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Abstract

Let F be a non-archimedean local field with residue field Fq and let G = GL2/F . Let q be

an indeterminate and letH(1)(q) be the generic pro-p Iwahori-Hecke algebra of the p-adic group

G(F ). Let VĜ be the Vinberg monoid of the dual group Ĝ. We establish a generic version

for H(1)(q) of the Kazhdan-Lusztig-Ginzburg antispherical representation, the Bernstein map
and the Satake isomorphism. We define the flag variety for the monoid VĜ and establish
the characteristic map in its equivariant K-theory. These generic constructions recover the
classical ones after the specialization q = q ∈ C. At q = q = 0 ∈ Fq, the antispherical map

provides a dual parametrization of all the irreducible H(1)

Fq
(0)-modules. When F = Qp with

p ≥ 5, we relate our space of mod p Satake parameters to Emerton-Gee’s space of semisimple
mod p two-dimensional representations of the Galois group Gal(Qp/Qp), thereby arriving at
a version in families of Breuil’s semisimple mod p Langlands correspondence for GL2(Qp).
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1 Introduction

Let F be a non-archimedean local field with ring of integers oF and residue field Fq. Let G be a
connected split reductive group over F . Let Hk = (k[I \G(F )/I], ?) be the Iwahori-Hecke algebra,
i.e. the convolution algebra associated to an Iwahori subgroup I ⊂ G(F ), with coefficients in an

algebraically closed field k. On the other hand, let Ĝ be the Langlands dual group of G over k,
with maximal torus and Borel subgroup T̂ ⊂ B̂ respectively. Let W0 be the finite Weyl group.

When k = C, the irreducible HC-modules appear as subquotients of the Grothendieck group

KĜ(Ĝ/B̂)C of Ĝ-equivariant coherent sheaves on the dual flag variety Ĝ/B̂. As such they can

be parametrized by the isomorphism classes of irreducible tame Ĝ(C)-representations of the Weil
group WF of F , thereby realizing the tame local Langlands correspondence (in this setting also
called the Deligne-Lusztig conjecture for Hecke modules): Kazhdan-Lusztig [KL87], Ginzburg
[CG97]. Their approach to the Deligne-Lusztig conjecture is based on two steps: the first step de-
velops the theory of the so-called antispherical representation leading to a certain dual parametriza-
tion of Hecke modules. The second step links these dual data to representations of the group WF .

The antispherical representation is a distinguished faithful action of the Hecke algebra HC on
its maximal commutative subring AC ⊂ HC via AW0

C -linear operators: elements of the subring AC
act by multiplication, whereas the standard Hecke operators Ts ∈ HC, supported on double cosets
indexed by simple reflections s ∈W0, act via the classical Demazure operators [D73, D74]. The link
with the geometry of the dual group comes then in two steps. First, the classical Bernstein map θ̃
identifies the ring of functions C[T̂] with AC, such that the invariants C[T̂]W0 become the center
Z(HC) = AW0

C . Second, the characteristic homomorphism cĜ of equivariant K-theory identifies

the rings C[T̂] and KĜ(Ĝ/B̂)C as algebras over the representation ring C[T̂]W0 = R(Ĝ)C.

When k = Fq any irreducible Ĝ(Fq)-representation of WF is tame and the Iwahori-Hecke
algebra needs to be replaced by the bigger pro-p-Iwahori-Hecke algebra

H(1)

Fq
= (Fq[I(1) \G(F )/I(1)], ?).

Here, I(1) ⊂ I is the unique pro-p Sylow subgroup of I. The algebra H(1)

Fq
was introduced by

Vignéras and its structure theory developed in a series of papers [V04, V05, V06, V14, V15, V16,
V17]. More generally, Vignéras introduces and studies a generic version H(1)(q∗) of this algebra
which is defined over a polynomial ring Z[q∗] in finitely many indeterminates qs. The mod p ring
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H(1)

Fq
is obtained by specialization qs = q followed by extension of scalars from Z to Fq, in short

qs = q = 0.

From now on, let G = GL2 be the general linear group of rank 2 (in particular, then qs is
independent of s). Our aim in this article is to show that there is a Kazhdan-Lusztig theory for
the generic pro-p Iwahori-Hecke algebra H(1)(q). On the one hand, it gives back (and actually
improves!) the classical theory after passing to the direct summand H(q) ⊂ H(1)(q) and then
specializing q = q ∈ C. On the other hand, it gives a genuine mod p theory after specializing to q =
q = 0 ∈ Fq. In the generic situation, the role of the Langlands dual group is taken by its Vinberg
monoid VĜ and its flag variety. The monoid comes with a fibration q : VĜ → A1 and the dual

parametrization of H(1)

Fq
-modules is achieved by working over the 0-fiber VĜ,0. When F = Qp (with

p ≥ 5), we can push further the dual parametrization and arrive at a Langlands parametrization
by semisimple two-dimensional Fp-representations of the Weil group WQp or, equivalently, of the

absolute Galois group Gal(Qp/Qp).

Let k = Fq and q be an indeterminate. We let T ⊂ G be the torus of diagonal matrices.
Although our primary motivation is the extreme case q = q = 0, we will prove all our results
in the far more stronger generic situation. It also allows us to find the correct normalizations in
the extreme case and to recover and improve the classical theory over C (typically, the formulas
become cleaner, e.g. in the Bernstein and in the Satake isomorphism). Let A(1)(q) ⊂ H(1)(q)
be the maximal commutative subring and A(1)(q)W0 = Z(H(1)(q)) be its ring of invariants. We
let Z̃ := Z[ 1

q−1 , µq−1] and denote by •̃ the base change from Z to Z̃. The algebra H̃(1)(q) splits

as a direct product of subalgebras H̃γ(q) indexed by the orbits γ of W0 in the set of characters
of the finite torus T := T(Fq). There are regular resp. non-regular components corresponding

to |γ| = 2 resp. |γ| = 1 and the algebra structure of H̃γ(q) in these two cases is fundamentally
different. We define an analogue of the Demazure operator for the regular components and call it
the Vignéras operator. Passing to the product over all γ, this allows us to single out a distinguished
Z(H̃(1)(q))-linear operator on Ã(1)(q). Our first main result is the existence of the generic pro-p
antispherical representation:

Theorem A. (cf. 3.3.1, 4.3.1) There is a (essentially unique) faithful representation

Ã (1)(q) : H̃(1)(q) // EndZ(H̃(1)(q))(Ã(1)(q))

such that

(i) Ã (1)(q)|Ã(1)(q) = the natural inclusion Ã(1)(q) ⊂ EndZ(H̃(1)(q))(Ã(1)(q))

(ii) Ã (1)(q)(Ts) = the Demazure-Vignéras operator on Ã(1)(q).

Restricting the representation Ã (1)(q) to the Iwahori component, its base change Z[q]→ Z[q±
1
2 ]

coincides with the classical antispherical representation of Kazhdan-Lusztig and Ginzburg.

We call the left H̃(1)(q)-module defined by Ã (1)(q) the generic antispherical module M̃(1).

Let Mat2×2 be the Z-monoid scheme of 2×2-matrices. The Vinberg monoid VĜ, as introduced
in [V95], in the particular case of GL2 is the Z-monoid scheme

VGL2 := Mat2×2×Gm.

It implies the striking interpretation of the formal indeterminate q as a regular function. Indeed,
denote by z2 the canonical coordinate on Gm. Let q be the homomorphism from VGL2 to the
multiplicative monoid (A1, ·) defined by (f, z2) 7→ det(f)z−1

2 :

VGL2

q

��

A1.
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The fibration q is trivial over A1\{0} with fibre GL2. The special fiber at q = 0 is the Z-semigroup
scheme

VGL2,0 := q−1(0) = Sing2×2×Gm,

where Sing2×2 represents the singular 2 × 2-matrices. Let Diag2×2 ⊂ Mat2×2 be the submonoid
scheme of diagonal 2× 2-matrices, and set

VT̂ := Diag2×2×Gm ⊂ VGL2 = Mat2×2×Gm.

This is a diagonalizable Z-monoid scheme. Restricting the above A1-fibration to VT̂ we obtain a

fibration, trivial over A1 \ {0} with fibre T̂. Its special fibre at q = 0 is the Z-semigroup scheme

VT̂,0 := q|−1
VT̂

(0) = SingDiag2×2×Gm,

where SingDiag2×2 represents the singular diagonal 2× 2-matrices. To ease notion, we denote the

base change to Fq of these Z-schemes by the same symbols. Let T∨ be the finite abelian dual group

of T. We let R(V
(1)

T̂
) be the representation ring of the extended monoid

V
(1)

T̂
:= T∨ × VT̂.

Our second main result is the existence of the generic pro-p Bernstein isomorphism.

Theorem B. (cf. 6.1.3) There exists a ring isomomorphism

B(1)(q) : A(1)(q)
∼ // R(V

(1)

T̂
)

with the property: Restricting the isomorphism B(1)(q) to the Iwahori component, its base change

Z[q]→ Z[q±
1
2 ] recovers1 the classical Bernstein isomorphism θ̃.

The extended monoid V
(1)

T̂
has a natural W0-action and the isomorphism B(1)(q) is equivariant.

We call the resulting ring isomorphism

S (1)(q) := B(1)(q)W0 : A(1)(q)W0
∼ // R(V

(1)

T̂
)W0

the generic pro-p-Iwahori Satake isomorphism. Our terminology is justified by the following. Let
K = G(oF ). Recall that the spherical Hecke algebra of G(F ) with coefficients in any commutative
ring R is defined to be the convolution algebra

Hsph
R := (R[K\G(F )/K], ?)

generated by the K-double cosets in G(F ). We define a generic spherical Hecke algebra Hsph(q)

over the ring Z[q]. Its base change Z[q] → R, q 7→ q coincides with Hsph
R . Our third main result

is the existence of the generic Satake isomorphism.

