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Abstract Since a toric space is not simply connected,

it is possible to find in such spaces some loops which are
not homotopic to a point: we call them toric loops. Some

applications, such as the study of the relationship be-

tween the geometrical characteristics of a material and

its physical properties, rely on three-dimensional dis-

crete toric spaces and require detecting objects having
a toric loop.

In this work, we study objects embedded in discrete
toric spaces, and propose a new definition of loops and

equivalence of loops. Moreover, we introduce a charac-

teristic of loops that we call wrapping vector : relying on

this notion, we propose a linear time algorithm which
detects whether an object has a toric loop or not.

1 Introduction

Topology is used in various domains of image process-

ing in order to perform geometric analysis of objects. In
porous material analysis, different topological transfor-

mations, such as skeletonisation, are used to study the

relationships between the geometrical characteristics of

a material and its physical properties.

When simulating a fluid flow through a porous ma-

terial, the whole material can be approximated by the
tessellation of the space made up by copies of one of

its samples, under the condition that the volume of

the sample exceeds the so-called Representative Ele-

mentary Volume (REV) of the material [1]. When the
whole Euclidean space is tiled this way, one can re-

mark that the result of the fluid flow simulation is itself
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the tessellation of the local flow obtained inside any

copy of the sample (see Fig. 1-a). When considering
the flow obtained inside the sample, it appears that

the flow leaving the sample by one side comes back by

the opposite side (see Fig. 1-b). Thus, it is possible to

perform the fluid flow simulation only on the sample,

under the condition that its opposite sides are joined:
with this construction, the sample is embedded inside a

toric space [5] [11]. In order to perform geometric anal-

ysis of fluid flow through porous materials, we therefore

need topological tools adapted to toric spaces.

Considering the sample inside a toric space leads to

new difficulties. In a real fluid flow, grains of a mate-

rial (pieces of the material which are not connected with
the borders of the sample) do not have any effect on the

final results, as these grains eventually either evacuate

the object with the flow or get blocked and connect with

the rest of the material. Thus, before performing a fluid

flow simulation on a sample, it is necessary to remove
its grains (typically, in a finite subset S of Z

n, a grain

is a connected component which does not ‘touch’ the

borders of S). However, characterizing a grain inside a

toric space, which does not have any border, is more dif-
ficult than in Z

n. On the contrary of the discrete space

Z
n, n-dimensional discrete toric spaces are not simply

connected spaces [11]: some loops, called toric loops, are

not homotopic to a point (this can be easily seen when

considering a 2D torus). In a toric space, a connected
component may be considered as a grain if it contains

no toric loop. Indeed, when considering a sample em-

bedded inside a toric space, and a tessellation of the

Euclidean space made up by copies of this sample, one
can remark that the connected components of the sam-

ple which do not contain toric loops produce grains in

the tessellation, while the connected components con-
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Fig. 1 Simulating a fluid flow - When simulating a fluid
flow, a porous material (in gray) can be approximated by the
tessellation of one of its samples (see a). When the results of the
simulation are obtained (the dotted lines), one can see that the
fluid flow through the mosaic is the tessellation of the fluid flow
simulation results obtained in one sample. For example, one can
look at the bold dotted line in a): the flow going from A1 to
B1 is the same than the flow going from A2 to B2. It is there-

fore possible to perform the fluid flow simulation through only
one sample and, in order to obtain the same results than in a),
connect the opposite sides of the sample (see b): the sample is
embedded inside a toric space.

taining toric loops cannot be considered as grains in the
tiling (see Fig. 2).

In this work, we give a new definition of loops and
homotopy class, adapted to n-dimensional discrete toric

spaces. Relying on these notions, we introduce wrapping

vectors, a new characteristic of loops in toric spaces

Fig. 2 Grains in toric spaces - The image in a) contains no
grain based on the ‘border criterion’; when the Euclidean space
is tessellated with copies of the image, grains appear (the circled
connected component is an example of grain). In b), the con-
nected component has toric loops (e.g. the dotted line) and when
the Euclidean space is tessellated with copies of the image, no
grain appear.

which is the same for all homotopic loops. Thanks to
wrapping vectors, we give a linear time algorithm which

allows us to decide whether an n-dimensional object

contains a toric loop or not.

This paper is an extension of a paper submitted for
a conference [3]. In addition, it contains an algorithm

which not only detects when an object contains a toric

loop (as the algorithm proposed in [3]) but also builds

a basis characterizing all toric loops contained in an
object. Furthermore, it contains a comparison between

loop homotopy defined in this article and loop equiva-

lence defined in [6].
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2 Basic Notions

2.1 Discrete Toric Spaces

A n-dimensional torus is classically defined as the direct
product of n circles (see [5]). In the following, we give

a discrete definition of toric space, based on modular

arithmetic (see [4]).

Given d a positive integer. We set Zd = {0, ..., d−1},
and we denote by ⊕d the operation such that for all

a, b ∈ Z, (a ⊕d b) is the element of Zd congruent to

(a + b) modulo d. We point out that (Zd,⊕d) is the

cyclic group of order d.

Let n be a positive integer, d = (d1, ..., dn) ∈ N
n,

and T
n = Zd1

× ... × Zdn
, we denote by ⊕ the op-

eration such that for all a = (a1, ..., an) ∈ Z
n and

b = (b1, ..., bn) ∈ Z
n, a⊕ b = (a1 ⊕d1

b1, ..., an ⊕dn
bn).

The group (Tn,⊕) is the direct product of the n groups
(Zdi

,⊕di
)(1≤i≤n), and is an n-dimensional discrete toric

space [5].

The scalar di is the size of the i-th dimension of

T
n, and d is the size (vector) of T

n. For simplicity, the

operation ⊕d will be also denoted by ⊕.

2.2 Neighbourhoods in Toric Spaces

As in Z
n, various adjacency relations may be defined in

a toric space.

Definition 1 An m-step (0 < m ≤ n) is a vector

s = (s1, ..., sn) of Z
n such that, for all i ∈ [1; n], si ∈

{−1, 0, 1} and |s1| + ... + |sn] ≤ m.
Two points a, b ∈ T

n are m-adjacent if there exists

an m-step s such that a ⊕ s = b.

Note that the steps must not be considered as ele-
ments of T

n, but rather as elements of Z
n.

In 2D, the 1- and 2-adjacency relations respectively

correspond to the 4- and 8-neighbourhood [7] adapted

to two-dimensional toric spaces. In 3D, the 1-, 2- and
3-adjacency relations can be respectively seen as the 6-,

18- and 26-neighbourhood [7] adapted to three- dimen-

sional toric spaces.

