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Abstract

Let F be a finite unramified extension of Q, with ring of integers OF, and let G denote a split, connected
reductive group over Op. We fix a Borel subgroup B = TU with maximal torus T and unipotent radical
U, and let L()) denote an irreducible representation of G(Or) with coefficients in a sufficiently large field
of characteristic p.

Under the assumption that A is a p-small and sufficiently regular character and that p is greater than 1
plus the Coxeter number of G, we show that the complex L(U(F), c—indggg)ﬂ (L(N))) splits as the orthogonal
direct sum of its cohomology objects in the derived category of smooth T (F)-representations in characteristic
p. (Here L(U(F'), —) denotes Heyer’s left adjoint of parabolic induction, from the derived category of smooth
G(F)-representations to the derived category of smooth T'(F)-representations.) Consequently, this gives rise
to a collection of morphisms of graded spherical Hecke algebras

D Extiy ) (c—indggg)p)(L()\)), c-indgggl)(L(A)))

1€EL
— @ Bty (cindg(E) (L7 (U(OF), L)), cindpil) (L (U(OF), L))
<y

indexed by n = —[F : Q] dim(U),...,0, which we refer to as derived Satake morphisms. For A = 0 and
n = 0, this recovers the graded mod p Satake homomorphism constructed by Ronchetti.
We also give some partial results for general standard parabolic subgroups P = MN C G.
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1 Introduction

1.1 Setting and results

1.1.1. This article is motivated by the mod p Local Langlands Program. Specifically, we study the mod p
representation theory of p-adic reductive groups, through the viewpoint of derived Satake morphisms. To
describe the setting, let F' be a locally compact nonarchimedean field of residual characteristic p, with ring
of integers Or. We let G be a split connected reductive group over Op, write G := G(F) for the locally
profinite group of its F-points, and Go C G for the compact open subgroup G(Or) C G(F'). Further, we
fix a Borel subgroup B C G, with unipotent radical U, and maximal torus T satisfying B = TU; write
B =TU and By = TyoUy for the corresponding groups of rational and integral points.
The classical Satake morphism is the map

Ko (t»—)ég(t)% 3 n(tu))

uweU/Ug

where g : B — R} is the modulus character. The source and the target are the C-vector spaces freely
generated by the displayed cosets; they are C-algebras with respect to the convolution product, and the
Satake map is a morphism of C-algebras. This morphism is fundamental in constructing unramified instances
of the Local Langlands Correspondence (see [Car79, §4.2]).

. For a coefficient field k other than C, the above formula still makes sense after omitting the character
§2; in fact, the map

Z[GO\G/GO] — Z[T/Tg]

Kk o— (t»—> > n(tu))

uweU/Ug

is a morphism of rings. This was first observed by Herzig [Her11b], who studied the morphism of F,-algebras
resulting from the scalar extension Z — F,, in the case char(F) = 0, and called it the mod p Satake
morphism. The morphism for an arbitrary coefficient field k of characteristic p, and with char(F) = p
allowed, was studied by Henniart—Vignéras [HV15].

1.1.2. Given a coefficient field k, the interest in the convolution algebra k[Go\G/Go] is that it realizes all
the endomorphisms of the smooth representation c—indgO (1g,) of G, compactly induced from the trivial
representation 1lg, of Go over k. Namely, evaluation on the characteristic function of G defines an isomor-
phism (Endg (c—indgo(lco)), o) = (k[Go\G/Go],*). On the other hand, if k& has characteristic p, then the
G-representation c-indg, (1c,) admits higher endomorphisms: if char(F) = 0 and Gy is p-torsion-free, the
graded k-algebra

Extg (c—indg0 (1cy), c-indgo(lgo)) = @Extic (c—indgo(lgo), c—indg0 (1(;0)) ,
i€z
equipped with the Yoneda product, is concentrated in degrees [0, [F' : Qp] dim(G)] and nonzero in degree
[F: Qp]dim(G).
1.1.3. From now on, we fix a coefficient field k of characteristic p.
In the case G = T is a torus, the graded k-algebra above is completely understood, namely

Ext} (c-ind§o(1To), c-indgo(lTo)) = k[T/To] @ J\| Homess (T3, k)

where T1 is the pro-p-Sylow subgroup of Ty. Consequently, for general G, it is desirable to relate the graded
algebra for G to the one for T, that is, to extend the mod p Satake morphism

Ext (c-indgo(lgo), c-indgo(lgo)> — Ext (c-ind%](lTO), c-ind%o(lTO))
in degree 0 to a morphism between the full graded algebras.
By definition, the map in degree 0

K — (t»—> > n(tu))

uweU/Ug



is summing the Go-bi-invariant compactly supported kernels on G along the Up-orbits in B = TU relative
to T. Hence, in terms of representations, it involves the homology functor of the locally profinite group
U. Now, the relevant left derivatives of this right exact functor have been constructed by Heyer [Hey23b],
when char(F) = 0. Namely, denote by D(H) the (triangulated) unbounded derived category of smooth
k-representations of a locally profinite group H. Then:

1.1.4. Theorem. (Heyer, [Hey23b|) Let F/Q, be a finite extension. The t-exact parabolic induction
functor Ind§ : D(T) — D(G) admits a left adjoint
L(U,-) : D(G) — D(T).
Moreover, there is a natural isomorphism h°(L(U, c—indgo(lgo))) = c—ind%o(lTo), and the composed mor-
phism of k-algebras
_ 0_
Endg (c—indgo(lgo )) 2O, Endp (L(U, c-indgo(lgo))) 2O, Bndr (c-ind§0(1T0))
coincides with the mod p Satake morphism of Herzig [Herl1b].

By applying the functors k™ (=) : D(T) — D(T)% for all n € Z instead of only n = 0, one can even get
a collection of morphisms

Endg (c—indgo(lco)) — Endr (c-ind%0 (™ (L(Uo, 100)))) ,

where L(Uo,—) : D(Go) — D(Tp) is the left adjoint of Indgg, the parabolic induction at compact level.
However, the source of these morphisms is still the classical degree 0 endomorphism algebra (and the target
is still a degree 0 algebra).

1.1.5. Set L"(U,—) := h" o L(U,—) : D(G) — D(T)® for any n € Z. Our basic result is the following.
(In the body of the article, we prove more general versions with non-trivial weights, and with larger Levi

subgroups; see Subsections [1.1.10| and [1.1.11] below.)

1.1.6. Theorem. Assume:
o F is unramified over Qp, and

o p>h+1, where h denotes the maximum of the Cozxeter numbers of the irreducible components of the
root system of G.

Then the following orthogonality relations hold: for all m,n € Z, m # n, we have
RHomr (Lm(U, c-indg, (1ay)), L™(U,c-ind%, (1ay ))) —0.

Consequently, L(U,c-indg (1g,)) € D(T) decomposes as

0
L(U, c-ind§, (1c,)) = P L™(U, c-indG, (1c,)) [-n],
n=—[F:Qp] dim(U)

and
RHomr (L(U, c-ind$, (1gy)), L(U, c-ind&, (1, )))

0
[ RHomr (L”(U, c-ind$, (1gy)), L™(U, c—indgo(lgo))) .
n=—[F:Qp] dim(U)

1%

In particular, under the assumptions of the Theorem, there is a canonical projection
. G . G n . G n : G
RHomr (L(U, c-indé (1)), L(U, C-lndGO(].GD))) — RHomr (L (U,c-indé (1,)), L"(U, c-indé, (1(;0)))
for each n. Precomposing with the map
RHomg (c—indgo(lgo), c—indgo(lgo)) — RHomr (L(U7 c—indg0 (1ay)), L(U, c—indgo(lgo)))
induced by the functor L(U, —) : D(G) — D(T'), one gets maps
RHome (c—indgo(lco), c-indgo(lgo)> — RHomr (L"(U, c-ind%, (1gy)), L™(U, c-indg, L(1G0))) ‘

Finally, again one can rewrite L" (U, c—indg0 (1)) as c-indg, (L™ (Uo, 1a,)), and L°(Uo, 1g,) = 17,. Whence
the following definition.



1.1.7. Definition. Suppose assumptions of Theorem hold.
The morphism of graded k-algebras

Extg (c—indgo (1g,), c-ind&,(1c, )) — Exty (c-inquw0 (11,), c-indp, (1T0))

induced by L(U,—) : D(G) — D(T) is called the graded mod p Satake morphism.
More generally, for any n € [—[F : Qp] dim(U), 0], the morphism of graded k-algebras

Bxt?s (cindf, (1a,), e-indd, (1a,)) — Bxth (c-indf, (L7 (Uo, 16,)), c-indF, (L (Us, 16,)))

induced by L(U, =) : D(G) — D(T) is called the n*® graded mod p Satake morphism.

In the case n = 0, a similar morphism has been constructed by Ronchetti [RonlIg|, and the morphism of
the above definition coincides with that of op. cit. (see Subsection |4.2.4).

1.1.8. The study of the complex L(U, c-indg, (1g,)) € D(T) reduces to the compact level Uy C U, thanks to
the quasi-isomorphism L(U, c-ind& (1a,)) 2 c-ind7, (L(Uo, 1c,)). Then the functor L(Uo, —) : D(Go) —
D(To) can be computed using cohomology of the profinte group Up; more precisely, we have:

L(Uo, —) 2 RH’(Uo, —)[[F : Qp) dim(U)] @y d5,.

The character dp, : Bo — F, C k™ is the mod p modulus character, given by Ny, /g, (2p) where kr /F, is
the residue field extension of F/Q, and 2p denotes the mod p reduction of the algebraic character given by
the sum of the positive roots relative to B (see Subsection [3.1.2]).

The key decomposition property of the complex L(U, c-indg, (1g,)) € D(T') already holds for the complex
RH(Uo, k) € D(Ty). To prove the latter, we actually prove that the Tp-representation D,z H" (Uo, k) is
a multiplicity-free sum of characters. By contrast, we note that for a ramified finite extension F/Q,, the
To-representation H'(Up, k) may be a non-trivial extension of two copies of the same character (see Remark

25,

1.1.9. The profinite group Uy is pro-p; more precisely, any choice of a total order on the set ®T of positive
roots determines a homeomorphism
I Ua(0r) = s,

acdt

induced by the morphisms u, : G4 — U,. By choosing such an order which is compatible with the height
function ht : &7 — Z>o, the group Up can be equipped with a p-valuation w : Uy — R U {oo} in the
sense of Lazard [Laz65]. Then (Up,w) is p-saturated, though in general it is not equi-p-valued: even in the
case F = Q, (so that U, (OFr) = Z, for each ), the basis elements uq (1) € Uy, o € T, may have distinct
p-valuations. In particular, Lazard’s general calculation of the mod p cohomology of equi-p-valuable groups
does not apply, and indeed H®(Uo, k) is different from the exterior algebra of the dual of the mod p Lie
algebra associated to (Up,w).

The mod p cohomology and Lie algebra cohomology of (Up, w) are still related, however, which for general
p-valued groups has been formalized by Sorensen [Sor21] into a spectral sequence. In the case of (Up,w), the
sequence is Tp-equivariant, and we prove that it degenerates. Further, we determine the Resy,, /]Fp(Tk; )
representations H" (Lie(Reso /z,(U)) ®z, kr, kr), generalizing a strategy of Polo-Tilouine [PT02]: at least
under the assumption p > h+1, these kp-representations of the algebraic torus Reso,. z, (T) have the same
structure as their generic fiber H" (Lie(Reso,z,(U)) ®z, F, F), which was determined by Kostant. At this
point, the proof of Theorem [1.1.6]is complete.

1.1.10. The computation of Polo—Tilouine holds for more general coefficients than the trivial one. Let us
review it in the case F' = Q) for simplicity (note, however, that our results below are valid for an unramified
extension F//Qp). Let A be any character of T which is dominant and p-small, i.e. which satisfies

(p,ay < A+p,a”)<p forall acdt.

Then the irreducible algebraic representation of Gﬁp of highest weight A is defined over F, and lifts to Zp,
and we denote this representation by L(A). We have

H"(Lie(U),L(\) ®z, R) = P R(w-))
weW
L(w)=n
both for R =F, and R = Q,, where W is the Weyl group of (G, T) and - is the dot action on the character
lattice X*(T). From this, we deduce a similar description of the To-representation H™(Uy, L(\)x), namely as
the sum of the smooth characters w - A : To — F\ C k* obtained from the algebraic ones by restriction to



Zp-points and reduction mod p. In general, while the algebraic characters w- A, w € W, are always pairwise
distinct, some of the resulting mod p characters of Ty may coincide, and the same character may occur in
different degrees of the To-representation €, ., H" (Uo, L(\)x). However, this phenomenon occurs only for
a few A (which can be detected by the root system when the center of G is connected, see Lemma .
For all the other A, the complex L(U,c-indg, (L(\)x)) € D(T) is the orthogonal direct sum of its shifted
cohomology objects, as in Theorem [I.1.6] (which is the case A = 0), giving rise to dim(U) + 1 morphisms of
graded k-algebras as in Definition [L.1.

1.1.11. Up to here, we have discussed Satake morphisms related to a Borel subgroup B C G. However,
the classical Satake morphism over C and its mod p variant are naturally defined when starting more
generally with a standard parabolic subgroup with a Levi decomposition P = MN. Correspondingly, in the
derived mod p context, Heyer has constructed the left adjoint L(N,—) of the parabolic induction functor
Indg : D(M) — D(G). In particular, we can study the complexes L(N, c-ind& (L(\)x)) € D(M) (for k
equipped with a fixed embedding kr — k).

The strategy explained above to compute the T-representations L™ (U, c-indgO (L(MN)k)) still applies to
compute the M-representations L™(N,c-ind&, (L(A\)x)). That is, for A dominant and p-small, Sorensen’s
spectral sequence degenerates at the first page, so that the My-representations H™ (No, L(A)g) can be de-
scribed as the restriction to Mo of the corresponding Reso . /z, (M)-representations on Lie algebra cohomol-
ogy (at least after semisimplication), which in turn are known from (the generalization of) Polo—Tilouine’s
computation; see Theorem for the precise statement. Here again the only assumptions are that F/Qp
is unramified and p > h + 1.

The question of orthogonality between L™ (N, c-ind& (L(A)x)) and L™(N, c-ind& (L(A)x)) for m # n is
more delicate, already in the case A = 0. In Assumption[2.5.2] we give a criterion for when this orthogonality
occurs, in terms of the restriction of the characters w - A to Char,0, the integral points of the connected center
of M. Under stricter bounds on p, we prove in Lemmas and that Assumption holds
for A = 0 and several classes of Levi subgroups M. In particular, for all these examples, the complex
L(N, c—indg0 (1g,)) € D(M) splits as the orthogonal direct sum of its shifted cohomology objects, giving rise
to [F : Qp]dim(N) + 1 Satake morphisms of graded k-algebras

Exté (c-ind&, (1,), e-inddy (1a,)) — Bxtdy (c-indif (L (No, 1ay)), c-ind i, (L7 (No, 1)) ) -

1.1.12. The article is organized as follows. Section [2]is devoted to calculating cohomology. In Subsection
2.1} we review the elements of Lazard’s theory of p-valued groups that we will use, and develop how the
pro-p group Np enters into this theory. In Subsection we study in detail the p-small weights of the
algebraic group Resg, /r, (M) and the corresponding adjoint representations. In Subsections and
we compute the Jordan—Hélder constitutents of the My-representations H™(No, L(A)x). Then, in Subsection
2.5, we extract sufficient conditions for the complex RH®(No, L(\)x) € D(Mpo) to satisfy the orthogonality
relations RHom s, (H™ (No, L(A)k), H" (No, L(A\)k)) = 0 for all m # n; we do this by examining its image
under the restriction functor D(My) — D(Cu0).-

Section [3] is devoted to the study of the relation between the two functors RH°(No, —) and L(No, —)
from D(Go) to D(Mp), which in particular gives orthogonal properties for the latter. Note that here we have
to work with the profinite group Go which is p-torsion-free but not pro-p; as a consequence, we use the fact
that Go is a Poincaré group at p in the sense of [NSWO08|, Ch. III].