Theorem C. (cf. 6.2.4) There exists a ring isomorphism

S (q) : Hsph(q)
∼ // R(VT̂)W0

with the propery: Base change Z[q]→ Z[q±
1
2 ] and specialization q 7→ q ∈ C recovers1 the classical

Satake isomorphism between Hsph
C and R(T̂)W0

C .

We emphasize that the possibility of having a generic Satake isomorphism is conceptually new
and of independent interest. Its definition relies on the deep Kazhdan-Lusztig theory for the
intersection cohomology on the affine flag manifold. Its proof follows from the classical case by
specialization (to an infinite number of points q).

The special fibre S (0) recovers Herzig’s mod p Satake isomorphism [H11], by choosing certain
‘Steinberg coordinates’ on VT̂,0.

1By ’recovers’ we mean ’coincides up to a renormalization’.
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As a corollary we obtain the generic central elements morphism as the unique ring homomor-
phism

Z (q) : Hsph(q) // A(q) ⊂ H(q)

making the diagram

A(q) ∼
B(1)(q)|A(q)

// R(VT̂)

Hsph(q)

Z (q)

OO

∼
S (q)

// R(VT̂)W0

?�

OO

commutative. The morphism Z (q) is injective and has image Z(H(q)). Base change Z[q] →
Z[q±

1
2 ] and specialization q 7→ q ∈ C recovers1 Bernstein’s classical central elements morphism.

Its specialization q 7→ q = 0 ∈ Fq coincides with Ollivier’s construction from [O14].

Our fourth main result is the characteristic homomorphism in the equivariant K-theory over
the Vinberg monoid VĜ. The monoid VĜ carries an action by multiplication on the right from the
Z-submonoid scheme

VB̂ := UpTriang2×2×Gm ⊂ Mat2×2×Gm = VĜ

where UpTriang2×2 represents the upper triangular 2 × 2-matrices. We explain in an appendix
how to construct (virtual) quotients in the context of semigroups and how to construct categories
of equivariant vector bundles and their K-theory on such quotients. Although maybe well-known,
we could not find this material in the literature. The usual induction functor for vector bundles
gives a characteristic homomorphism, which is an isomorphism in the case of monoids. Applying

this general formalism, the flag variety VĜ/VB̂ resp. its extended version V
(1)

Ĝ
/V

(1)

B̂
is defined as

a Z-monoidoid (instead of a groupoid).

Theorem D. (cf. 5.2.4) Induction of equivariant vector bundles defines a characteristic iso-
morphism

c
V

(1)

Ĝ

: R(V
(1)

T̂
)
∼ // K

V
(1)

Ĝ (V
(1)

Ĝ
/V

(1)

B̂
).

The ring isomorphism is R(V
(1)

T̂
)W0 = R(V

(1)

Ĝ
)-linear and compatible with passage to q-fibres.

Over the open complement q 6= 0, its Iwahori-component coincides with the classical characteristic

homomorphism cĜ between R(T̂) and KĜ(Ĝ/B̂).

We define the category of Bernstein resp. Satake parameters BPĜ resp. SPĜ to be the category

of quasi-coherent modules on the Z̃-scheme V
(1)

T̂
resp. V

(1)

T̂
/W0. By Theorem B, restriction of

scalars to the subring Ã(1)(q) or Z(H̃(1)(q)) defines a functor B resp. P from the category of
H̃(1)(q)-modules to the categories BPĜ resp. SPĜ. For example, the Bernstein resp. Satake

parameter of the antispherical module M̃(1) equals the structure sheaf O
V

(1)

T̂

resp. the quasi-

coherent sheaf corresponding to the R(V
(1)

T̂
)W0-module K

V
(1)

Ĝ (V
(1)

Ĝ
/V

(1)

B̂
). We call

Mod(H̃(1)(q))

P

��

SPĜ

the generic parametrization functor.
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In the other direction, we define the generic antispherical functor

Mod(H̃(1)(q))

SPĜ

ASph

OO

to be the functor ASph := (M̃(1) ⊗Z(H̃(1)(q)) •) ◦ S−1 where S is the Satake equivalence between

Z(H̃(1)(q))-modules and SPĜ. Let π : V
(1)

T̂
→ V

(1)

T̂
/W0 be the projection. The relation between

all these functors is expressed by the commutative diagram:

Mod(H̃(1)(q))

B

��

P

&&

SPĜ

ASph
88

π∗
// BPĜ π∗

// SPĜ .

This ends our discussion of the theory in the generic setting.

Then we pass to the special fibre, i.e. we perform the base change Z[q] → k = Fq, q 7→
q = 0. Identifying the k-points of the k-scheme V

(1)

T̂,0
/W0 with the skyscraper sheaves on it, the

antispherical functor ASph induces a map

ASph :
(
V

(1)

T̂,0
/W0

)
(k) // {left H(1)

Fq
-modules}.

Considering the decomposition of V
(1)

T̂,0
/W0 into its connected components V γ

T̂,0
/W0 indexed by

γ ∈ T∨/W0, the antispherical map decomposes as a disjoint union of maps

ASphγ :
(
V γ
T̂,0

/W0

)
(k) // {left HγFq -modules}.

We come to our fifth main result, the mod p dual parametrization of all irreducible H(1)

Fq
-modules

via the antispherical map.

Theorem E. (cf. 7.4.9, 7.4.15)

(i) Let γ ∈ T∨/W0 regular. The antispherical map induces a bijection

ASphγ :
(
V γ
T̂,0

/W0

)
(k)

∼ // {simple finite dimensional left HγFq -modules}/ ∼ .

The singular locus of the parametrizing k-scheme

V γ
T̂,0

/W0 ' VT̂,0 = SingDiag2×2×Gm

is given by (0, 0)×Gm ⊂ VT̂,0 in the standard coordinates, and its k-points correspond to the

supersingular Hecke modules through the correspondence ASphγ .

(ii) Let γ ∈ T∨/W0 be non-regular. Consider the decomposition

V γ
T̂,0

/W0 = VT̂,0/W0 ' A1 ×Gm = D(2)γ ∪D(1)γ

where D(1)γ is the closed subscheme defined by the parabola z2 = z2
1 in the Steinberg coordi-

nates z1, z2 and D(2)γ is the open complement. The antispherical map induces bijections

ASphγ(2) : D(2)γ(k)
∼ // {simple 2-dimensional left HγFq -modules}/ ∼
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ASphγ(1) : D(1)γ(k)
∼ // {antispherical pairs of characters of HγFq}/ ∼ .

The branch locus of the covering

VT̂,0 −→ VT̂,0/W0 ' V γT̂,0/W0

is contained in D(2)γ , with equation z1 = 0 in Steinberg coordinates, and its k-points corre-
spond to the supersingular Hecke modules through the correspondence ASphγ(2).

Ultimately, for F = Qp, we can complete the theory by relating the space V
(1)

T̂,0
/W0 of mod p

Satake parameters, to the space X of mod p Langlands parameters, defined by Emerton-Gee, cf.

[Em19], by means of a Langlands morphism L : V
(1)

T̂,0
/W0 → X. Then, pushing-forward the Satake

parameter of the antispherical H(1)

Fq
-module M(1)

Fq
along L, we obtain a quasi-coherent module

L∗S(M(1)

Fq
) on the scheme X, which arranges in a family Breuil’s semisimple mod p Langlands

correspondence for GL2(Qp).

To state the result precisely, let ζ : Z(G)→ F×q be a central character of G. There is a natural

fibration θ : V
(1)

T̂,0
/W0 → Z(G)∨ where Z(G)∨ is the group scheme of characters of Z(G), and we

put

(V
(1)

T̂,0
/W0)ζ := θ−1(ζ).

For F = Qp with p ≥ 5, we may then consider the Emerton-Gee moduli curve Xζ parametrizing
(isomorphism classes of) two-dimensional semisimple continuous Galois representations over Fp
with determinant ωζ:

Xζ(Fp) ∼=
{

semisimple continuous ρ : Gal(Qp/Qp)→ Ĝ(Fp) with det ρ = ωζ
}
/ ∼ .

Here ω is the mod p cyclotomic character. The curve Xζ is expected to be the underlying scheme

of a ringed moduli space for the stack of étale (ϕ,Γ)-modules X det=ωζ
2 appearing in [EG19] (see

also [CEGS19]). For now it is unclear how to define a replacement for Xζ when F/Qp is a non
trivial finite extension, and this is the reason why we restrict to the case F = Qp (and p ≥ 5).

