mathcal{M}_I = (\mathcal{E}ll_{X,\mathcal{D},I}/\mathbb{Z}) \times_{X'}$ Spec \mathcal{O}_o . On note encore n le multiplicité de o dans I.

5.1 Les strates ouvertes non supersingulières ne contiennent pas de cuspidale.

On note $\mathcal{M}_{I,o}^{=h}$ la h-ème strate de $\mathcal{M}_{I,o}$, c'est-à-dire avec les notations du chapitre précédent $\mathcal{M}_{I,o}^{=h} = (\mathcal{E}ll_{X,\mathcal{D},I,o}^{=h}/\mathbb{Z})$. D'après la proposition 4.3 du chapitre 3, on a

$$\mathcal{M}_{I,o}^{=h} = \operatorname{Ind}_{P_h(\mathcal{O}_o/\mathfrak{m}_o^n)}^{GL_d(\mathcal{O}_o/\mathfrak{m}_o^n)} (\mathcal{M}_{I,o}^{=h})_{\overline{1}},$$

où n est la multiplicité de o dans I. En passant à la limite sur les idéaux I de A, on a

$$\mathcal{M}_o^{=h} = \operatorname{Ind}_{P_h(F_o)}^{GL_d(F_o)} (\mathcal{M}_o^{=h})_{\bar{1}},$$

où
$$\mathcal{M}_o$$
: = $\lim_{\stackrel{\longleftarrow}{I}} \mathcal{M}_{I,o}$.

Proposition 5.1.1 Pour tout entier h tel que $1 \le h \le d-1$, pour toute représentation irréductible admissible τ^{∞} de $(D^{\infty})^{\times}$ telle que $(\tau^{\infty})_o$ est une représentation cuspidale de $GL_d(F_o)$ et pour toute représentation l-adique irréductible σ_o de Γ_o , les multiplicités

$$\lambda_{ au^{\infty}\otimes\sigma_o}\left(\lim_{\stackrel{\longrightarrow}{I}}H^p_c(\mathcal{M}^{=h}_{I,\overline{o}},R^i\Psi_{\eta_o}(\bar{\mathbb{Q}}_l))\right),$$

sont nulles, quels que soient les entiers p et i.

Preuve: Pour tout idéal I de A, le $\bar{\mathbb{Q}}_l$ -espace vectoriel $H_c^p(\mathcal{M}_{I,\bar{o}}^{=h}, R^i\Psi_{\eta_o}(\bar{\mathbb{Q}}_l))$ se décompose en une somme directe

$$\bigoplus_{\bar{g} \in GL_d(\mathcal{O}_o/\mathfrak{m}_o^n)/P_h(\mathcal{O}_o/\mathfrak{m}_o^n)} H_c^p((\mathcal{M}_{I,\bar{o}}^{-h})_{\bar{g}}, R^i \Psi_{\eta_o}(\bar{\mathbb{Q}}_l)),$$

où n est la multiplicité de o dans I. Pour tout élément $g' \in GL_d(\mathcal{O}_o/\mathfrak{m}_o^n)$, on a

$$g'(H_c^p((\mathcal{M}_{l,\bar{\varrho}}^{=h})_{\bar{q}}, R^i\Psi_{\eta_\varrho}(\bar{\mathbb{Q}}_l)) \subset H_c^p((\mathcal{M}_{l,\bar{\varrho}}^{=h})_{\bar{\varrho}'q}, R^i\Psi_{\eta_\varrho}(\bar{\mathbb{Q}}_l)).$$

D'après le lemme 4.4 du chapitre précédent, on a alors

$$H_c^p(\mathcal{M}_{I,\bar{o}}^{=h}, R^i \Psi_{\eta_o}(\bar{\mathbb{Q}}_l)) = \operatorname{Ind}_{P_h(\mathcal{O}_o/\mathfrak{m}_o^n)}^{GL_d(\mathcal{O}_o/\mathfrak{m}_o^n)} H_c^p((\mathcal{M}_{I,o}^{=h})_{\bar{1}}, R^i \Psi_{\eta_o}(\bar{\mathbb{Q}}_l)).$$

Par passage à la limite sur tous les idéaux I de A, on obtient une bijection $GL_d(\mathcal{O}_o)$ -équivariante

$$\lim_{\stackrel{\longrightarrow}{I}} H_c^p(\mathcal{M}_{I,\bar{o}}^{=h}, R^i \Psi_{\eta_o}(\bar{\mathbb{Q}}_l)) = \operatorname{Ind}_{P_h(\mathcal{O}_o)}^{GL_d(\mathcal{O}_o)} \lim_{\stackrel{\longrightarrow}{I}} H_c^p((\mathcal{M}_{I,\bar{o}}^{=h})_{\bar{1}}, R^i \Psi_{\eta_o}(\bar{\mathbb{Q}}_l)).$$

