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Aim of the presentation

We investigate the approximation of the Heat, Wave, and Time Fractional Heat
equations using either Finite Volume methods or the general framework of GDM
(Gradient Discretization Method).
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Plan of this presentation

1 Reminder on the previous course.

2 Finite Volumes methods (on Admissible and Non-Conforming meshes-SUSHI).

3 Finite Volume method for the Heat equation.

4 Finite Volume method for the Wave equation.

5 Overview on the recent framework of the GDM (Gradient Discretization
Method)

6 GDM for TFHE (Time Fractional Heat equation).
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Reminder on the previous course

Importance of the numerical methods for DEs and PDEs

DEs and PDEs represent real phenomenon.

Finite Difference method

It is based on the approximation of the derivatives which appear in (DE or PDE),
over the mesh points, by convenient difference quotients (or divided differences).

Finite Element methods

They are based on a weak formulation for the problem under consideration.

Mixed Finite Element methods

They are based on the introduction of two variables: Velocity (called also Vector
variable) and Pressure. We use often the so-called IRT in the approximation.

Finite Volume methods

We integrate over Control Volumes and then we approximate.
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References on Finite Volume Methods and GDM
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Overview on Finite Volume Methods on Admissible Meshes: Principles

Fundamental highlight on the method

The finite volume method is a discretization method which is well suited for the
numerical simulation of various types (elliptic, parabolic or hyperbolic, for instance)
of conservation laws; it has been extensively used in several engineering fields, such
as fluid mechanics, heat and mass transfer or petroleum engineering.

Main ingredients of the method

We subdivide the domain into subsets called control volumes.

Integration of the equation to be solved on each control volume.

Integration by parts to transfer the integration on the control volumes to
integration on the interfaces across the control volumes.

When the control volumes satisfy a condition called transmissibility, the
approximation of the integrals along the interfaces becomes easier.
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Finite Volume methods in several space dimensions on admissible meshes

Definition

Let T be an Admissible Mesh in the sense of Eymard et al. (Handbook, 2000).

K ∈ T are the control volumes and σ are the edges of the control volumes K.

Figure: transmissivity between K and L: Tσ = TK|L =
mK,L
dK,L
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Finite Volume methods on admissible meshes

Main properties of Admissible mesh:
1 Convexity of the Control Volumes.

2 The orthogonality property: the (xKxL) is orthogonal to the common edge σ
between the control volumes K and L.
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Finite Volume methods on admissible meshes

Model to be solved:

−∆u(x) = f (x), x ∈ Ω and u(x) = 0, x ∈ ∂Ω. (1)

Principles of Finite Volume scheme:

1 Integration on each control volume K: −
∫

K
∆u(x)dx =

∫
K

f (x)dx,

2 Integration by Parts gives: −
∫
∂K

∇u(x) · n(x)dγ(x) =
∫

K
f (x)dx

3 Summing on the lines of K: −
∑
σ∈EK

∫
σ

∇u(x) · n(x)dγ(x) =
∫

K
f (x)dx
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Finite Volume methods on admissible meshes

Approximate Finite Volume Solution uT = (uK)K

−
∑
σ∈EK

m(σ)

dK|L
(uL − uK) =

∫
K

f (x)dx. (2)

Matrix Form

AT uT = fT .
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Finite Volume methods on admissible meshes

Theorem

Let X (T ): functions which are constant on each control volume K. Let eT ∈ X (T )
be defined by eK = u(xK)− uK for any K ∈ T . Assume that the exact solution u
satisfies u ∈ C2(Ω). Then the following convergence results hold:

1 H1
0 -error estimate

∥eT ∥1,T ≤ Ch∥u∥2,Ω, (3)

where ∥ · ∥1,T is the H0
1 -norm ∥eT ∥2

1,T =
∑

σ=K|L∈E

m(σ)

dσ
(uL − uK)

2.