In Section 4] we construct the [F' : Qp] dim(N) 4 1 graded Satake morphisms

Ext (c-indgo (Xo), c-indg, (XO)) — ExtY, (c—ind%o (L™(No, X0)), c-ind%o(L"(No,Xo)))

for any Xo € D(Go)” such that RHoma (L™ (N, c-ind§, (Xo)), L™ (N, c-ind& (Xo))) vanishes for all m # n.
In Remark @ we check that for M = T and Xo = 1g,, the graded Satake morphism for n = 0 coincides
with the one of [Ronl8| constructed using universal unramified principal series. (Regarding principal series
representations, we also include in Subsection the computation of the Go-cohomology with coefficients
in the principal series of any mod p smooth character of T.)

Finally, in Section we collect our computations of the characters of the central torus Car,o appearing in
the cohomologies of L(No, L(A)x) € D(Moy), for each standard Levi M. These characters can be interpreted
as some skyscraper sheaves on the Cartier duals over k of the tori Caso.
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1.2 Notation

We set some notation which will be in force throughout the article. As above, we let F' denote a finite
extension of Q, with ring of integers Or, and residue field kr. Let G denote a split, connected, reductive
group over F. Since G is split, we can choose an Op-model for G ([Conld, Thm. 1.2]), and we use the same
letter to denote this Og-model.
Let
GODBOU

denote a fixed choice of Borel subgroup and its unipotent radical, respectively, and fix a maximal torus T
satisfying B = TU. Analogously, let P = MN denote a fixed standard parabolic subgroup of G, so that
P contains B, M contains T, and N is the unipotent radical of P. We use the same letters to denote the
Op-models of all these subgroups in the Op-group scheme G.

We denote by italicized Roman letters the groups of F-points of these groups, so that G = G(F),B =
B(F), etc., and by a subscript “0” the groups of Op-points, so that Go = G(OF), Bo = B(OF), etc. In
particular Gy is a hyperspecial compact open subgroup of G.

We let ® C X*(T) denote the set of roots of T in Lie(G), and let ® D ®* D A denote the subsets of
positive and simple roots determined by B. We also let ht : & — Z denote the height function relative to
A: if we write 8 € ® as f = Y A Naq, then ht(B) = 3 A na. Given a € @, we let Us C U denote
the associated root subgroup, and fix a root isomorphism us : Ga/0p 5 U,. In particular, for ¢t € T and
x € Gg, we have tuq (2)t ™" = ua(a(t)z). The parabolic subgroup P corresponds to a subset J C A, and we
let ®; denote the sub-root system generated by J, and let @}L =0, NdT.

We fix once and for all a total order on ® compatible with the height function ht. The morphisms uq
induce an isomorphism of Op-schemes (see [Conl4, Thm. 5.1.16])

[ v.—>N, (1)

acdt—al

the product on the left-hand side being given by the fixed total order. This isomorphism induces a homeo-
morphism
[[ UaOr) = No. (2)
acdt o7
We let k denote a field of characteristic p. If H is p-adic Lie group, we use both the symbols k and 1
to denote the trivial, one-dimensional H-representation over k. We let Rep(H) denote the Grothendieck
abelian category of smooth H-representations on k-vector spaces, and let D(H) denote the unbounded
derived category of Rep(H). The category D(H) is a closed symmetric monoidal category (see [SS23| Cor.
3.3]), such that the functors —®j X are triangulated for any X in D(H). We let RHom, denote the internal
Hom functor on D(H). Further, D(H) has a natural t-structure, and we let D(H)® denote its heart.

2 Mod p cohomology of unipotent subgroups

The goal of Section [2]is to understand the continuous group cohomology H*(Ny, V), and the action of My
on it. Various versions of this calculation have already been considered in the literature (see |[GK14, §7],
[PT02], [Ron20], [Kon22 Ch. 2]), but for the sake of completeness we include the arguments below.

2.1 p-valuations and Lie algebras

In order to carry out our calculation, we will use Lazard’s theory of p-valued groups. We make the following
assumptions from this point onwards.

2.1.1. Assumption.
o F is unramified over Qp, and

o p> h+1, where h denotes the mazimum of the Coxeter numbers of the irreducible components of the
root system of G.

2.1.2. Using the homeomorphism , we define a function w’ : No — Rso U {oo} by the formula

G| ] welze)| = min {Valp(a;a)Jrht(a)}, (3)

acot—ot aget-aj h(e)



where each zo € OF, where val, denotes the valuation on F' which satisfies val,(p) = 1, and where h(«a)
denotes the Coxeter number of the irreducible root system to which o belongs. We note that w’ is valued in
221 U {oo}, where b’ denotes the least common multiple of the h(a). By [LS24, Prop. 3.5], Assumption
guarantees that the function w’ defines a p-valuation on Ny. (For details about p-valuations and the
constructions which follow, see [Laz65] §§11.1, IT1.2] or [Schill §23].)
We define a modified function w : Ng — R U {co} by
= inf ! “Hl. 4
w(n) mlenMo {w (mnm )} (4)
Then w is also a p-valuation on Ny ([Laz65, §I11.2.1.2]), which moreover satisfies w(mnm™"') = w(n) for all
m e A40,ﬂ/€ No.
We have the following:
2.1.3. Lemma. The p-valued group (No,w) is p-saturated (see [Laz63, Defs. I11.2.1.5, 1I11.2.1.6]).
Proof. Let us choose a basis {xl}il@p] for O over Zy, so that the mod p reductions {xﬁ}il@p]
for kr over F,. The homeomorphism implies that the set

give a basis

{u‘)‘(xi)}a€<1>+f<1>}r,1§i§[F:Qp] (5)

gives an ordered basis for No, in the sense of [Laz65, Def. I11.2.2.4] (for the ordering determined by (2)).
We have

1 , ht(a) D
a\Li < a\li - 1 .
p_1<w(u (1)) < w(ua(zs)) h(a)< <p—1
By [Laz65l Prop. II1.2.2.7], we conclude that (No,w) is p-saturated. O

2.1.4. We now consider Lie algebras. The p-valuation w induces a filtration on Ny, and we let gr(No) denote
the associated graded group. Recall that it is defined as

gr(No) == €D er,(No) == @ Now/Now+,

veER~ o vER~
where
No,, :={n € No : w(n) > v}, Now+ :={n € No : w(n) > v}.

Note that each v for which gr,(No) # 1 satisfies v € ;5Z>1. The graded group gr(No) has the structure of
a graded Lie algebra over F,, and moreover is a Lie algebra over the ring Fp[n]: the Lie bracket is induced
by the commutator, and 7w denotes the Fy-linear map defined by

e gru(NO) — gru+1(N0)
nNow+ > 1PNy (ug1)t-
Finally, we define
n, = gr(No) ®]Fp[7r] Fp.

Thus n,, is a graded Lie algebra over F, equipped with a conjugation action of My, which factors through
M(kr).
On the other hand, one can construct Lie(N), the Lie algebra functor of the Op-group scheme N; we set

n := Lie(N)(kr).

Thus n is a Lie algebra over kr equipped with a conjugation action of M(kr).
The comparison between the two Lie algebras is given by the following.

2.1.5. Lemma. There ezists an isomorphism of F,-Lie algebras

o

n, &,

after forgetting about the grading on n,, and the kr-linear structure on w. In particular, this implies that the
F,-vector space n, has a kr-linear structure, and that the Lie bracket on n,, is kr-bilinear. Moreover, this
isomorphism is Mo-equivariant.

Proof. We prove that gr(No) = n®r, I, [7] as Lie algebras over IFp[7]. Applying the base change — ®r, [z Fp
(which maps 7 —— 0) will then give the result.
Let us choose a basis {m,}gilQ”] for O over Zj, as in The set
{ua (p’ xi)}

acdt -3} 1<i<[F:Qp],520



is then a Fp-basis for gr(No), and
a\Li 6
{u (@ )}a6<1>+7<1>j,1§i§[17:@p] (6)
is an [Fp[n] basis for gr(No). (For n € No,,,, we denote by 7 the image of n in gr, (Ng) C gr(No).)
On the other hand, the Lie algebra functor Lie(N) on Op-algebras R is defined by
Lie(N)(R) = ker (N(R[E]/(¢%)) — N(R)).
In particular
n = ker (N(kp[a]/(52)) — N(kp)).
Thus, the map
frn@r, Fplr] —  gr(No) (7)
ua(Tie) ® f(r)  —  f(7) - ua(zi)

gives an Fy[r]-linear bijection between the two Lie algebras, which is moreover equivariant for the conjugation
action of My. It only remains to verify that this isomorphism preserves the Lie bracket.
By [Con14l, Prop. 5.1.14], given distinct roots a, 8 € @7 — &%, the root morphisms ua, ug satisfy

o (2)ug(y)ua(@) tugly) T = 11 Uiat35 (Cariig @'y, (8)
i,5>0
iatjfedt —ah

for some fixed ca,p:i,; € Zp. In particular, if we let &’ denote another indeterminate satisfying (¢')? = 0, we
have (assuming o+ 8 € &™)

ta(we)ug(ye ua(ve) M up(ye') T = tatp(ca,pa1myee’).
Hence, by [CGP15| Lem. A.7.4, Prop. A.7.5], the Lie bracket on n is given by
[ua (z€), up(ye)] = tatps(ca,pi117ye). 9)

On the other hand, by [Laz65] §11.1.1.7] the Lie bracket on gr(No) is induced by the commutator (§). Thus,
in the graded group gr(No), we have

[ua (@), us(y)] = va(T)us(y)va(r) " tus(y) =" = vatp(ca,pi1,12y), (10)

since any other root ia + j3 appearing in will be of strictly greater height (and thus um_‘_jg(ca,ﬁ;i,ja:iyj)
will have strictly greater p-valuation). Comparing @D and , we see that the isomorphism f preserves the
Lie bracket. (]

2.1.6. We recall one more construction. Let Or[No] denote the completed group algebra of No over Op,
and let w : Op[No] — Rso U {0} be the valuation associated to w. (For the definition of the latter, see
|[Laz65, Def. II1.2.3.1.2]; note that the “filtration” w on Or[No] defined in loc. cit. is in fact a valuation (as
defined in [Laz65 Def. 1.2.2.1]), and Or[No] is the completion of Or[No] for w [Laz65, Thm. 111.2.3.3, Cor.
II1.2.3.4]. For an explicit description of w, see [Laz65, §II1.2.3.8]. We note also that the constructions of loc.
cit. carry over readily from the case of Zy-coefficients to the case of Op-coefficients.) We let gr(Or[No])
denote the associated graded ring. Recall that it is defined as

gr(Or[No]) == €D e, (Or[No]) := €D Or[Nol./Or[No].+,

vER>( vER>(

where
OFU:NO]]V = {f € OF[[N()H : w(&) Z I/}, OF[[No]]y+ = {f € OF[[N()]] : w(f) > I/}.
The graded ring gr(Or[No]) has the structure of a graded algebra over kp|rn], where 7 acts by

™ gru(OFIINO]]) — gru+l(OF[[NOH)
£+ Or[Nolu+ +—— €+ Or[Nolw+1)+-

The maps (defined in [Laz65, I1.1.1.9])

gr,(No) —  gr,(Or[No]) (11)
TL]VOYL,Jr — (n — 1) + Or [[Noﬂu+

assemble to a map gr(No) — gr(Or[No]).



We have the following result on the structure of gr(Or[No]).

2.1.7. Theorem. [Laz65, Thm. II1.2.3.3] The maps (11) induce an isomorphism of graded kp[w]-
modules
Us, () (81(No)) ®r, ) k7] — gr(Or [No]),

where Uy, 1z denotes the universal enveloping algebra over Fp[n].

2.1.8. Finally let k7 [No] denote the completed group algebra of Ng over kr, and note that Or[No]|®o . kr =2
kr[No]. We define kr[No]. (resp., kr[No]v+) as the image of Op[No]. (resp., Or[No]v+) in kr[No].

Applying the base change — ®y,.[x] kr (mapping 7 —— 0) to the previous result gives the following.

2.1.9. Corollary. We have an isomorphism of graded kr-algebras

Uiy (0w ®5, kr) = Us,x)(gr(No)) ®r,x) kr — gr(kr[No]).

2.2 Algebraic representations and Lie algebra actions

We now discuss the actions of the Lie algebras n,, and n on various algebraic representations.

2.2.1. To allow for more flexibility, we put ourselves in the following setting. We let G denote the Weil
restriction from kr to I, of the special fiber of the Op-group scheme G:

G := Resp,/r, (Grp)-
We use the analogous notation B, T, etc., for the other group schemes introduced above. We have

gkp = g X]Fp kF = H GkF XkF,g kpy (12)

sthkp—kp

where ¢ runs over all the field homomorphisms kr — kp over F,. We have similar decompositions and
notations for the other underlined groups, as well as an isomorphism of character groups

X' (Th,) = P X (Thp Xkps kr). (13)

s:kp—kp

To make notation lighter, we set X*(T) := X *(Ikpﬂ Accordingly, we denote the set of roots of T} in
Lie(Gy,.) by &; by and the decomposition

Lie(G,,)(kr) = @D Lie(G)(kr) ®kp . kr,

S:kp—kp

we can identify ® with [kr : F,] copies of ® indexed by the field homomorphisms ¢ : kp — kp over
F,. We use analogous notation ®*, A, etc., for the other root-theoretic data. In particular, the subset
J C A (corresponding to P = MN) gives a subset J C A (corresponding to P = MN). Finally, we let
W = W(G, T) denote the Weyl group of G,,,, relative to T} .
2.2.2. We let

X' (T4 :={AeX*(D): (\,a")>0 forall acdt}

denote the set of dominant characters of T (with respect to @'*'). For future reference, we also define

p::% Z a e X (T) ®zQ,

acdt

and recall that 2p € Z® C X*(T), and that {p,a") =1 for all o € A.

Given A € X*(T)4, we let L(\) denote the irreducible representation of the split connected reductive
group G, _ of highest weight A (see [Jan03, Part 11, §2.4]). We will often also use the notation L(A) to denote
the kp-points of this representation, which we view as a representation of the finite group G(kr) over kp
via the following sequence of morphisms:

G(kr) 2 G(Fp) — G(kr) ~ L(X).

Then L(A) defines a representation of Go = G(OF) via inflation.
Given a subset J C A (corresponding to M) and a character A € X*(T) which is dominant with respect
to &1, we use the notation L;()\) to denote the irreducible representation of M, . of highest weight A.

!n this paper, we will never consider X*(T) as a Gal(kp/Fp)-module, i.e., we only regard it as an abstract abelian group.



2.2.3. Definition. We say A € X*(T)4+ is p-small (with respect to ®) if
A+p,a’y<p forall acd®t.

We shall need several representation-theoretic results. We begin with some combinatorial lemmas.

2.2.4. Lemma. Let A € X*(T)4 be p-small. Fiz J C A, and assume p € X*(T) is a weight of L(\) which
is dominant with respect to Q}'. Then p is p-small with respect to Q;.

Proof. Define
C'={neX (T)®zR: (n+p,a’)<p foral acd}

The set C’ is convex (being the intersection of half-spaces), and contains A by assumption.

Claim. The set C’' contains the W -orbit of \.