If the coordinates of the size vector of T
n are all

greater than 2, then the m-neighbourhood of any ele-
ment of T

n is isomorphic to the m-neighbourhood of

any element of Z
n.

Based on the m-adjacency relation previously de-

fined, we introduce the notion of m-connectedness.

Definition 2 A set of points X of T
n is m-connected

if, for all a,b ∈ X , there exists a sequence (x1, ...,xk)

of elements of X such that x1 = a, xk = b and for all
i ∈ [1; k − 1], xi and xi+1 are m-adjacent.

2.3 Loops in Toric Spaces

Classically, in Z
n, an m-loop is defined as a sequence

of m-adjacent points such that the first point and the

last point of the sequence are equal [6]. In this paper,
we define a loop as a sequence of m-steps, which de-

scribes the direction followed by the loop in the toric

space. This new definition will allow us to give simple

intermediate properties and proofs leading to our main

theorem(see Th. 1).

Definition 3 Given p ∈ T
n, an m-loop (of base point

p) is a pair L = (p, V ), where V = (v1, ...,vk) is a

sequence of m-steps such that (p⊕ v1 ⊕ ... ⊕ vk) = p.

The number k is the length of L. We call i-th point

of L, with 1 ≤ i ≤ k+1, the point (p⊕v1⊕ ...⊕vi−1).

The loop (p, ()) is called the trivial loop of base point p.

Remark 1 In this definition, the (k+1)-th point of L is

p, and has been defined in order to make some propo-
sitions and proofs more simple.

Remark 2 This definition of loops in toric space allows
to remove an ambiguity which can exist in small toric

spaces. Indeed, when considering loops as a sequence of

m-adjacent points, an ambiguity arises in toric spaces

where one dimension has a size equal to 1 or 2. For
example, let us consider the two-dimensional toric space

T
2 = Z3 × Z2, and the 2-adjacency relation on T

2. Let

us also consider x1 = (1, 0) and x2 = (1, 1) in T
2, and

let us consider the sequence of points L = (x1,x2,x1).

The sequence L could either be the loop passing

by x1 and x2 and doing a ‘u-turn’ to come back to

x1, or either be the loop passing by x1 and x2, and

‘wrapping around’ the toric space in order to reach x1

without making any ‘u-turn’, as shown on Fig. 3. In

toric spaces of small size, defining a loop as a sequence

of m-adjacent points may lead to such ambiguity.

However, considering a loop as a sequence of m-

steps removes the ambiguity: let v be the vector (0, 1),

the loop passing by x1 and x2 and making a u-turn

is (x1, (v,−v)) (see Fig. 3-b), while the loop wrap-
ping around the toric space is (x1, (v,v)) (see Fig. 3-c).

Since m-steps are elements of Z, we have v 6= −v.

3 Loop Homotopy in Toric Spaces

3.1 Homotopic Loops

In this section, we define an equivalence relation be-

tween loops, corresponding to an homotopy, inside a

discrete toric space. An equivalence relation between
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Fig. 3 Loops in toric spaces - In the toric space Z3 ×Z2 (see
a), the sequence of points (x1,x2,x1) can be interpreted in two
different ways: b) and c).

loops inside Z
2 and Z

3 has been defined in [6], how-

ever, it cannot be adapted to discrete toric spaces (see

Sec. 7). Observe that the following definition does not

constrain the loops to lie in a subset of the space, on
the contrary of the definition given in [6].

Definition 4 Let K = (p, U) and R = (p, V ) be two

m-loops of base point p ∈ T
n, with U = (u1, ...,uk) and

V = (v1, ...,vr). The two m-loops K and R are directly
homotopic if one of the three following conditions is

satisfied:

1. There exists j ∈ [1; r] such that vj = 0 and U =

(v1, ...,vj−1,vj+1, ...,vr).

2. There exists j ∈ [1; k] such that uj = 0 and V =

(u1, ...,uj−1,uj+1, ...,uk).

3. There exists j ∈ [1; k − 1] such that
. V = (u1, ...,uj−1,vj,vj+1,uj+2, ...,uk), and

. uj + uj+1 = vj + vj+1, and

. (uj − vj) is an n-step.

Remark 3 The last condition ((uj −vj) is an n-step) is

not necessary for proving the results presented in this

paper. However, it is needed when comparing the loop

homotopy and the loop equivalence (see [6]), as done in
Sec. 7.

Moreover, this last condition is equivalent to saying

that (uj+1 − vj+1) is an n-step.

Remark 4 In the case 1 (resp. 2 and 3), we have k =
r − 1 (resp. (r = k − 1) and (r = k)).

Remark 5 It may be observed that in the above defini-

tion, the parameter m is used to specify that we con-
sider m-loops, but it is not taken into account in order

to decide if two m-loops are directly homotopic.

Definition 5 Two m-loops K and R of base point p ∈
T

n are homotopic if there exists a sequence of m-loops

(C1, ..., Cq) such that C1 = K, Cq = R and for all j ∈
[1; q − 1], Cj and Cj+1 are directly homotopic.

Fig. 4 Homotopic Loops - The 1-loops La,Lb,Lc and Ld are
homotopic.

Example 1 In the toric space Z4×Z2, let us consider the
point p = (0, 0), the 1-steps v1 = (1, 0) and v2 = (0, 1),

and the 1-loops La, Lb, Lc and Ld (see Fig. 4). The

loops La and Lb are homotopic, the loops Lb and Lc

are directly homotopic, and the loops Lc and Ld are
also directly homotopic.

On the other hand, it may be seen that the 1-loops

depicted on Fig. 3-b and on Fig. 3-c are not directly

homotopic.

We propose an adaptation of our definition of loop

homotopy to Z
2 and Z

3 in Sec. 7, and we show that

the resulting definition is equivalent to the definition of
loop equivalence given in [6].

3.2 Fundamental Group

Initially defined in the continuous space by Henri Poin-

caré in 1895 [10], the fundamental group is an essential
concept of topology, based on the homotopy relation,

which has been transferred into different discrete frame-

works (see e.g. [6], [8], [2]).

Given two m-loops K = (p, (u1, ...,uk)) and R =

(p, (v1, ...,vr)) of same base point p ∈ T
n, the product

of K and R is the m-loop K.R = (p, (u1, ...,uk,v1, ...,

vr)). The identity element of this product operation

is the trivial loop (p, ()), and for each m-loop K =

(p, (u1, ...,uk)), we define the inverse of K as the m-
loop K−1 = (p, (−uk, ..., −u1)).