On a de plus une action de $P_h(F_o)$ sur $\varinjlim_{I} H_c^p((\mathcal{M}_{I,\bar{o}}^{=h})_{\bar{1}}, R^i \Psi_{\eta_o}(\bar{\mathbb{Q}}_l))$. La décomposition d'Iwasawa $GL_d(F_o) = P_h(F_o).GL_d(\mathcal{O}_o)$ donne alors une bijection $GL_d(F_o)$ -équivariante

$$\lim_{\stackrel{\longrightarrow}{I}} H_c^p(\mathcal{M}_{I,\bar{o}}^{=h}, R^i \Psi_{\eta_o}(\bar{\mathbb{Q}}_l)) = \operatorname{Ind}_{P_h(F_o)}^{GL_d(F_o)} \lim_{\stackrel{\longrightarrow}{I}} H_c^p((\mathcal{M}_{I,\bar{o}}^{=h})_{\bar{1}}, R^i \Psi_{\eta_o}(\bar{\mathbb{Q}}_l)).$$

Le lemme 1.7.1 du premier chapitre donne alors la nullité des multiplicités

$$\lambda_{(\tau^{\infty})_o\otimes\sigma_o}\left(\lim_{\stackrel{\longrightarrow}{I}}H^p_c(\mathcal{M}_{I,\bar{o}}^{=h},R^i\Psi_{\eta_o}(\bar{\mathbb{Q}}_l))\right)$$

ce qui entraine la nullité des multiplicités $\lambda_{\tau^{\infty}\otimes\sigma_o}\left(\varinjlim_{I}H_c^p(\mathcal{M}_{I,\bar{o}}^{=h},R^i\Psi_{\eta_o}(\bar{\mathbb{Q}}_l))\right)$.

5.2 Suites spectrales et points supersinguliers.

Pour tout idéal I de A, on a une filtration de $\mathcal{M}_{I,o}$ par des fermés

$$\emptyset \neq \mathcal{M}_{I,o}^{=d} = \mathcal{M}_{I,o}^{\geqslant d} \subset \mathcal{M}_{I,o}^{\geqslant d-1} \subset \cdots \subset \mathcal{M}_{I,o}^{\geqslant 1} = \mathcal{M}_{I,o}.$$

A cette filtration est associée la suite spectrale (cf. [29] Applications de la formule des traces aux sommes trigonométriques)

$$E_{1,I}^{v;p,q} = H_c^{p+q}(\mathcal{M}_{I,\bar{o}}^{=p-1}, R^v \Psi_{\eta_o}(\bar{\mathbb{Q}}_l)) \Longrightarrow H_c^{p+q}(\mathcal{M}_{I,\bar{o}}, R^v \Psi_{\eta_o}(\bar{\mathbb{Q}}_l)).$$

Proposition 5.2.1 Pour tout entier positif v, pour toute représentation irréductible admissible τ^{∞} de $(D^{\infty})^{\times}$ telle que $(\tau^{\infty})_o$ est cuspidale et pour toute représentation l-adique irréductible σ_o de Γ_o , les multiplicités

$$\lambda_{\tau^{\infty}\otimes\sigma_o}\left(\lim_{\stackrel{\longrightarrow}{I}}H^n(\mathcal{M}_{I,\overline{o}},R^v\Psi_{\eta_o}(\bar{\mathbb{Q}}_t))\right)$$

sont nulles pour n strictement positif, et pour n=0, elles sont égales à

$$\lambda_{ au^{\infty}\otimes\sigma_o}\left(\lim_{\stackrel{\longrightarrow}{I}}H^0(\mathcal{M}_{I,ar{o}}^{=d},R^v\Psi_{\eta_o}(ar{\mathbb{Q}}_l))
ight).$$

Preuve: D'après la proposition 5.1.1, les multiplicités $\lambda_{\tau^{\infty}\otimes\sigma_o}(\varinjlim_{I} E_{1,I}^{v;p,q})$ sont nulles pour $(p,q) \neq (d+1,-d-1)$. On rappelle que $\lambda_{\tau^{\infty}\otimes\sigma_o}$ est additive sur les suites exactes courtes et est positive sur les représentations effectives de sorte que, si pour un objet V de $C_{(D^{\infty})^{\times},\Gamma_o}$, $\lambda_{\tau^{\infty}\otimes\sigma_o}(V)$ est nulle, alors il en est de même pour tout sous-quotient de V. Par récurrence sur r, $E_{r,I}^{v;p,q}$ étant un sous-quotient de