Proof of claim. We note first that the set C’ may equivalently be described as
C'={ne X (T)®zR: —p—ht(a”) < (n,a”) <p—ht(a”) forall acd'}, (14)

where, by abuse of notation, we let ht : ®¥ — Z denote the height function relative to A".
Now fix w € W and a € ®", and suppose first that w™!(a¥) € ®V. This implies ht(a") —
ht(w™'(a")) > 0, so that

-p—ht(a”) < -—p—ht(a”)+ (ht(a") —ht(w "' (a")))
— —p—hi(w (o))
< wleY)
< 01

where the two non-strict inequalities follow from the fact that A is dominant and p-small. Since (A, w ™' (a")) =
(w(X), "), we see that w()\) satisfies the inequalities when w™(a¥) € @7V (recall that p > h + 1).
On the other hand, suppose w™*(a¥) € @V, so that 0 < (\,w™*(a")) = (w()\),a") by dominance of
A. To verify the other inequality, assume by contradiction that {(w()),a") > p — ht(a¥). Using that A is
p-small, we get
p—ht(a”) < (w(A),a”) = A\ w ' (a")) <p—ht(w™ (a”))

which implies ht(w™'(a")) < ht(a"). In particular w™!(a") is not equal to oy, the highest coroot of the
irreducible component of " to which o’ belongs. Thus, there exists a sequence of (not necessarily distinct)
simple coroots ay,...,a, € AY (with n > 1) such that

o w HaY)+ 37 af € ®"Y for each j =1,...,n, and
o w i (aY) + 31, o is equal to ag.

Again using dominance of A, we have that > i~ (X, ;) > 0, which implies

p—ht(a’) < (A w (@) + > (\ai) = (A ag) <p—hi(ag)

i=1

where in the last inequality we have used p-smallness of A. The above inequality then gives ht(ag ) < ht(aV),
contradicting the maximality of ag. Thus w()) also satisfies the inequalities when w™(a") € &7V,
and the claim is verified. O

We now continue with the proof of the lemma. Since p is a weight of L(X), it is contained in the convex
hull of the set {w(\)}wew. By convexity of C’ and the above claim, we get that € C’. For a € J, we have
(p, ")y =1={pp,a") (where pp := %Zaeqﬁ «), which implies

=J
(u+par,a’) = (u+pa”) <p
for all a € Q}r. Thus p is p-small with respect to Q}. O

2.2.5. Corollary. Let A € X*(T)+ be p-small. Fiz J C A, and let M denote the associated Levi subgroup
of G.

(a) The M, -representation L(/\)|Mkp is semisimple.
(b) The G(kr)-representation L(\) is (absolutely) irreducible.
(c) The M(kr)-representation L(X)|nm(ky) i semisimple.
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Proof. (a) Suppose Lj(u) and Lj(u') are two irreducible subquotients of L()\)|Mkp, where p, ' € X*(T)

are dominant with respect to Q}'. Since both p and u' are also weights of L(\), Lemma implies
that they are both p-small relative to ®@F. Therefore, we get

ExthkF (L(p), Lo(p)) = 0;

if ' # p, this follows from the Linkage Principle ([Jan03, Ch. II, Cor. 6.17]), while if u’ = p it follows
from [Jan03] Ch. II, §2.12, Eqn. (1)]. Thus L()\)|MkF is semisimple as a representation of the algebraic
group M, .

(b) When the derived subgroup of G is simply connected, [GTISI8| Lem. 9.2.4] implies that L(\) ®xp kr
is irreducible as a representation of G(F,) = G(kr), and hence the same is true of the representation
L()\). (Note that the conditions in [GHS18, Hyp. 9.1.1] that the center of G is connected and that
G possesses a twisting element is not used in the proof of the cited result.) In general, choose a
z-extension _ _

1 —7Z—G— Gy, — 1,

where Gisa split connected reductive group over kr with simply connected derived subgroup, and
Z is a split central torus (cf. [Kot86, p. 387]). Restricting scalars from kr to IF,, we obtain an exact
sequence B B
1—-Z—>G—G—1, (15)
where G := ReskF/Fp(é) and Z := ReskF/Fp(Z). We may then view L()) as an irreducible algebraic
representation of Qkp on which sz acts trivially. More precisely, as a representation of QkF, the
representation L(A) has the form L(X) for the dominant and p-small character X inflated from A. Noting
that the derived subgroup of G is simply connected, [GHSI8, Lem. 9.2.4] now implies that L(\) is
absolutely irreducible as a representation of G(Fp). Furthermore, by Shapiro’s Lemma and Hilbert’s
Theorem 90, we have H'(F,, Z) = H'(kr,Z) = 0, and therefore taking Galois invariants of the exact
sequence (|15)) gives
1 — Z(F,) — G(Fp) — G(F,) — 1.
Since Z(F,) acts trivially on L()), we see that the action of G(F,) descends to an absolutely irreducible
action of G(F,) = G(kr) on L(X).
(c) By part (a), the algebraic M, -representation L(/\)\MkF takes the form

LN, = P Ls(w)

neS

where S is some finite set of weights (possibly with multiplicity) which are dominant and p-small with
respect to ®F. Restricting further to M(kp) = M(F,) C M(kr), we obtain

L)) = D Lo (1) Ivier)-
HES

Applying part (b) to M in place of G, we see that each Lj(u)|m(ky) is an irreducible M(kr)-
representation, which gives the claim.

O
2.2.6. Lemma. Suppose A € X*(T)+ is p-small. Then any weight string in L(\) has length at most p.

Proof. Any weight string in L(A) has the form

my, U— /1—2017 ceey QG

where 4 € X*(T), a € @, and 7 > 0. Furthermore, each of the characters appearing above are weights of
L(}), while 1+« and p— (r+ 1)« are not weights of L()), and the integer r is given by (i, @") (see [Hum78|
§21.3]). Acting by the Weyl group W, we may moreover assume p € X*(T)4.

If r = {(u, @) = 0, then the weight string has length 1 and the lemma holds. Therefore, we may assume
r = (u,@”) > 0. In particular, this implies that € ®*. Let oy denote the highest coroot of the irreducible
component of ®" to which a" belongs. As in the proof of Lemma [2.2.4] we let a,...,a, € A" denote a
sequence of simple coroots such that

o ¥+ ay € ®TV for each j =1,...,n, and

o a¥ + 37" o is equal to ag

11



(we allow o = g here). The dominance of y now gives (i, ;') > 0, which implies
(a0) = (ma’) + > () > (u, ). (16)
i=1

Next, by [Bou81, Ch. VI, §1.8, Prop. 25(ii)], the coroot ag lies in the closure of the Weyl chamber of
X.(T) ®z R defined by A. Therefore, we have (3, ) > 0 for all 8 € A. Since pu is a weight of L()), it lies
below A in the partial order defined by A, so we may write A = ,u—i—zﬁeA ngfB, where ng € Z>o. Combining
these two facts shows that

Aol = o) + 3 ns(B,ad) >y ad). (7)
BeEA

We now conclude. The length of the weight string in the first paragraph above is given by r + 1 =
(i, ) + 1, and by p-smallness of A\ we obtain

(16) (%)
<u,av>+12 <u,a5>+12 (Nag)+1<p—nht(ag) +1<p.
O

2.2.7. Now we proceed to the construction of an action of the Lie algebra n, ®r, kr on an appropriate
graded module associated to L(\). To start with, let us define G’ as the Weil restriction from OF to Z, of
G:
G’ :=Reso,z,(G).

We use analogous primed notation M’, N’, etc., for the Weil restrictions of M, N, etc. We set Nj := N'(OF),
so that

Ny =N(Or @z, 0r)=  [[ (Nxo0,.O0r)(Or) (18)

s:Op—0p

(note that since Op is unramified over Z,, we may identify the field isomorphisms kr — kr over F,
with ring automorphisms O — OF over Z;,). We use similar notation Mg, Gy, etc. Analogously to the
isomorphism , we have an isomorphism of Op-schemes

H Ug = I\TbF7
peat-aF

inducing a homeomorphism
H Us(Or) = Ny.
peet-af

2.2.8. Let us now fix o € &7 — <I>‘J,r (without an underline!), and let a; € & — @}L denote the root of T,
which is equal to « in embedding . Using the inclusion No — N} and the above homeomorphism, the
element uq(z) € No, for © € Op, may then be written as

ua(@) =[] ue(s(@). (19)

s Op—0p

The p-valuation w : Ng — R U {co} induces a p-valuation on Nj, given by the formula

= H (N X0p,c Or)(Or) — RsoU{oco}
¢:0Op—0p

[Ine — minfwno} (20)

S

(see |[Laz65), §§111.3.1.7.3, 11.1.1.4, 1.2.1.8]). We denote this p-valuation by w; note that the restriction of the
function (20) to No is equal to the function w defined in (4], so there is no conflict in notation. In particular,
the p-valuation w evaluated on the left-hand side of (using equation ) is equal to w evaluated on
the right-hand side of (using equation (20)). Additionally, by definition we have w(m'n'm’'~") = w(n’)
for all n’ € Nj,m' € M. Finally, we note that we may construct Or[Ng] and the induced filtration w
exactly as for Op[No], and that the restriction of w from O[N] to Or[No] is equal to the valuation w
on Op[No] previously defined (see [Laz65l Cor. I11.2.3.5]). We may therefore construct the ring filtration
Or[Ng]e (and its mod p analog), which satisfies

OF[[N(I)]]V N OF[[N()]] = OF[[N()]]V.
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2.2.9. Let us now fix a p-small A € X*(T)4, and let L(X) denote the associated representation of G(kr).
By restricting the action to P(kr) and inflating to Py = MjNy, we view L(\) as a smooth kr[Nj]-module
with a compatible action of M. We recall that the p-valuation w on N{ is valued in %ZU{OO}, and the same
is true of the valuation w on Op[Ng]. We then define a decreasing filtration File(L())) on L(\) indexed by
=7 as follows: if v € 1570, we set Fil, (L()\)) = 0, while if v € 5 Z<o, we set

Fil, (L(A) := L) kr[Ng]—] = {v € L(A\) : € v =0 forall &€ kp[Nj]-,}.

This defines a filtration which is compatible with the decreasing filtration kr[Ng]e on kr[Ng]. Furthermore,
since the p-valuation w is invariant by Mj-conjugation, the filtration kr[Ng]e is stable by Mj-conjugation,
which shows that File(L())) is a filtration by Mj-submodules.

By passing to the associated graded module of L()\) relative to Fils(L())), we obtain the space

gr(L(V) = P er, (L) := @ Fi(L())/ Fily11/n (L),

veR veER

which is a graded Mj-representation over the graded ring gr(kr[Ng]). In what follows, we will restrict the
actions to the smaller groups, and consider gr(L(A)) as a graded Moy-representation over the graded ring
gr(kr[No]). In particular, by Corollary gr(L())) has the structure of a graded module over the kp-Lie
algebra n, ®r, kr: if ua (z;) ® 1 is a basis vector for n,, ®F, kr as in @, and v € Fil, (L(\)) with image
v € gr, (L(X)), then

(ta(@) @ 1) %7 = (ua(@:) -0 = ) € 8,4 oo o (L)
(where we use the notation * to denote the Lie algebra action).

2.2.10. On the other hand, denoting by n|r, the Lie algebra n considered as an FF,-Lie algebra, we may
construct an action of the Lie algebra n|r, ®r, kr on L()). First note that by [CGP15], Cor. A.7.6], we can
identify n|]pp as follows:

n|r, = Lie(N)(kr)|r, = Lie (ResoF/Zp (N)) (Fp) = Lie (ReskF/]Fp (NkF)) (Fp) = Lie(N)(Fp).

(In the penultimate step we have used that F'/Q, is unramified.) Thus n|r, ®r, kr is the Lie algebra of N -
(IDG70, §11.4.1.4)).

Then, given n € nlr, ®r, kr = Lie(N, )(kr) = ker(N(krle]/(e*)) — N(kr)), the action of n on
L(A) @k krle]/(€?) = L(A) & L(M)e is of the form

n-(v+v'e)=v+ @ + X,(v))e (21)

for some X, € Endg,(L()\)) (see [DG70, Prop. 11.4.2.2]). We then define the Lie algebra action of n €
nlr, ®r, kr on v € L(A) by
n*v:= X,(v) € L(A). (22)
2.2.11. Finally, we compare the two Lie algebra actions constructed above.
Let us define a Mo-equivariant isomorphism «y : L(A) — gr(L())) as follows. Since the Mo-representation
L(\)|M(kp) is semisimple by Corollary and since the filtration File (L(X)) is My-stable, the short exact
sequence of My-representations

0 — Filyy1/n (LX) — Fil, (LX) — gr,(L(A)) — 0

splits. By taking the direct sum over all v of the splittings gr,(L(A\)) — Fil,(L(\)) — L(A), we obtain
an Moy-equivariant isomorphism gr(L()\)) — L()), and we define v to be the inverse of this map.

2.2.12. Lemma. Let A € X*(T)y+ be p-small. Then the map ~y intertwines the actions of n|]1:p ®F, kr and
" ®r, kr; more precisely, we have

Y(nxv) = §(n)*~(v)
where n € nlg, ®r, kr,v € L(X), and | is the (base change of the) isomorphism (7).

Proof. Recall that we may identify ® with [kr : Fp] copies of ®, indexed by the field homomorphisms
S:kp — kp over Fp. Let B € &7 —Q}' and = € kr. Then

up(ze) € ker (N(krle]/(€*)) — N(kr)) ,

and we let X denote the endomorphism X, () defined in equation above. According to [Jan03, Ch.
11, §1.19, Eqn. (6)], the action of ug(ze) on v € L(\) C L(A\) ® L(\)e = L()\) ®xp krle]/(?) is given by

ug(xe) - v =v+xXg(v)e € L(A) ® L(N)e.
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Using the same cited formula, the action of ug(z) on v € L()) is given by

$3

30 Xj() +...

2
upa) v = v+aXp(v) + 5 XB() +

= > %X;(v) € L(N).

n>0

To see that this expression is well-defined, suppose p € X*(T) and v € L(\), is a non-zero weight vector.
Then X3 (v) € L(N)u+np (Han03, Ch. II, §1.19, Eqn. (5)]). By Lemma [2.2.6} the p-smallness assumption
guarantees that X¢(v) € L(A)u4ps = 0. Hence, Xj = 0 on L(\), and we may write

ug(x) - v =

n

T
|

fog (v). (23)

n
0

Furthermore, since (ug(z) — 1) commutes with X3, we see that (ug(z) — 1)? acts by 0 on L(\). Thus, we
may invert equation (23] to obtain

Xa(0) = (ua(e) = 1) v = S(us(@) = 1P v+ g (uale) ~ )P

=1 \n41
I Gt U (up(a) — 1)

n

We may now calculate the action of Xg on the filtration File(L(A)). For n > 0 and = € Op, the
element (ug(z) — 1)" € Op[Ny] has valuation w((ug(z) — 1)") = nw(ug(z)) by [Laz65, Thm. II1.2.3.3,
eqn. 111.2.3.8.8]. This implies that if v € Fil, (L(})), then (ug(z) —1)" - v € Fil, ynu(ug(x)) (L(A)). From the
previous equation we therefore see that

_ & (-t n .
TXp(0) = 30— (us(2) = )" v € Filypuguy o (LOV))- (24)

Let us now fix a € & — &1 (without an underline!) and z; as in the proof of Lemma [2.1.3] so that
ua(Tic) € nlp, and ua(Tic) ® 1 € nlr, Qr, kr is a basis vector. Letting o € Pt — Q}' denote the root of
T, which is equal to o in embedding g, then by equation we may write

wa(@Tie)@1l= [ ta.(s@)e). (25)

s:kp—kp

Note that the terms on the right hand side commute pairwise, as do the elements X,_. Combining equations

and shows that we have

X”a(TiE)@l = Z ((E)Xag. (26)

s:kp—kp

Applying equation (19)) once again, we have

ua(@) = ] ta (c(@) (27)

Ss:kp—kp
as elements of N(kr). Thus, if v € Fil, (L()\)), we combine the above equations to obtain

(wa(@) —1) v & [ @) | -v-v

sthkp—kp

—1 S
= @m)"

ng (v) —v

8
-
(]

&9 » .
D> @) Xa(v) + Filyfwuaey+1/m (L)
S:kp—kp
{9

Xug @re)21 (V) + Filugwua @) +1/07 (L),
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where we have used the fact that w(ua(z:)) = w(ua (s
Xuo @7e)21(v) is exactly the Lie algebra action of ua (Tie

x;))) for every ¢. By equation (22)), the element
1 on v. Thus, we finally get

(
)

7 (wa(Tie) © 1)+ v)

|

s
9
Gl
&
®
=
—

e
<

2.3 Cohomology of n

We now calculate the Lie algebra cohomology of n\JFp ®F, kr with coefficients in a representation with p-small
highest weight.