The symbol
∏

will be used for the iteration of the

product operation on loops. Given a positive integer w,

and an m-loop K of base point p, we set Kw =

w
∏

i=1

K

and K−w =

w
∏

i=1

K−1. We also define K0 = (p, ()).

The homotopy of m-loops is a reflexive, symmetric

and transitive relation: it is therefore an equivalence re-

lation and the equivalence class, called homotopy class,
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of an m-loop R is denoted by [R]. The product oper-

ation can be extended to the homotopy classes of m-

loops of same base point: the product of [K] and [R] is

[K].[R] = [K.R]. It may be easily seen that this binary

operation is well defined since, if K′ ∈ [K] and R′ ∈ [R],
then K′.R′ ∈ [K.R].

We now define the fundamental group of T
n.

Definition 6 Given an m-adjacency relation on T
n and

a point p ∈ T
n, the m-fundamental group of T

n with

base point p is the group formed by the homotopy classes

of all m-loops of base point p ∈ T
n under the product

operation.

The identity element of this group is the homotopy

class of the trivial loop, and for each m-loop K of base

point p, the inverse of [K] is [K−1], since [K.K−1] =
[(p, ())].

The choice of the base point leads to different funda-

mental groups which are isomorphic to each other ([9],

Th. 3.2.16). Thus, in the following, we sometimes talk

about the m-fundamental group of T
n, without speci-

fying the base point.

4 Toric Loops in Subsets of T
n

The toric loops, informally evoked in the introduction,

can now be formalised using the definitions given in the

previous sections.

Definition 7 In T
n, we say that an m-loop is a toric

m-loop if it does not belong to the homotopy class of a

trivial loop.

A connected subset of T
n is wrapped in T

n if it con-

tains a toric m-loop.

Remark 6 The notion of grain introduced informally in

Sec. 1 may now be defined: a connected component of

T
n is a grain if it is not wrapped in T

n.

4.1 Algorithm for Detecting Wrapped Subsets of T
n

In order to know whether a connected subset of T
n is

wrapped or not, it is not necessary to build all the m-
loops which can be found in the subset: the Wrapped

Subset Descriptor (WSD) algorithm (see Alg. 1) an-

swers this question in linear time (more precisely, in

O(N.M), where N is the number of points of T
n, and

M is the number of distinct m-steps), as stated by the

following proposition.

Proposition 1 Let T
n be an n-dimensional toric space

of size vector d. A non-empty m-connected subset X

of T
n is wrapped in T

n if and only if WSD(n,m, T
n,d,X)

is non-empty.

Algorithm 1: WSD(n,m,Tn,d,X)

Data: An n-dimensional toric space T
n of dimension

vector d and a non-empty m-connected subset X of
T

n.
Result: A set B of elements of Z

n

Let p ∈ X; Coord(p) = 0n; S = {p }; B = ∅;1

foreach x ∈ X do HasCoord(x) = false;2

HasCoord(p) = true;3

while there exists x ∈ S do4

S = S \{x};5

foreach non-null n-dimensional m-step v do6

y = x ⊕d v;7

if y ∈ X and HasCoord(y) = true then8

if Coord(y) 6= Coord(x) + v then9

B = B ∪ ((Coord(x) + v - Coord(y))/ d);10

else if y ∈ X and HasCoord(y) = false then11

Coord(y) = Coord(x) + v;12

S = S ∪{y};13

HasCoord(y) = true;14

return B15

Remark 7 In Alg. 1, the division operation performed

on line 10 is a ‘coordinate by coordinate’ division be-

tween elements of Z
n.

To summarize, Alg. 1 ‘tries to embed’ the subset

X of T
n in Z

n: if some incompatible coordinates are
detected by the test achieved on l. 9 of Alg. 1, then the

object has a feature (a toric loop) which is incompatible

with Z
n. A toric 2-loop lying in X is depicted in Fig. 5-f.

Before proving Prop.1 (see Sec. 5.4), new definitions
and theorems must be given: in particular, Th. 1 estab-

lishes an important result on homotopic loops in toric

spaces. Before, let us study an example of execution of

Alg. 1.

Example 2 Let us consider a subset X of points of Z4×
Z4 (see Fig. 5-a) and the 2-adjacency relation. In Fig. 5-

a, one element of X is chosen as p and is given the
coordinates of the origin (see l. 1 of Alg. 1); then we

set x = p. In Fig. 5-b, every neighbour y of x (l. 6,7)

which is in X (l. 11) is given coordinates depending on

its position relative to x (l. 12) and is added to the set
S (l. 13).

Then, in Fig. 5-c, one element of S is chosen as x

(l. 4). Every neighbour y of x is scanned (l. 6,7). If

y is in X and has already been given some coordinates

(l. 8), it is compared with x: as the coordinates of x and
y are compatible in Z

2 (the test achieved l. 9 returns

false), the set B remains empty. Else, if y is in X and

has not previously been given coordinates (l. 11) (see

Fig. 5-d), then it is given coordinates depending on its
position relative to x (l. 12) and added to the set S.

Finally, in Fig. 5-e, another element of S is cho-

sen as x. The algorithm tests one of the neighbours
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Fig. 5 Example of execution of WSD - see Ex. 2 for a
detailed description.

y of x (the left neighbour) which is in X and has al-

ready some coordinates (l. 8). As the coordinates of y

and x are incompatible in Z
2 (the points (−1, 1) and

(2, 1) are not neighbours in Z
2), the algorithm adds

(−1,1)+(−1,0)−(2,1)
4 = (−1, 0) to B (l. 10): according to

Prop. 1, the subset X is wrapped in T
n.

5 Wrapping Vector and Homotopy Classes in

T
n

Deciding if two loops L1 and L2 belong to the same

homotopy class can be difficult if one attempts to do

this by building a sequence of directly homotopic loops

which ‘link’ L1 and L2. However, this problem may be

solved using the wrapping vector, a characteristic which
can be easily computed on each loop.

5.1 Wrapping Vector of a Loop

The wrapping vector of a loop is the sum of all the

elements of the m-step sequence associated to the loop.

Fig. 6 Wrapping vector - In T
2 = Z4 × Z4, the 2-loop in a)

has a wrapping vector equal to (4, 4), and the 2-loop in b) has a
wrapping vector equal to (0, 0).

Definition 8 Let L = (p, V ) be an m-loop, with V =

(v1, ...,vk). Then the wrapping vector of L is wL =
k

∑

i=1

vi.

