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Aim of the presentation

We give an overview on some existing numerical methods applied to approximate
Differential and Partial Differential Equations.
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Plan of this presentation

1 Importance of the Numerical Methods and their Analysis.

2 Overview on Finite Difference Methods

3 Overview on Finite Element Methods

4 Overview on Mixed Finite Element Methods

5 Overview on Finite Volume Methods (Standard and SUSHI)

6 Moving to an Abstract setting: Gradient Discretization Method (A framework
of the convergence and analysis of a large class of numerical methods).
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Importance of the Numerical Methods and their Analysis

In several situations when solve Applied Mathematical Problems, some (or all) the
following steps are followed:

Real (Physical) Phenomenon. Example: Falling body, Propagation of Heat in a
body.

Modeling: writing the Physical Problem under the Mathematical forms, i.e.
relations, equations, ...

For Falling body, we find Newton’s law of universal gravitation: F = mg, where F
is the force exerted on a mass m by the Earth’s gravitational field of strength g

For Propagation of Heat in a body, we find the Heat equation: ut −∆u = f .
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Importance of the Numerical Methods and their Analysis (Suite)

Mathematical study. In this step, we prove for instance the existence,
uniqueness, and well-posedness of the PDEs (Partial Differential Equations)
modeling physical phenomena.

Numerical Approximation: there are many numerical methods which allow to
approximate different problems, Finite Difference, Finite Element, Finite
Volumes methods.

Algorithms and Programming.

Simulations on machines.
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Overview on Finite Difference Methods: References

S. Godounov and V. Riabenki: Schémas aux Différences, Editions Mir,
Moscow, (French), 1977.

R. D. Richtmyer and K. W. Morton: Difference Methods for Initial Value
Problems, Reprint of the 2nd Ed., 1967, Krieger Publishing Company,
Melbourne, FL, 1994.

R.D. Richtmyer: Principles of advanced mathematical physics. Vol. I., Texts
and Monographs in Physics. Berlin-Heidelberg-New York: Springer-Verlag.
XV, 1978. Explains several models in Physics along with basic background.

Murray R. Spiegel: Vector Analysis and an Introduction to Tensor Analysis.
Schaum’s Outline Series. New York etc.: McGraw-Hill Book Comp., 1959.
Calculus for function with several variables.

P. Wesseling: Principles of Computational Fluid Dynamics. Springer Series in
Computational Mathematics. 29. Berlin: Springer, 2000. Explains several
Numerical Methods.
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Some basic Notations and Definitions: Gradient

Definition of the gradient ∇

If u = u(x) (Function with one variable). In this case

∇u(x) = ux(x) = u′(x).

If u = u(x, y) (Function with two variables). In this case

∇u =

(
ux =

∂u
∂x

uy =
∂u
∂y

)
.

If u = u(x, y, z) (Function with three variables). In this case

∇u =

ux =
∂u
∂x

uy =
∂u
∂y

uz =
∂u
∂z

 .
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Some basic Notations and Definitions: Laplace

Definition of the Laplace operator ∆

If u = u(x) (Function with one variable). In this case

∆u(x) = uxx(x) = u′′(x).

If u = u(x, y) (Function with two variables). In this case

∆u =
∂2u
∂x2 +

∂2u
∂y2 .

If u = u(x, y, z) (Function with three variables). In this case

∆u =
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 .
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Some basic Notations and Definitions: Divergence

Definition of the Divergence operator div = ∇·

If u = u(x) (Function with one variable). In this case

divu(x) = ux(x) = u′(x).

If u = u(x, y) (Function with two variables). In this case

divu =
∂u
∂x

+
∂u
∂y
.

If u = u(x, y, z) (Function with three variables). In this case

divu =
∂u
∂x

+
∂u
∂y

+
∂u
∂z
.
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Relation between Laplace and Divergence

Relation between Laplace and Divergence

∆u = div∇u. (1)
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Some basic Notations and Definitions (Suite)

Definition of a Differential Equation (or also Ordinary Differential Equation-ODE)

It is a relation (equation) between an unknown function and its derivatives.

Definition of a Partial Differential Equation-PDE

It is a relation (equation) between an unknown function, depending on several
variables, and its partial derivatives.
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Overview on Finite Differences methods: Principles

Model

Let us consider the Differential (or Partial Differential) equation as:

Lu(x) = f (x), x ∈ Ω (2)

where Ω ⊂ IRd (d = 1, 2, 3) and L is a differential operator.