Theorem F. (cf. 8.3.9) Suppose F = Qp with p ≥ 5. Let ζ : Z(G) → F×p be a mod p

central character of G, and denote by Modladm
ζ (Fp[G]) the category of locally admissible smooth

G-representations over Fp with central character ζ.
There exists a morphism of Fp-schemes

Lζ : (V
(1)

T̂,0
/W0)ζ −→ Xζ

such that the quasi-coherent OXζ -module

Lζ∗S(M(1)

Fp
)|

(V
(1)

T̂,0
/W0)ζ

,

equal to the push-forward along Lζ of the restriction to (V
(1)

T̂,0
/W0)ζ ⊂ V

(1)

T̂,0
/W0 of the Satake

parameter S(M(1)

Fp
), interpolates the I(1)-invariants of the semisimple mod p Langlands correspon-

dence
Xζ(Fp) −→ Modladm

ζ (Fp[G]) −→ Mod(H(1)

Fp
)

x 7−→ π(ρx) 7−→ π(ρx)I
(1)

,

in the sense: for all x ∈ Xζ(Fp), one has an isomorphism of H(1)

Fp
-modules

((
Lζ∗S(M(1)

Fp
)|

(V
(1)

T̂,0
/W0)ζ

)
⊗OXζ k(x)

)ss

=
(
M(1)

Fp
⊗
Z(H(1)

Fp
)

(S
(1)

Fp
)−1(OL−1

ζ (x))
)ss ∼= π(ρx)I

(1)

.
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Thus, in combination with our computation of the Satake parameter S(M(1)

Fp
) in Theorem D,

we see that the semisimple mod p Langlands correspondence is realized in the equivariant K-theory
of the dual Vinberg monoid at q = 0, as a natural specialization at q = 0 of Kazhdan-Lusztig’s
resolution of the Deligne-Langlands conjecture for C-coefficients.

For a more detailed description of the methods used in this article, we refer to the main body
of the text. Once the Vinberg monoid is introduced, the generic Satake isomorphism is formu-
lated and the generic antispherical module is constructed, everything else follows from Vignéras’
structure theory of the generic pro-p-Iwahori Hecke algebra and her classification of the irreducible
representations, and from Paškūnas’ parametrization of the blocks of the category Modladm

ζ (Fp[G]).

Notation: In general, the letter F denotes a locally compact complete non-archimedean field
with ring of integers oF . Let Fq be its residue field, of characteristic p and cardinality q. We
denote by G the algebraic group GL2 over F and by G := G(F ) its group of F -rational points.
Let T ⊂ G be the torus of diagonal matrices. Finally, I ⊂ G denotes the upper triangular standard
Iwahori subgroup and I(1) ⊂ I denotes the unique pro-p Sylow subgroup of I.

2 The pro-p-Iwahori-Hecke algebra

2.1 The generic pro-p-Iwahori Hecke algebra

2.1.1. We let W0 = {1, s} and Λ = Z × Z be the finite Weyl group of G and the lattice of
cocharacters of T respectively. If T = k× × k× denote the finite torus T(Fq), then W0 acts
naturally on T× Λ. The extended Weyl group of G is

W (1) = T× Λ oW0.

It contains the affine Weyl group and the Iwahori-Weyl group

Waff = Z(1,−1) oW0 ⊆W = Λ oW0.

The affine Weyl group Waff is a Coxeter group with set of simple reflexions Saff = {s0, s}, where
s0 = (1,−1)s. Moreover, setting u = (1, 0)s ∈W and Ω = uZ, we have W = Waff o Ω. The length
function ` on Waff can then be inflated to W and W (1).

2.1.2. Definition. Let q be an indeterminate. The generic pro-p Iwahori Hecke algebra is the
Z[q]-algebra H(1)(q) defined by generators

H(1)(q) :=
⊕

w∈W (1)

Z[q]Tw

and relations:

• braid relations: TwTw′ = Tww′ for w,w′ ∈W (1) if `(w) + `(w′) = `(ww′)

• quadratic relations: T 2
s = q + csTs if s ∈ Saff , where cs :=

∑
t∈(1,−1)(k×) Tt.

2.1.3. The identity element is 1 = T1. Moreover we set

S := Ts, U := Tu and S0 := Ts0 = USU−1.

2.1.4. Definition. Let R be any commutative ring. The pro-p Iwahori Hecke algebra of G with
coefficients in R is defined to be the convolution algebra

H(1)
R := (R[I(1)\G/I(1)], ?)

generated by the I(1)-double cosets in G.
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2.1.5. Theorem. (Vignéras, [V16, Thm. 2.2]) Let Z[q] → R be the ring homomorphism
mapping q to q. Then the R-linear map

H(1)(q)⊗Z[q] R // H(1)
R

sending Tw, w ∈W (1), to the characteristic function of the double coset I(1)\w/I(1), is an isomor-
phism of R-algebras.

2.2 Idempotents and component algebras

2.2.1. Recall the finite torus T = T(Fq). Let us consider its group algebra Z̃[T] over the ring

Z̃ := Z[
1

q − 1
, µq−1].

As q − 1 is invertible in Z̃, so is |T| = (q − 1)2. We denote by T∨ the set of characters λ : T →
µq−1 ⊂ Z̃, with its natural W0-action given by sλ(t1, t2) = λ(t2, t1) for (t1, t2) ∈ T. The set of

W0-orbits in T∨/W0 has cardinality q2−q
2 . Also W (1) acts on T∨ through the canonical quotient

map W (1) →W0. Because of the braid relations in H(1)(q), the rule t 7→ Tt induces an embedding
of Z̃-algebras

Z̃[T] ⊂ H(1)

Z̃ (q) := H(1)(q)⊗Z Z̃.

2.2.2. Definition. For all λ ∈ T∨ and for γ ∈ T∨/W0, we define

ελ := |T|−1
∑
t∈T

λ−1(t)Tt and εγ :=
∑
λ∈γ

ελ.

2.2.3. Lemma. The elements ελ, λ ∈ T∨, are idempotent, pairwise orthogonal and their sum
is equal to 1. The elements εγ , γ ∈ T∨/W0, are idempotent, pairwise orthogonal, their sum is

equal to 1 and they are central in H(1)

Z̃
(q). The Z̃[q]-algebra H(1)

Z̃ (q) is the direct product of its

sub-Z̃[q]-algebras HγZ̃(q) := H(1)

Z̃ (q)εγ :

H(1)

Z̃ (q) =
∏

γ∈T∨/W0

HγZ̃(q).

In particular, the category of H(1)

Z̃ (q)-modules decomposes into a finite product of the module

categories for the individual component rings H(1)

Z̃ (q)εγ .

Proof. The elements εγ are central because of the relations TsTt = Ts(t)Ts, Ts0Tt = Ts0(t)Ts0 and
TuTt = Ts(t)Tu for all t ∈ (1,−1)k×.

2.2.4. Following the terminology of [V04], we call |γ| = 2 a regular case and |γ| = 1 a non-regular
(or Iwahori) case.

2.3 The Bernstein presentation

The inverse image in W (1) of any subset of W along the canonical projection W (1) → W will be
denoted with a superscript (1).

2.3.1. Theorem. (Vignéras [V16, Th. 2.10, Cor 5.47]) The Z[q]-algebra H(1)(q) admits the
following Bernstein presentation:

H(1)(q) =
⊕

w∈W (1)

Z[q]E(w)

satisfying
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• braid relations: E(w)E(w′) = E(ww′) for w,w′ ∈W (1)
0 if `(w) + `(w′) = `(ww′)

• quadratic relations: E(s)2 = qE(s2)+csE(s) if s ∈ S(1)
0 , where cts := Ts(t)cs for t ∈ T, s ∈ S0

• product formula: E(λ)E(w) = q
`(λ)+`(w)−`(λw)

2 E(λw) for λ ∈ Λ(1) and w ∈W (1)

• Bernstein relations for s ∈ s(1)
β ⊂ S

(1)
0 and λ ∈ Λ(1) : set V := RΦ∨ and let

ν : Λ(1) → V

be the homomorphism such that λ ∈ Λ(1) acts on V by translation by ν(λ) ; then the Bernstein
element

B(λ, s) := E(sλs−1)E(s)− E(s)E(λ)

= 0 if λ ∈ (Λs)(1)

= sign(β ◦ ν(λ))
∑|β◦ν(λ)|−1
k=0 q(k, λ)c(k, λ)E(µ(k, λ)) if λ ∈ Λ(1) \ (Λs)(1)

where q(k, λ)c(k, λ) ∈ Z[q][T] and µ(k, λ) ∈ Λ(1) are explicit, cf. [V16, Th. 5.46] and
references therein.

2.3.2. Let
A(q) :=

⊕
λ∈Λ

Z[q]E(λ) ⊂ A(1)(q) :=
⊕
λ∈Λ(1)

Z[q]E(λ) ⊂ H(1)(q).

It follows from the product formula that these are commutative sub-Z[q]-algebras of H(1)(q). More-
over, by definition [V16, 5.22-5.25], we have E(t) = Tt for all t ∈ T, so that Z[T] ⊂ A(1)(q). Then,
again by the product formula, the commutative algebra A(1)(q) decomposes as the tensor product
of the subalgebras

A(1)(q) = Z[T]⊗Z A(q).

Also, after base extension Z→ Z̃, we can set AγZ̃(q) := A(1)

Z̃ (q)εγ , and obtain the decomposition

A(1)

Z̃ (q) =
∏

γ∈T∨/W0

AγZ̃(q) ⊂
∏

γ∈T∨/W0

HγZ̃(q) = H(1)

Z̃ (q).

2.3.3. Lemma. Let X,Y, z2 be indeterminates. There exists a unique ring homomorphism

Z[q][z±1
2 ][X,Y ]/(XY − qz2) // A(q)

such that
X 7−→ E(1, 0), Y 7−→ E(0, 1) and z2 7−→ E(1, 1).

It is an isomorphism. Moreover, for all γ ∈ T∨/W0,

AγZ̃(q) =

{
(Z̃ελ × Z̃εµ)⊗Z A(q) if γ = {λ, µ} is regular

Z̃ελ ⊗Z A(q) if γ = {λ} is non-regular.