Remark 8 In Def. 8, the symbol
∑

stands for the iter-
ation of the classical addition operation on Z

n, not of

the operation ⊕ defined in Sec. 2.1.

Example 3 In T
2 = Z4 × Z4, depicted on Fig. 6, the

loop K = (p, (v3,v2,v3,v1,v3)) (see Fig. 6-a) has a

wrapping vector equal to (4, 4), while the loop L =

(p, (v3,v1,v1, −v2, −v1, −v3, −v3, −v1, −v1,v2,v1,
v1,v2)) has a wrapping vector equal to (0, 0) (see Fig. 6-

b).

We now define the notion of ‘basic loops’, which

will be used for the proof of Prop. 2 and for building,

in Def. 11, a canonical loop for a given wrapping vector.

Definition 9 Let T
n be an n-dimensional toric space

of size vector d = (d1, ..., dn). We denote, for each i ∈
[1; n], by bi the 1-step whose i-th coordinate is equal to

1, and by Bi the 1-step sequence composed of exactly

di 1-steps bi.

Given p ∈ T
n, for all i ∈ [1; n], we define the i-th

basic loop of base point p as the 1-loop (p, Bi).

Remark 9 For all i ∈ [1; n], the wrapping vector of the
i-th basic loop of base point p is equal to (di.bi).

The next property establishes that the wrapping

vector of any m-loop can only take specific values in

Z
n. The proof may be found in Sec. 8.
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Proposition 2 Let T
n be an n-dimensional toric space

of size vector d = (d1, ..., dn). A vector w = (w1, ..., wn)

of Z
n is the wrapping vector of an m-loop of T

n if and

only if, for all i ∈ [1; n], wi is a multiple of di.

Thanks to Prop. 2, we can now define the normalized

wrapping vector of an m-loop.

Definition 10 Given T
n of size vector d = (d1, ..., dn),

let L be an m-loop of wrapping vector w = (w1, ..., wn).

The normalized wrapping vector of L is w∗ = (w1/d1,
..., wn/dn).

Remark 10 It may be pointed out that, in Alg. 1, the

set B contains the reduced wrapping vectors of loops

contained in a set X .

Example 4 The wrapping vector and the normalized

wrapping vector give information on how a loop ‘wraps

around’ each dimension of a toric space before ‘com-

ing back to its starting point’. For example, let T
3 =

Z2 × Z5 × Z7 (hence, the size vector of T
3 is (2, 5, 7)).

A loop with wrapping vector (4,5,0) has a normalized

wrapping vector equal to (2,1,0): it wraps two times in

the first dimension, one time in the second, and does

not wrap in the third dimension.
On Fig. 6, the normalized wrapping vector of loop

K (see Ex. 3), depicted on Fig. 6-a, is equal to (1, 1),

while the normalized wrapping vector of L (see Ex. 3),

depicted on Fig. 6-b, is equal to (0, 0).

It may easily be seen that, in T
n, for each i ∈ [1; n],

the normalized wrapping vector of the i-th basic loop

of any base point is equal to bi (see Def. 9).

5.2 Equivalence Between Homotopy Classes and

Wrapping Vector

It can be seen that two directly homotopic m-loops have

the same wrapping vector, as their associated m-step

sequences have the same sum. Therefore, we have the

following property.

Proposition 3 Two homotopic m-loops of T
n have the

same wrapping vector.

The following definition is necessary in order to un-

derstand Prop. 4 and its demonstration, leading to the
main theorem of this article.

Definition 11 Let p be an element of T
n, and w∗ =

(w∗
1 , ..., w∗

n) ∈ Z
n.

The canonical loop of base point p and normalized

wrapping vector w∗ is the 1-loop

n
∏

i=1

(p, Bi)
w∗

i , where

(p, Bi) is the i-th basic loop of base point p.

Example 5 Consider T
4 = Z3 × Z2 × Z1 × Z2, w∗ =

(1, 0, 1,−2) and p = (0, 0, 0, 0). The canonical loop of

base point p and normalized wrapping vector w∗ is the

1-loop (p, V ) with:

V=(
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Proposition 4 Any m-loop of base point p ∈ T
n and

of normalized wrapping vector w∗ ∈ Z
n is homotopic

to the canonical loop of base point p and of normalized

wrapping vector w∗.

The proof of the previous proposition may be found
in Sec. 8.

The previous proposition shows that the canonical

loop of base point p and of normalized wrapping vector

w∗ can be seen as a canonical form for all loops of base
point p and normalized wrapping vector w∗.

From this, we deduce that two m-loops of same base

point p and same normalized wrapping vector w∗ are

homotopic, as they both belong to the homotopy class

of the canonical loop of base point p and of normalized
wrapping vector w∗.

Example 6 In T
2 = Z

4×Z
4, let L be the 2-loop of base

point p represented on Fig. 7-a. It can be seen that the

normalized wrapping vector of L is equal to (1,−1):

this means that the loop wraps 1 time around the first
dimension, and one time around the second dimension.

The canonical loop of base point p and of normalized

wrapping vector (1,−1), represented on Fig. 7-b, be-

longs to the same homotopy class as L (Prop. 4).

We can now state the main theorem of this article,
which is a direct consequence of Prop. 3 and Prop. 4.

Theorem 1 Two m-loops of T
n of same base point

are homotopic if and only if their wrapping vectors are

equal.

Remark 11 According to Th. 1, the homotopy class of
the trivial loop (p, ()) is the set of all m-loops of base

point p that have a null wrapping vector.

Thus, the loop depicted on Fig. 6-b belongs to the

homotopy class of the trivial loop.

5.3 Wrapping Vector and Fundamental Group

Given a point p ∈ T
n, we set Ω = {w∗ ∈ Z

n/ there

exists an m-loop in T
n of base point p and of normalized
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Fig. 7 In T
2 = Z4 × Z4, the 2-loop in a) has a normalized

wrapping vector equal to (1,−1). The 1-loop in b) is the canonical
loop of base point p and normalized wrapping vector (1,−1). On
b), the numbers represent the positions of the 1-steps in the 1-
step sequence associated to the loop.

wrapping vector w∗}. From Prop. 2, it is plain that

Ω = Z
n. Therefore, (Ω, +) is precisely (Zn, +)

Theorem 1 states that there exists a bijection be-
tween the set of the homotopy classes of all m-loops of

base point p and Ω. The product (see Sec. 3.2) of two

m-loops K and L of same base point p and of respective

wrapping vectors wk and wl is the loop (K.L) of base

point p. The wrapping vector of (K.L) is (wk + wl),
therefore we can state that there exists an isomorphism

between the fundamental group of T
n and (Ω, +).