 $E_{r-1,I}^{v;p,q}$, les multiplicités $\lambda_{\tau^{\infty}\otimes\sigma_o}(\varinjlim_{I} E_{r,I}^{v;p,q})$ sont nulles pour $(p,q)\neq (d+1,-d-1)$. La suite $(E_{r,I}^{v;p,q})_r$ étant stationnaire pour r assez grand, on a donc

$$\lambda_{\tau^{\infty}\otimes\sigma_o}(\underset{I}{\varinjlim}E_{\infty,I}^{v;p,q})=0.$$

 $E_{\infty,I}^{v;n}$ étant filtré par les $E_{\infty,I}^{v;p,q}$ pour p+q=n, les multiplicités $\lambda_{\tau^{\infty}\otimes\sigma_o}(\varinjlim_{I} E_{\infty,I}^{v;n})$ sont alors nulles pour n strictement positif. On a aussi l'égalité

$$\sum_{p,q} (-1)^{p+q} \lambda_{\tau^{\infty} \otimes \sigma_o}(\varinjlim_{I} E_{1,I}^{v;p,q}) = \sum_{n} (-1)^n \lambda_{\tau^{\infty} \otimes \sigma_o}(\varinjlim_{I} E_{\infty,I}^{v;n}).$$

On en déduit donc que $\lambda_{\tau^{\infty}\otimes\sigma_o}(\varinjlim_{I} E_{\infty,I}^{v;0})$ est égale à $\lambda_{\tau^{\infty}\otimes\sigma_o}(\varinjlim_{I} E_{1,I}^{v;d+1,-d-1})$.

Pour tout idéal I de A, la suite exacte des cycles évanescents (cf. 3.1.2) d'objets de $C_{(D^{\infty})^{\times},\Gamma_{0}}$ (cf. le lemme 3.1.4)

$$E_{2,I}^{u,v} = H_c^u(\mathcal{M}_{I,\bar{o}}, R^v \Psi_{\eta_o}(\bar{\mathbb{Q}}_l)) \Longrightarrow H_{\eta_o,I}^{u+v}$$

permet, compte tenu de la proposition précédente, de prouver la proposition suivante.

Proposition 5.2.2 Pour toute représentation τ^{∞} irréductible de $(D^{\infty})^{\times}$ telle que $(\tau^{\infty})_o$ est une représentation cuspidale de $GL_d(F_o)$ et pour toute représentation l-adique irréductible σ_o de Γ_o , les multiplicités $\lambda_{\tau^{\infty}\otimes\sigma_o}(H^n_{\eta_o})$ sont, pour tout n, égales à

$$\lambda_{\tau^{\infty}\otimes\sigma_o}\left(H^0(\mathcal{M}_{I,\bar{o}}^{=d},R^n\Psi_{\eta_o}(\bar{\mathbb{Q}}_l))\right).$$

Preuve: D'après la proposition précédente, les multiplicités $\lambda_{\tau^{\infty}\otimes\sigma_o}(\varinjlim_{I}E_{2,I}^{u,v})$ sont nulles pour $u\neq 0$ et pour u=0, elles sont égales à

$$\lambda_{\tau^{\infty}\otimes\sigma_o}\left(\lim_{\stackrel{\longrightarrow}{I}}H^0_c(\mathcal{M}^{=d}_{I,\bar{o}},R^v\Psi_{\eta_o}(\bar{\mathbb{Q}}_l))\right).$$

Par récurrence sur r, $E_{r,I}^{u,v}$ étant isomorphe à $\ker d_{r,I}^{u,v}/\operatorname{Im} d_{r,I}^{u-r,v-r+1}$, le lemme suivant montre que pour tout u,v, $\lambda_{\tau^{\infty}\otimes\sigma_o}(\varinjlim_{I} E_{r,I}^{u,v})$ est égale à $\lambda_{\tau^{\infty}\otimes\sigma_o}(\varinjlim_{I} E_{2,I}^{u,v})$. La suite $(E_{r,I}^{u,v})_r$ étant stationnaire pour r assez grand, on a donc

$$\lambda_{\tau^{\infty}\otimes\sigma_o}(\varinjlim_{I} E_{\infty,I}^{u,v}) = \lambda_{\tau^{\infty}\otimes\sigma_o}(\varinjlim_{I} E_{2,I}^{u,v}).$$

Ces multiplicités étant nulles pour $u \neq 0$, et $E_{\infty,I}^n$ étant filtré par les $E_{\infty,I}^{u,v}$ pour u+v=n, on a alors

$$\lambda_{\tau^{\infty}\otimes\sigma_o}(\underset{I}{\varinjlim}E_{\infty,I}^n) = \lambda_{\tau^{\infty}\otimes\sigma_o}(\underset{I}{\varinjlim}E_{2,I}^{0,n}),$$

d'où la proposition.