2 L2-error estimate:

∥eT ∥L2(Ω) ≤ Ch∥u∥2,Ω. (4)
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Finite Volume methods on admissible meshes: three useful remarks

First remark: Conservativity of the numerical fluxes

It means that fluxes, that is the numerical flux is conserved from one discretization
cell to its neighbour. This last feature makes the finite volume method quite attractive
when modelling problems for which the flux is of importance, such as in fluid
mechanics, semi-conductor device simulation, heat and mass transfer...
For the approximation given above

−m(σ)

dK|L
(u(xL)− u(xK)) ≈ −

∫
σ

∇u(x) · n(x)dγ(x)

If we denote by the numerical flux FK,L = −m(σ)

dK|L
(u(xL)− u(xK)), then the

following Conservativity property holds

FK,L = −FL,K .
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Finite Volume methods on admissible meshes: two useful remarks (Suite)

Second remark: Consistency of the approximation of the Flux

In contrast of Finite Difference Methods, in which we approximate directly the
derivatives and quantities of the equation to be solved, in Finite Volume Methods we
approximate these terms after integration. In the case of the Poisson’s problem, we
have to approximate the Flux which yields the Consistency of the approximation of
the Flux.

Third remark: FVM is different from FDM and FEM

The Finite Volume Method is quite different from (but sometimes related to) the
Finite Difference Method and the Finite Element Method, see details in Handbook
(2010).
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Finite Volume methods using nonconforming grids, SUSHI scheme

Definition (New mesh of Eymard et al., IMAJNA 2010)

Figure: Notations for two neighbouring control volumes in d = 2
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Finite Volume methods using nonconforming grids, SUSHI scheme

Main properties of this new mesh:

1 (mesh defined at any space dimension): Ω ⊂ IRd, d ∈ IN

2 (orthogonality property is not required): the orthogonality property is not
required in this new mesh. But, additional discrete unknowns are required.

3 (convexity): the classical admissible mesh should satisfy that the control
volumes are convex, whereas the convexity property is not required in this new
mesh.

16 / 48



Aim... Plan... FVMs on admissible meshes FVMs using nonconforming grids FVM for the Heat equation SUSHI for the Wave Equation GDM for TFHE

Finite Volume methods using nonconforming grids, SUSHI scheme

Principles of discretization for the Poisson’s problem:
1 Discrete unknowns: the space of solution as well as the space of test functions

are in

XD,0 = {
(
(vK)K∈M , (vσ)σ∈E

)
, vK , vσ ∈ IR, vσ = 0, ∀σ ∈ Eext}

2 Discretization of the gradient: the discretization of ∇ can be performed using a
stabilized discrete gradient denoted by ∇D , see Eymard et al. (IMAJNA, 2010):

1 The discrete gradient ∇D is stable

2 The discrete gradient ∇D is consistent.
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Finite Volume methods using nonconforming grids, SUSHI

Weak formulation for Poisson’s equation: Find u ∈ H1
0(Ω) such that

∫
Ω

∇u(x) · ∇v(x)dx =

∫
Ω

f (x)v(x)dx, ∀v ∈ H1
0(Ω). (5)

SUSHI (Scheme Using stabilized Hybrid Interfaces) for Poisson’s equation: Find
uD ∈ XD,0 such that

∫
Ω

∇DuD(x) · ∇Dv(x)dx =

∫
Ω

f (x)v(x)dx, ∀v ∈ XD,0. (6)
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Finite Volume methods using nonconforming grids, SUSHI

Theorem

Assume that the exact solution u satisfies u ∈ C2(Ω). Then the following convergence
result hold:

1 H1
0 -error estimate

∥∇u −∇DuD∥L2(Ω)d ≤ Ch∥u∥2,Ω. (7)

2 L2-error estimate:

∥u −ΠMuD∥L2(Ω) ≤ Ch∥u∥2,Ω. (8)
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FVM for the Heat equation: Problem to be solved

Heat equation

ut(x, t)−∆u(x, t) = f (x, t), (x, t) ∈ Ω× (0, T), (9)

where Ω ⊂ IRd is bounded (d = 2 or d = 3), T > 0, and f is a source term .

Initial condition

u(x, 0) = u0(x), x ∈ Ω. (10)

Homogeneous Dirichlet boundary conditions

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T). (11)
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FVM for the Heat equation: What about Heat equation?

Heat equation-Classification of equations

Heat equation is a is the prototypical example of a parabolic partial differential
equation.