Consequently, we retrieve in our discrete framework

a well-known property of the fundamental group of toric

spaces [5].

Proposition 5 The fundamental group of T
n is iso-

morphic to (Zn, +).

5.4 Proof of Alg. 1

Proof (of Prop. 1) For all y ∈ X such that y 6= p,

there exists a point x such that the test performed on

l. 11 of Alg. 1 is true: we call x the label predecessor of
y.

• At the end of the execution of Alg. 1, if the set B

is empty, then the test performed l. 9 was never true.

Let L = (p, V ) be an m-loop contained in X , with

V = (v1, ...,vk), and let us denote by xi the i-th point
of L. As the test performed l. 9 was always false, we

have the following:

{

for all i ∈ [1; k − 1],vi = Coord(xi+1) − Coord(xi)
vk = Coord(x1) − Coord(xk)

The wrapping vector of L is

w =

k−1
∑

i=1

(Coord(xi+1) − Coord(xi))

+Coord(x1) − Coord(xk) = 0

Thus, if the algorithm returns false, each m-loop of

X has a null wrapping vector and, according to Th. 1,

belongs to the homotopy class of a trivial loop: there is

no toric m-loop in X which is therefore not wrapped in

T
n.

• If B is not empty, then, there exists x,y ∈ X

and an m-step a such that x ⊕ a = y and Coord(y) −
Coord(x) 6= a.

It is therefore possible to find two sequences γx

and γy of m-adjacent points in X , with γx = (p =

x1,x2, ...,xq = x) and γy = (y = yt, ...,y2,y1 = p),

such that, for all i ∈ [1; q − 1],xi is the label prede-

cessor of xi+1, and for all i ∈ [1; t − 1],yi is the label

predecessor of yi+1. Therefore, we can set















. for all i ∈ [1; q − 1],ui = Coord(xi+1) − Coord(xi)

is an m-step such that xi ⊕ ui = xi+1

. for all i ∈ [1; t − 1],vi = Coord(yi) − Coord(yi+1)

is an m-step such that yi+1 ⊕ vi = yi

Let Nx,y,a = (p, V ) be the m-loop such that V =

(u1, ...,uq−1,a,vt−1, ...,v1). The m-loop Nx,y,a is ly-

ing in X and its wrapping vector w is equal to:

w =

q−1
∑

i=1

ui + a +

t−1
∑

i=1

vi = a − (Coord(y) − Coord(x))

6= 0

Thus, when the algorithm returns a non-empty set,

it is possible to find, inside X , an m-loop with a non-

null wrapping vector: by Th. 1, there is a toric m-loop

in X which is therefore wrapped in T
n. �

The algorithm proposed in [3] returns a boolean

telling whether the subset X is a wrapped subset of T
n

or not. To obtain this algorithm from the code given in
Alg. 1, it is sufficient to replace l. 10 by ‘return true’

and to replace l. 15 by ‘return false’. The advantage

of Alg. 1 is that it gives more information on the toric

loops lying inside a wrapped subset X , as shown in
Sec. 5.5.

5.5 Computing a Basis For Toric Loops in a Subset of

T
n

In this section, we show that Alg. 1 builds a basis for all

normalized wrapping vectors of all toric m-loops con-

tained in a subset of T
n.
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Given T
n of size vector d and an m-connected subset

X of T
n, we consider having run WSD(n, m, Tn,d, X),

and we will use Coord, the function built on l. 12 of

Alg. 1.

Given an m-step v and two points x,y ∈ X such
that x ⊕ v = y, the points x and y are conflictive

through v if Coord(x) + v 6= Coord(y). Observe that,

for all conflictive pairs of points x, y through v con-

tained in the subset X of T
n, the vector ((Coord(x) +

v − Coord(y))/d) is added to the set B built on l. 10

of Alg. 1.

The next lemma establishes that, in order to calcu-

late the wrapping vector of an m-loop (and therefore,

its homotopy class, as stated by Th. 1), only the con-
flictive pairs of points in the loop need to be considered:

Lemma 1 Let p ∈ X and let K = (p, V ) be an m-loop

in X, with V = (v1, ...,vk). For all i ∈ [1; k + 1], we

denote by xi the i-th point of K, and we set C = {i ∈
[1; k]|xi and xi+1 are conflictive through vi}. Let w be

the wrapping vector of K. We have:

w =
∑

j∈C

(Coord(xj) + vj − Coord(xj+1))

Proof The wrapping vector w of K is by definition:

w =

k
∑

j=1

vj =
∑

j /∈C

vj +
∑

j∈C

vj

=
∑

j /∈C

(Coord(xj+1) − Coord(xj)) +
∑

j∈C

vj

=

k
∑

j=1

(Coord(xj+1) − Coord(xj))

−
∑

j∈C

(Coord(xj+1) − Coord(xj)) +
∑

j∈C

vj

As
k

∑

j=1

(Coord(xj+1) − Coord(xj))) = Coord(xk+1) −

Coord(x1) = 0, we get the lemma proved. �

We now focus on the set B, result of WSD(n, m, Tn,

d, X). For all x,y ∈ X that are conflictive through an
m-step v, the vector ((Coord(x)+v−Coord(y))/d) is

in B. The next proposition states that B can be seen as

a generating set for all (normalized) wrapping vectors

of all m-loops of X .

Proposition 6 Let the set B = {w1, ...,wk} be the re-

sult of WSD(n,m, T
n,d, X). A vector w∗ ∈ Z

n is the
normalized wrapping vector of an m-loop of X if and

only if there exists k non-negative integers α1, ..., αk

such that

w∗ =

k
∑

i=1

αi.wi (1)

Remark 12 If x and y are conflictive through v, then

y and x are conflictive through (−v): therefore, if u

belongs to B, then −u also belongs to B. This is why

it is possible, in Prop. 6, to restrain the choice of the

coefficients α1, ..., αk to the set of non-negative integers.

Proof If L is an m-loop in X of normalized wrapping
vector w∗, then, by Lem. 1 and by construction of B,

we deduce that w∗ satisfies Equ. 1.

Now, let w∗ be a vector which satisfies Equ. 1. For

each b ∈ B, there exists x and y in X and an m-step

a such that x and y are conflictive through a and such
that b = (Coord(x)+a−Coord(y))/(d). Consider the

m-loop Nx,y,a (see the second part of proof of Prop. 1),

lying inside X , and whose wrapping vector is equal to

(Coord(x) + a − Coord(y)): the normalized wrapping
vector of Nx,y,a is b.