Lemme 5.2.3 Soient U, V, W des objets de $C_{(D^{\infty})^{\times}, \Gamma_o}$ et $f: U \longrightarrow V, g: V \longrightarrow W$ des flèches de $C_{(D^{\infty})^{\times}, \Gamma_o}$. Si dans $K_{(D^{\infty})^{\times}, \Gamma_o}$, les multiplicités $\lambda_{\tau^{\infty} \otimes \sigma_o}(U)$ et $\lambda_{\tau^{\infty} \otimes \sigma_o}(W)$ sont nulles, on a alors l'égalité numérique

$$\lambda_{\tau^{\infty} \otimes \sigma_o}(\operatorname{Ker} g / \operatorname{Im} f) = \lambda_{\tau^{\infty} \otimes \sigma_o}(V).$$

Preuve: La multiplicité $\lambda_{\tau^{\infty}\otimes\sigma_o}$ est additive sur les suites exactes courtes et est positive sur les objets effectifs. Ainsi pour tout sous-quotient V' de U ou de W, on a $\lambda_{\tau^{\infty}\otimes\sigma_o}(V')=0$. Comme $V/\operatorname{Ker} g$ est isomorphe à un sous-espace de W, alors $\lambda_{\tau^{\infty}\otimes\sigma_o}(V/\operatorname{Ker} g)$ est nulle, soit $\lambda_{\tau^{\infty}\otimes\sigma_o}(\operatorname{Ker} g)=\lambda_{\tau^{\infty}\otimes\sigma_o}(V)$. On a de plus une surjection de U sur $\operatorname{Im} f$, d'où $\lambda_{\tau^{\infty}\otimes\sigma_o}(\operatorname{Im} f)=0$ et finalement l'égalité $\lambda_{\tau^{\infty}\otimes\sigma_o}(\operatorname{Ker} g/\operatorname{Im} f)=\lambda_{\tau^{\infty}\otimes\sigma_o}(V)$.

D'après un théorème de Berkovich (cf. [1] et le lemme 3.1.1 de ce texte), on a

$$H^0(\mathcal{M}_{I,\overline{o}}^{=d}, R^n \Psi_{\eta_o}(\overline{\mathbb{Q}}_l)) = H^n(\widehat{\mathcal{M}_{I,\operatorname{Sing}}}, \overline{\mathbb{Q}}_l)$$

et donc la proposition suivante.

Proposition 5.2.4 Sous les hypothèse de la proposition précédente, les multiplicités $\lambda_{\tau^{\infty}\otimes\sigma_o}(H^n_{\eta_o})$ sont, pour tout n, égales à $\lambda_{\tau^{\infty}\otimes\sigma_o}\left(\varinjlim_{I} H^n(\widehat{\mathcal{M}_{I,\mathrm{Sing}}}, \overline{\mathbb{Q}}_t)\right)$.

Remarque: On a des énoncés identiques en considérant les multiplicités $\lambda_{(\tau^{\infty})_o \otimes \sigma_o}$.

6 La représentation locale fondamentale revisitée.

On fixe un caractère ξ_o de F_o^{\times} d'ordre fini et soit ξ_o' la restriction de ξ_o à \mathcal{O}_o^{\times} . Pour un objet V de $C_{(D^{\infty})^{\times},\Gamma_o}$, on a

$$V = \lim_{\stackrel{\longrightarrow}{K \in \mathcal{I}}} V^K,$$

où \mathcal{I} est un ensemble de sous-groupes compacts, ouverts de $D_o^{\times} \simeq GL_d(F_o)$, qui est un système fondamental de voisinages de l'élément neutre. Chaque V^k est alors de dimension finie et est de plus muni d'une action de $GL_d(\mathcal{O}_o)$. On pose alors

$$V(\xi_o') = \lim_{K \in \mathcal{T}} V^K(\xi_o'),$$

et on définit $V(\xi_o)$ comme le quotient $V(\xi'_o)/(\pi_o - \xi_o(\pi_o).\mathrm{Id})V(\xi'_o)$.