Proof. For any (n1, n2) ∈ Z2 = Λ, we have `(n1, n2) = |n1 − n2|. Hence it follows from product
formula that z2 is invertible and XY = qz2, so that we get a Z[q]-algebra homomorphism

Z[q][z±1
2 ][X,Y ]/(XY − qz2) // A(q).

Moreover it maps the Z[q][z±1
2 ]-basis {Xn}n>1

∐
{1}

∐
{Y n}n>1 to the Z[q][z±1

2 ]-basis

{E(n, 0)}n>1

∐
{1}

∐
{E(0, n)}n>1,

and hence is an isomorphism. The rest of the lemma is clear since A(1)

Z̃ (q) = Z̃[T] ⊗Z A(q) and

Z̃[T] =
∏
λ∈T∨ Z̃ελ.
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In the following, we will sometimes view the isomorphism of the lemma as an identification and
write X = E(1, 0), Y = E(0, 1) and z2 = E(1, 1).

2.3.4. The rule E(λ) 7→ E(w(λ)) defines an action of the finite Weyl group W0 = {1, s} on A(1)(q)
by Z[q]-algebra homomorphisms. By [V05, Th. 4] (see also [V14, Th. 1.3]), the subring of W0-
invariants is equal to the center of H(1)(q), and the same is true after the scalar extension Z→ Z̃.

Now the action on A(1)

Z̃ (q) stabilizes each component AγZ̃(q) and then the resulting subring of

W0-invariants is the center of HγZ̃(q). In terms of the description of AγZ̃(q) given in Lemma 2.3.3,
this translates into :

2.3.5. Lemma. Let γ ∈ T∨/W0.

• If γ = {λ, µ} is regular, then the map

AZ̃(q) −→ AγZ̃(q)W0 = Z(HγZ̃(q))

a 7−→ aελ + s(a)εµ

is an isomorphism of Z̃[q]-algebras. It depends on the choice of order (λ, µ) on the set γ.

• If γ = {λ} is non-regular, then

Z(HγZ̃(q)) = AγZ̃(q)W0 = Z̃[q][z±1
2 , z1]ελ

with z1 := X + Y .

2.3.6. One can express X,Y, z2 ∈ A(1)(q) ⊂ H(1)(q) in terms of the distinguished elements 2.1.3.
This is an application of [V16, Ex. 5.30]. We find:

(1, 0) = s0u = us ∈ Λ⇒ X := E(1, 0) = (S0 − cs0)U = U(S − cs),

(0, 1) = su ∈ Λ⇒ Y := E(0, 1) = SU,

(1, 1) = u2 ∈ Λ⇒ z2 := E(1, 1) = U2.

Also
z1 := X + Y = U(S − cs) + SU.

3 The generic regular antispherical representation

3.1 The generic regular Iwahori-Hecke algebras

Let γ = {λ, µ} ∈ T∨/W0 be a regular orbit. We define a model H2(q) over Z for the component

algebra HγZ̃(q) ⊂ H(1)

Z̃ (q). The algebra H2(q) itself will not depend on γ.

3.1.1. By construction, the Z̃[q]-algebra HγZ̃(q) admits the following presentation:

HγZ̃(q) = (Z̃ελ × Z̃εµ)⊗′Z
⊕
w∈W

Z[q]Tw,

where ⊗′Z is the tensor product twisted by the W -action on {λ, µ} through the quotient map
W →W0, together with the

• braid relations: TwTw′ = Tww′ for w,w′ ∈W if `(w) + `(w′) = `(ww′)

• quadratic relations: T 2
s = q if s ∈ Saff .

3.1.2. Definition. Let q be an indeterminate. The generic second Iwahori-Hecke algebra is the
Z[q]-algebra H2(q) defined by generators

H2(q) := (Zε1 × Zε2)⊗′Z
⊕
w∈W

Z[q]Tw,

where ⊗′ is the tensor product twisted by the W -action on {1, 2} through the quotient map W →
W0 = S2, and relations:
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• braid relations: TwTw′ = Tww′ for w,w′ ∈W if `(w) + `(w′) = `(ww′)

• quadratic relations: T 2
s = q if s ∈ Saff .

3.1.3. The identity element of H2(q) is 1 = T1. Moreover we set in H2(q)

S := Ts, U := Tu and S0 := Ts0 = USU−1.

Then one checks that

H2(q) = (Zε1 × Zε2)⊗′Z Z[q][S,U±1], S2 = q, U2S = SU2

is a presentation of H2(q). Note that the element U2 is invertible in H2(q).

3.1.4. Choosing the ordering (λ, µ) on the set γ = {λ, µ} and mapping ε1 7→ ελ, ε2 7→ εµ defines

an isomorphism of Z̃[q]-algebras

H2(q)⊗Z Z̃ ∼ // HγZ̃(q),

such that S ⊗ 1 7→ Sεγ , U ⊗ 1 7→ Uεγ and S0 ⊗ 1 7→ S0εγ .

3.1.5. We identify two important commutative subrings of H2(q). We define A2(q) ⊂ H2(q) to
be the Z[q]-subalgebra generated by the elements ε1, ε2, US, SU and U±2. Let X,Y and z2 be
indeterminates. Then there is a unique (Zε1 × Zε2)⊗Z Z[q]-algebra homomorphism

(Zε1 × Zε2)⊗Z Z[q][z±1
2 ][X,Y ]/(XY − qz2) −→ A2(q)

such that X 7→ US, Y 7→ SU, z2 7→ U2, and it is an isomorphism. In particular, A2(q) is a
commutative subalgebra of H2(q). The isomorphism 3.1.4 identifies A2(q) ⊗Z Z̃ with AγZ̃(q).

Moreover, permuting ε1 and ε2, and X and Y , extends to an action of W0 = S2 on A2(q) by
homomorphisms of Z[q]-algebras, whose invariants is the center Z(H2(q)) of H2(q), and the map

Z[q][z±1
2 ][X,Y ]/(XY − qz2) −→ A2(q)W0 = Z(H2(q))

a 7−→ aε1 + s(a)ε2

is an isomorphism of Z[q]-algebras. This is a consequence of 3.1.4, 2.3.6, 2.3.3 and 2.3.5. In the
following, we will sometimes view the above isomorphisms as identifications. In particular, we will
write X = US, Y = SU and z2 = U2.

3.2 The Vignéras operator

In this subsection and the following, we will investigate the structure of the Z(H2(q))-algebra
EndZ(H2(q))(A2(q)) of Z(H2(q))-linear endomorphisms of A2(q). Recall from the preceding sub-
section that Z(H2(q)) = A2(q)s is the subring of invariants of the commutative ring A2(q).

3.2.1. Lemma. We have
A2(q) = A2(q)sε1 ⊕A2(q)sε2

as A2(q)s-modules.

Proof. This is immediate from the two isomorphisms in 3.1.5.

According to the lemma, we may use the A2(q)s-basis ε1, ε2 to identify EndZ(H2(q))(A2(q))

with the algebra of 2× 2-matrices over A2(q)s = Z[q][z±1
2 ][X,Y ]/(XY − qz2).

3.2.2. Definition. The endomorphism of A2(q) corresponding to the matrix

Vs(q) :=

(
0 Y ε1 +Xε2

z−1
2 (Xε1 + Y ε2) 0

)
will be called the Vignéras operator on A2(q).

3.2.3. Lemma. We have Vs(q)2 = q.

Proof. This is a short calculation.
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3.3 The generic regular antispherical representation

In the following theorem we define the generic regular antispherical representation of the algebra
H2(q) on the Z(H2(q))-module A2(q). Note that the commutative ring A2(q) is naturally a
subring

A2(q) ⊂ EndZ(H2(q))(A2(q)),

an element a ∈ A2(q) acting by multiplication b 7→ ab on A2(q).

3.3.1. Theorem. There exists a unique Z[q]-algebra homomorphism

A2(q) : H2(q) // EndZ(H2(q))(A2(q))

such that

(i) A2(q)|A2(q) = the natural inclusion A2(q) ⊂ EndZ(H2(q))(A2(q))

(ii) A2(q)(S) = Vs(q).

Proof. Recall that H2(q) = (Zε1 × Zε2) ⊗′Z Z[q][S,U±1] with the relations S2 = q and U2S =
SU2. In particular A2(q)(S) := Vs(q) is well-defined thanks to 3.2.3. Now let us consider the
question of finding the restriction of A2(q) to the subalgebra Z[q][S,U±1]. As the Z[q]-algebra
A2(q) ∩ Z[q][S,U±1] is generated by

z2 = U2, X = US and Y = SU,

such a Z[q]-algebra homomorphism exists if and only if there exists

A2(q)(U) ∈ EndZ(H2(q))(A2(q))

satisfying

1. A2(q)(U) is invertible ;

2. A2(q)(U)2 = A2(q)(U2) = A2(q)(z2) = z2 Id ;

3. A2(q)(U)Vs(q) = multiplication by X

4. Vs(q)A2(q)(U) = multiplication by Y .

As before we use the Z(H2(q))-basis ε1, ε2 ofA2(q) to identify EndZ(H2(q))(A2(q)) with the algebra
of 2× 2-matrices over the ring Z(H2(q)) = A2(q)s. Then, by definition,

Vs(q) =

(
0 Y ε1 +Xε2

z−1
2 (Xε1 + Y ε2) 0

)
.

Moreover, the multiplications by X and by Y on A2(q) correspond then to the matrices(
Xε1 + Y ε2 0

0 Y ε1 +Xε2

)
and

(
Y ε1 +Xε2 0

0 Xε1 + Y ε2

)
.