Heat equation-Analysis

The well-posedness of the heat problem can be found for instance in the book of
Evans (1998).

Heat equation-Physics

The unknown exact solution u represents for instance temperature of a body.
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FV for Heat using Admissible mesh

FVM for the Heat equation: on Admissible mesh

Time discretization

Time discretization tn = nk, k is the time step size with k = 1/N and N ∈ IN \ {0}.

Discrete unknowns

Denote by {un
K : K ∈ T and n ∈ J0,N + 1K} the discrete unknowns; the value un

K

is expected to approximate u(xK , tn).

Derivation of the scheme

Integrating equation (9) over K × (tn, tn+1) and using an integration by parts yields∫
K
(u(x, tn+1)− u(x, tn)) dx −

∑
σ∈EK

∫ tn+1

tn

∫
σ

∇u(x, t) · nσ,Kdγ(x)dt

=

∫
K

∫ tn+1

tn

f (x, t)dxdt. (12)
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FV for Heat using Admissible mesh

FVM for the Heat equation: on Admissible mesh

Derivation of the scheme (Suite)

Using some convenient Taylor expansions, (12) implies that

m(K) (u(xK , tn+1)− u(xK , tn))− k
∑
σ∈EK

∫
σ

∇u(x, tn+1) · nσ,Kdγ(x)

≈
∫

K

∫ tn+1

tn

f (x, t)dxdt. (13)

Formulation of the Finite Volume scheme:

m(K)∂1un+1
K −

∑
σ∈EK

m(σ)
uL − uK

dK|L
=

1
k

∫
K

∫ tn+1

tn

f (x, t)dxdt, (14)

where ∂1 is the discrete time derivative ∂1vn+1 =
vn+1 − vn

k
.

Discrete initial data u0
K = u0(xK).
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FV for Heat using Admissible mesh

FVM for the Heat equation: Convergence of the scheme

Theorem (Convergence of scheme in L∞(L2))

max
n∈{0,...,N+1}

(∑
K∈T

m(K) |u(xK , tn)− un
K |2
) 1

2

≤ C(h + k). (15)

How to see the convergence?

max
n∈{0,...,N+1}

(∑
K∈T

m(K)|u(xK , tn)− un
K |2
) 1

2

→ 0, as h → 0 and k → 0.
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FV for Heat using Admissible mesh

FVM for the Heat equation: Useful remark on the convergence in time

Convergence in time

The convergence in time is k (only order one). To increase the order in time from one
to two (and therefore the convergence becomes faster), we use the known
Crank-Nicolson finite difference method (see Quarteroni et Valli-2008).
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FV for Heat using SUSHI

FVM for the Heat equation: using SUSHI

Principles of the scheme

Weak formulation for the problem (see Evans-1998)

(ut(t), φ)L2(Ω) + (∇u(t),∇φ)L2(Ω)d = (f (t), φ)L2(Ω) . (16)

Taking t = tn+1 in (16) to get

(ut(tn+1), φ)L2(Ω) + (∇u(tn+1),∇φ)L2(Ω)d = (f (tn+1), φ)L2(Ω)). (17)

Approximating ut(tn+1) by ∂1u(tn+1) =
u(tn+1)− u(tn)

k
and u(tn+1) by un+1

D in

(17) yields the scheme: Find un+1
D ∈ XD,0 such that for all φ ∈ XD,0:(

∂1un+1
D , φ

)
L2(Ω)

+
(
∇Dun+1

D ,∇Dφ
)

L2(Ω)d
= (f (tn+1), φ)L2(Ω)). (18)
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The Wave equation

Wave equation

utt(x, t)−∆u(x, t) = f (x, t), (x, t) ∈ Ω× (0, T), (19)

where, Ω ⊂ IRd bounded and f is a given function.

Initial conditions

u(x, 0) = u0(x) and ut(x, 0) = u1(x), x ∈ Ω. (20)

Homogeneous Dirichlet boundary conditions

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T). (21)
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About Wave equation?

Some physics

The wave equation occur in physics such as sound waves, light waves and water
waves. It arises in fields like acoustics, electromagnetics, and fluid dynamics, ...