Therefore, for each b ∈ B, there exists an m-loop

Lb inside X , whose normalized wrapping vector is equal

to b. Let L∗ =

k
∏

i=1

(Lwi
)αi . By construction, L∗ is con-

tained in X , and its wrapping vector is equal to w∗.

�

Thus, algorithm 1 builds a (non-minimal) basis al-

lowing to compute the normalized wrapping vector of

any m-loop of X : the normalized wrapping vector of
any m-loop lying inside X is the linear combination of

elements of B with non-negative coefficients. The set

B, result of Alg. 1, allows to get information on how X

wraps inside the toric space.

6 Conclusion

In this article, we give a formal definition of loops and

homotopy, which suits all dimensions, inside discrete

toric spaces in order to define various notions such as
the fundamental group and the wrapping vector. More-

over, we show that wrapping vectors completely char-

acterize toric loops (see Th. 1) and lead to a linear time

algorithm for the detection of such loops in a subset X
of T

n. In addition, this algorithm allows to build, for

each subset X of T
n, a basis of vectors which charac-

terizes all toric loops contained in X and describes how

X wraps around T
n.

In Sec. 1, we have seen that detecting toric loops
is important in order to filter grains from a material’s

sample and perform a fluid flow simulation on the sam-

ple. The WSD algorithm proposed in this article de-

tects which subsets of a sample, embedded inside a toric
space, will create grains and should be removed. Future

works will include analysis of the relationship between

other topological characteristics of materials and their
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physical properties: for example, studying the skeleton

of the pore space of a material could help to find new

methods for performing fluid flow analysis.

7 Annex A: More About Loop Homotopy

An homotopy relation between loops in Z
2 and Z

3,
called loop equivalence, was defined in [6]. In this sec-

tion, we first recall this definition and we show that,

when adapted to toric spaces, it may give unwanted re-

sults. Then, we show that when adapted to Z
2 and Z

3,

our notion of loop homotopy is equivalent to the loop
equivalence defined in [6].

7.1 Loop Equivalence [6]

From now, we consider the discrete grid Z
2 or Z

3, and

a subset X of grid points: the points of X (resp. X) are
called black (resp. white) points. As in [6], the loops we

will consider are constrained, as in [6], to lie in X .

A black m-loop of base point p ∈ X is an m-loop

L = (p, U) (see Def. 3), with U = (u1, ...,uk), such

that, for all j ∈ [1; k], the j-th point of L is in X .

Definition 12 Let K = (p, U) and R = (p, V ) be
two black m-loops in Z

n (n = 2 or n = 3), with U =

(u1, ...,uk) and V = (v1, ...,vr). For all i ∈ [1; k+1], we

denote by xi the i-th point of K, and for all i ∈ [1; r+1],

we denote by yi the i-th point of R.

The m-loops K and R differ in a unit lattice square
or unit lattice cube J of Z

n if

. k = r, and

. xi ∈ J if yi ∈ J , and

. xi = yi if yi /∈ J .

Definition 13 Let K = (p, U) and R = (p, V ) be two

black m-loops, with (n, m) ∈ {(2, 1); (2, 2); (3, 1); (3, 3)}.
Let k and r be respectively the lengths of K and R.

The two m-loops K and R are directly equivalent if

one of the two following conditions is matched:

. Let Ũ and Ṽ be the sequences obtained respectively

from U and V by removing all null steps. We have
Ũ = Ṽ .

. There exists a unit lattice cube or unit lattice square

J such that K and R differ in J , and if (n, m) =

(3, 1), the cube J does not contain two diametrically
opposite white points.

Definition 14 Two black loops K and R are equiva-

lent if there exists a sequence (K = C1, ..., Ci = R) of

black loops such that, for all j ∈ [1; i − 1], Ci and Ci+1

are directly equivalent.

Fig. 8 Equivalent loops - In a and c: in T
2 = Z3 × Z3, the

loops in a) and c) are equivalent (see Def. 13) but not homotopic
(see Def. 4). In b and d: the two loops do not belong to the same
homotopy class in T

2, as one wraps around the toric space, and
not the other.

7.2 Loop Equivalence in Toric Spaces Gives Unwanted
Results

In order to adapt Def. 13 to our discrete toric framework
it is necessary to replace all occurrences of ‘Zn’ by ‘Tn’

and ‘unit lattice cube’ (resp. ‘unit lattice square’) by

‘toric unit lattice cube’ (resp. ‘toric unit lattice square’).

Moreover, all the points of T
n are black, therefore all

conditions depending on the colours of the points of the
space can be ignored.

The following example pinpoints that Def. 13, ada-

pted to our discrete toric framework, can produce un-

wanted results.

Example 7 Given a two-dimensional toric space (T2,⊕)

whose points are all black, with T
2 = Z3 × Z3, let

us consider the element p = (0; 1), the 2-steps v1 =

(1; 0), v2 = (0; 1), v3 = (−1;−1) and the 2-loops K =
(p, (v1,v1,v1)) and L = (p, (v1,v2,v3)). It can be

seen on Fig. 8 that K and L do not belong to the same

homotopy class in T
2 (K wraps around the toric space,

but L does not), however, based on Def. 13 adapted to
toric spaces, they are equivalent.

The fundamental group of T
2 obtained from Def. 13

is trivial, which is in contradiction with Prop. 5.

This is why we introduced a new definition of loop

homotopy for toric spaces in this article (see Def. 4 and

Def. 5).
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7.3 Comparing Black Loop Homotopy and Black Loop

Equivalence in Z
2 and Z

3

It is possible to adapt all definitions given previously

in this article to Z
n, by replacing the operation ‘⊕’ by

the usual operation ‘+’. This way, we define the direct

homotopy of black m-loops in Z
n: two black m-loops

of same base point p ∈ Z
n are directly homotopic if

they are directly homotopic in the sense of definition 4

adapted to Z
n.

We accordingly define the homotopy of black m-
loops in Z

n: two black m-loops K and R of same base

point p ∈ Z
n are homotopic if there exists a sequence

(K = C1, ..., Ci = R) of black m-loops such that, for all

j ∈ [1; i − 1], Ci and Ci+1 are directly homotopic.