Now, writing

A2(q)(U) =

(
a c
b d

)
we have:

A2(q)(U)2 = z2 Id⇐⇒
(

a2 + bc c(a+ d)
b(a+ d) d2 + bc

)
=

(
z2 0
0 z2

)
,

A2(q)(U)Vs(q) = multiplication by X

⇐⇒
(
cz−1

2 (Xε1 + Y ε2) a(Y ε1 +Xε2)
dz−1

2 (Xε1 + Y ε2) b(Y ε1 +Xε2)

)
=

(
Xε1 + Y ε2 0

0 Y ε1 +Xε2

)
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and

Vs(q)A2(q)(U) = multiplication by Y

⇐⇒
(

b(Y ε1 +Xε2) d(Y ε1 +Xε2)
az−1

2 (Xε1 + Y ε2) cz−1
2 (Xε1 + Y ε2)

)
=

(
Y ε1 +Xε2 0

0 Xε1 + Y ε2

)
.

Each of the two last systems admits a unique solution, namely

A2(q)(U) =

(
a c
b d

)
=

(
0 z2

1 0

)
,

which is also a solution of the first one. Moreover, the determinant

ad− bc = −z2

is invertible.
Finally, A2(q) is generated by A2(q) ∩ Z[q][S,U±1] together with ε1 and ε2. The latter are

assigned to map to the projectors

multiplication by ε1 =

(
1 0
0 0

)
and multiplication by ε2 =

(
0 0
0 1

)
.

Thus it only remains to check that(
1 0
0 0

)
A2(q)(S) = A2(q)(S)

(
0 0
0 1

)
and (

0 0
0 1

)
A2(q)(S) = A2(q)(S)

(
1 0
0 0

)
,

and similarly with A2(q)(U) in place of A2(q)(U), which is straightforward.

3.3.2. Remark. The map A2(q), together with the fact that it is an isomorphism (see below),
is a rewriting of a theorem of Vignéras, namely [V04, Cor. 2.3]. In loc. cit., the algebra H2(q)
is identified with the algebra of 2 × 2-matrices over the ring Z[q][z±1

2 ][X,Y ]/(XY − qz2). In our
approach, we have replaced the abstract rank 2 module underlying the standard representation of
this matrix algebra, by the subring A2(q) of H2(q) with {ε1, ε2} for the canonical basis. In this
way, we are able to formulate the property that the restriction of A2(q) to the subring A2(q) ⊂
H2(q) is the action by multiplication. This observation will be crucial to find the analogue of the
representation A2(q) in the non-regular case.

3.3.3. Proposition. The homomorphism A2(q) is an isomorphism.

Proof. It follows from 3.1.3 and 3.1.5 that the Z[q]-algebra H2(q) is generated by the elements

ε1, ε2, S, U, SU

as a module over its center Z(H2(q)). Moreover, as SU2 = U2S =: z2S and SU =: Y , we have

S = z−1
2 Y U = z−1

2 Y (ε1U + ε2U) = z−1
2 (Y ε1 +Xε2)ε1U + z−1

2 (Xε1 + Y ε2)ε2U,

U = ε1U + ε2U and SU = (Y ε1 +Xε2)ε1 + (Xε1 + Y ε2)ε2.

Consequently H2(q) is generated as a Z(H2(q))-module by the elements

ε1, ε2, z
−1
2 ε1U, ε2U.

Since

A2(q)(U) :=

(
0 z2

1 0

)
,
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these four elements are mapped by A2(q) to(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
.

As A2(q) indentifies Z(H2(q)) ⊂ H2(q) with the center of the matrix algebra

EndZ(H2(q))(A2(q)) = EndZ(H2(q))(Z(H2(q))ε1 ⊕ Z(H2(q))ε2),

it follows that the elements ε1, ε2, z−1
2 ε1U , ε2U are linearly independent over Z(H2(q)) and that

A2(q) is an isomorphism.

We record the following corollary of the proof.

3.3.4. Corollary. The ring H2(q) is a free Z(H2(q))-module on the basis ε1, ε2, z
−1
2 ε1U, ε2U.

3.3.5. We end this section by noting an equivariance property of A2(q). As already noticed, the fi-
nite Weyl group W0 acts onA2(q) by Z[q]-algebra automorphisms, and the action is clearly faithful.
Moreover A2(q)W0 = Z(H2(q)). Hence W0 can be viewed as a subgroup of EndZ(H2(q))(A2(q)),
and we can let it act on EndZ(H2(q))(A2(q)) by conjugation.

3.3.6. Lemma. The embedding A2(q)|A2(q) is W0-equivariant.

Proof. Indeed, for all a, b ∈ A2(q) and w ∈W0, we have

A2(q)(w(a))(b) = w(a)b = w(aw−1(b)) = (waw−1)(b) = (wA2(q)(a)w−1)(b).

4 The generic non-regular antispherical representation

4.1 The generic non-regular Iwahori-Hecke algebras

Let γ = {λ} ∈ T∨/W0 be a non-regular orbit. As in the regular case, we define a model H1(q)

over Z for the component algebra HγZ̃(q) ⊂ H(1)

Z̃ (q). The algebra H1(q) will not depend on γ.

4.1.1. By construction, the Z̃[q]-algebra HγZ̃(q) admits the following presentation:

HγZ̃(q) =
⊕
w∈W

Z[q]Twελ,

with

• braid relations: TwTw′ = Tww′ for w,w′ ∈W if `(w) + `(w′) = `(ww′)

• quadratic relations: T 2
s = q + (q − 1)Ts if s ∈ Saff .

4.1.2. Definition. Let q be an indeterminate. The generic Iwahori-Hecke algebra is the Z[q]-
algebra H1(q) defined by generators

H1(q) :=
⊕
w∈W

Z[q]Tw

and relations:

• braid relations: TwTw′ = Tww′ for w,w′ ∈W if `(w) + `(w′) = `(ww′)

• quadratic relations: T 2
s = q + (q− 1)Ts if s ∈ Saff .
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4.1.3. The identity element of H1(q) is 1 = T1. Moreover we set in H1(q)

S := Ts, U := Tu and S0 := Ts0 = USU−1.

Then one checks that

H1(q) = Z[q][S,U±1], S2 = q + (q− 1)S, U2S = SU2

is a presentation of H1(q). Note that the element U2 is invertible in H1(q).

4.1.4. Sending 1 to εγ defines an isomorphism of Z̃[q]-algebras

H1(q)⊗Z Z̃ ∼ // HγZ̃(q),

such that S ⊗ 1 7→ Sεγ , U ⊗ 1 7→ Uεγ and S0 ⊗ 1 7→ S0εγ .

4.1.5. We define A1(q) ⊂ H1(q) to be the Z[q]-subalgebra generated by the elements (S0 − (q−
1))U , SU and U±2. Let X,Y and z2 be indeterminates. Then there is a unique Z[q]-algebra
homomorphism

Z[q][z±1
2 ][X,Y ]/(XY − qz2) −→ A1(q)

such that X 7→ (S0− (q−1))U , Y 7→ SU , z2 7→ U2, and it is an isomorphism. In particular, A1(q)
is a commutative subalgebra of H1(q). The isomorphism 4.1.4 identifies A1(q) ⊗Z Z̃ with AγZ̃(q).

Moreover, permuting X and Y extends to an action of W0 = S2 on A1(q) by homomorphisms of
Z[q]-algebras, whose invariants is the center Z(H1(q)) of H1(q) and

Z[q][z±1
2 ][z1]

∼−→ A1(q)W0 = Z(H1(q))

with z1 := X + Y . This is a consequence of 4.1.4, 2.3.6, 2.3.3 and 2.3.5. In the following, we will
sometimes view the above isomorphisms as identifications. In particular, we will write

X = (S0 − (q− 1))U = U(S − (q− 1)), Y = SU and z2 = U2 in H1(q).

4.1.6. It is well-known that the generic Iwahori-Hecke algebra H1(q) is a q-deformation of the
group ring Z[W ] of the Iwahori-Weyl group W = Λ oW0. More precisely, specializing the chain
of inclusions A1(q)W0 ⊂ A1(q) ⊂ H1(q) at q = 1, yields the chain of inclusions Z[Λ]W0 ⊂ Z[Λ] ⊂
Z[W ].

4.2 The Kazhdan-Lusztig-Ginzburg operator

As in the regular case, we will study the Z(H1(q))-algebra EndZ(H1(q))(A1(q)) of Z(H1(q))-linear
endomorphisms of A1(q). Recall that Z(H1(q)) = A1(q)s is the subring of invariants of the
commutative ring A1(q).

4.2.1. Lemma. We have

A1(q) = A1(q)sX ⊕A1(q)s = A1(q)s ⊕A1(q)sY

as A1(q)s-modules.

Proof. Applying s, the two decompositions are equivalent; so it suffices to check that Z[z±1
2 ][X,Y ]

is free of rank 2 with basis 1, Y over the subring of symmetric polynomials Z[z±1
2 ][X+Y,XY ]. First

if P = QY with P and Q symmetric, then applying s we get P = QX and hence Q(X − Y ) = 0
which implies P = Q = 0. It remains to check that any monomial XiY j , i, j ∈ N, belongs to

Z[z±1
2 ][X + Y,XY ] + Z[z±1

2 ][X + Y,XY ]Y.

As X = (X + Y )− Y and Y 2 = −XY + (X + Y )Y , the later is stable under multiplication by X
and Y ; as it contains 1, the result follows.

4.2.2. Remark. The basis {1, Y } specializes at q = 1 to the so-called Pittie-Steinberg basis [St75]
of Z[Λ] over Z[Λ]W0 .
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4.2.3. Definition. We let

Ds := projector on A1(q)sY along A1(q)s

D′s := projector on A1(q)s along A1(q)sX

Ds(q) := Ds − qD′s.