Principle of Finite Differences methods

The basic ingredient of the Finite Difference methods is to choose some points
belonging to Ω (this process is called Discretization of the domain) and these points
are called Mesh Points, on which we approximate the derivatives which appear in the
operator L by difference quotients.

An example

As an example, we approximate u′(xi), where xi is a mesh point, by the quotient

(u(xi+1)− u(xi))/(xi+1 − xi) ≈ u′(xi).
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Overview on Finite Differences methods: Example

An example of Differential Equation to be solved

Let us consider the one dimensional stationary heat equation:

− uxx(x) = f (x), x ∈ (0, 1) and u(0) = u(1) = 0. (3)

Discretization of the domain (0, 1)

We consider the uniform mesh xi = ih, i ∈ {0, . . . ,N}, with N ∈ IN \ {0} and
h = 1/N.

Discretisation of the equation

Replacing x by xi in (3), we get

uxx(xi) = f (xi), ∀i ∈ {0, . . . ,N}. (4)
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Overview on Finite Differences methods: Example (suite)

We consider the following approximation for uxx(xi)

u(xi+1)− 2u(xi) + u(xi−1)

h2 ≈ uxx(xi). (5)

Using a convenient Taylor expansion∣∣∣∣u(xi+1)− 2u(xi) + u(xi−1)

h2 − uxx(xi)

∣∣∣∣ ≤ Ch2|uxx|C([0,1]). (6)

Formulation of the scheme: the discrete unknowns are the finite set
{ui : i = 1, . . . ,N − 1}

− ui+1 − 2ui + ui−1

h2 = f (xi), ∀i ∈ {1, . . . ,N − 1} (7)

with

u0 = uN = 0. (8)
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Overview on Finite Differences methods: Useful comments

What serve scheme (7)–(8)?

The discrete unknown values {ui : i = 1, . . . ,N − 1} of are expected to
approximate values {u(xi) : i = 1, . . . ,N − 1}.

How to compute the unknowns of scheme (7)–(8)?

The scheme yields a linear system:

AU = F, (9)

where

U is the unknown vector and F is given (RHS of the system).

A is a square symmetric tridiagonal matrix with N − 1 lines.

The vectors U and F are given by U =


u1

u2

...
uN−1

 and F =


f (x1)
f (x2)

...
f (xN−1)

.
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Overview on Finite Differences methods: Useful comments

Scheme (7)–(8) is very known

The scheme (7)–(8) is called the Three Points Centered Finite Difference Scheme.

To justify the convergence of FD schemes

The main tool to prove the convergence of Finite Difference schemes is to justify two
properties: To prove the convergence of finite difference schemes, we justify two
properties

Consistency

Stability
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Overview on Finite Element Methods: References

P. G. Ciarlet: The Finite Element Method for Elliptic Problems. Classics in
Applied Mathematics, 40. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia (2002).

A. Quarteroni and A. Valli: Numerical Approximation of Partial Differential
Equations. Springer Series in Computational Mathematics 23. Berlin: Springer.
(2008).

P.-A. Raviart, J.-M. Thomas: Introduction à l’Analyse Numérique des
Equations aux Dérivées Partielles. Mathématiques Appliquées pour la maı̂trise.
Dunod, 2004.

V. Thomée: Galerkin Finite Element Methods for Parabolic Problems.
Springer-Verlag, Second Edition, Berlin (2006).
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Overview on Mixed Finite Element Methods: Principles

Let us consider the Differential (or Partial Differential) equation as:

Lu(x) = f (x), x ∈ Ω (10)

where Ω ⊂ IRd (d = 1, 2, 3) with some convenient boundary conditions (Dirichlet,
Neumann, Robin,...)

Principle of Finite Element methods

The basic ingredient of the Finite Element methods is the approximation of an
equivalent weak Formulation for the original problem. For instance such weak
formulation can be given as: Find u ∈ H such that

a(u, v) = F(v), ∀v ∈ H. (11)

The space H is given for instance using the so-called Sobolov spaces.
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Overview on Finite Element Methods: Example

Example of FEM

Let us consider the above one dimensional problem (3).