A non self-intersecting loop is an m-loop (p, (u1, ...,
uk)) such that, for all i ∈ [1; k[, and for all j ∈]i; k],

with (i, j) 6= (1; k),

j
∑

h=i

uh 6= 0. We now introduce a

lemma which will be used in the proof of the forecoming

proposition.

Lemma 2 In Z
3, any non self-intersecting black 1-loop

contained in a unit lattice cube which does not contain
two diametrically opposite white points, is homotopic to

a trivial loop.

Proof A non self-intersecting 1-loop (p, U) holding in-
side a unit lattice cube is such that |U | ∈ {0, 2, 4, 6, 8}.

When considering all possible symmetries and ro-

tations in the unit lattice cube of Z
3, only 5 kinds of

non self-intersecting (and non trivial) black 1-loops can
be built (as shown on Fig. 9). For example, only one

kind of 1-loop composed of eight 1-steps can be built

(see Fig. 9a): let us call it (p, (u1, ...,u8)). It is plain

that, in order to pass by each of the cube’s eight ver-

tices once and only once, we must have {u1, ...,u8} =
{va,va, −va, −va,vb, −vb,vc, −vc}, with va,vb,vc

being 1-steps of Z
3 such that va 6= ±vb, va 6= ±vc and

vb 6= ±vc. In order to avoid the loop to self-intersect,

we must have u1 = va or u2 = va.
If we choose u2 = va, then, in order to avoid the

loop to self-intersect, we need u6 = va and u4 = u8 =

−va. Then, we set u1 = vb, and consequently, u3 = vc,

u5 = −vb, and u7 = −vc. Choosing u1 = va leads to

a symmetrical loop.
A similar reasoning, in the case |U | = 6, shows that

the two loops (p, (va,vb,vc, −va, −vb, −vc)) (Fig. 9b)

and (p, (va,vb, −va,vc, −vb, −vc)) (see Fig. 9c) are

the only configurations of non self-intersecting loops
that can be built in the unit lattice cube of Z

3. The

cases |U | = 4 and |U | = 2 are even simpler, each with

one possible coniguration of non-self intersecting loop:

Fig. 9 In a unit lattice cube, when considering all possible sym-
metries, only 5 different non self-intersecting black 1-loops can
be built. If the cube does not contain two diametrically opposite
white points, the black 1-loops are all equivalent to a trivial loop.

(p, (va,vb, −va, −vb)) (see Fig. 9d) and (p, (va, −va))

(see Fig. 9e).

The five kinds of non self-intersecting black 1-loop

which can exist in a unit lattic cube are represented

on Fig.9. It is plain that each of these loops can be

reduced to a trivial loop if the cube does not contain
two diametrically opposite white points. �

The next proposition establishes that, in Z
n, black

m-loop homotopy and black m-loop equivalence defined
in [6] (see Def. 13) are equivalent.

Proposition 7 Two black m-loops K = (p, U) and
R = (p, V ) in Z

n (with (n, m) ∈ {(2, 1); (2, 2); (3, 1);

(3, 3)}) are equivalent if and only if they are homotopic.

Proof In the following proof, we set U = (u1, ...,uk),

V = (v1, ...,vr), and, for all i ∈ [1; k +1], we denote by
xi the i-th point of K, and for all i ∈ [1; r+1], we denote

by yi the i-th point of R. We have, for all i ∈ [1; k],

ui = (xi+1 −xi) and, for all i ∈ [1; r], vi = (yi+1 −yi).

If k 6= r, then it can be easily seen that K and R are

directly equivalent if and only if they are homotopic.
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Now, let us consider the case where k = r. We define

DK = {x ∈ K| there exists i ∈ [2; k] such that xi 6= yi}

DR = {y ∈ R| there exists i ∈ [2; k] such that yi 6= xi}.

Note that, for all i ∈ [2; k], xi ∈ DK if and only if

yi ∈ DR. Thus, (DK ∪ DR) is the set of all points of

K which differ from the corresponding point of R, and

vice versa.

i) Suppose that K and R are directly homotopic (see
Def. 4, case 3), then there exists j ∈ [1; k− 1] such that

V = (u1, ...,uj−1,vj,vj+1,uj+2, ...,uk), where (uj −
vj) is an n-step and (uj +uj+1 = vj +vj+1). Obviously,

we have (DK ∪ DR) = {xj+1,yj+1}.
As (xj+1 − yj+1) = (uj − vj), the points xj+1 and

yj+1 lie in a same unit lattice square or cube. Further-

more, if n = 3 and m = 1, (uj −vj) is a 2-step, proving

that xj+1 and yj+1 lie in a same unit lattice square

(no diametrically opposite white points to matter): the
m-loops K and R are directly equivalent.

ii) Reciprocally, suppose that K and R are directly

equivalent.

• In the case where (n, m) ∈ {(2, 2), (3, 3)}, we set,
for all h ∈ [1; k], Sh = (v1, ...,vh−1,xh+1 − yh,uh+1,

...,uk) and Ch = (p, Sh).

First, we prove that for all h ∈ [1; k], Ch is an m-

loop of base point p, by proving that (xh+1 −yh) is an

m-step. As K and R are directly equivalent, we either
have xh = yh or xh+1 = yh+1 (the result is then

directly obtained), or we have xh,yh,xh+1 and yh+1

lying in a same unit lattice cube or square: (xh+1−yh)

is therefore an n-step, and also an m-step since n = m.
We are going to prove that for all h ∈ [1; k − 1], Ch

and Ch+1 are directly homotopic by proving that they

match the case 3 of Def. 4. We set Sh = (a1, ...,ak),

and Sh+1 = (b1, ...,bk):

. Sh+1 = (a1, ...,ah−1,bh,bh+1,ah+2, ...,ak),

. (ah +ah+1) = xh+1−yh +uh+1 = xh+2−yh, and

(bh + bh+1) = vh + xh+2 − yh+1 = xh+2 − yh,
. (ah − bh) = xh+1 − yh − vh = xh+1 − yh+1 is an

n-step, as either xh+1 = yh+1 or xh+1 and yh+1

belong to a same unit lattice cube or square, and

also an m-step since n = m.

Finally, by pointing out that C1 is equal to K and that

Ck is equal to R, we conclude that K and R are homo-

topic.

• In the case where (n, m) = (3, 1), let us assume
that the set DK (resp. DR) contains only consecutive

points of the loop K (resp. R): if it was not the case,

the following reasoning could still be performed on each

consecutive elements of DK and DR in order to obtain
the same result.