Remarque : Si on écrit l'image [V] de V dans $K_{(D^{\infty})^{\times},\Gamma_o}$ sous la forme $\sum \lambda_M[M]$ où la somme porte sur les éléments irréductibles M de $C_{(D^{\infty})^{\times},\Gamma_o}$, alors $[V(\xi_o)]$ est égal à $\sum \lambda_M[M]$ où la somme porte cette fois sur les éléments irréductibles M de $C_{(D^{\infty})^{\times},\Gamma_o}$ tel que le centre de $F_o^{\times} \subset D_o^{\times}$ y agit par le caractère ξ_o .

On rappelle que la représentation $\mathcal{U}^{d,i}(\xi_o)$ du premier chapitre est isomorphe à la somme directe

$$\bigoplus_{m=0}^{d-1} \varinjlim_{n} H^{i}(\operatorname{Spec} D_{n}^{d,(m)} \otimes_{\widehat{\mathcal{O}}_{o}^{\operatorname{nr}}} \overline{\hat{F}^{\operatorname{nr}}}, \overline{\mathbb{Q}}_{l}))(\xi'_{o}),$$

où l'action de $GL_d(F_o) \times \bar{D}_o^{\times} \times \Gamma_o$ se décrit comme suit. Pour tout m,

$$\underset{n}{\varinjlim} H^{i}(\operatorname{Spec} D_{n}^{d,(m)} \otimes_{\hat{\mathcal{O}}_{o}^{\operatorname{nr}}} \overline{\hat{F}^{\operatorname{nr}}}, \overline{\mathbb{Q}}_{l}))(\xi'_{o})$$

est muni d'une action du sous-groupe $\mathfrak P$ défini comme le noyau de l'application

$$(g_o, \delta_o, \sigma_o) \longmapsto \operatorname{val}\left(\det(g_o^{-1}\operatorname{rn}(\delta_o)cl(\sigma_o)\right) \mod d.$$

Soit $\tau_o \in \Gamma_o$ tel que son image dans F_o^{\times} par le morphisme de la théorie du corps de classe, soit égale à π_o . L'élément τ_o induit, pour $0 \leqslant m \leqslant d-2$, des isomorphismes Spec $D_n^{d,(m)} \stackrel{\sim}{\longrightarrow} \operatorname{Spec} D_n^{d,(m+1)}$, de sorte que l'endomorphisme associé à τ_o^d est égal à $\xi_o(\pi_o)^{-1}\operatorname{Id}$.

Proposition 6.1 Pour tout entier i positif, $\left(\underset{I}{\lim} H^{i}(\mathcal{M}_{I,\operatorname{Sing}}, \overline{\mathbb{Q}}_{l})\right)(\xi_{o})$ est isomorphe, en tant qu'objet de $C_{(D^{\infty})^{\times},\Gamma_{o}}$, au quotient

$$\bar{D}^{\times}\backslash \left[(\bar{D}^{\infty,o})^{\times}/(\mathcal{D}^{\infty,o})^{\times}\times \mathcal{U}^{d,i}(\xi_o)\right].$$

Preuve: D'après la proposition 4.4, pour tout idéal I de A, on a

$$\widehat{\mathcal{M}_{I,\operatorname{sing}}} \simeq \bar{D}^{\times} \backslash \left[(\bar{D}^{\infty,o})^{\times} / K_I^{\infty,o} \times \coprod_{m \in \mathbb{Z}} \operatorname{Spec} D_n^{d,(m)} \right],$$

où n est la multiplicité de o dans I. Ainsi $H^i_c(\mathcal{M}_{I,\mathrm{Sing}},\bar{\mathbb{Q}}_l)$ est isomorphe à

$$\bar{D}^{\times} \setminus \left[(D^{\infty,o})^{\times} / K_I^{\infty,o} \times \coprod_{m \in \mathbb{Z}} H_c^i(\operatorname{Spec} D_n^{d,(m)} \otimes_{\hat{\mathcal{O}}_o^{\operatorname{nr}}} \overline{\hat{F}^{\operatorname{nr}}}, \bar{\mathbb{Q}}_l) \right],$$

d'où la proposition.

On pose

$$\bar{\mathfrak{C}}:=C^{\infty}(\bar{D}(F)^{\times}\setminus(\bar{D}^{\infty})^{\times}),$$

et on note $\check{\mathfrak{C}}$ la contragrédiente de $\bar{\mathfrak{C}}$.