The weak formulation is given by: Find u ∈ H1
0(0, 1) such that∫ 1

0
ux(x)vx(x)dx =

∫ 1

0
f (x)v(x)dx, ∀v ∈ H1

0(0, 1). (12)

The Finite Element space is an approximation of H1
0(0, 1) which can be for

instance the space of piecewise linear functions:

Vh =
{

v ∈ C[0, 1] : v|[xi,xi+1] ∈ P1
}

(13)

where 0 = x0 < x1 < x2 < . . . < xN = 1.

Finite element scheme: Find uh ∈ Vh such that∫ 1

0
(uh)x (x) (vh)x (x)dx =

∫ 1

0
f (x)vh(x)dx, ∀v ∈ Vh. (14)
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Overview on Finite Element methods: Main method to prove the convergence

Main tools to prove the convergence of finite element schemes

We compare the error between the approximate solution and exact solution and
the error between the the exact solution and its interpolation.

We determine an estimate for the error between the the exact solution and its
interpolation.
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Overview on Mixed Finite Element Methods: References

P. G. Ciarlet: The Finite Element Method for Elliptic Problems. Classics in
Applied Mathematics, 40. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia (2002).

A. Quarteroni and A. Valli: Numerical Approximation of Partial Differential
Equations. Springer Series in Computational Mathematics 23. Berlin: Springer.
(2008).

P.-A. Raviart, J. M. Thomas: A mixed finite element method for 2nd order
elliptic problems. Mathematical aspects of finite element methods (Proc. Conf.,
Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292–315.

V. Thomée: Galerkin Finite Element Methods for Parabolic Problems.
Springer-Verlag, Second Edition, Berlin (2006).
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Overview on Mixed Finite Element Methods: Principles

Main idea of Mixed Finite Element Methods

We introduce two variables, one called velocity and the other called pressure. This
lead to a system of equations whose the order of derivatives in each equation is less
than of the original equation.
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Overview on Mixed Finite Element Methods: Principles

Model Equation: Poisson Equation

Heat equation:

−∆u(x) = f (x), x ∈ Ω, (15)

where Ω ⊂ IRd is an open domain of IRd, f is given function.

Homogeneous Dirichlet boundary

u(x) = 0, x ∈ ∂Ω. (16)
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General principles of MFEMs

First step: Writing the problem as:

p = −∇u and divp = f . (17)

Second step: Weak formulation for (17)

(p, ψ)L2(Ω) − (u, divψ)L2(Ω) = 0, ∀ψ ∈ Hdiv(Ω) (18)

and

(divp, φ)L2(Ω) = (f , φ)L2(Ω) , ∀φ ∈ L2(Ω), (19)

Hdiv(Ω) is the space defined by

Hdiv(Ω) = {ξ ∈
(

L2(Ω)
)d

: divξ ∈ L2(Ω)}.
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Approximation of MFE: Principles

We have two finite element spaces:

Spaces involved in the approximation of the weak formulation

We approximate the space of velocity Hdiv(Ω)

We approximate the space of pressure L2(Ω).

Well used spaces

Raviart-Thomas finite element spaces.
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Overview on Finite Volume Methods: References

Eymard, Robert; Gallouët, Thierry; Herbin, Raphaèle: Finite volume methods.
Handbook of numerical analysis, Vol. VII, 713–1020, Handb. Numer. Anal.,
VII, North-Holland, Amsterdam, 2000.

Eymard, Robert; Gallouët, Thierry; Herbin, Raphaèle: Finite volume methods.
Handbook of numerical analysis. hal-02100732 , version 2 (12-08-2019).

Eymard, Robert; Gallouët, Thierry; Herbin, Raphaèle: Discretization of
heterogeneous and anisotropic diffusion problems on general nonconforming
meshes. SUSHI: A scheme using stabilization and hybrid interfaces. IMAJNA,
2010.

Randall J. LeVeque: Finite Volume Methods for Hyperbolic Problems.
Cambridge University Press, 2012.
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Overview on Finite Volume Methods: Principles

Fundamental highlight on the method

The finite volume method is a discretization method which is well suited for the
numerical simulation of various types (elliptic, parabolic or hyperbolic, for instance)
of conservation laws; it has been extensively used in several engineering fields, such
as fluid mechanics, heat and mass transfer or petroleum engineering.

Main ingredients of the method

We subdivide the domain into subsets called control volumes.

Integration of the equation to be solved on each control volume.