Thus, there exists i ∈ [2; k] and j ∈ [i; k] such that

(DK ∪DR) = {xi, ...,xj,yi, ...,yj} is included in a unit

lattice square or a unit lattice cube which does not con-

tain two diametrically opposite white points. Therefore,

we have V = (u1, ...,ui−2,vi−1, ...,vj,uj+1, ...,uk). It

is possible to simplify the problem in two ways:

. As m = 1, yi − xi−1 and xi − xi−1 are 1-steps.

Therefore, xi−1,xi and yi are in a same unit lattice

square and, as xi 6= yi, we find that xi−1 lie in the
same unit lattice cube or square than the elements

of (DK ∪ DR). The same way, we prove that xj+1

lie in the same unit lattice cube or square than the

elements of (DK ∪ DR).

It may be seen that K is homotopic to the black
1-loop K′ = (p, (u1, ...,uj, −vj, ..., −vi−1,vi−1, ...,

vj, uj+1, ...,uk)).

Hence, proving that K′ and R are homotopic can

be achieved by proving that the black 1-loop (xi−1,
(ui−1, ...,uj, −vj, ..., −vi−1)), whose points are con-

tained inside the same unit lattice cube or square

than (DK ∪ DR), is homotopic to the trivial loop

(xi−1, ()).

. Let C = (p, (w1, ...,wi, ...,wj, ...,wk)) be a self in-
tersecting black 1-loop such that p+w1 + ...+wi =

p + w1 + ... + wj. The problem of showing that C
is homotopic to (p, ()) can be decomposed into two

smaller problems: to prove that C′ = (p+w1 + ...+
wi, (wi+1, ...,wj)) is homotopic to (p + w1 + ... +

wi, ()), and then to prove that C′′ = (p, (w1, ...,wi,

wj+1, ...,wk)) is homotopic to (p, ()). Therefore, in

order to prove that a black 1-loop is homotopic to

a trivial loop, we can consider only, without loss of
generality, non self-intersecting black 1-loops.

Therefore, in order to prove that the two black 1-
loops K and L are homotopic, it is sufficient to prove

that any non self-intersecting black 1-loop, contained in

a unit lattice cube which does not contain two diamet-

rically opposite white points, is homotopic to a trivial
loop: this is established by Lem. 2.

As the case (n, m) = (2, 1) is included in the case

(n, m) = (3, 1), it can be concluded that K and R are
homotopic. �

8 Annex B: Lemmas and proofs

Proof of Prop. 2 - First, let L = (p, V ) be an m-loop of

wrapping vector w = (w1, ..., wn), with p = (p1, ..., pn).

As L is a loop, for all i ∈ [1; n], pi ⊕di
wi = pi. Hence,

for all i ∈ [1; n], wi ≡ 0(mod di), proving that wi is a

multiple of di for all i ∈ [1; n].

Let w = (w1, ..., wn) be a vector of Z
n such that

for all i ∈ [1; n], wi is a multiple of di. If we denote by

(p, Bi) the i-th basic loop of base point p, we see that
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(

n
∏

i=1

(p, Bi)
wi/di) is an m-loop whose wrapping vector is

equal to w. �

Lemma 3 Any m-loop L = (p, V ) is homotopic to a

1-loop.

Proof Let us write V = (v1, ...,vk) and let j ∈ [1; n] be

such that vj is not a 1-step. The m-loop L is directly ho-
motopic to L1 = (p, V1), with V1 = (v1, ...,vj−1,vj,0,

vj+1, ...,vk). As vj is not a 1-step, there exists an (m-

1)-step v′

j and a 1-step vj1 such that vj = (vj1 + v′

j).

The m-loop L1 is directly homotopic to L2 = (p, V2),
with V2 = (v1, ...,vj−1,vj1,v′

j,vj+1, ...,vk). By itera-

tion, it is shown that L is homotopic to a 1-loop. �

Lemma 4 Let LA = (p, VA) and LB = (p, VB) be two

m-loops such that VA = (v1, ...,vj−1,vj1,vj2,vj+1, ...,

vk) and VB = (v1, ...,vj−1,vj2,vj1,vj+1, ...,vk) where

vj1 and vj2 are 1-steps. Then, LA and LB are homo-
topic.

Proof As vj1 and vj2 are 1-steps, they have at most
one non-null coordinate. If (vj1 − vj2) is an n-step, the

two loops are directly homotopic. If (vj1 − vj2) is not

an n-step, then necessarily vj1 = (−vj2). Therefore,

LA is directly homotopic to LC = (p, VC), with VC =

(v1, ...,vj−1,0,0,vj+1, ...,vk). Furthermore, LC is also
directly homotopic to LB. �

Proof of Prop. 4 - Let a and b be two non-null 1-steps.

Let i (resp. j) be the index of the non-null coordinate

of a (resp b). We say that a is index-smaller than b if

i < j.

Let L = (p, V ) be an m-loop of normalized wrap-
ping vector w∗ ∈ Z

n.

. 1 - The m-loop L is homotopic to a 1-loop L1 =

(p, V1) (see Lem. 3).

. 2 - By Def. 4 and 5, the 1-loop L1 is homotopic

to a 1-loop L2 = (p, V2), where V2 contains no null

vector.
. 3 - Let L3 = (p, V3) be such that V3 is obtained by

iteratively permuting all pairs of consecutive 1-steps

(vj,vj+1) in V2 such that vj+1 is index-smaller than

vj. Thanks to Lem. 4, L3 is homotopic to L2.
. 4 - Consider L4 = (p, V4), where V4 is obtained by

iteratively replacing all pairs of consecutive 1-steps

(vj,vj+1) in V3 such that vj+1 = (−vj) by two null

vectors, and then removing these two null vectors.

The loop L4 is homotopic to L3.

The 1-loop L4 is homotopic to L, it has therefore the
same normalized wrapping vector w∗ = (w∗

1 , ..., w∗
n)

(see Prop. 3). By construction, each pair of consecu-

tive 1-steps (vj,vj+1) of V4 is such that vj and vj+1

are non-null and either vj = vj+1 or vj is index-smaller

than vj+1.

Let d = (d1, ..., dn) be the size vector of T
n. As the

normalized wrapping vector of L4 is equal to w∗, we

deduce that the (d1.|w
∗
1 |) first elements of V4 are equal

to (
w∗

1

|w∗

1
| .b1) (see Def. 9). Moreover, the (d2.|w∗

2 |) next

elements are equal to (
w∗

2

|w∗

2
| .b2), etc. Therefore, we have

L4 = (

n
∏

i=1

(p, Bi)
w∗

i ). �
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