Proposition 6.2 Pour tout entier i, $\left(\underset{I}{\lim} H^{i}(\mathcal{M}_{I,\operatorname{Sing}}, \overline{\mathbb{Q}}_{l})\right)(\xi_{o})$ est isomorphe, en tant qu'objet de $C_{(D^{\infty})^{\times},\Gamma_{o}}$, à

$$\left[\check{\mathfrak{C}}\otimes\mathcal{U}^{d,i}(\xi_o)
ight]^{ar{D}_o^{ imes}}.$$

Preuve : Le quotient $\bar{D}^{\times} \setminus [(\bar{D}^{\infty,o})^{\times} \times \mathcal{U}^{d,i}(\xi_o)]$ est en bijection avec l'ensemble des fonctions $f': (\bar{D}^{\infty,o})^{\times} \longrightarrow \mathcal{U}^{d,i}(\xi_o)$ telles que

$$\forall \gamma \in (\bar{D}^{\infty,o})^{\times} \text{ et } \forall \delta \in \bar{D}^{\times}, \ f'(d\gamma) = d_o f'(\gamma),$$

où d_o désigne l'image de d dans \bar{D}_o^{\times} . Soit donc f' une telle fonction. On définit une fonction $f:(\bar{D}^{\infty})^{\times} \longrightarrow \mathcal{U}^{d,i}(\xi_o)$ par la formule

$$f(\gamma) = \gamma_o^{-1} f'(\gamma^o)$$
.

On vérifie alors que pour tout élément d de \bar{D}^{\times} et tout élément δ_o de \bar{D}_o^{\times} , on a

$$f(d\gamma\delta_o) = \delta_o^{-1}\gamma_o^{-1}d_o^{-1}f'((d\gamma)^o) = \delta_o^{-1}\gamma_o^{-1}f'((d\gamma)^o) = \delta_o^{-1}f(\gamma).$$

Ainsi $\bar{D}^{\times}\setminus[(\bar{D}^{\infty,o})^{\times}\times\mathcal{U}^{d,i}(\xi_o)]$ est en bijection $(\bar{D}^{\infty})^{\times}\times D_o^{\times}\times\Gamma_o$ -équivariante avec l'ensemble

$$\{f: (\bar{D}^{\infty})^{\times} \longrightarrow \mathcal{U}^{d,i}(\xi_o) / \forall \delta_o \in \bar{D}_o^{\times}, \ \forall d \in \bar{D}^{\times} \ \forall \gamma \in (\bar{D}^{\infty})^{\times} f(d\gamma \delta_o) = \delta_o^{-1} f(\gamma) \},$$
 d'où la proposition.

Le $\bar{\mathbb{Q}}_l$ -espace vectoriel $\bar{\mathfrak{C}}$ se décompose comme la somme directe

$$\bigoplus_{\substack{\bar{\tau} \\ \bar{\tau}_{\infty} = 1_{\infty}}} m(\bar{\tau})\bar{\tau},$$

où $m(\bar{\tau})$ est la multiplicité de $\bar{\tau}$ dans $\bar{\mathfrak{C}}$.

Proposition 6.3 Pour toute représentation τ^{∞} irréductible de $(D^{\infty})^{\times}$ telle que $(\tau^{\infty})_o$ est une représentation cuspidale de $GL_d(F_o)$ et pour toute représentation l-adique irréductible σ_o de Γ_o , les multiplicités $\lambda_{\tau^{\infty}\otimes\sigma_o}(H^i_{\eta_o})$ sont, pour tout n, données par la somme

$$\sum_{\bar{\tau} \in \mathcal{A}(\tau^{\infty,o})} m(\bar{\tau}) \lambda_{\tau_o \otimes \check{\tau}_o \otimes \sigma_o} (\mathcal{U}^{d,i}(\xi_o)),$$

où $\mathcal{A}(\tau^{\infty,o})$ désigne l'ensemble des sous-représentations $\bar{\tau}$ irréductibles de $\check{\mathfrak{C}}$ telles que $\bar{\tau}^o = \tau^{\infty,o} \otimes 1_{\infty}$.

Preuve: D'après le corollaire 5.2.4 et la proposition précédente, $\lambda_{\tau^{\infty}\otimes\sigma_o}(H^i_{\eta_o})$ est égale à $\lambda_{\tau^{\infty}\otimes\sigma_o}\left([\check{\mathfrak{C}}\otimes\mathcal{U}^{d,i}(\xi_o)]^{\bar{D}_o^{\times}}\right)$. La proposition découle alors du lemme de Schur.

Le théorème 4.1 du premier chapitre s'écrit, avec les notations de ce chapitre, comme suit.