Before stating the result, we set some notation. Recall that W = W(G,T) denotes the Weyl group of
G, relative to T, . Given J C A with associated Levi subgroup M, by a slight abuse of notation we let
JW denote the set of minimal length coset representatives for W(M,T) in W. Using the decomposition
, the set 7 W decomposes as [kr : F,] copies of VW (G, T), the set of minimal length coset representatives
for W(M, T) in W(G, T). Finally, given w € W and A € X*(T), we define the dot action by

w-A:=wA+p) —p.

2.3.1. Theorem. Suppose Assumption holds, and let A € X*(T)+ be p-small. Let Hi(n|]1rp ®F,
kr,L(X\)) denote the kr-linear Lie algebra cohomology with coefficients in the representation L(\). Then we
have an isomorphism of M(kr)-representations over kp:

H' (n‘[[rp ®r, kr, L()\)) = @ Ly(w- ).
we’ W
L(w)=1
We note that the characters w - A with w € YW are dominant and p-small with respect to Qj, and
furthermore that such a character encodes a “Galois twist.” For example, if we take M = T, A\ = 0 and
i = 1, then the characters of T(kr) = T(F,) appearing in H'(n|s, ®=, kr, L(0)) are exactly

t — a@®)™”
forao € Aand 0 <j < [kp : Fp] = [F: Qp).
Proof. We prove the theorem in several stages. o
Step 0. We first claim that it suffices to prove the claim after base-changing to kr. Indeed, suppose we
have an isomorphism of M(kr)-representations over kp

H' (nfs, ©x, kr, L\ @rp kr) 2 @ Li(w-X) @y kr. (28)
Kt

By restricting to M(kr), we see the above as an isomorphism of M(kr)-representations over kr. Now, by
Corollary E, the M(kr)-representation ®w€*’W,€(w)=i Lj(w - A) is semisimple, and by [Boul2| §12.1,
Prop. 1] and (28), the M(kr)-representation H'(n|r, ®r, kr, L())) is also semisimple. For any m € M(kr),
the characteristic polynomials of m on these two semisimple representations agree (again using (28)), and
we conclude that they must be isomorphic by the Brauer—Nesbitt theorem (see [CR62, Thm. 30.16]).

Step 1. Suppose that Gy, is absolutely simple and simply connected. Using ([12)), we have decompositions

Gy, = [ Gkpxkeskr= [ G
S:kp—kp Stkp—kp
M, = I M xkpcke= J] M,
skp—kp s:kp—kp
T, = JI Terxepcke= ][ T
s:kp—kp Stkp—kp
nlr, Qr, kr = @ N Qkp,c kr = @ ne,
S:kp—kp S:kp—kp
L) = Q) L),
sthkp—kp
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where A = (A¢)c € X™(T) =D, 1, 1, X (To).
Recall (from, e.g., [Wei94, Cor. 7.7.3]) that the kp-linear cohomology H'(n|r, ®=, kr, L(\) ®k,, kr) may

be computed as the i*" cohomology of the Chevalley—Eilenberg complex

o ( Aol @, R, LO) 8, i )

Thus, using the Kiinneth formula, we obtain

H' (ﬂ|n<“,, ®r, kr, LO\) Qkp E) ~ H' @ e Qkp kr, ® L(Xs) ®kp kr

Stkp—kp S:kp—kp
= P QH (v @y B LO) Srp i) (29)
Dcis=t S

the tensor product in the last line taken over E By [oGVAG09, Thm. 4.2.1], applied to the simple simply
connected group G ., the space H' (n ®ky kr, L(A) iy kr) decomposes as
H' (0 @y ke, L) @k kr) = @ Lo(we - X)) ®@kp ki (30)
We GJW(GS ' Ts)
Lwe)=ig

as representations of the group M. (kr). Substituting into , we obtain

H' (‘ﬂ\]}?p QF, kr, L(A) ®kp E) = @ ® @ Ly(we - A) @kp kr
Yoie=i < wgeJW(G$,T§)

L(we)=ig¢

@ ®Lj(wg')\g) ®kF E

w=(we¢)s€/W(G,T) <

L(w)=1

1%

Note that the action of M(E) on the tensor product in the last line above is exactly Lj(w- ) ®k kr. This
gives the result in the absolutely simple, simply connected case.
Step 2. Suppose now that Gy, is semisimple and simply connected. In this case, we have decompositions

G, 2G1 X G2 X - X Gy,

where each G; is split over kr, absolutely simple, and simply connected (this follows from [Conl4, Thm.
5.1.17] by considering cocharacter lattices). We obtain analogous decompositions of groups

My, 2M; x Mz X --- x M, Nipr 2 N1 X Ng x -+ x Ny,
Tip @0 xTox - x Ty, W W(G,,T,) x W(Gy, Ty) x - x W(G,,T,),
along with a Lie algebra decomposition
n=n Ened... 00y,
and a decomposition of character lattices

XH(T) = X" (Ty) & X" (Ty) & ... & X7(T,).

Therefore, the Kiinneth formula gives a M(kr)-equivariant isomorphism

H' (n]e, @, kr, L) @kp kr) 2 @@ QR HY ()]s, @, kr, L(A) @k kr) .

Sy =i =1

The desired claim now follows from Step 1 applied to each H' (nj|r, ®r, kr, L(\;) @&y kr).
Step 3. Next, suppose that Gg, has simply connected derived subgroup G‘,if;. %;r —
der

ey = Nip, and we therefore obtain an isomorphism of (M N G")(kr)-

The inclusion G
Gy, induces an equality Ni, N G
representations

der

H* (nhpp QF, kr, L()\) Rk E) |<Mmgder)(ﬁ> ~ f° (n |r, ®F, kr, L(Aphgder) kg E) ,
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where 19" denotes the Lie algebra of Ny, N G%if, and T N G is a maximal torus of G, cf. [Conld,

Prop. 5.3.4] (as above we use underlines to denote scalar restriction from kr to F,). By Step 2, we obtain

H' (nls, @r, kr, LY ®kp kr) | angen i) = D Ly(w: (Azngaer)) @k kr.
wEJW(Qder,lﬂgder)
L(w)=1

On the other hand, if we denote by Z the center of G, then the action on(E) on H* (nr, ®r, kr, LO\)@@E)
is given by the character Al ). Since Z(kr)G? (kr) = G(kr), we conclude that

Hi (n‘Fp ®Fp Ev L(A) Ok p E) = @ LJ(w : )‘) Ok p E
it

as representations of M(kr) (using the canonical identification of W with W (G, T N G**)). This gives
the claim when Gﬁ‘;r is simply connected.
Step 4. Finally, suppose Gg,. is an arbitrary split connected reductive group, and choose a z-extension

1—>Z—>é—>GkF—>1,

where G is a split connected reductive group over kr with simply connected derived subgroup, and Zis a
split central torus. Restricting scalars to ), we obtain a short exact sequence

1—Z—>G-%G—1.

The inflation along gk .. of L() is the irreducible algebraic representation L(\) of QkF where X is the inflation

of A\ along gx,. Since qx, identifies unipotent radicals, and X is trivial on Z we have an isomorphism of

> kg
q ' (M)(kF)-representations

H' (nls, @x, B, L) @y ) = H' (G, @5, Fr, L) @k, br

where the left hand side is inflated from M(kr). Applying Step 3 to é, we get an isomorphism of
q (M) (kF)-representations

H' (nls, ®, kr, L(\) @y kr) = D Liw-N @k ke (31)
wer(@),q‘l(l))
L(w)=1

Equivalently, we have an isomorphism of M(kr)-representations

H' (nlr, ®s, kr, LA) @kp br) = @ Lo(w-A) @kp ke
wel W
L(w)=1

(using the canonical identification of W with W (G, ¢~ *(T))). This finishes the final step and concludes the
proof. O

2.3.2. Corollary. Suppose Assumption holds, and let A € X*(T)+ be p-small. Then we have an
isomorhpism of kr-linear My-representations

H' (n, @5, kr, gr(L(\))) = @ Ly(w-\).
we’ W
L(w)=1
Proof. This follows from Theorem and Lemma [2.2.12] using that the map « is both Myp-equivariant
and equivariant for the two Lie algebra actions. O

2.4 Cohomology of N

Our next goal is to calculate the cohomology of Ny with coefficients in a representation with p-small highest
weight. We begin with a few lemmas.

Recall the notation G’ := Reso,./z,(G), M’ := Reso,,/z,(M), T' := Reso,.z,(T), etc. In particular
T’ is a torus over Z, which splits over Or. Consequently, the abstract group of characters of T,  identifies
canonically with the one of T% and of T}, = T, ., which we have simply denoted by X*(T).

17



2.4.1. Lemma. Suppose Assumption holds. Let J C A, p € X*(T) dominant and p-small with
respect to Q}', and Lj(p) (resp., Ly r(u)) the irreducible algebraic representation of My, = M, . (resp., of
MY ) of highest weight . Then

dimg . (L (p)) = dime (Lr(p)) -
Proof. This follows exactly as in [PT02, Prop. 1.6]. Namely, let Op(p) denote the rank 1 Op-module on
which T{, » acts by the character . Then define

H(p) := indM/OF (OF (1)),

’— !’
(B'-NM')o,,

where B'™ := Resoy/z,(B™) for the Borel subgroup B~ which is opposite to B. It is a free Or-module, cf.
[Jan03, §I1.8.8, Eqn. (1)].
On the one hand, we have the following sequence of isomorphisms:

!
Mp

HO(:“) Qop F = ind(Blme/)F(F(:u)) = Lir(p).

The first isomorphism comes from flat base change ([Jan03| §1.3.5, Eqn. (3)]), while the second is the
Borel-Weil-Bott theorem ([Jan03 Cor. IL.5.6]).
On the other hand, by Kempf’s vanishing theorem ([Jan03], §I1.8.8, Eqn. (2)]) we have

. M/
R! lnd(B('j_FﬂM')oF (Or(p)) =0.

Thus, applying the universal coefficient theorem (as in [Jan03l Prop. 1.4.18(b)]), and the Borel-Weil-Bott
theorem ([Jan03 Cor. I1.5.6]), we get

M/
H(1) ®o, kr = H°(u) ®op kr @& Torl* <R1 ind(B?_FmM,)OF (Or(p)), kp)

ind i gy, (ke (10)

m (B/_an)kF FlQ

Ly (p).

Combining the previous two paragraphs with the fact that H°(u) is free over Or, we obtain

dimy,. (L (1)) = rkop (H (1)) = dimp (L, (1))

1%

1%

O

2.4.2. Remark. Suppose X € X*(T); is p-small, and fix J C A. Then for every w € W, the characters
w - \ are dominant and p-small with respect to ®F by Lemma [2.2.4] and therefore

2.4.3. Lemma. Suppose Assumption[2.1.1 holds. Let V be a finite dimensional algebraic representation of
the algebraic group Npr. Then we have an isomorphism

H(its (N07 V) = Hl (mbzﬂ V)
where N, := Lie(N')(Qp) denotes the Lie algebra of N .

Proof. Recall that (No,w) is a p-saturated p-valued group by Lemma As such, it admits a Zp-Lie
algebra L£*(No) := L*Sat(Z,[No]) in the sense of Lazard [Laz65, §§1.2.2.11, IV.1.3.1]. Then, by [Laz65,
Thms. V.2.4.9, V.2.4.10], there is a canonical isomorphism
he (No, V) = H' (L*(No) ®z, Qp, V)™,

where the superscript Ny stands for the subspace of Np-invariants.

Now, since No = N’(Z,) and (No, w) is p-saturated, by [HKI1, Prop. 4.3.1, Lem. 4.1.3] there is a natural
identification

L*(No) ®z, Qp =N ®z, Qp = ‘ﬂ{@p,

where 9 := Lie(N’)(Z,). Furthermore, this isomorphism is compatible with the natural actions of Ny on
L*(Np) and of N’ on Lie(N'); explicitly, it identifies the logarithms attached to (No,w) with the derivations
of N’. In particular, the action of No on H*(L*(No) ®z, Qp,V) = H' (Mg, V) is algebraic (coming from an
algebraic action of N{@p). Thus, if we let K C N{@p denote the closed subgroup scheme given by the kernel of
the Ng, -action, we see that the kernel for the No-action is NoNK(Qjp). On the other hand, by [Laz65, Thm.
V.2.4.10(iii)], this kernel contains an open subgroup of Ny (that is, the Np-action is smooth). Since such an
open subgroup is Zariski dense in N@p ([PR94, Lem. 3.2]), we conclude that K = N@p, which finishes the

proofEI O

2The prototype of this argument goes back to [CW74, §3], as noted in [AKII, Rem. 5.1.3].
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2.4.4. Remark. The proof of [HK11, Prop. 4.3.1] shows that we even have an isomorphism at integral
level:

L*(No) =2 Lie(N')(Z,) = 9.
This isomorphism is moreover compatible with the actions of Ny on £*(No) and of N on Lie(IN').

2.4.5. Lemma. Suppose Assumption holds, and let A\ € X*(T)+ be p-small. Then
dimy,,, (Hi(nhpp ®x, ki, L()\))) < dimg,, (Hi(No, L(A))) .

Proof. Our argument is similar to [Ronl8, Pfs. of Thms. 1, 4].
Let 91 := Lie(N)(Or) denote the Or-Lie algebra of N, so that M ®o, kr = n. We let 91|z, denote the
Lie algebra O considered as a Z,-Lie algebra; using [CGP15, Cor. A.7.6], we have

Nz, = Lie(N)(OF)|z, = Lie(N')(Z,),
where N’ := Reso, /z, (N). Thus, we have 0|z, ®z, kr = nls, ®, kr.

We first claim that the algebraic QkF—representation L()) lifts to characteristic 0, that is, that there
exists an algebraic representation of G, - on a finite free Or-module whose mod p reduction is L(A). In

GI
fact, this was already constructed in the proof of Lemma [2.4.1} we may take H°(\) = indB,CiF (OF(N)) as
OFr

our lift.