4.2.4. Remark. The operators Ds and D′s specialize at q = 1 to the Demazure operators on
Z[Λ], as introduced in [D73, D74].

4.2.5. Lemma. We have
Ds(q)2 = (1− q)Ds(q) + q.

Proof. Noting that Y = z1 −X, we have

Ds(q)2(1) = Ds(q)(−q) = q2 = (1− q)(−q) + q = ((1− q)Ds(q) + q)(1)

and

Ds(q)2(Y ) = Ds(q)(Y − qz1)

= Y − qz1 − qz1(−q)

= (1− q)(Y − qz1) + qY

= ((1− q)Ds(q) + q)(Y ).

4.3 The generic non-regular antispherical representation

We define the generic non-regular antispherical representation of the algebraH1(q) on the Z(H1(q))-
module A1(q). The commutative ring A1(q) is naturally a subring

A1(q) ⊂ EndZ(H1(q))(A1(q)),

an element a ∈ A1(q) acting by multiplication b 7→ ab on A1(q).

4.3.1. Theorem. There exists a unique Z[q]-algebra homomorphism

A1(q) : H1(q) // EndZ(H1(q))(A1(q))

such that

(i) A1(q)|A1(q) = the natural inclusion A1(q) ⊂ EndZ(H1(q))(A1(q))

(ii) A1(q)(S) = −Ds(q).

Proof. Recall that H1(q) = Z[q][S,U±1] with the relations S2 = (q− 1)S+ q and U2S = SU2. In
particular A1(q)(S) := −Ds(q) is well-defined thanks to 4.2.5. On the other hand, the Z[q]-algebra
A1(q) is generated by

z2 = U2, X = US + (1− q)U and Y = SU.

Consequently, there exists a Z[q]-algebra homomorphism A1(q) as in the statement of the theorem
if and only if there exists

A1(q)(U) ∈ EndZ(H1(q))(A1(q))

satisfying

1. A1(q)(U) is invertible ;

2. A1(q)(U)2 = A1(q)(U2) = A1(q)(z2) = z2 Id ;

3. A1(q)(U)(−Ds(q)) + (1− q)A1(q)(U) = multiplication by X

17



4. −Ds(q)A1(q)(U) = multiplication by Y .

Let us use the Z(H1(q))-basis 1, Y of A1(q) to identify EndZ(H1(q))(A1(q)) with the algebra of
2× 2-matrices over the ring Z(H1(q)) = A1(q)s. Then, by definition,

−Ds(q) =

(
0 0
0 −1

)
+ q

(
1 z1

0 0

)
=

(
q qz1

0 −1

)
.

Moreover, as X = z1−Y , XY = qz2 and Y 2 = −XY +(X+Y )Y = −qz2+z1Y , the multiplications
by X and by Y on A1(q) get identified with the matrices(

z1 qz2

−1 0

)
and

(
0 −qz2

1 z1

)
.

Now, writing

A1(q)(U) =

(
a c
b d

)
we have:

A1(q)(U)2 = z2 Id⇐⇒
(

a2 + bc c(a+ d)
b(a+ d) d2 + bc

)
=

(
z2 0
0 z2

)
,

A1(q)(U)(−Ds(q)) + (1− q)A1(q)(U) = multiplication by X

⇐⇒
(
a q(az1 − c)
b q(bz1 − d)

)
=

(
z1 qz2

−1 0

)
and

−Ds(q)A1(q)(U) = multiplication by Y

⇐⇒
(

q(a+ z1b) q(c+ z1d)
−b −d

)
=

(
0 −qz2

1 z1

)
.

Each of the two last systems admits a unique solution, namely

A1(q)(U) =

(
a c
b d

)
=

(
z1 z2

1 − z2

−1 −z1

)
,

which is also a solution of the first one. Moreover, the determinant

ad− bc = −z2
1 + (z2

1 − z2) = −z2

is invertible.

4.3.2. The relation between our generic non-regular representation A1(q) and the theory of

Kazhdan-Lusztig [KL87], and Ginzburg [CG97], is the following. Introducing a square root q
1
2

of q and extending scalars along Z[q] ⊂ Z[q±
1
2 ], we obtain the Hecke algebra H1(q±

1
2 ) together

with its commutative subalgebra A1(q±
1
2 ). The latter contains the elements θ̃λ, λ ∈ Λ, intro-

duced by Bernstein and Lusztig, which are defined as follows: writing λ = λ1 − λ2 with λ1, λ2

antidominant, one has

θ̃λ := T̃eλ1 T̃
−1
eλ2

:= q−
`(λ1)

2 q
`(λ2)

2 Teλ1T
−1
eλ2
.

They are related to the Bernstein basis {E(w), w ∈ W} of H1(q) introduced by Vignéras (which
is analogous to the Bernstein basis of H(1)(q) which we have recalled in 2.3.1) by the formula:

∀λ ∈ Λ, ∀w ∈W0, E(eλw) = q
`(eλw)−`(w)

2 θ̃λTw ∈ H1(q) ⊂ H1(q±
1
2 ).

In particular E(eλ) = q
`(eλ)

2 θ̃λ, and by the product formula (analogous to the product formula for

H(1)(q), cf. 2.3.1), the Z[q±
1
2 ]-linear isomorphism

θ̃ : Z[q±
1
2 ][Λ]

∼−→ A1(q±
1
2 )

eλ 7−→ θ̃λ

18



is in fact multiplicative, i.e. it is an isomorphism of Z[q±
1
2 ]-algebras.

Consequently, if we base change our action map A1(q) to Z[q±
1
2 ], we get a representation

A1(q±
1
2 ) : H1(q±

1
2 ) // End

Z(H1(q±
1
2 ))

(A1(q±
1
2 )) ' End

Z[q±
1
2 ][Λ]W0

(Z[q±
1
2 ][Λ]),

which coincides with the natural inclusion Z[q±
1
2 ][Λ] ⊂ End

Z[q±
1
2 ][Λ]W0

(Z[q±
1
2 ][Λ]) when restricted

to A1(q±
1
2 ) ' Z[q±

1
2 ][Λ], and which sends S to the opposite −Ds(q) of the q-deformed Demazure

operator. Hence, this is the antispherical representation defined by Kazhdan-Lusztig and Ginzburg.

In particular, A1(1) is the usual action of the Iwahori-Weyl group W = Λ oW0 on Λ, and
A1(0) can be thought of as a degeneration of the latter.

4.3.3. Proposition. The homomorphism A1(q) is injective.

Proof. It follows from 4.1.3 and 4.1.5 that the ring H1(q) is generated by the elements

1, S, U, SU

as a module over its center Z(H1(q)) = Z[q][z1, z
±1
2 ]. As the latter is mapped isomorphically to

the center of the matrix algebra EndZ(H1(q))(A1(q)) by A1(q), it suffices to check that the images

1, A1(q)(S), A1(q)(U), A1(q)(SU)

of 1, S, U, SU by A1(q) are free over Z(H1(q)). So let α, β, γ, δ ∈ Z(H1(q)) (which is an integral
domain) be such that

α

(
1 0
0 1

)
+ β

(
q qz1

0 −1

)
+ γ

(
z1 z2

1 − z2

−1 −z1

)
+ δ

(
0 −qz2

1 z1

)
= 0.

Then 
α+ βq + γz1 = 0
−γ + δ = 0
βqz1 + γ(z2

1 − z2)− δqz2 = 0
α− β + (δ − γ)z1 = 0.

We obtain δ = γ, α = β and {
α(1 + q) + γz1 = 0
αqz1 + γ(z2

1 − z2 − qz2) = 0.

The latter system has determinant

(1 + q)(z2
1 − z2 − qz2)− qz2

1 = z2
1 − z2 − 2qz2 − q2z2

which is nonzero (its specialisation at q = 0 is equal to z2
1−z2 6= 0), whence α = γ = 0 = β = δ.

We record the following two corollaries of the proof.

4.3.4. Corollary. The ring H1(q) is a free Z(H1(q))-module on the basis 1, S, U, SU .

4.3.5. Corollary. The homomorphism A1(0) is injective.

4.3.6. We end this section by noting an equivariance property of A1(q). As already noticed, the fi-
nite Weyl group W0 acts onA1(q) by Z[q]-algebra automorphisms, and the action is clearly faithful.
Moreover A1(q)W0 = Z(H1(q)). Hence W0 can be viewed as a subgroup of EndZ(H1(q))(A1(q)),
and we can let it act on EndZ(H1(q))(A1(q)) by conjugation.

4.3.7. Lemma. The embedding A1(q)|A1(q) is W0-equivariant.

Proof. Indeed, for all a, b ∈ A1(q) and w ∈W0, we have

A1(q)(w(a))(b) = w(a)b = w(aw−1(b)) = (waw−1)(b) = (wA1(q)(a)w−1)(b).
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5 Geometric representation theory

5.1 The Vinberg monoid of the dual group Ĝ = GL2

5.1.1. The Langlands dual group over k := Fq of the connected reductive algebraic group GL2 over

F is Ĝ = GL2. We recall the k-monoid scheme introduced by Vinberg in [V95], in the particular
case of GL2. It is in fact defined over Z, as the group GL2. In the following, all the fiber products
are taken over the base ring Z.

5.1.2. Definition. Let Mat2×2 be the Z-monoid scheme of 2 × 2-matrices (with usual matrix
multiplication as operation). The Vinberg monoid for GL2 is the Z-monoid scheme

VGL2 := Mat2×2×Gm.