Integration by parts to transfer the integration on the control volumes to
integration on the interfaces across the control volumes.

When the control volumes satisfy a condition called transmissibility, the
approximation of the integrals along the interfaces becomes easier.
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Overview on Finite Volume Methods: One Dimensional Example

Let us consider the one dimensional stationary heat problem (3). We derive a finite
volume scheme.

Definition

An admissible mesh of (0, 1), denoted by T , is given by a family of subsets (called
control volumes) (Ki)i=1,...,N , N ∈ IN⋆ with Ki = (xi− 1

2
, xi+ 1

2
) and x1/2 = 0 and

xN+1/2 = 1.

We assume in addition that there is a family (xi)i=1,...,N such that xi ∈ Ki. For the
convenience of approximation, we set x0 = 0 and xN+1 = 1.

We set
hi = meas(Ki) = xi+ 1

2
− xi− 1

2
, for i ∈ {1, . . . ,N},

hi+ 1
2
= xi+1 − xi, i = 0, . . . ,N and size(T ) = h = max{hi, i = 1, . . . ,N}.
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Overview on Finite Volume Methods: One Dimensional Example-Derivation
of the scheme

Integrating the equation over the control volume Ki = (xi− 1
2
, xi+ 1

2
) yields

u(xi− 1
2
)− u(xi+ 1

2
) =

∫
Ki

f (x)dx. (20)

The approximation of u(xi+ 1
2
) is given by (u(xi+1)− u(xi)) /hi+ 1

2
.

We therefore have, thanks to the previous two items

(u(xi)− u(xi−1)) /hi− 1
2
− (u(xi+1)− u(xi)) /hi+ 1

2
≈

∫
Ki

f (x)dx. (21)

The scheme is given by:

(ui − ui−1) /hi− 1
2
− (ui+1 − ui) /hi+ 1

2
=

∫
Ki

f (x)dx, i ∈ {1, . . . ,N}

(22)

with u0 = uN+1 = 0.
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Overview on Finite Volume Methods: One Dimensional Example-Nice
Remark on FDM and FVM

Nice comment between FDM and FVM

As we have remarked that with respect to Finite Differences method, we gain a
derivative in Finite Volume method. Indeed, in the case of the one dimensional
stationary heat equation −u′′ = f , we have to approximate the second derivative
when we are dealing with Finite Differences method and only the first derivative
when we are dealing with Finite Volume method.
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Finite Volume methods in several space dimensions on admissible meshes

Definition

Let T be an Admissible Mesh in the sense of Eymard et al. (Handbook, 2000).

K ∈ T are the control volumes and σ are the edges of the control volumes K.

Figure: transmissivity between K and L: Tσ = TK|L =
mK,L
dK,L
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Finite Volume methods on admissible meshes (Standard FVM)

Main properties of Admissible mesh:
1 Convexity of the Control Volumes.

2 The orthogonality property: the (xKxL) is orthogonal to the common edge σ
between the control volumes K and L.
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Finite Volume methods on admissible meshes

Model to be solved:

−∆u(x) = f (x), x ∈ Ω and u(x) = 0, x ∈ ∂Ω. (23)

Principles of Finite Volume scheme:

1 Integration on each control volume K: −
∫

K
∆u(x)dx =

∫
K

f (x)dx,

2 Integration by Parts gives: −
∫
∂K

∇u(x) · n(x)dγ(x) =
∫

K
f (x)dx

3 Summing on the lines of K: −
∑
σ∈EK

∫
σ

∇u(x) · n(x)dγ(x) =
∫

K
f (x)dx
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Finite Volume methods on admissible meshes

Approximate Finite Volume Solution uT = (uK)K

−
∑
σ∈EK

m(σ)

dK|L
(uL − uK) =

∫
K

f (x)dx. (24)

Matrix Form

AT uT = fT .
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Finite Volume methods on admissible meshes

Theorem

Let X (T ): functions which are constant on each control volume K. Let eT ∈ X (T )
be defined by eK = u(xK)− uK for any K ∈ T . Assume that the exact solution u
satisfies u ∈ C2(Ω). Then the following convergence results hold:

1 H1
0 -error estimate

∥eT ∥1,T ≤ Ch∥u∥2,Ω, (25)

where ∥ · ∥1,T is the H0
1 -norm ∥eT ∥2

1,T =
∑

σ=K|L∈E

m(σ)

dσ
(uL − uK)

2.