Next, we claim that the @p-linear cohomology H® (‘ﬁ\zp ®z, OF, H° (N\)) is free of finite rank over OF.
Since H'(M|z, ®z, Or, H (X)) is finitely generated over Op, this is equivalent to showing that the cohomology
is p-torsion free. We proceed by descending induction. The claim is trivially true when i > rko. (N|z, ®z,
Or) = |@* - Q}'| by the existence of the Chevalley—Eilenberg complex. Suppose that the claim is valid for
all degrees greater than ¢. Then, using the universal coefficient theorem, we have

H' Nz, ®z, kr, L)) = H' Nz, @z, Or, H*(\) ®0, kr
@® Torl* (HiJrl (MNz, ®z, Or, H*(N)), k'F)
H' Nz, ®z, Or, H'(\) ®oy kr

1

Hi (leP ®Zp F, LF(A)) = Hi (m‘zp ®Zp OF, HO()\)) Rop F
® Tord* (H* Nz, ®2, O, H'(N), F)
H' M|z, @z, F, H'(N)) ®op F,

1

where on the left-hand side we consider the kp-linear (resp., F-linear) cohomology of the kp-Lie algebra
N|z, ®z, kr (resp., the F-Lie algebra M|z, ®z, F'). Thus, in order to verify the claim about torsion-freeness,
it suffices to show that

dimg, (Hi(mlzp @z, ke, L(,\))) = dimp (Hi(m|zp ®z, F, LF(,\))) . (32)

The above equality essentially follows from [oGVAGO09, Thm. 4.2.1], using an algebraic isomorphism F = C.
Indeed, by using Weil restrictions and proceeding as in the proof of Theorem [2.3.1] along with the universal
coefficient theorem to base change to algebraically closed fields, it suffices to verify that dimg, (Lj(w- X)) =
dimp (L, r(w - A)). This follows from Remark

Next, we consider the F-linear cohomology H *(N|z, ®z, F, Lr(X)). By adjunction, this cohomology group
identifies with the Qp-linear cohomology H*(MN|z, ®z, Qp, Lr())), where we view Lr()) as a Q,-vector space
by restriction. Thus, Lemma [2.4.3| applies, giving an isomorphism

H* (N, @z, Qp, Lr(N) 2 His (No, Lr(N)). (33)

Now let Hli(No, H°()\)) denote the continous cohomology of H°(\) (viewed as a Z,-module). This
cohomology group may be calculated using a quasi-minimal complex [Laz65, §V.2.2.2, Eqn. V.2.2.3.1].
Therefore, two more applications of the universal coefficient theorem give

Hio(No, Lr(N) 2 Hi (No, H'(N)) ®z, Qp (34)
H' (No, L(\) Higs (No, H(N) @2, Fp & Tor” (HIE' (No, HO(N), Fy). (35)

R
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Finally, we combine the above isomorphisms, noting that the Qp-vector spaces in (33]) (resp., the Fp-vector
spaces in (35))) naturally have an F-linear structure (resp., a kp-linear structure). Thus, we obtain

dimg, (Hi(n|]pp @r, ki, L()\))) = dimg, (H"(fn\zp ®2, kr, L(,\)))

IE

dimp (Hi(‘mzp ®z, F, LF(/\)))

D dimp (Hiw(No, Le(V)))
< dimi, (H'(No, LOV))
where the last inequality follows from equations and . O

We may now prove our main result on the mod p cohomology of Ny.

2.4.6. Theorem. Suppose Assumption holds. Let A\ € X*(T)4+ be p-small, and fix a subset J C A
with associated parabolic subgroup P = MN.
We have a My-equivariant convergent spectral sequence

B = gr, (H™ (n @r, ke, gr(L(V)) = H™Y (No, L(N), (36)

which collapses on the first page. (We renormalize the gradings on n., and gr(L(\)) by multiplying by h',
so that they are Z-valued. The grading on the Lie algebra cohomology then comes from the grading on the
Chevalley—FEilenberg complex of n,, and the grading on gr(L()\)).)

Consequently, we obtain a Mo-equivariant isomorphism

PDeri (H"(No, L)) = P Ls(w-N),

i€Z we’ W
L(w)=n

where the notation is as in Theorem|2.3.1| and where the grading on the left-hand side comes from the spectral
sequence (36]).

Proof. The existence of the spectral sequence follows from [Sor21l Thm. 5.5, Prop. 6.2], while its Mo-
equivariance follows readily from the constructions in [Sor21l §§2 — 5]. We must verify that it collapses on
the first page. By definition of convergence of spectral sequences, we have

dimy, (H”(nw ®F, kp,gr(L()\)))) > dimg, (H"(No, L(X))).
On the other hand, Lemmas [2.2.12] and imply that

dimg, (H" (n @&, kr,gr(L(N))) = dimg, (H"(n|r, ®r, ke, L(X)))
< dimg, (H"(No, L(N)).
Thus the dimensions are equal, which forces all the differentials on the F; page to vanish.

The degeneration of the spectral sequence and Corollary imply that H"(No, L()\)) has an
My-stable filtration for which

v, (1" No, L)) = e, (" (v 02, ki, 2:(EO))
H" (nw ®]Fp ke, gr(L()\)))

B Liw-N

we W
L(w)=n

Il

1%

1%

as Mo-representations, where the second equivalence comes from the fact that H" (n, ®r, kr,gr(L(N))) is

semisimple as an My-representation (recalling Lemma and Corollary [2.2.5(b)).
O

2.5 Splitting of the cohomology complex

In this subsection, we assume the coefficient field & contains the residue field kr of F', and tacitly base-
change all representations to k. An application of the universal coefficient theorem shows that the results
of the previous section hold with coefficients in k. Our goal will be to examine the bounded complex
RH(Ny, L(\)) € D(Mp); in particular, we give sufficient conditions for this complex to split as a direct sum
of its shifted cohomology objects.
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2.5.1. Fix a standard Levi subgroup M of G with corresponding subset J C A, and let Cnm denote
the connected center of M. Set Caro := Cm(Or). We shall be interested in the action of Ca,0 on the
cohomology spaces H" (No, L())). To this end, we make the following assumption.

2.5.2. Assumption. Ifv,w € W satisfy £(v) # (w), then Caro acts by distinct characters on Ly(v - \)
and Ly(w - N).

We remark that this assumption will not be satisfied in general. For example, consider the case where
G = GLyjg,, A = (p —2,0) € 7%2? = X*(T), and M = T. Then Cp = T, and the actions of Ty on
H°(Uy, L(\)) = Lg()\) = k(\) and H'(Uy, L(\)) = Lg(s - ) = k(s - \) agree (where s denotes the nontrivial
element of W (G, T)).

Below, we will give several sufficient conditions (in terms of M and \) for Assumption to hold. We
first record the consequence relevant for our purposes.

2.5.3. Lemma. Suppose Assumptions (md hold. Then we have

dim(No)

RH’(No, L(N) = €D H"(No, L(N)[-n]

n D(Mo)

Proof. Assumption m guarantees that Ext’}\/fo (Ly(v-X),Ly(w-X) =0forall i €Z, and all v,w € "W
satisfying ¢(v) # £(w). By dévissage, Theorem then implies

Exthg, (H™(No, L(\)), H™(No,L(\))) =0
for all 4 € Z and all m # n, and thus Corollary [A20.3] gives the desired result. O

We now give some conditions for Assumption [2:5.2] to hold.
2.5.4. Lemma. Suppose that:
o Assumption holds;

o the center of G is connected;
o M =T (so that "W =W);
o A€ X*(T)4+ is p-small and for every o € O, there ewists ¢o : kr — kp such that (A +p,al) #p—1
(see Subsection [2.2.8 for the definition of aq, ).
Then Assumption [2.5.9 holds. In particular, we have a splitting
dim(Up)

RH®(Uo, L(N) = €D H"(Us, L(\))[—n]

n=0

i D(To). Moreover, each H" (Ug, L(\)) splits as

H"(Uo, L) = € k(w-))
tsyon

in D(Ty)%, and RH(Uy, L(\)) is multiplicity-free.

Proof. We will prove the stronger assertion that if v, w € W satisfy v # w, then T acts by distinct characters

on Lg(v-A) =k(v-A) and Lg(w - \) = k(w - A). This will imply the stronger claimed splitting statement.
In order to prove the claim, it suffices to show that the stabilizer in W of the (finite-order) character

(A+ p)|zp is trivial. According to [DL76, Prop. 5.13], this stabilizer is generated by reflections sa. (o €

&t ¢ : kr — kr) such that “a; is orthogonal to the character (A + p)|r,.” This condition is described in
[DL76, §5.9]; in particular, this condition holds if and only if

I[[ o) (C<A+p’a<v'>) =1,

s'kp—kp

where ¢ denotes a fixed generator of k. However, the fourth assumption implies that the left-hand side
cannot be equal to 1. Therefore, the stabilizer of (A + p)|r, is trivial. O
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2.5.5. Remark. The fourth assumption of the lemma above can be relaxed somewhat. Namely, it suffices
to check the condition (A + p, agv[)) # p — 1 only for those a such that " is either the highest or a second-
highest coroot in the irreducible component of ®¥ to which it belongs. To justify this claim, we show that
if " is not the highest or a second-highest coroot, then (A + p, o) # p — 1 for all ¢ : kr — k. Suppose
by contraposition that (A + p,a)) = p — 1 for some ¢, and let o denote the highest coroot of @), the
irreducible component of ®¥ to which o belongs. Write

av = Z nﬁ\/ﬂ\/, OL(\)/ = Z mﬂ\/ﬁvv

BYeaY, nav BVeaY, nav

where ngv,mgv € Z>o. By [Bou8Il Ch. VI, §1.8, Prop. 25(i)], we have mgv > ngv for all 8¥ € &Yy NAY.
Therefore, by dominance and p-smallness of A\, we have

> (mgv —npv)

ﬂvebzv nAVYV

ht(ag) — ht(a")

< > (mpv —ngv)(A+p,8))
BVeay, NnAv

= <)‘+pa0‘(¥,c_o‘z>

< p=(p—-1)

= 1.

We conclude that ht(a") > ht(ay) — 1.

When A = 0, we can drop the connectedness assumption in Lemma
2.5.6. Lemma. Suppose that:

o Assumption holds;

o M =T (so that "W =W);

o A=0.
Then Assumption [2.5.9 holds. In particular, we have a splitting

dim(Up)
RH°(Uo, k)= €D H"(Uo,k)[-n]

n=0
in D(Ty). Moreover, each H" (Uo, k) splits as
H™"(Uo, k)= €D k(w-0)

weW
L(w)=n

in D(To)¥, and RH®(Uo, k) is multiplicity-free.

Proof. We will prove that if w € W is nontrivial, then the (finite-order) character (w - 0)|zn, = (w(p) — p)|1,
is nontrivial. Suppose by contradiction that (w-0)|z, is trivial, and let 8 € A (without an underline). Then,
for each = € k5, we have

L= 0 (@)= [ «(atw0er). (37)

stkp—kp
Next, note that (—w(p) + p, B) = (p, —~w ™' (8Y) + BY) = ht(—w ™ (BY)) + 1. Thus, we get
—(p—1) <—h+2<(-w(p)+pB/)<h<p-1. (38)

Combining and (38), we deduce (—w(p) + p, 3Y) = ht(—w " (8Y)) +1 =0 for all .

Now choose 8 € A for which there exists ¢o : kr — kp satisfying wil(ﬁgo) € @V (such a choice is
possible since w # 1). The previous paragraph then implies ht(w_l(ﬁgvo)) =1, and we therefore arrive at a
contradiction. O

2.5.7. Remark. If the ramification condition of Assumption 2:I.1] in Lemma [2.5.6] is not satisfied, the
representations H"(Up, k) may fail to be semisimple and multiplicity-free. For example, consider the group
G = GLy/q,(,p) over the ramified extension F' = Q,(,/p), with U the upper triangular unipotent matrices
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and T the diagonal matrices. We have Uy & Op & Z;?Q, and one can check that, as a Tp-representation, the
cohomology Hl(Uo7 Fp) is a nonsplit extension of a ! by a!, where

o ((g 2)) =ad " mod \/pOr

for a,d € OF.
2.5.8. We now focus on general Levi subgroups M of G (associated to J C A) and A = 0. Let & =

&M ... .ud™ denote the decomposition of ® into irreducible components, and for each 1 < j<r, let aéj )

denote the highest root of @) (relative to the basis AN @), For 1 < j < r, we define §; € X.(Ty,) to
be any fixed element satisfying

o {a,&) =0for all a € &+ — oL+,

o {(a,&) =0 for all « € YT N @Y,

o (a,&) >0 for all a € 9T — (W) F N o)

o (aéj), ;) is minimal.

In particular, since (o, &;) = 0 for all a € J, we have & € X.(Cwm, k) ([Spr09, Lem. 8.1.8(ii)]). Finally, we
define

hn = max {(e.0} .
In the proof below, we shall use the following notation: given £ € X (TkF) and ¢ : krp — kr, we let
LEEX(T)E P Xu(Trp Xppo kr)
sikp—kp
denote the element which is equal to £ in embedding ¢ and 0 otherwise.
2.5.9. Lemma. Suppose p > |®+ — <I>j|hM +1, and let v,w € TW. If Chu,0 acts by the same character on
Lj(v-0) and Lj(w - 0), then
<U : 075]‘,§> = <w : 0,£j,<>

foralll1<j<randalls:kr — kp.
Proof. Fix 1 < j <r. For = € k5, the action of £;(z™") € Car,0 on Ly(w - 0) is given by

(w-0) (@) = [ <(aw00). (39)

sthkp—kp
Next, note that
—w-0=—-w(p)+p= Z a.

acdt
wl(a)ed™

IfaeX(T) =@, up X (Thp Xip,e kr) does not lie in the ¢-component, then (o, ;) = 0. On the
other hand, if « does lie in the ¢-component, then we obtain
0 < (o &) < (ag), &) < b

(see [Bou8ll, Ch. VI, §1.8, Prop. 25(i)]). Since the number of roots o € &1 which satisfy w™*(a) € &~ and
which lie in the s-component is bounded above by |®* — <I>'}'|7 we get

0<(—w-0,&0) = > (&) <[er—@fhm<p-—1. (40)
aEQJr
wHa)e@™

Suppose now that Lj(v-0) and Ly(w -0) have the same Cyso-action. We get

11 g(xwvo,sm): I1 g(m<*w-0a€j,<>)

stkp—kp S:kp—kp
for all z € kj by equation , and equation implies that
0S<_’U'07€jv§><p_17 O§<—W'O,€j,g><[)—1

for all ¢. Therefore, by writing the embeddings ¢ as powers of the arithmetic Frobenius, we see that the

exponent of z in is an integer between 0 and p[kF:]FP] — 2. Taking z to be a generator of k., we conclude
that

<U : 075j,<> = <w ' 07£j7<>
for all <. O
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We now apply the above discussion to Assumption Recall that W (G, T) denotes the set of
minimal length coset representatives for W (M, T) in W (G, T), and that “W decomposes as a product of
copies of "W (G, T) indexed by field isomorphisms ¢ : kr — kp.

2.5.10. Lemma. Let M correspond to J C A, and suppose that:
o Assumption [2.1.1] holds;
o p> 0T — &t |hn + 1;
o A=0;

o any two elements of "W (G, T) of distinct length are comparable under the right weak Bruhat order of
W(G,T) (see the proof below for the definition of this partial order).

Then Assumption [2.5.9 holds.
2.5.11. Remark. As examples of sets W (G, T) which satisfy the fourth assumption above, we may take:
o any group G of type A,, and J = {a1,...,an—1} or J ={ag,...,an};

¢ any group G of type C,, and J = {a2,...,an};

o any group G of type Dy, and J = {a2,...,an};

o any group G of type G2, and J = {a1} or J = {az2};
¢ ete.

(See [Bou&1l Planches I — IX] for the customary numbering of roots.)

Proof of Lemma[2.5. 104 Recall from [BB05, Ch. 3] that the right weak order < on the Coxeter group

W (G, T) is characterized by y < z if and only if £(y) 4+ £(y~'z) = £(z). By [BB05, Prop. 3.1.3], we have
that
y Rz if and only if &, C &., (41)

where
D, =D Ny(d7).