5.1.3. The group GL2×Gm is recovered from the monoid VGL2 as its group of units. The group
GL2 itself is recovered as follows. Denote by z2 the canonical coordinate on Gm. Then let q be
the homomorphism from VGL2 to the multiplicative monoid (A1, ·) defined by (f, z2) 7→ det(f)z−1

2 :

VGL2

q

��

A1.

Then GL2 is recovered as the fiber at q = 1, canonically:

q−1(1) = {(f, z2) : det(f) = z2}
∼−→ GL2, (f, z2) 7→ f.

The fiber at q = 0 is the Z-semigroup scheme

VGL2,0 := q−1(0) = Sing2×2×Gm,

where Sing2×2 represents the singular 2× 2-matrices. Note that it has no identity element, i.e. it
is a semigroup which is not a monoid.

5.1.4. Let Diag2×2 ⊂ Mat2×2 be the submonoid scheme of diagonal 2× 2-matrices, and set

VT̂ := Diag2×2×Gm ⊂ VGL2 = Mat2×2×Gm.

This is a diagonalizable Z-monoid scheme with character monoid

X•(VT̂) = N(1, 0)⊕ N(0, 1)⊕ Z(1, 1) ⊂ Z(1, 0)⊕ Z(0, 1) = Λ = X•(T̂).

In particular, setting X := e(1,0) and Y := e(0,1) in the group ring Z[Λ], we have

T̂ = Spec(Z[X±1, Y ±1]) ⊂ Spec(Z[z±1
2 ][X,Y ]) = VT̂.

Again, this closed subgroup is recovered as the fiber at q = 1 of the fibration q|VT̂
: VT̂ → A1, and

the fiber at q = 0 is the Z-semigroup scheme SingDiag2×2×Gm where SingDiag2×2 represents the
singular diagonal 2× 2-matrices:

T̂ �
�

//

��

VT̂

q

��

SingDiag2×2×Gm? _oo

��

Spec(Z) �
� 1 // A1 Spec(Z).? _0oo

In terms of equations, the A1-family

q : VT̂ = Diag2×2×Gm = Spec(Z[z±1
2 ][X,Y ]) // A1

is given by the formula q(diag(x, y), z2) = det(diag(x, y))z−1
2 = xyz−1

2 . Hence, after fixing z2 ∈
Gm, the fiber over a point q ∈ A1 is the hyperbola xy = qz2, which is non-degenerate if q 6= 0,
and is the union of the two coordinate axis if q = 0.
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5.2 The associated flag variety and its equivariant K-theory

5.2.1. Let B̂ ⊂ GL2 be the Borel subgroup of upper triangular matrices, let UpTriang2×2 be the
Z-monoid scheme representing the upper triangular 2× 2-matrices, and set

VB̂ := UpTriang2×2×Gm ⊂ Mat2×2×Gm =: VGL2 .

Then we can apply to this inclusion of Z-monoid schemes the general formalism developed in the
Appendix 9. In particular, the flag variety VGL2/VB̂ is defined as a Z-monoidoid. Moreover,
after base changing along Z → k, we have defined a ring KVGL2 (VGL2/VB̂) of VGL2 -equivariant
K-theory on the flag variety, together with an induction isomorphism

IndVGL2

VB̂
: R(VB̂)

∼ // KVGL2 (VGL2/VB̂)

from the ring R(VB̂) of right representations of the k-monoid scheme VB̂ on finite dimensional
k-vector spaces.

5.2.2. Now, we have the inclusion of monoids VT̂ = Diag2×2×Gm ⊂ VB̂ = UpTriang2×2×Gm,
which admits the retraction

VB̂ −→ VT̂((
x c
0 y

)
, z2

)
7−→

((
x 0
0 y

)
, z2

)
.

Let Rep(VT̂) be the category of representations of the commutative k-monoid scheme VT̂ on finite
dimensional k-vector spaces. The above preceding inclusion and retraction define a restriction
functor and an inflation functor

Res
VB̂

VT̂
: Rep(VB̂)

//
Rep(VT̂) : Infl

VB̂

VT̂
.oo

These functors are exact and compatible with the tensors products and units.

5.2.3. Lemma. The ring homomorphisms

Res
VB̂

VT̂
: R(VB̂)

//
R(VT̂) : Infl

VB̂

VT̂
oo

are isomorphisms, which are inverse one to the other.

Proof. We have ResVT̂
◦ Infl

VB̂

VT̂
= Id by construction. Conversely, let M be an object of Rep(VB̂).

The solvable subgroup B̂ × Gm ⊂ VB̂ stabilizes a line L ⊆ M . As B̂ × Gm is dense in VB̂, the

line L is automatically VB̂-stable. Moreover the unipotent radical Û ⊂ B̂ acts trivially on L, so

that B̂ × Gm acts on L through the quotient T̂ × Gm. Hence, by density again, VB̂ acts on L
through the retraction VB̂ → VT̂. This shows that any irreducible M is a character inflated from
a character of VT̂. In particular, the map R(VT̂)→ R(VB̂) is surjective and hence bijective.

5.2.4. Corollary. We have a ring isomorphism

cVGL2
:= IndVGL2

VB̂
◦ Infl

VB̂

VT̂
: Z[X,Y, z±1

2 ] ∼= R(VT̂)
∼ // KVGL2 (VGL2/VB̂),

that we call the characteristic isomorphism in the equivariantK-theory of the flag variety VGL2/VB̂.

5.2.5. We have a commutative diagram specialization at q = 1

Z[X,Y, z±1
2 ]

cVGL2

∼
//

����

KVGL2 (VGL2/VB̂)

����

Z[X±1, Y ±1]
cGL2

∼
// KGL2(GL2/B̂).
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The vertical map on the left-hand side is given by specialization q = 1, i.e. by the surjection

Z[X,Y, z±1
2 ] = Z[q][X,Y, z±1

2 ]/(XY − qz2) −→ Z[X,Y, z±1
2 ]/(XY − z2) = Z[X±1, Y ±1].

The vertical map on the right-hand side is given by restricting equivariant vector bundles to the
1-fiber of q : VGL2 → A1, thereby recovering the classical theory.

5.2.6. Let Rep(VGL2) be the category of right representations of the k-monoid scheme VGL2 on
finite dimensional k-vector spaces. The inclusion VB̂ ⊂ VGL2 defines a restriction functor

Res
VGL2

VB̂
: Rep(VGL2) // Rep(VB̂),

whose composition with Res
VB̂

VT̂
is the restriction from VGL2 to VT̂:

Res
VGL2

VT̂
= Res

VB̂

VT̂
◦Res

VGL2

VB̂
: Rep(VGL2) // Rep(VT̂).

These restriction functors are exact and compatible with the tensors products and units.

5.2.7. The action of the Weyl group W0 on Λ = X•(T̂) stabilizes X•(VT̂) ⊂ X•(T̂), consequently

W0 acts on VT̂ and the inclusion T̂ ⊂ VT̂ is W0-equivariant. Explicitly, W0 = {1, s} and s acts on
VT̂ = Diag2×2×Gm by permuting the two diagonal entries and trivially on the Gm-factor.

5.2.8. Lemma. The ring homomorphism

Res
VGL2

VT̂
: R(VGL2) // R(VT̂)

is injective, with image the subring R(VT̂)W0 ⊂ R(VT̂) of W0-invariants. The resulting ring iso-
morphism

χVGL2
: R(VGL2)

∼ // R(VT̂)W0

is the character isomorphism of VGL2 .

Proof. This is a general result on the representation theory of VĜ. Note that in the case of

Ĝ = GL2, we have

R(VT̂)W0 = Z[X + Y,XY z−1
2 =: q, z±1

2 ] ⊂ Z[X,Y, z±1
2 ] = R(VT̂).

6 Dual parametrization of generic Hecke modules

We keep all the notations introduced in the preceding section. In particular, k = Fq.

6.1 The generic Bernstein isomorphism

Recall from 2.3.2 the subring A(q) ⊂ H(1)(q) and the remarkable Bernstein basis elements E(1, 0),
E(0, 1) and E(1, 1). Also recall from 5.1.4 the representation ring R(VT̂) = Z[X,Y, z±1

2 ] of the
diagonalizable k-submonoid scheme VT̂ ⊂ VĜ of the Vinberg k-monoid scheme of the Langlands

dual k-group Ĝ = GL2 of GL2,F .

6.1.1. Theorem. There exists a unique ring homomorphism

B(q) : A(q) // R(VT̂)

such that

B(q)(E(1, 0)) = X, B(q)(E(0, 1)) = Y, B(q)(E(1, 1)) = z2 and B(q)(q) = XY z−1
2 .

It is an isomorphism.
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Proof. This is a reformulation of the first part of 2.3.3.

6.1.2. Then recall from 2.3.2 the subring A(1)(q) = Z[T]⊗Z A(q) ⊂ H(1)(q) where T is the finite
abelian group T(Fq). Let T∨ be the finite abelian dual group of T. As T∨ has order prime to p, it
defines a constant finite diagonalizable k-group scheme, whose group of characters is T, and hence
whose representation ring R(T∨) identifies with Z[T]: t ∈ T ⊂ Z[T] corresponds to the character
evt of T∨ given by evaluation at t. Set

V
(1)

T̂
:= T∨ × VT̂.

6.1.3. Corollary. There exists a unique ring homomorphism

B(1)(q) : A(1)(q) // R(V
(1)

T̂
)

such that

B(1)(q)(E(1, 0)) = X, B(1)(q)(E(0, 1)) = Y, B(1)(q)(E(1, 1)) = z2, B(1)(q)(q) = XY z−1
2

and ∀t ∈ T, B(1)(q)(Tt) = evt .