2 L2-error estimate:

∥eT ∥L2(Ω) ≤ Ch∥u∥2,Ω. (26)
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Finite Volume methods on admissible meshes: three useful remarks

First remark: Conservativity of the numerical fluxes

It means that fluxes, that is the numerical flux is conserved from one discretization
cell to its neighbour. This last feature makes the finite volume method quite attractive
when modelling problems for which the flux is of importance, such as in fluid
mechanics, semi-conductor device simulation, heat and mass transfer...
For the approximation given above

−m(σ)

dK|L
(u(xL)− u(xK)) ≈ −

∫
σ

∇u(x) · n(x)dγ(x)

If we denote by the numerical flux FK,L = −m(σ)

dK|L
(u(xL)− u(xK)), then the

following Conservativity property holds

FK,L = −FL,K .
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Finite Volume methods on admissible meshes: two useful remarks (Suite)

Second remark: Consistency of the approximation of the Flux

In contrast of Finite Difference Methods, in which we approximate directly the
derivatives and quantities of the equation to be solved, in Finite Volume Methods we
approximate these terms after integration. In the case of the Poisson’s problem, we
have to approximate the Flux which yields the Consistency of the approximation of
the Flux.

Third remark: FVM is different from FDM and FEM

The Finite Volume Method is quite different from (but sometimes related to) the
Finite Difference Method and the Finite Element Method, see details in Handbook of
Eymard et al. (2000).
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Finite Volume methods using nonconforming grids, SUSHI scheme

Abbreviation

SUSHI: Scheme Using Stabilization and Hybrid Interfaces.

Definition (New mesh of Eymard et al., IMAJNA 2010)

Figure: Notations for two neighbouring control volumes in d = 2
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Finite Volume methods using nonconforming grids, SUSHI scheme

Main properties of this new mesh:

1 (mesh defined at any space dimension): Ω ⊂ IRd, d ∈ IN

2 (orthogonality property is not required): the orthogonality property is not
required in this new mesh. But, additional discrete unknowns are required.

3 (convexity): the classical admissible mesh should satisfy that the control
volumes are convex, whereas the convexity property is not required in this new
mesh.
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Finite Volume methods using nonconforming grids, SUSHI scheme

Principles of discretization for the Poisson’s problem:
1 Discrete unknowns: the space of solution as well as the space of test functions

are in

XD,0 = {
(
(vK)K∈M , (vσ)σ∈E

)
, vK , vσ ∈ IR, vσ = 0, ∀σ ∈ Eext}

2 Discretization of the gradient: the discretization of ∇ can be performed using a
stabilized discrete gradient denoted by ∇D , see Eymard et al. (IMAJNA, 2010):

1 The discrete gradient ∇D is stable

2 The discrete gradient ∇D is consistent.
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Finite Volume methods using nonconforming grids, SUSHI

Weak formulation for Poisson’s equation: Find u ∈ H1
0(Ω) such that

∫
Ω

∇u(x) · ∇v(x)dx =

∫
Ω

f (x)v(x)dx, ∀v ∈ H1
0(Ω). (27)

SUSHI (Scheme Using stabilized Hybrid Interfaces) for Poisson’s equation: Find
uD ∈ XD,0 such that

∫
Ω

∇DuD(x) · ∇Dv(x)dx =

∫
Ω

f (x)v(x)dx, ∀v ∈ XD,0. (28)
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Finite Volume methods using nonconforming grids, SUSHI

Theorem

Assume that the exact solution u satisfies u ∈ C2(Ω). Then the following convergence
result hold:

1 H1
0 -error estimate

∥∇u −∇DuD∥L2(Ω)d ≤ Ch∥u∥2,Ω. (29)

2 L2-error estimate:

∥u −ΠMuD∥L2(Ω) ≤ Ch∥u∥2,Ω. (30)
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Overview on the Gradient Discretization Method: References
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Brezzi, Lipnikov, Simoncini: A family of mimetic finite difference methods on
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Overview on the Gradient Discretization Method: References
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problems on any grid. Numer Math, 2006.

Droniou, Eymard, Gallouët, and Herbin: A unified approach to mimetic finite
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Overview on the Gradient Discretization Method: What is GDM simply ?

What is GDM?

Is a framework for the convergence and analysis of a large class of the numerical
methods.