We now apply these considerations to central characters. Suppose that v,w € W have distinct lengths,
and suppose by contradiction that Lj(v-0) and Lj(w - 0) have the same action of Cy,0. By Lemma [2.5.9]
we have

(v-0,&6) = (w-0,&6) (42)
forall1 < j <randall¢: kr — kp. Since v and w have distinct lengths, there exists ¢ for which v, and
w, have distinct lengths (as elements of 7W (G, T)). Assume without loss of generality that v; < w.. Using
the characterization of right weak order in 7 we may write the character v. - 0 — w¢ - 0 as

vg-O—w<~0:—Za+ Ea: Z Q.

ae@vg o¢€<I>wg z:z€<I>u,<—<I>,uS

. . + + . oy
A€y, — By, contains a summand in ®" — ®7. Such a summand pairs positively

with & (for an appropriately chosen j), from which we deduce (vs - 0 — wq - 0,§;c) # 0. However, this
contradicts . O

2.5.12. Lemma. Let M correspond to J C A, and suppose that:
o Assumption holds;
o p> 0T — &t |hn + 1;
o A=0;
o N is abelian.

Then Assumption holds.

Proof. The given assumptions imply that Ny is a (topologically) finitely generated, abelian, pro-p group.

From this, we deduce that Ny =2 Zf? dim(N)F:Qp] o topological groups, and therefore Ny is uniform. Hence,
by [SW00, Thm. 5.1.5], we obtain an My-equivariant isomorphism

Since ve < ws, the sum

; i
H'(No, k) = /\k H'(No, k). (43)
Moreover, by Theorem [2.4.6] the Mo-representation H'(No, k) admits a filtration whose graded pieces are

L;(—5s), where BeEAN—-J c:kr — kr.
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In particular, the characters of Cas,0 appearing in H'(No, k) are the (=B<)lcp,o for B and ¢ as above, with
multiplicity dimg(L.s(—p8s)).

Now suppose v, w € W satisfy £(v) # £(w), and that Ca 0 acts by the same character on L(v - 0) and
L;(w-0). Since the character (v-0)|c,, , appears in H*™)(Ny, k) (and analogously for w), the decomposition

implies
(—v- 0)‘CIM,(J = Z Z mﬁ,<ﬁ<|C’M,ov (—w- O)|C'M,o = Z Z nﬁ&ﬁc‘CM,m

S:kp—kp BEA—-T S:kp—kp BEA—T
for some choice of coefficients mg,c, ng.c € Z>o satisfying 0 < mg, ng, < dimg(Ls(—f;)) and
Z Z mg.c = £(v), Z Z ng.c = {(w)
sthkp—kp BEA—T s:kp—kp BEA—T
Since v and w were assumed to have distinct lengths, there exists ¢ for which v and w¢ have distinct lengths.

From this, we deduce
Z mp,c = L(ve) # L(we) = Z NB,s-
BeEA—T BEA—T

Consequently, there exists 8’ € A — J for which we have mg/ ¢ # ng .
Now choose 1 < j < r such that 8 € o), By the assumption on central characters and Lemma

we have
§ mp,c(Bs,&s) = (—v-0,&6) = (—w-0,) = § ng,s(Bs,&js)-
BEA—-T BEA—-T

By [RRS92, Lem. 2.2], we have J N &Y = (AN &W) — {#'}, so that by definition of £; the preceding
equation reduces to

me’.s <ﬂé7 ‘fj&) = nﬁ’,§<ﬂév §j7§>'
However, since (8.,&;,c) > 0 this contradicts mg: ¢ # ng . O

2.6 Application to principal series

We now give an application of the above results to the cohomology of principal series representations.

Let k be an arbitrary field of characteristic p, and let x : T — k* denote a smooth character. Such a
character is trivial on the maximal pro-p subgroup of T'. Thus, if we let xo denote the restriction x|z,, then
Xo factors through the subgroup T(kr). We use the notation xo to refer to either the character of Ty or of
T(kr).

We inflate the character x to a character of B trivial on U, and consider the induced representation
Indg(x). We are interested in the cohomology spaces H*(Go, Ind%(x)).

2.6.1. Proposition. Suppose Assumption[2.1.1] holds. Let T1 denote the pro-p Sylow subgroup of To, and
let 47 := Homes (11, k), which is a k-vector space of dimension [F : Qprk(G).

(a) Suppose k contains kr, and assume xo # —w -0 for all w € W. Then
H (Go, Indg()()) =0 for all 4 > 0.

(b) Suppose k contains kr, and assume xo = —w - 0 for some w € W. Then

H (GO,Indg(X)) o /\i_“w) t.

k
In particular, H (Go,Ind%(x)) # 0 if and only if £(w) < i < L(w) + [F : Qp)rk(G).
(c) Suppose k is arbitrary, and assume that x is unramified (that is, that xo is the trivial character). Then
' (Go,nd§ () = A\ 4.
In particular, H (Go,Ind% (x)) # 0 if and only if 0 < i < [F : Qplrk(G).
Proof. Combining the Iwasawa decomposition G = BGy and the Mackey decomposition gives
Ind§ (x)|¢o = Id5? (xo)

(where we inflate xo to a character of By trivial on Up). An application of Shapiro’s lemma then gives

H (GO,Indg(X)) ~ K (Go,Indgg(xO)) ~ H*(Bo, X0)-
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Using the decomposition By = Ty x Uy, we will calculate the latter cohomology using the Hochschild—Serre
spectral sequence:

By = H' (To, H (Us, x0)) = H' (To, xo @ H’ (Uo, k) ) = H™* (Bo, xo). (44)

We first examine the Ty cohomology above. Suppose V' is a smooth representation of Ty over k£ on which
Ty acts trivially. The Hochschild—Serre spectral sequence associated to the normal subgroup 73 then gives

By’ = ' (T(kr), H (11, V)) = B (T(kr),V @ H (T2, k)) = H' (To, V).

Since T'(kr) is finite of order coprime to p, the spectral sequence collapses to give

T(kr)

(Ver B (T R) " = H (T, V).
Note furthermore that the action of T(kr) on H?(Ty, k) is trivial, from which we get
VIER) @ HI(Ty, k) = H (Tp, V). (45)

Thus H?(Tp, V) # 0 if and only if VT®F) £ 0 and H’ (T3, k) # 0.
We now apply the previous paragraph to the spectral sequence (44)):

(a) Suppose first that k contains kr, and that xo # —w -0 for all w € W. By Lemma for all
j >0, the semisimple representation xo ®x H? (U, k) does not contain the trivial character of T(kr).
Consequently, equation applied to V' = xo ®x H? (Up, k) implies H (To, xo @& H? (U, k)) = 0 for
all ¢ and j, which gives part (a) by invoking the spectral sequence (44)).

(b) Suppose next that k contains kr, and that yo = —w - 0 for some fixed w € W. By the multiplicity-
freeness result in Lemma [2.5.6] we obtain that

(xo @ (U, k))T(kF) £0  ifandonlyif = f(w),
in which case the dimension is 1. Applying equation to V = xo0 @ H’(Uy, k) shows that
H' (To,xo ®x H? (U, k)) #0 implies j=L(w).
Therefore, the spectral sequence collapses to give
H(Bo, xo) = H'~*® (To, xo @ H™ (Us, k)) > {7y ).

(¢) Finally, suppose that k is arbitrary, and that xo is trivial. A straightforward argument using the
universal coefficient theorem, Lemma [2.5.6) and [Boul2, §12.1, Prop. 1] shows that @, -, H" (Uo, k)

is multiplicity-free and semisimple. Since the trivial To-character appears in H 0(Uo, k), we deduce
H’(Uo, k)™ ™F) £0  ifand only if  j =0,
in which case the dimension is 1. Applying equation toV = Hj(Uo7 k) shows that
H (TO,Hj(UO,k)) £0  implies j=0.
Therefore, the spectral sequence collapses to give
H'(Bo, x0) = H' (To, H(Uo, k)) = H'(T1, k).

To finish the proof, it suffices to calculate H'(Ti, k) for an arbitrary field k of characteristic p. The group
T, is isomorphic to (1 + pOr)™(®); since 1 4 pOr is torsion-free (this follows from Assumption , we
get that

Ty & 7, OIS,

In particular, 77 is a uniform pro-p group of dimension [F' : Q,]rk(G). By a result of Lazard (see [SWO00,
Thm. 5.1.5]) we have

H (T, k) = /\; £
This finishes the proof. O
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3 The left adjoint of parabolic induction and orthogonal de-
compositions

In this section, we use the results of the previous section to describe the left adjoint of parabolic induction
on certain compactly induced representations.

We keep the assumptions of the previous section. In particular, Assumption remains in effect, and
we let J C A denote a subset with corresponding parabolic subgroup P = MIN. We fix a p-small character
A € X*(T)+ throughout.

3.1 The left adjoint at compact level

In [Hey23b], Heyer constructs and studies the left adjoint L(N, —) of the parabolic induction functor Ind :
D(M) — D(Q), for an arbitrary coefficient field k of characteristic p. In particular, at compact level, the
following holds:

3.1.1. Theorem. (Heyer, [Hey23Db])

(a) Let K C G be a compact and torsion-free (in particular, pro-p) subgroup, and assume that PN K =
(M NK)(NNK). Then the parabolic induction functor Inds~c : D(M NK) — D(K) admits a left
adjoint L(N N IKC, —); moreover

L(NNK,-)=RH’(NNK,-)[dim(N NK)].

(b) The parabolic induction functor Indgg : D(Mo) — D(Go) admits a left adjoint L(No, —).
Proof. Point@is [Hey23b}, Cor. 3.1.8, Prop. 3.1.10], while point@follows from [Hey23b| Thm. 3.2.3]. O

In point the subgroup Go C G is compact but not necessarily torsion-free. However, for this
subgroup, we will adapt the proof of point @ and use Theorem to prove the following;:

3.1.2. Proposition. Assume Assumption holds. Then
L(No, =) = RH" (No, =) [dim(No)] @& (Nieg i, (20 2901 ).

In order to prove Proposition [3.1.2] we will need the following lemma.

3.1.3. Lemma. Let K be a compact p-torsion-free p-adic Lie group. Then D(K) is rigidly-compactly
generated (in the sense of [BDS16, Def. 2.7]).

Proof. 1If K is a pro-p-group, then D(K) is rigidly-compactly generated by [Hey23b, Prop. 2.3.19], in which
case the full subcategory of compact objects is the strictly full saturated triangulated subcategory (1)
generated by the trivial representation.

If K is not necessarily pro-p, one can consider a pro-p-Sylow subgroup P (which is an open subgroup of
K). Then Ind5(1p) is a compact generator of D(K) by [Schi5, Lem. 4, Prop. 6]. Moreover, we claim that
it is a rigid object, i.e., that the canonical map

RHom . (Ind%(1p), 1x) @k Z — RHom, (Inds(15), Z)

is an isomorphism for all Z € D(K) (recall that we use RHom, to denote the internal Hom in D(K), cf.
[SS23] §3]) . Since the canonical map

Inds (RHom (X, Y|p)) — RHom, (Ind5(X),Y)

is an isomorphism for all X € D(P),Y € D(K) by [Hey23a, Lem. 2.2.3, §2.2.1], the claim holds if and only
if the canonical (projection) map

Inds (1) @ Z — Inds(1p @ Z|p)

is an isomorphism. But this isomorphism is readily checked if Z € D(IC)O, and hence follows for any Z since
all the differentials involved are trivial (see again [Hey23a, Lem. 2.2.3]).

Finally, by the general arguments from the proof of [Hey23bj, Prop. 2.3.19], the category D(K) is rigidly-
compactly generated, with full subcategory of compact objects equal to <Indg(1p)). O

‘We may now prove the above proposition.

27



Proof of Proposition[5.1.9 First, we claim that the functor
RH"(No,—) : D(Py) — D(My)

preserves compact objects. Let pr : G(Or) —» G(kr) denote the projection map, and define the pro-p-
Iwahori subgroup by I; := pr~* (U(kr)). Thus I is a pro-p-Sylow subgroup of Go; by the Assumption
[217] it is torsion-free, i.e., Go is p-torsion free. Further, set Ip1 := I N Po; by the Iwahori decomposition
relative to P, the subgroup Ip: is a pro-p-Sylow of Py. Then by the proof of Lemma the full
subcategory of compact objects of D(F) is (Indi‘;l (1rp,)). Hence, to prove the claim, it suffices to show

that RH°(No, Indfg ,(11p,)) is a compact object of D(Mo). This can be checked at pro-p-level as follows.
The factorization Py = Mo Ny induces the factorization Ip1 = Inr,1 No with Inr1 := I1 N Mo. Hence we have
the following diagram of functors between abelian categories

P
Ind; ©
Rep(Ip1) S LN Rep(Po)
HO(N();_)J/ Ind?lo lHO(No,—)

Rep(Inr,1) My Rep(Mo).

which is commutative (up to natural isomorphism). Then, since the two induction functors are exact and
since the restriction Rep(FPy) — Rep(Ip,1) is exact, the diagram of functors

Po

Ind
D(Ip.) — 2% D(Py)
RH%NOv*)l Mo J{RHO(NOﬁ)
IndIIVI,l

D([M,l) —> D(Mg)

is commutative (up to a natural isomorphism). Now, the functor Ind%‘; . D(Inm,1) — D(Mo) preserves
compact objects because it is left adjoint to the restriction functor which commutes with direct sums. Thus
it suffices to check that RH®(No,17,,) € D(In,1) is a compact object, which is the content of [Hey23b]
Prop. 3.1.6].

Next, we claim that there exists an object wp,/a, € D(Po) such that the functor
RH(No,wpy /a1y @k —) : D(Po) — D(Mo)

is left adjoint to the inflation functorﬂ Indeed, since any closed subgroup of Gy is p-torsion-free, Lemma
allows us to use the results of [BDS16] as in [Hey23b, §3.1], with the above fact that RH®(No, —)
preserves compact objects as an input. One can then compose this left adjoint with the restriction functor

Res : D(Go) — D(Py)

to obtain a left adjoint to Ind}G,(? : D(Mo) — D(Go).
Finally, it remains to show that

Wryyate = Nz, (20 2o )[dim(No)]

(with coefficients of the character extended to k). Since we deal with groups which are not pro-p, for this last
point we need the notion of Poincaré group in the sense of [NSWO8| Def. 3.7.1]; then any closed subgroup
K of Gy is a Poincaré group at p of dimension dim(K) (we defer the justification of this claim until after the
present proof). In particular,

lim H'(K', k)Y =
K'<aK
open

0 if0<i<dim(K),
ko if i = dim(K),

where the maps in the direct limit are the k-linear duals of the corestriction maps; the first equality comes
from the definition, while the second one comes from [NSWO08|, Cor. 3.4.7]. With these inputs, the proof of
[Hey23b), Prop. 3.1.10] applies to show that wp, /ar, = 6[dim(No)] for some smooth character § : Py — k™.
In particular § is trivial on the pro-p group No. To compute its value on My, note that the left adjoint
property of RH®(No,wp, /My ® —), and the fact that it is concentrated in degrees < 0, imply that

I_Idim(No)(]\]07 —) ®k 6 : Rep(Po) — Rep(Mo)

3More precisely, the functor RH®(Ny, —) : D(Py) — D(Mp) admits a right adjoint and wp, /M, is the value of this right adjoint
on 1pg,-
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is left adjoint to inflation on the heart abelian categories. Hence this left adjoint has to coincide with the
functor of Ny-coinvariants. In particular Hdim(NU)(No7 k) ® 9 is the trivial representation of My. But we
have computed HY™®o) (N k) in Theorem (taking A\ := 0). Namely, assuming that k contains kp,
this cohomology space is given by

@gri(Hdim(N(J)(NOy k)) I~ @ LJ(w.O)‘

1€EZL we! W
£(w)=dim(No)

By [Hum90, §1.10, Prop.], there is a unique element of YW of length dim(No), namely wnm,owo, where
wo (resp., wi,o) denotes the longest element of W (resp., W (M, T)). Thus, we get HImWNo)(Ny k) =
Lj(wwm,ows - 0), and a calculation shows that the character wwm,ows - 0 is equal to Ny, r, (27p_1 -2pm). In
particular, this character has a model over any coefficient field k of characteristic p. This gives the result. [

3.1.4. Remark. We can also deduce Proposition from results of [Hey23b] and [Hey23a]. Indeed,
[Hey23bl, Cor. 3.4.20] identifies the left adjoint L(No, —) as RH(No, —) up to a twist (see also Remark 3.4.3
of op. cit.). One can then explicitly identify this character using [Hey23al Prop. 2.3.4, Lem. 2.3.5, Prop.
2.3.9, Lem. 4.1.6]. We would like to thank Heyer for pointing this out.