As model

The wave equation is an important model of second-order hyperbolic equations.

Existence and uniqueness

The existence and uniqueness of a weak solution of wave equation (19)–(20) can be
found for instance in Evans-1998.
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SUSHI for wave equation: discretization Ω and (0,T)

Spatial discretization

Spatial domain Ω ⊂ IRd, d ∈ IN, is discretized using the new class of meshes.

Time discretization

The time interval (0, T) constant step k = T/(N + 1), N ∈ IN. The mesh points are
denoted by tn = nk, n = 0, . . . ,N + 1
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Principles of scheme

Principles of the scheme

Weak formulation for the problem (see Evans-1998)

(utt(t), φ)L2(Ω) + (∇u(t),∇φ)L2(Ω)d = (f (t), φ)L2(Ω) . (22)

Taking t = tn+1 in (22) to get

(utt(tn+1), φ)L2(Ω) + (∇u(tn+1),∇φ)L2(Ω)d = (f (tn+1), φ)L2(Ω)). (23)

Approximating utt(tn+1) by ∂2u(tn+1) =
∂1u(tn+1)− ∂1u(tn)

k
and u(tn+1) by

un+1
D in (23) yields the scheme: Find un+1

D ∈ XD,0 such that for all φ ∈ XD,0:(
∂2un+1

D , φ
)

L2(Ω)
+
(
∇Dun+1

D ,∇Dφ
)

L2(Ω)d
= (f (tn+1), φ)L2(Ω) . (24)
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Discretization of initial conditions

Discretization of initial conditions

Discretization of initial condition u(x, 0) = u0(x):

u0
K = u0(xK), ∀K ∈ M and u0

σ = u0(xσ), ∀σ ∈ E . (25)

Discretization of initial condition ut(x, 0) = u1(x), for all (K, σ) ∈ M× E

∂1u1
K =

u1
K − u0

K

k
= u1(xK) and ∂1u1

σ =
u1
σ − u0

σ

k
= u1(xσ). (26)

Other discretizations for initial conditions

There are other possible choices, different from those of (25) and (26).
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Diversify our discussion: New scheme for a new model of equations

Diversify our discussion

We have presented the new method of Finite Volume or SUSHI to approximate some
standard models (Heat and Wave). We move now to approximate the new model of
Fractional PDEs using the new method GDM.
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Equation to be solved

Time Fractional Heat Equation

Equation

We consider the following time fractional diffusion equation:

∂α
t u(x, t)−∆u(x, t) = f (x, t), (x, t) ∈ Ω× (0, T), (27)

where Ω ⊂ IRd is an open domain of IRd , T > 0, 0 < α < 1, and f is a given
function. Here the operator ∂α

t is the Caputo derivative defined by:

∂α
t φ(t) =

1
Γ(1 − α)

∫ t

0
(t − s)−αφ′(s)ds. (28)

Initial condition

u(x, 0) = u0(x), x ∈ Ω.

Homogeneous Dirichlet boundary

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T).
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Equation to be solved

References on the Fractional Partial Differential Equations

Ishteva, Mariya Kamenova: Properties and Applications of the Caputo
Fractional Operator. Master Thesis in the Department of
Mathematics-Karlsruhe Institute (TH), 2005.

Podlubny, Igor: Fractional Differential Equations. An Introduction to Fractional
Derivatives, Fractional Differential Equations, to Methods of their Solution and
Some of their Applications. Mathematics in Science and Engineering. 198. San
Diego, CA: Academic Press. 1999.

Uchaikin, Vladimir V.: Fractional Derivatives for Physicists and Engineers,
Springer-Verlag Heidelberg, 2013.
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Equation to be solved

Equation to be solved: some information on the Γ-function

Definition of the Γ-function

Γ(t) =
∫ t

0
st−1 exp (−s)ds (29)

Some properties the Γ-function

The Γ-function extends the factorial function in the sense of Γ(n) = (n − 1)!
for all n ∈ IN \ {0}.

Γ(0) = +∞.

The Γ-function is defined on ]0,+∞[.

Γ(t + 1) = tΓ(t), for all t > 0.

The Γ-function is of C∞(]0,+∞[).
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Equation to be solved

What about time fractional diffusion equation?