What are the numerical methods encompassed by GDM ?

Conforming and Non-Conforming Finite Elements Methods

SUSHI method, cf. Eymard et al. (IMAJNA, 2010).

Mimetic Finite Difference methods, cf. Brezzi et al. (Math. Models Methods
Appl. Sci., 2005).

Mixed Finite Volume method, cf. Droniou et al. (Numer. Math., 2006).
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Overview on the Gradient Discretization Method: Definition

Definition (Definition of a generic approximate gradient discretization, Droniou et al.
(Springer book, 2018))

Let Ω be an open domain of IRd, where d ∈ IN \ {0}. An approximate gradient
discretization D is defined by D = (XD,0, hD,ΠD,∇D), where

1 The set of discrete unknowns XD,0 is a finite dimensional vector space on IR.

2 The space step hD ∈ (0,+∞) is a positive real number.

3 The linear mapping ΠD : XD,0 → L2(Ω) is the reconstruction of the
approximate function.

4 The mapping ∇D : XD,0 → L2(Ω)d is the reconstruction of the gradient of the
function; it must be chosen such that ∥∇D · ∥L2(Ω)d is a norm on XD,0.
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Overview on the Gradient Discretization Method: Additional parameters

Definition (Additional hypotheses on the approximate gradient discretization)

The coercivity of the discretization is measured through the the constant CD
given by:

CD = max
v∈XD,0\{0}

∥ΠDv∥L2(Ω)

∥∇Dv∥L2(Ω)d
. (31)

The strong consistency: SD : H1
0(Ω) → [0,+∞) defined by, for all φ ∈ H1

0(Ω)

SD(φ) = min
v∈XD,0

(
∥ΠDv − φ∥2

L2(Ω) + ∥∇Dv −∇φ∥2
L2(Ω)d

) 1
2
. (32)

The dual consistency: For all φ ∈ Hdiv(Ω), WD(φ) is given by

max
u∈XD,0\{0}

1
∥∇Du∥L2(Ω)d

∣∣∣∣∫
Ω

(∇Du(x) · φ(x) + ΠDu(x)divφ(x)) dx
∣∣∣∣ .
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Overview on the Gradient Discretization Method: A typical
example-Conforming Finite Element Method

FE is a GDM

Let {Th; h > 0} be a family of shape regular and quasi-uniform triangulations of the
domain Ω. Let Vh be the standard finite element space of continuous, piecewise
polynomial functions of degree less or equal l ∈ IN \ {0} and we denote by
Vh

0 = Vh ∩ H1
0(Ω).

Assume that Vh
0 is spanned by the usual basis functions φ1, . . . , φM . The space XD,0

can be IRM and for any (u1, . . . , uM) ∈ XD,0, we define
ΠDu =

∑M
i=1 uiφ ∈ Vh

0 ⊂ H1
0(Ω) and ∇Du =

∑M
i=1 ui∇φ = ∇ΠDu. Using the

Poincaré inequality, we have for all u ∈ XD,0, ∥ΠDu∥L2(Ω) ≤ C(Ω)∥∇Du∥L2(Ω).

Conditions of GDM are well satisfied by FE

Therefore, the assumption (31) of Definition 6 holds with constant CD only
depending on Ω. In addition to this, we have WD(φ) = 0, for all φ ∈ Hdiv(Ω), and
SD(φ) is bounded above by (up to a multiplicative constant independent of the mesh)
hl|φ|l+1,Ω, for all φ ∈ Hl+1(Ω).
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Overview on the Gradient Discretization Method: An example of application

Let us consider the Poisson problem described above in (23).

The weak formulation for this problem is: Find u ∈ H1
0(Ω) such that

(∇u,∇v)L2(Ω)d = (f , v)L2(Ω) , ∀v ∈ H1
0(Ω).

The gradient scheme applied to the Poisson’s problem is: Find uD ∈ XD,0 such
that

(∇DuD,∇Dv)L2(Ω)d = (f , v)L2(Ω) , ∀v ∈ XD,0. (33)

49 / 50



Aim... Plan... Importance... Overview on FDMs Overview on FEMs Overview on MFMs Overview on FVMs Overview on GDM

Overview on the Gradient Discretization Method: Convergence

On the convergence

The convergence is well detailed in the above References, see for instance Eymard et
al. (ESAIM-2012).
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