Théorème 6.4 Soient π_o une représentation irréductible admissible cuspidale de $GL_h(F_o)$ de caractère central ξ_o , ρ_o une représentation irréductible admissible de D_o^{\times} et σ_o une représentation irréductible l-adique de Γ_o . Alors la multiplicité $\lambda_{\pi_o\otimes\rho_o\otimes\sigma_o}(\mathcal{U}^{d,i}(\xi_o))$ de la représentation irréductible $\pi_o\otimes\rho_o\otimes\sigma_o$ de $GL_h(F_o)\times D_o^{\times}\times\Gamma_o$ dans la représentation $\mathcal{U}^{d,i}(\xi_o)$, est nulle si $i\neq d-1$ et pour i=d-1, elle est donnée par

$$\lambda_{\pi_o \otimes \rho_o \otimes \sigma_o}(\mathcal{U}_d(\xi_o)) = \begin{cases} 1 \text{ si } \rho_o = \mathfrak{J}_{F_o}(\check{\pi}_o) \text{ et } \sigma_o = \mathfrak{L}_{d,F_o}(\pi_o) \\ 0 \text{ si } \rho_o \neq \mathfrak{J}_{F_o}(\check{\pi}_o) \text{ ou } \sigma_o \neq \mathfrak{L}_{d,F_o}(\pi_o). \end{cases}$$

Preuve : Soit π_o une représentation irréductible cuspidale de $GL_d(F_o)$ de caractère central ξ_o (d'ordre fini).

– Soit Π une sous-représentation irréductible de $L_{cusp}(GL_d(F)F_{\infty}^{\times}\backslash GL_d(\mathbb{A}))$ vérifiant les hypothèse du lemme 2.3 du premier chapitre, c'est-à-dire telle que

$$\Pi_o \simeq \pi_o \qquad \Pi_\infty \simeq St_\infty,$$

et Π_{x_i} est cuspidale pour $i=1,\cdots,4$.

– Soit τ la représentation de $D_{\mathbb{A}}^{\times}$ donnée par la proposition 2.4.

D'après la proposition 2.1.2 du premier chapitre appliquée à \bar{D} , l'ensemble $A(\tau^{\infty,o})$ est alors réduit à un seul élément $\bar{\tau}$ tel que $m(\bar{\tau})=1$. Pour σ_o une représentation l-adique de Γ_o , la proposition 6.3 s'écrit

$$\lambda_{\pi_o \otimes \check{\tau}_o \otimes \sigma_o}(\mathcal{U}^{d,i}(\xi_o)) = \begin{cases} \lambda_{\tau^\infty \otimes \sigma_o}(H^i_{\eta_o}) & \text{si } \tau_o = \mathfrak{J}_{F_o}(\pi_o) \\ 0 & \text{sinon.} \end{cases}$$

– Pour i=d-1, le résultat découle du théorème de Laumon, Rapoport et Stuhler (cf. 2.5), qui donne

$$\lambda_{\tau^{\infty} \otimes \sigma_o}(H_{\eta_o}^{d-1}) = \begin{cases} 1 \text{ si } \sigma_o = \mathfrak{L}_{d,F_o}(\tau_o^{\infty}) \\ 0 \text{ sinon.} \end{cases}$$

– Pour $i \neq d-1$, le résultat découle alors du théorème de Laumon, Rapoport et Stuhler (cf. 2.2), qui donne

$$\lambda_{\tau^{\infty}\otimes\sigma_o}(H^i_{\eta_o})=0 \text{ si } i\neq d-1.$$

Bibliographie

- [1] Berkovich, Vladimir G.: Vanishing cycles for formal schemes. Invent. Math. **115** No 3, 539-571 (1994)
- [2] Bernstein, I.N.; Deligne, P.; Kazhdan, D.; Vigneras, M.-F.: Représentations des algèbres centrales simples p-adiques. In: Représentations des Groupes Réductifs sur un Corps Local, Hermann, Coll. travaux en Cours, Paris (1984)
- [3] Bourbaki, N.: Eléments de mathématiques: Algèbre. Hermann.
- [4] Cartier, P.: Representations of \mathcal{P} -adic groups: A survey. In: Borel, A., Casselman, W. (eds) Corvallis conference on Automorphic forms, Representations and L-functions. (Proc. Symp. Pure Math. vol XXXIII, part 1, pp 111-156) Providence, RI: Am. Math. Soc. 1979
- [5] Carayol, H.: Sur la mauvaise réduction des courbes de Shimura. Composition Mathematica **59**, 151-236 (1986)
- [6] Carayol, H.: Sur les représentations l-adiques associées aux formes modulaires de Hilbert. Ann. scient. Ec. Norm. Sup., 4^e séries 19, 409-468 (1986)
- [7] Carayol, H.: Non-abelian Lubin-Tate Theory. In: Clozel, L., Milne, J.S. (eds) Automorphics Forms, Shimura Varieties and L-Functions, II. Perspect. Math. 11, pp 15-39. Boston: Academic Press 1990
- [8] Curtis, C., Reiner, I.: Methods of representation theory: with applications to finite groups and orders, vol. 1. New York: Wiley 1981.
- [9] Deligne, P.: Les constantes des équations fonctionnelles des fonctions L. In: Deligne, P., Kuyk, W. (eds) Modular functions of one variable II, Antwerpen conference 1972. (Lect. Notes Math., 349, 501-597) Berlin Heidelberg New-York: Springer 1973
- [10] Deligne, P., Husemoller, D.: Survey of Drinfel'd modules. In: Ribet, K.A (ed.) Current trends in arithmetical algebraic geometry. (Contemp. Math. vol. 67, pp. 25-91) Providence, RI: Am. Math. Soc. 1987