Some physics

Fractional differential equations have been successfully used in the modeling of
many different processes and systems. They are used, for instance, to describe
anomalous transport in disordered semiconductors, penetration of light beam through
a turbulent medium, transport of resonance radiation in plasma, blinking fluorescence
of quantum dots, penetration and acceleration of cosmic ray in the Galaxy, and
large-scale statistical Cosmography. We refer to the monograph Uchaikin-2013
where we find many details.
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Equation to be solved

What about time fractional diffusion equation: Some interesting properties?

First nice property: relation between fractional and usual derivatives

lim
α→1

∂α
t φ(t) = φ′(t). (30)

Second nice property

lim
α→0

∂α
t φ(t) = φ(t)− φ(0). (31)

Third nice property

The mapping φ 7→ ∂α
t φ is linear.
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Equation to be solved

Overview on the Gradient Discretization Method: What is GDM simply ?

What is GDM?

Is a framework for the convergence and analysis of a large class of the numerical
methods.

What are the numerical methods encompassed by GDM ?

Conforming and Non-Conforming Finite Elements Methods

SUSHI method, cf. Eymard et al. (IMAJNA, 2010).

Mimetic Finite Difference methods, cf. Brezzi et al. (Math. Models Methods
Appl. Sci., 2005).

Mixed Finite Volume method, cf. Droniou et al. (Numer. Math., 2006).

Mixed Finite Elements method.
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Definition of GDM

Overview on the Gradient Discretization Method: Definition

Definition (Definition of a generic approximate gradient discretization, Droniou et al.
(Springer book, 2018))

Let Ω be an open domain of IRd, where d ∈ IN \ {0}. An approximate gradient
discretization D is defined by D = (XD,0, hD,ΠD,∇D), where

1 The set of discrete unknowns XD,0 is a finite dimensional vector space on IR.

2 The space step hD ∈ (0,+∞) is a positive real number.

3 The linear mapping ΠD : XD,0 → L2(Ω) is the reconstruction of the
approximate function.

4 The mapping ∇D : XD,0 → L2(Ω)d is the reconstruction of the gradient of the
function; it must be chosen such that ∥∇D · ∥L2(Ω)d is a norm on XD,0.
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Definition of GDM

Overview on the Gradient Discretization Method: Additional parameters

Definition (Additional hypotheses on the approximate gradient discretization)

The coercivity of the discretization is measured through the the constant CD
given by:

CD = max
v∈XD,0\{0}

∥ΠDv∥L2(Ω)

∥∇Dv∥L2(Ω)d
. (32)

The strong consistency: SD : H1
0(Ω) → [0,+∞) defined by, for all φ ∈ H1

0(Ω)

SD(φ) = min
v∈XD,0

(
∥ΠDv − φ∥2

L2(Ω) + ∥∇Dv −∇φ∥2
L2(Ω)d

) 1
2
. (33)

The dual consistency: For all φ ∈ Hdiv(Ω), WD(φ) is given by

max
u∈XD,0\{0}

1
∥∇Du∥L2(Ω)d

∣∣∣∣∫
Ω

(∇Du(x) · φ(x) + ΠDu(x)divφ(x)) dx
∣∣∣∣ .
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Definition of GDM

Overview on the Gradient Discretization Method: A typical
example-Conforming Finite Element Method

FE is a GDM

Let {Th; h > 0} be a family of shape regular and quasi-uniform triangulations of the
domain Ω. Let Vh be the standard finite element space of continuous, piecewise
polynomial functions of degree less or equal l ∈ IN \ {0} and we denote by
Vh

0 = Vh ∩ H1
0(Ω).

Assume that Vh
0 is spanned by the usual basis functions φ1, . . . , φM . The space XD,0

can be IRM and for any (u1, . . . , uM) ∈ XD,0, we define
ΠDu =

∑M
i=1 uiφ ∈ Vh

0 ⊂ H1
0(Ω) and ∇Du =

∑M
i=1 ui∇φ = ∇ΠDu. Using the

Poincaré inequality, we have for all u ∈ XD,0, ∥ΠDu∥L2(Ω) ≤ C(Ω)∥∇Du∥L2(Ω).