The following result was used in the proof of Proposition [3.1.2}

3.1.5. Lemma. Suppose K is a compact p-torsion-free p-adic Lie group. Then K is a Poincaré group at p
of dimension dim(KC), in the sense of [NSW0O8, Def. 3.7.1].

Proof. If P denotes a pro-p-Sylow subgroup of K, then by [Ser65, Cor. (1)] and [Laz65, Thm. V.2.5.8], P
is a Poincaré group of dimension dim(P) = dim(K), in the sense of [Laz65 §V.2.5.7] or [Ser02l §1.4.5]. By
INSWO8l, Prop. 3.7.6 and Def. 3.7.1], we see that P is a Poincaré group at p of dimension dim(K), in the
sense of [NSWO0S&, Ch. III, §7]. In particular, the dualizing module of P is isomorphic (as an abelian group)
to Qp/Zp. By [NSWOS|, Ch. III, §7, Exer. 1], we obtain that K is a duality group at p of dimension dim(K)
(this uses the fact that cd,(K) = dim(K) < oo, by [Ser65, Cor. (1)]). Since P is open in K, the set of open
normal subgroups of P is cofinal in the set of open normal subgroups of K, and we see that the restriction
to P of the dualizing module of K is isomorphic to the dualizing module of P (compare [Ser02] §I.3.5, Prop.
18]). Hence, the dualizing module of K is isomorphic to Q,/Z,, and the claim follows. O

3.2 Orthogonal decomposition for small weights

We assume from this point onwards that the coefficient field k& contains kp.

3.2.1. Let A € X*(T)+ be a p-small character of T with respect to ®*, and let L()\) be the irreducible
algebraic representation of G of highest weight A. Then, by Theorem the object

RH’(No, L(\)) € D(My)

is concentrated in degrees [0, dim(Np)], and its n'® cohomology H™(No, L(\)) € D(Mo)* is finite-dimensional,
with Jordan-Holder constituents given by the highest weight representations

Li(w-)), we’W, ((w)=n.
3.2.2. Theorem. Suppose Assumptions and[2.5.9 hold. Let
L(No,—) : D(Go) — D(Mop)
be the left adjoint of parabolic induction at spherical level. Set L™(No, —) := h" L(No, —) and L="(No, —) :=
TS"L(No, —) forn € Z.

Then L™ (No, L(\)) =0 for n ¢ [—dim(No),0]. Moreover, the Mo-representation L™ (No, L(\)) is finite-
dimensional with Jordan—Hélder constituents

Ly(w-X) ®k Nipye, (20 20m 1), we W, L(w)=mn+dim(Np).

In particular:

(a) Forn = —dim(No), we have L=~ 4mWNo)(Ny L(\)) = L~ 4PN (Ny | L)) [dim(No)] and

L™ AN (NG, L(N)

IR

LN @k Niepoe, (20 2001 )
H(No, L(X) @ Ni e, (20200 )
Ly(\) ®k Nipyr, (2p - 201 ).

1%
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(b) Forn =0, we have L=°(No, L()\)) = L(No, L(\)) and

L(No, L(N) = LN,
Hdim(No)(NO’ L(N) ®x NkF/]Fp(%.TpM_I)
Ly (wnt,owo - A) @k Niypse, (20 2001 ).

R

14

Proof. This follows from combining Proposition with the discussion of RH® (Np, —) in Section O

3.2.3. Corollary. Suppose Assumptions and[2.5.9 hold. If m,n € Z are unequal, then the following
orthogonality relations hold:

RHomg, (L™ (No, L(N)), L™ (No, L(X))) = 0.
In particular L(No, L(X)) € D(Mo) decomposes canonically as

L(No, LX) = @) L"(No, L(\))[-n].
n=—dim(Ng)

The proof of the above corollary will require an extra ingredient. Let us first note the following lemma.
Recall that D(Mp) is a closed symmetric monoidal category; in particular it is endowed with the contravariant
smooth dual endofunctor S := RHom,, (-, k), cf. [SS23} §3].

3.2.4. Lemma. Let Dgnite(Mo) be the full subcategory of the bounded derived category whose objects have
finite dimensional cohomologies.

(a) The contravariant endofunctor S of D(Mo) restricts to an endofunctor of Df,io(Mo), which then is
t-exact.

(b) The resulting contravariant endofunctor of Dgnite(Mo)v sends a finite dimensional smooth representa-
tion V' of My to its contragredient V™.

(¢) For all X € DB ;,.(Mo) and Y € Rep(Mo), the canonical map
S(X) ®, Y = RHom,, (X, k) ® Y — RHom,, (X,Y)

is an isomorphism.

Proof. If V€ D(Mp) is concentrated in degree 0 and finite-dimensional, it follows directly from the definition
of S that S(V) is the contragredient V* placed in degree 0. Then the lemma follows by dévissage. O

We may now prove the above corollary.

Proof of Corollary[3.2.3. Consider L™ (No, L(\)) as an object of Dg,;,.(Mo) concentrated in degree 0. Then,
by [SS23| Prop. 3.1] and Lemma [3.2.4] we have

RHomy, (L™ (No, L(A)), L"(No,L(\))) = RHomag, (k, RHom,, (L™(No,L(\)), L™(No, L()))))
>~ RHomuy, (k, S(L™(No, L(\))) ®k L"(No, L())))
>~ RHomn, (k, L™(No, L(\))* @& L™(No, L(\)))

1%

RH" (Mo, L™(No, L(\))* ® L™(No, L(\)))

as objects of D(k). By Theorem [3.2.2] the Mjy-representation L™ (No, L(A))* ® L™(No, L(\)) admits a
filtration whose graded pieces are
Ly(v-XN)*"® Ly(w-\),

where
(w,w) € ("W)?, £(v) =m +dim(No), £L(w)=n+ dim(Np).

Now Car,o acts on Lj(v-A)*® Ls(w-A) by the character (w-A—v-A)|c,, o, which is non-trivial by Assumption
(since m # n). Since RH®(Car,0,%) = 0 for any non-trivial smooth character x : Car,o — k*, we get
RH" (Caro, L™(No, L(X)" ® L™(No, L(A))lcpe) =0

by dévissage. Hence
RH® (Mo, L™(No, L(X))* ® L™(No, L(\))) =0

since RH®(Mo, —) = RH"(Mo/Ch,0, —) o RH®(Chr,0, (=)l )-
Finally, the canonical decomposition of L(Ny, L(X)) € D(My) follows from the orthogonality relations,

cf. A09 O
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3.2.5. Remark. In the situation of Corollary [3.2.3] let u € X*(T) be a character of T which is dominant
with respect to Q'}] and let Lj(u) be the irreducible algebraic representation of M of highest weight u.

(a) If .U'|CM,0 ¢ {(w- )‘)|CM,O HICURS JW}» then
Rfomy, (L(No. L), Ly(n) &k Ny s, (25 2o )) =01

(b) If pleyso = (w+ A)|cyy, for some w € /W, then
RHomz, (L(No, L(N). L (1) @k Ny e, (2p- 2o )
~ RHomay, (L‘<w>*dim<NO>(No, L(N), Ls() @k Ny, (2 - 2,71‘1)) .
Moreover, if w is the only element in /W satisfying yt|c,, o = (W A)|cy,,, then we obtain
RHomy, (Le(w)_dim(NO)(No, L(A), Ly() ®k Nipyr, (2p- m71)>
=~ RHomas, (Ly(w-N), Ly(p)).
The last isomorphism is canonical only if the My-representation Haw)(No, L(N)) is irreducible, for example

this is always the case for w € {1, wm,ows }; in general, the isomorphism depends on the choice of a realization
of Ly(w - \) as a subquotient of the Mo-representation H*)(Np, L()\)). The proof is similar to the one of

Corollary

4 The Satake morphism

We now use the previous results on orthogonal decompositions to define a derived version of the Satake
morphism. We continue to assume that k contains kr.

4.1 The construction

4.1.1. Following Heyer [Hey23b| §4.3], we use the left adjoint
L(N,—) : D(G) — D(M)

of the parabolic induction functor Indg : D(M) — D(G) to define a derived Satake morphism with
coefficients in k. Recall from [Hey23b, Thm. 4.1.1] that the adjunction L(N, —) =4 Ind€ holds in the form of
a natural isomorphism

txy : RHomu (L(N, X),Y) =5 RHome (X, IndE(Y))

in D(k), for all X € D(G) and Y € D(M). Denoting by nx : X — IndE(L(N, X)) the unit, the map txy
is defined as the composition

LX) Y

RHom s (L(N, X),Y) — RHomg (X, IndE(Y))

m m}x,lndg(y))

RHomg (IndE(L(N, X)), Indg(Y))

Here the map Ind€ is well-defined since Ind% : Rep(M) — Rep(G) is exact.
4.1.2. Construction. Given X € D(G), we denote by

L(N,—-)x : RHomg (X, X) — RHomu (L(N, X), L(N, X))
the composition

RHome (X, X) L Z)x RHomuy (L(N, X), L(N, X))

RHome /

)_<,1L(N,X)
RHomg (X, Indg(L(N, X)))
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Moreover, we denote by
h*L(N,—)x : Extg(X, X) — Exty; (L(N, X), L(N, X))

the morphism of graded k-vector spaces induced by L(N, —)x on cohomologies (that is, we write Extg (X, X)
for @,c, Exte (X, X), etc.).
4.1.3. Lemma. The map h*L(N,—)x is a morphism of graded k-algebras for the Yoneda product.

Proof. By definition, we have the following commutative diagram of graded k-vector spaces:

o h®L(N,— .
E* := Homp(g) (X, X[e]) (N, 7)x F* := Homp (1) (L(N, X), L(N, X)[e])

h®ux L(N,x
J / 14§

M?* := Homp g (X,IndB(L(N, X))[e]) g Homp(g) (Ind%(L(N, X)), Ind%(L(N, X))[e])

where
e® := Homp ) (X,nx[e]) and ¢° := Homp e (nx, nd%(L(N, X))[e]).

Thus, we have that:

o the graded k-vector space M*® is a graded bimodule over (F*, E®) (where the F®-action is given by
first applying the functor Ind$);

¢ the map e® is a morphism of graded right E®-modules, which sends the unit of E*® to nx;
¢ the map h®ux (v, x) is an isomorphism of graded left F'*-modules, which sends the unit of F'* to nx.

The lemma now follows from a diagram chase. O

4.1.4. Next, by [Hey23b| §4.3] there is a natural isomorphism of functors form D(Gy) to D(M)
L(N, —) o c-ind&, == c-ind}y, oL(No, —),

because Go C G is an open compact subgroup satisfying the Iwasawa decomposition G = PGy and Py =
NoMoy. Using this isomorphism, we make the following definition.

4.1.5. Definition. Given Xo € D(Go), we let
Fx, : RHome (c—indgo (Xo), c-indg, (XO)) — RHomyy (c-indﬁo (L(No, X0)), c-mdﬁo(L(No,Xo)))

be the morphism L(N,—)x of Section associated to X := C—indg0 (Xo), composed with the isomorphism
of Section evaluated on Xo; it is a morphism in D(k).
Furthermore, we let

h* Fx, : Ext (c-indgO (Xo), c-indgo(Xo)) — Extly (c-ind%O (L(No, Xo)), c-ind%O(L(NO,XO)))
be the morphism of graded k-vector spaces induced by #x, on cohomologies; it is a morphism of graded

k-algebras.

4.2 Satake morphisms for p-small weights

We now show how the Satake map .’x, decomposes when we take Xo = L()).
4.2.1. Theorem. Suppose Assumptions and[2.5.9 hold. Let

L(N,-) : D(G) — D(M)

be the left adjoint of parabolic induction, and set L™ (N, —) := h"L(N,—) forn € Z. If m,n € Z are unequal,
then the following orthogonality relations hold:

RHoms (L™ (N, c-ind&, (L(A)), L" (N, ¢-ind§, (L(V))) ) = 0.

In particular L(N, c-ind& (L()))) € D(M) decomposes as

L(N,cind (L) 2 @ L™(N, c-ind&, (L(A))[-nl,
n=—dim(N)

and RHom s (L(N, c-ind&, (L(N))), L(N,c-ind& (L())))) € D(k) decomposes as
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RHom,y (L(N, c-indg, (L(N))), L(N,c-indg, (L(A))))

P RHomy (L"(N, c-indg, (L(\))), L™(N,c-indg, L(,\)))).
n=— dim(N)

R

Proof. Since c-ind}, : Rep(Mo) — Rep(M) is exact, we have L™ (N, c—indg0 (L(N))) 2 c-ind}z, (L™(No, L(N)))
by the discussion in Section Hence, by Frobenius reciprocity, we obtain

RHom,y, (Lm (N, c-ind&, (L(A))), L™ (N, c-ind&, (L()) )))
~ RHomyy, (Lm(NO,L(A)), L*(N, c-indgo(L(A)))|M0)
(recall that (—)|as, : Rep(M) — Rep(Mo) is exact). By [SS23| Prop. 3.1] and Lemma[3.2.4] this gives
RHomay, (Lm (N, c-ind&, (L(N))), L"(N,c-ind&, (L(/\))))
=~ RH’ (Mo, L™(No, L(\))" ® L™ (N, c-indSO(L(A)))IMo)

(see the proof of Corollary|3.2.3). On the other hand, by Theorem the My-representation L™ (N, c—indg0 (L))o
c-ind 7, (L™ (No, L(X)))|m, admits a filtration whose graded pieces are

(C-ind%0 (Ls(w X)) @k Nigo i, (2p - 2PM_1)) |0,

where w € W satsifies £(w) = n + dim(Nop). Recall that Ciro is central in M. It follows from the Mackey
formula that Cis,o acts on the w'" graded piece by the character (w - A)|cy, o ®k Nig /s, (20 - QPM71)|CM,0-

From this point one concludes exactly as in the proof of Corollary|3.2.3| further noting that RH°(Cr,0, B, x) =
D, RH® (Cwm,0,x) for a non-necessarily finite set I, since Car,0 is compact. O

4.2.2. Corollary. Suppose Assumptions and hold. Then the Satake morphism in D(k)
F1(n : RHomg (c-indgo(L()\)), c-indg, (L()\)))
— RHomys (e-indf, (L(No, L(N))), c-indi, (L(No, L()))
decomposes canonically as a family
19 + RHomg (e-indf, (L)), e-indd, (L))
— RHomyy (e-ind}f, (L"(No, L(V))),  e-indif, (L™ (No, L(V))) )
indezed by n € [—dim(N),0]. Accordingly, the morphism of graded k-algebras
h® S : Bxtl (c-indgo(L(/\)), c—inng(L(A)))
— Exty (c-ind%o (L(No, L(\))), c-ind}f, (L(No, L()\))))
decomposes canonically as a family of graded k-algebras
h* S m : Bxtl (c—inng(L(A)), c-indg, (L()\)))
s ExtYy (c_ind%O(L"(NO,L(A))), c-ind}f (L"(NO,L()\))))

indezed by n € [—dim(N),0].
4.2.3. Remark. The degree 0 part {hOyL(A),n}ne[_ dim(n),0] of the family {h®*.7L(x)n }nel— dim(n),0] 18 the
family of morphisms of k-algebras considered by Heyer in [Hey23bl §4.3, Def.] (for the Go-representation
L(X)). In particular, the morphism of k-algebras

K10 ¢ Enda (eind§, (L)) — Endar (c-indif, (L))

is the Satake morphism originally defined by Herzig in [HerI1b],[HerITa], and generalized by Henniart-
Vignéras in [HV12],[HVIE]; see [Hey23b, Thm. 4.3.2].
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4.2.4. Remark. Suppose that Assumptions and hold. In the discussion below, we take A = 0,
so that when M = T, Assumption is automatically satisfied (by Lemma |2.5.6).