- [11] Drinfel'd, V.G.: Elliptic modules. Math. USSR, Sb. 23, 561-592 (1974)
- [12] Drinfel'd, V.G.: Elliptic modules. II. Math. USSR, Sb. 31, 159-170 (1977)
- [13] Drinfel'd, V.G.: Commutative subrings of certain noncommutative rings. Funct. Anal. Appl. 11, 9-12 (1977)
- [14] Drinfel'd, V.G.: Varieties of modules of F-sheaves. Funct. Anal. Appl. **21**, 107-122 (1987)
- [15] Drinfel'd, V.G.: Letter to H. Carayol (January 12th, 1980)
- [16] Genestier, A.: Espaces symétriques de Drinfel'd, le cas de GL_d sur un corps local d'égale caractéristique. Prébublications Université de Paris-Sud.
- [17] Hazewinkel, M.: Formal groups and applications. In: Pure and applied mathematics, 1978.
- [18] Henniart, G.: On the local Langlands conjecture for GL(n): The cyclic cas. Ann. Math. **123**, 145-203 (1986)
- [19] Henniart, G.: Les conjectures de Langlands locales pour GL(3). Mémoires S.M.F. nouvelle série, $\mathbf{11/12}$ (1984)
- [20] Henniart, G.: Le point sur la conjecture de Langlands pour GL(N) sur un corps local. In: Goldstein, C. (ed). Séminaire de théorie des nombres de Paris 1983-1984. (prog. Math., vol 59, pp. 115-131) Boston Basel Stuttgart: Birkhäuser 1985
- [21] Illusie, L.: Complexe cotangent et déformations. I, II. (Lect. Notes Math., vol. 239, 283) Berlin Heidelberg New-York: Springer 1971, 1973
- [22] Katz, N., Mazur, B.: Arithmetic moduli of elliptic curves. In: Annals of Math. Studies 108. Princeton University Press
- [23] Laumon, G., Rapoport, M., Stuhler, U.: \mathcal{D} -elliptic sheaves and the Langlands correspondence. Invent. Math. 113, 217-238 (1993)
- [24] Laumon, G.: Cohomology with compact supports of Drinfel'd modular varieties. In: Garling, Dieck, Walters (eds.) Cambridge Studies in Advanced Mathematics.
- [25] Matsumura: Commutative Algebra.
- [26] Rapoport, M.: On the bad reduction of Shimura varieties. In: Clozel, L., Milne, J.S. (eds.) Automorphic forms, Shimura varieties, and L-functions II. Perspect. Math. 11, pp 253-321. Boston: Academic Press 1990

- [27] Reiner, I.: Maximal orders. New York London: Academic Press 1975
- [28] SGA 4 tome 3, Deligne, P.: (Lect. Notes Math., vol. 305) Berlin Heidelberg New-York: Springer 1973
- [29] SGA $4\frac{1}{2}$, Deligne, P.: (Lect. Notes Math., vol. 569) Berlin Heidelberg New-York: Springer 1973
- [30] SGA 5, Grothendieck, A.: Cohomologie l-adique et fonctions L. (Lect. Notes Math., vol 589) Berlin Heidelberg New York: Springer 1977
- [31] SGA 7 I, Deligne, P., Katz, N.: Groupes de monodromie en géométrie algébrique. (Lect. Notes Math., vol. 288) Berlin Heidelberg New-York: Springer 1973
- [32] SGA 7 II, Deligne, P., Katz, N.: Groupes de monodromie en géométrie algébrique. (Lect. Notes Math., vol. 340) Berlin Heidelberg New-York: Springer 1973
- [33] Tate, J.: Number theoretic Background. In: Borel, A., Casselman, W. (eds) Corvallis conference on Automorphic forms, Representations and *L*-functions. (Proc. Symp. Pure Math. vol XXXIII, part 2, pp 111-156) Providence, RI: Am. Math. Soc. 1979