Conditions of GDM are well satisfied by FE

Therefore, the assumption (32) of Definition 6 holds with constant CD only
depending on Ω. In addition to this, we have WD(φ) = 0, for all φ ∈ Hdiv(Ω), and
SD(φ) is bounded above by (up to a multiplicative constant independent of the mesh)
hl|φ|l+1,Ω, for all φ ∈ Hl+1(Ω).
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Definition of GDM

Overview on the Gradient Discretization Method: An example of application

Let us consider the Poisson problem described above in (1).

The weak formulation for this problem is: Find u ∈ H1
0(Ω) such that

(∇u,∇v)L2(Ω)d = (f , v)L2(Ω) , ∀v ∈ H1
0(Ω).

The gradient scheme applied to the Poisson’s problem is: Find uD ∈ XD,0 such
that

(∇DuD,∇Dv)L2(Ω)d = (f , v)L2(Ω) , ∀v ∈ XD,0. (34)
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Definition of GDM

Overview on the Gradient Discretization Method: Convergence

On the convergence

The convergence is well detailed in the above References, see for instance Eymard et
al. (ESAIM-2012).
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Formulation of the scheme

Principles of the discretization

Discretization in time

We define k = T/(M + 1) and tn = nk with n ∈ {0, . . . ,M + 1}
Taking t = tn+1 in (27) yields, for all n ∈ {0, . . . ,M + 1}

∂α
t u(x, tn+1)−∆u(x, tn+1) = f (x, tn+1), (x, t) ∈ Ω× (0, T). (35)

The following approximation can be suggested for ∂α
t φ(tn+1)

∂α
t φ(tn+1) =

n∑
j=0

λn+1
j ∂1φ(tj+1) + Tn+1, (36)

where ∂1vj+1 is the first discrete time derivative vj+1−vj

k and the coefficient λn+1
j

is given by

λn+1
j =

1
Γ(2 − α)

(
(tn+1 − tj)

1−α − (tn+1 − tj+1)
1−α
)
. (37)
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Formulation of the scheme

Principles of the discretization

Discretization in time (Suite)

The rest Tn+1 is bounded as

|Tn+1| ≤ Ck2−α. (38)

A remark on the estimate

When α = 1, estimate (38) becomes of order one.
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Formulation of the scheme

Principles of the discretization (suite)

Discretization in space

We use GDM

A weak formulation for (35) on which the GDM is based

Multiplying (35) by a test function v, using an integration by parts, and using [36]
yield: For any n ∈ J 0,MK

n∑
j=0

λn+1
j

(
∂1u(tj+1), v

)
L2(Ω)

+ (∇u(tn+1),∇v)
(L2(Ω))d

= (f (tn+1), v)L2(Ω) −
(
Tn+1, v

)
L2(Ω)

. (39)
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Formulation of the scheme

Gradient Discretisation method applied to Fractional PDE (27)

GS applied to Fractional PDE (27)

From (39), replacing u by its reconstruction, the gradient by the discrete gradient,
and neglecting Tn+1 (since it tends to zero as k tends to zero) yields the following
scheme: For any n ∈ J 0,MK, find un+1

D ∈ XD,0 such that, for all v ∈ XD,0

n∑
j=0

λn+1
j

(
∂1ΠDuj+1

D ,ΠMv
)
L2(Ω)

+
(
∇D un+1

D ,∇D v
)
(L2(Ω))d

= (f (tn+1), v)L2(Ω) . (40)
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Formulation of the scheme

Some useful remarks

Implicit and Explicit

All the schemes provided here are implicit: in each iteration, we have to resolve a
linear system. Of course we are able to use explicit methods: each iteration is given
explicitly using the previous iterations.

However, the choice of Implicit will ensure that the convergence is unconditional:
there is no required condition between time and spaces discretization to get the
convergence. The choice of Explicit may lead to a conditional convergence.

Almost of these schemes are First order time accurate

The schemes provided here are of order one in time (for Fractional PDEs the order is
k2−α which goes to k when α → 1). This stems from the discretization in time. Of
course, this order in time can be improved using for instance the so-called
Crank-Nicolson finite differences methods.
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