We examine the Satake morphisms introduced above. The representation L()) is equal to the trivial Go-
representation 1g,, and we will show that the n = 0 component h'ﬂlco o of the family {h'ﬂlco n}nel— dim(N),0]»
is the morphism of graded k-algebras constructed by Ronchetti in [Ronl8, §6 Def. 13ﬂ Indeed, by the above
construction we have the commutative diagram:

RHom s ((‘,—ind%O (1), (‘,—ind%0 (1aso ))

b
RHomg (c-ind& (1g,), c-ind&,(la,)) G, RHomys (L(N, c-ind§, (1¢,)), L(N,c-indg (1g,))) — RHomus (L(N, c-ind§, (1c,)), c-inddf, (1))
\ ZJ/LG-uulgn(]G“).L(:\",(,-xndgo(lcn)) )Jj’(,-uuigo(lcn).c-uulﬁ'}o(lkln)
RHomg (c-ind&, (16,), Ind@(L(N,c-indg, (1g,)))) — RHomg (c-ind&, (16,), IndZ(c-ind}f, (1ar,)))
To justify the commutativity, note that we have a canonical augmentation
. G >0 e 0 ;G s M
L(N,c-indé,(1gy)) — 7= L(N, c-indé, (1a,)) = L (N, c-indé, (1c,)) = c-indag, (1az)- (46)

This map induces the commutativity of the lower-right square, and gives the diagonal isomorphism (by
invoking Theorem e lower-left triangle commutes by definition of cho, while the upper triangle
commutes by Theorem

Hence 1,0 fits into the commutative diagram

a0
RHomg (c—indg0 (1ag), c-indgo(lco)) — 90"y RHomy (c-ind3f, (1ar), c-indiz, (1asy))

\ jz
RHomg (c-ind&, (1g,), Ind@(c-ind}f, (1as)))

Here the isomorphism comes from the two outer isomorphisms of the previous diagram, while the diagonal
map is induced from the composition

c-indd, (1gy) — dE(L(N, c-ind§, (1g,))) — IndE (c-ind}f, (1)),

where the first map is the unit Ne-indG,_(16,)? and the second is induced by the augmentation map (46). Thus,
0 0

we see that

B S0 Bxt (c—indgo(lgo), c—indgo(lgo)> . Extly (c—ind%o(lMo), c—ind%o(lMo))

is obtained by evaluating the natural right action of Extg(c-ind& (lg,),c-ind& (1g,)) on the canonical
intertwiner c-ind§,(1e,) — Ind®(c-indj7, (1n,)) constructed above, which is a degree 0 element of the
graded bimodule Ext (c-ind&, (1, ), Indg (c-ind}7, (1as,))) of universal unramified parabolic induction. This
is precisely the construction from [HV12] §2].

4.2.5. Remark. The vertical isomorphism from the previous diagram
RHom (c—ind%0 (1nmp)s c—ind%O (1 )) — RHomg (c—indgO (1g,), Ind$ (c—ind%O (1 )))

appearing in Remark is interesting in its own right, since the right-hand side computes the Go-
cohomology of the universal unramified parabolic induction Ind%(c-ind%o(l Mp))- It ultimately relies on
the No-cohomology computation of Section [3:2-1}

5 Semisimple Langlands parameters

5.1 Cartier duality for tori

In this subsection we let S be any split torus over Op, and S := S(F') be its group of F-points. We keep
the notation k for a field of characteristic p.

5.1.1. Definition. The Cartier dual X(S) of S over k is the functor on k-algebras which sends a k-algebra
A to the set of continuous group homomorphisms S — A, where S is endowed with its locally profinite
topology and A* with the discrete topology.

“More precisely, the morphism in [Ronl8, §6 Def. 13] is only defined in Ext-degrees ¢ < 1, and the morphism hélyﬁGO,o is
equal to it.
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5.1.2. Lemma. The Cartier dual X(S) is represented by the formal scheme Spf(€2(S)) over Spec(k), where

Q(S) = lim k[S/H]

with H running over the set of open compact subgroups of H.

Proof. This follows form the chain of natural isomorphisms

Homygs (S, A™) =2 li?n)lHom(S/H,AX) = li_;)nHomk,alg(k[S/H],A) =~ Homp—_alg (Ligmk[S/H],A) .

5.1.3. Remark. We note that there is a (non-canonical) isomorphism
~ + +
Q(S) = k[Xl 17 ) anln(s)][[s(OF)ﬂ

(cf. [AS23, Rmk. 3.4]).

5.1.4. Notation. Set Sp := S(Op) and let S1 be the pro-p-Sylow subgroup of So. We denote by a C Q(5)
the kernel of the canonical projection Q(S) — k[S/S1].

5.1.5. Proposition.

(a) Let (a°°-tors) be the full subcategory of the category of Q(S)-modules whose objects are the a® -torsion
modules. Then, restriction of the action along the canonical map S — Q(S) induces an equivalence
of abelian categories

(a*°-tors) — Rep(S).

Consequently, it induces a t-exact equivalence of triangulated categories
D(a*-tors) — D(S).
(b) The canonical t-ezact functor
D(a®-tors) — D(Q(S))ace- tors
is an equivalence of triangulated categories.

In particular, for all VW € D(S),
RHomg (V, W) = RHomgs) (V, W).

Proof. Point @ follows from the fact that the a-adic topology and the projective limit topology on €(.S)
coincide; see, for example, [Schl5l proof of Prop. 5]. Point @ is [Stal8l, Tag|0955|, together with the fact
that the ring (.S) is noetherian. O

5.1.6. Corollary. There is a t-exact equivalence of triangulated categories
D(S) 2 Dx(s),.q (X(5))

which preserves the underlying k-vector spaces.

Now let S be the Langlands dual torus of S over k. Then we recall that the skyscraper objects in
Dx(8),0q (X(S)) can equivalently be regarded as classical tame S-parameters:

5.1.7. Lemma. Let W2P be the Weil group of the mazimal abelian extension of F. Via the Artin isomor-
phism : F* , the Cartier dual X (S) also represents the functor of continuous S-valued characters
of Wr. In partzcular, the reduced closed subscheme X (S)rea = X (5/S1) C X(S) parametrizes the tame

S-valued continuous characters of Wg.

Proof. The Artin isomorphism induces an isomorphism S —+ W2 @7 X.(S). Then, for any k-algebra A,
we have

R

Homes(S, A™) Homes (W ®ZX (S),A%)
(Wi’ Hom(X.(S), A™))

= HOmcts( Homk alg(k[X ( )] A))
w.

,S(4)).

= Homctq

- Homcts

35


https://stacks.math.columbia.edu/tag/0955

5.2 Functorial semisimple parameters

Finally we come back to the set up of the body of the article; in particular, we have the triple (G, T, B).
To this triple is attached a set M of standard Levi subgroups. For each M € M, the connected center Cm
is a split torus over F', for which we have a chosen Op-model.

5.2.1. Definition. We define the functor of semisimple parameters

SP:D(G) — [ Dx(aprea (X (Car))
MeM

as follows: for each M € M, the functor SPn : D(G) — Dx(cp),ea (X (Cur)) is the composition

M
L(N,-) Rescy,

D(G)

D(M) D(Cn) = Dx(cpy)peq (X (Car)).

5.2.2. Let M € M. The canonical projection ¢y : X(Cn) — X (Cumyo) induces a bijection between
the sets of connected components (where X (Car,0) = Spf(k[Cum,0])). Assume moreover that k contains kp.
Then the connected components of X (Chas,0) are canonically indexed by the smooth characters Car,0 —> k*.

A direct consequence of our computations for L(NN, —) on p-small weights is the following.

5.2.3. Proposition. Suppose Assumptions and hold. Assume moreover that k contains kr.
Let
earv SPym (c-ind§ (L(N))) = P P €Dx(Coro)rea (X (Crro))
¢emo(X(Cum,o0))

be the decomposition along connected components.
(a) IFC ¢ {(w0-2) Ok Nupss, (30~ 201 leny : w € WY, then 2 = 0.

(b) If ¢ = (w - A) @k Ny e, (2p - 2PM_1)|CM,0 for some w € "W, then P¢ is a skyscraper sheaf at the
k-point ¢ € X(Chr0)(k) (of infinite dimension).

5.2.4. Remark. Such a decomposition along connected components is automatically orthogonal. This
orthogonality was used to prove the orthogonality relations for L(N,c-ind§, (L(\))) € D(M) in Section
E2T

A Orthogonality and canonical splitting

In this appendix we recall some facts about splitting of objects in derived categories. The proofs are standard,
but we include them for the sake of completeness.
Let C be an abelian category having enough injectives. Denote by Db(C) its bounded derived category.

A.0.1. Recall the truncation functors 72" : D?(C) — DP(C) for n € Z. For each n € Z and X € D®(C),
we have the distinguished triangle

(A" X)[—n] — 72" X — 72" X — (" X)[-n])[1]. (47)

A.0.2. Lemma. Let X € D°(C). Assume Exts ™(h'X,h"X) = Exts "t (h'X,h"X) = 0 for some n € Z
and all i > n. Then the morphism
7ENX s 2Nty

admits a section, which is unique. Together with (h"X)[—n] — 72" X, it defines an isomorphism
Asny : (K" X)[-n]® 72" X =5 720X,

Also, the morphism
(K" X)[—n] — 72" X

admits a retraction, which is unique. Together with 72" X — 72""1X | it defines an isomorphism
Bosny : To"X =5 (W X)[-n] @ 72" X,
The composition
(h"X)[~n] @ r2" X —TZX p2nx Pz, (R"X)[-n] ® 72" X
is the identity, i.e. o >nx and B >nx are inverse one to the other.

Proof. Applying Home(c)(TZ"HX7 —) to the triangle we get the exact sequence of abelian groups
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Hompp o) (72" X, (K" X)[—n]) — Hompp o) (77" X, 77" X) — Hompp ¢ (77" ' X, 72771 X)
— Hompp o) (77" X, (K" X)[—n])[1]).
The first term vanishes because
Homps ¢y ((h' X)[—i], (h" X)[-n]) = Extg "(A'X,h"X) =0
for all i« > n+ 1 by assumption. The fourth term vanishes because
Hompn ey (W' X)[~i], (h" X)[=n])[1]) = Exte """ (1" X, A" X) = 0

for all i > n + 1 by assumption. Hence the identity of 72" X lifts uniquely to a morphism 7" "1 X —s
72" X, as desired.

Similarly, applying Hompp ¢y (—, (h" X)[-n]) to the triangle we get the exact sequence of abelian
groups

Hompy ¢ (=" "1 X, (B X)[=n]) — Hompy ¢ (r="X, (h"X)[~=n]) — Hompy ¢, (k" X)[=n], (A" X)[-n])
— Hompp o) (77" X [=1], (K" X)[—n]).
The first term vanishes because
Hompn ¢y (R X)[—d], (K" X)[—n]) = Extg "(h'X,h"X) =0
for all i > n 4+ 1 by assumption. The fourth term vanishes because
Hompy o) (' X)[—i][—1], (A" X)[-n]) = Extg "' (A'X,h"X) =0

for all i > n 4 1 by assumption. Hence the identity of (h™X)[—n] lifts uniquely to a morphism 72"X —
(A" X)[—n], as desired.
Finally, we have
(Brznx © Qrznx)|(hnx)(—n) = (Id(nrx)[-n), 0)
by construction, and
(Brznx 0 zny)|r2ntix = (0,1d,2n41y)
by construction and because Home(c)(TZ"“X, (h"X)[—n]) = 0. O

A.0.3. Corollary. Let X € D®(C) such that Exty ™(h'X,h"X) = Exts " T (h'X,h"X) =0 for alln,i € Z
with i > n. Then the family {0, >n x }nez assemble to an isomorphism

a> x: @(h"X)[—n] = X,

the family {B.>n x }nez assemble to an isomorphism
Bz x : X = @P(R"X)[-nl,

and o> x and B> x are inverse one to the other.

A.0.4. Recall the truncation functors 7=™ : D*(C) — DP(C) for n € Z. For each n € Z and X € D(C),
we have the distinguished triangle

TEIX o 75X — (B X)[-n] — (r5"TIX)[1. (48)

The following results follow in a completely analogous manner to Lemma [A20.2] and Corollary [A20.3]
A.0.5. Lemma. Let X € D"(C). Assume Ext} "(h"X,h'X) = Extz "' (h"X,h'X) = 0 for some n € Z
and all i < n. Then the morphism

75" X — (h"X)[—n]
admits a section, which is unique. Together with TS""'X — 75" X | it defines an isomorphism

Czny (B X)[-n] @751 X 5 75X,

Also, the morphism
Sl Sy

admits a retraction, which is unique. Together with T="X — (h"X)[—n], it defines an isomorphism
Boeny :T="X =5 75" X @ (WM X)[—n).

The composition
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& _<n B_<n
(h"X)[—n] @ r<" 71X —TZIX, oSy TN L (prX)[—p] @ 7S IX
is the identity, i.e. o .<nyx and B .<nx are inverse one to the other.

A.0.6. Corollary. Let X € D®(C) such that Ext3 ™ (h"X,h'X) = Extz " (A" X, h'X) = 0 for alln,i € Z
with i < n. Then the family {o <n x }nez assemble to an isomorphism

a< x @(h"X)[—n] = X,

the family {B.<n x }nez assemble to an isomorphism
Box : X = @P(R"X)[-nl,

and a<,x and f< x are inverse one to the other.

A.0.7. Lemma. Let X € D°(C). Assume Extl *(h*X,h*X) = Exty ™ (R*X,h*X) = 0 for all a,b € Z
with a < b. Then
a> x = < x and BZ,X:/BS,X~

Proof. Fix n € Z, and consider the commutative diagram of canonical morphisms

.
e

The morphism g is split by the composition of sections
PR L) QRN GRS S L €. ¢

for m <« 0) from Lemma |A.0.2] and by definition a> x|mnx)—n : (A"X)[-n] — X is s o j. Since
>, X I( )[=n]

(h"X)[—n] is concentrated in degrees < m, the latter factors uniquely through i, i.e., there exists a unique

f 1 (h"X)[~n] — 75" X such that a> x|pnx)—n) =0 f. Then:

jopof=gqoiof=qosoj=j.

But j admits a retraction by Lemma[A70.2] hence po f = Id(nn x)[—r). Consequently, the morphism f has to
coincide with the unique section of p from LemmalA.0.5, Then by definition <, x|(nn x)[—n] : (" X)[—n] —
X isio f. We have thus obtained that a> x and a< x agree on the direct summand (h"X)[—n].

It follows that a> x = a< x, and hence that 8> x = < x by passing to the inverse. O

A.0.8. In the situation of Lemma m we set

ax =axx =a<x and Bx =P x = fB< x.

They are isomorphisms, which are inverse one to the other.

A.0.9. Lemma. Let X € D°(C). Assume Exti(h™X,h"X) = 0 for all i,m,n € Z with m # n; in

particular
X =P r"X)[-n]
nez
using ax = Bx'. Then
RHome (X, X) = P RHome(h™ X, 1" X)[m — n] = (P RHome (h" X, " X)
m,n€”’ ne’

in the derived category of abelian groups. Moreover, the induced isomorphism

Exté (X, X) = P Exte (h" X, " X)
nez

in the category of graded abelian groups is an isomorphism of graded rings for the Yoneda product.

Proof. This is clear. O
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