It is an isomorphism, that we call the generic (pro-p) Bernstein isomorphism.

6.1.4. Also, setting V
(1)

B̂
:= T∨ × VB̂, we have from 5.2.3 the ring isomorphism

Infl
V

(1)

B̂

V
(1)

T̂

= IdZ[T]⊗Z Res
VB̂

VT̂
: R(V

(1)

T̂
) = Z[T]⊗Z R(VT̂)

∼ // R(V
(1)

B̂
) = Z[T]⊗Z R(VB̂),

and setting V
(1)

Ĝ
:= T∨ × VĜ, we have from 9.5.2 the ring isomorphism

Ind
V

(1)

Ĝ

V
(1)

B̂

: R(V
(1)

B̂
)
∼ // K

V
(1)

Ĝ (V
(1)

Ĝ
/V

(1)

B̂
);

hence by composition we get the characteristic isomorphism

c
V

(1)

Ĝ

: R(V
(1)

T̂
)
∼ // K

V
(1)

Ĝ (V
(1)

Ĝ
/V

(1)

B̂
).

Whence a ring isomorphism

c
V

(1)

Ĝ

◦B(1)(q) : A(1)(q)
∼ // K

V
(1)

Ĝ (V
(1)

Ĝ
/V

(1)

B̂
).

6.1.5. The representation ring R(VT̂) is canonically isomorphic to the ring Z[VT̂] of regular func-
tions of VT̂ considered now as a diagonalizable monoid scheme over Z. Also recall from 2.2.1 the

ring extension Z ⊂ Z̃, and denote by •̃ the base change functor from Z to Z̃. For example, we will

from now on write Ã(1)(q) instead of A(1)

Z̃ (q). We have the constant finite diagonalizable Z̃-group

scheme T∨, whose group of characters is T, and whose ring of regular functions is

Z̃[T] =
∏
λ∈T∨

Z̃ελ.

Hence applying the functor Spec to B̃(1)(q), we obtain the commutative diagram of Z̃-schemes

Spec(Ã(1)(q))

π0×q
((

V
(1)

T̂
= T∨ × VT̂

Id×q
vv

Spec(B̃(1)(q))

∼
oo

(A1)(1) := T∨ × A1
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where π0 : Spec(Ã(1)(q)) → T∨ is the decomposition of Spec(Ã(1)(q)) into its connected compo-
nents. In particular, for each λ ∈ T∨, we have the subring Ãλ(q) = Ã(1)(q)ελ of Ã(1)(q) and the
isomorphism

Spec(Ãλ(q)) {λ} × VT̂
Spec(B̃λ(q))

∼
oo

of Z̃-schemes over {λ}×A1. In turn, each of these isomorphisms admits a model over Z, obtained
by applying Spec to the ring isomorphism in 4.1.5

B1(q) : A1(q)
∼ // R(VT̂).

6.2 The generic Satake isomorphism

Recall part of our notation: G is the algebraic group GL2 (which is defined over Z), F is a local
field and G := G(F ). We have denoted by oF the ring of integers of F . Now we set K := G(oF ).

6.2.1. Definition. Let R be any commutative ring. The spherical Hecke algebra of G with
coefficients in R is defined to be the convolution algebra

Hsph
R := (R[K\G/K], ?)

generated by the K-double cosets in G.

6.2.2. By the work of Kazhdan and Lusztig, the R-algebra Hsph
R depends on F only through the

cardinality q of its residue field. Indeed, choose a uniformizer $ ∈ oF . For a dominant cocharacter
λ ∈ Λ+ of T, let 1λ be the characteristic function of the double coset Kλ($)K. Then (1λ)λ∈Λ+

is an R-basis of Hsph
R . Moreover, for all λ, µ, ν ∈ Λ+, there exist polynomials

Nλ,µ;ν(q) ∈ Z[q]

depending only on the triple (λ, µ, ν), such that

1λ ? 1µ =
∑
ν∈Λ+

Nλ,µ;ν(q)1ν

where Nλ,µ;ν(q) ∈ Z ⊂ R is the value of Nλ,µ;ν(q) at q = q. These polynomials are uniquely
determined by this property since when F vary, the corresponding integers q form an infinite set.
Their existence can be deduced from the theory of the spherical algebra with coefficients in C, as
Hsph
R = R ⊗Z Hsph

Z and Hsph
Z ⊂ Hsph

C (e.g. using arguments similar to those in the proof of 6.2.4
below).

6.2.3. Definition. Let q be an indeterminate. The generic spherical Hecke algebra is the Z[q]-
algebra Hsph(q) defined by generators

Hsph(q) := ⊕λ∈Λ+Z[q]Tλ

and relations:
TλTµ =

∑
ν∈Λ+

Nλ,µ;ν(q)Tν for all λ, µ ∈ Λ+.

6.2.4. Theorem. There exists a unique ring homomorphism

S (q) : Hsph(q) // R(VT̂)

such that

S (q)(T(1,0)) = X + Y, S (q)(T(1,1)) = z2 and S (q)(q) = XY z−1
2 .

It is an isomorphism onto the subring R(VT̂)W0 of W0-invariants

S (q) : Hsph(q)
∼ // R(VT̂)W0 ⊂ R(VT̂).

In particular, the algebra Hsph(q) is commutative.
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Proof. Let

Scl : Hsph
C

∼ // C[X•(T̂)]W0

be the ‘classical’ isomorphism constructed by Satake [Sat63]. We use [Gr98] as a reference.

For λ ∈ Λ+, let χλ ∈ Z[X•(T̂)]W0 be the character of the irreducible representation of Ĝ of

highest weight λ. Then (χλ)λ∈Λ+ is a Z-basis of Z[X•(T̂)]W0 . Set fλ := S −1
cl (q〈ρ,λ〉χλ), where

2ρ = α := (1,−1). Then for each λ, µ ∈ Λ+, there exist polynomials dλ,µ(q) ∈ Z[q] such that

fλ = 1λ +
∑
µ<λ

dλ,µ(q)1µ ∈ Hsph
C ,

where dλ,µ(q) ∈ Z is the value of dλ,µ(q) at q = q; the polynomial dλ,µ(q) depends only on the
couple (λ, µ), in particular it is uniquely determined by this property. As (1λ)λ∈Λ+ is a Z-basis of

Hsph
Z , so is (fλ)λ∈Λ+ . Then let us set

fλ(q) := Tλ +
∑
µ<λ

dλ,µ(q)Tµ ∈ Hsph(q).

As (Tλ)λ∈Λ+ is a Z[q]-basis of Hsph(q), so is (fλ(q))λ∈Λ+ .

Next consider the following Z[q
1
2 ]-linear map:

Scl(q) : Z[q
1
2 ]⊗Z[q] Hsph(q) −→ Z[q

1
2 ]⊗Z Z[X•(T̂)] = Z[q

1
2 ][X•(T̂)]

1⊗ fλ(q) 7−→ q〈ρ,λ〉χλ.

We claim that it is a ring homomorphism. Indeed, for h1(q), h2(q) ∈ Z[q
1
2 ]⊗Z[q]Hsph(q), we need

to check the identity

Scl(q)(h1(q)h2(q)) = Scl(q)(h1(q))Scl(q)(h2(q)) ∈ Z[q
1
2 ][X•(T̂)].

Projecting in the Z[q
1
2 ]-basis X•(T̂), the latter corresponds to (a finite number of) identities in

the ring Z[q
1
2 ] of polynomials in the variable q

1
2 . Now, by construction and because Scl is a ring

homomorphism, the desired identities hold after specialyzing q to any power of a prime number;
hence they hold in Z[q

1
2 ]. Also note that Scl(q) maps 1 = T(0,0) to 1 = χ(0,0) by definition.

It can also be seen that Scl(q) is injective using a specialization argument: if h(q) ∈ Z[q
1
2 ]⊗Z[q]

Hsph(q) satisfies Scl(q)(h(q)) = 0, then the coordinates of h(q) (in the basis (1⊗ fλ(q))λ∈Λ+ say,

one can also use the basis (1⊗Tλ)λ∈Λ+) are polynomials in the variable q
1
2 which must vanish for

an infinite number of values of q, and hence they are identically zero.
Let us describe the image of Hsph(q) ⊂ Z[q

1
2 ]⊗Z[q] Hsph(q) under the ring embedding Scl(q).

By construction, we have

Scl(q)(Hsph(q)) =
⊕
λ∈Λ+

Z[q]q〈ρ,λ〉χλ.

Explicitly,
Λ+ = N(1, 0)⊕ Z(1, 1) ⊂ Z(1, 0)⊕ Z(0, 1) = Λ,

so that

Scl(q)(Hsph(q)) =

(⊕
n∈N

Z[q]q
n
2 χ(n,0)

)
⊗Z Z[χ±1

(1,1)].

On the other hand, recall that the ring of symmetric polynomials in the two variables e(1,0) and
e(0,1) is a graded ring generated the two characters χ(1,0) = e(1,0) + e(0,1) and χ(1,1) = e(1,0)e(0,1):

Z[e(1,0), e(0,1)]s =
⊕
n∈N

Z[e(1,0), e(0,1)]sn = Z[χ(1,0), χ(1,1)].

As χ(1,0) is homogeneous of degree 1 and χ(1,1) is homogeneous of degree 2, this implies that

Z[e(1,0), e(0,1)]sn =
⊕

(a,b)∈N2

a+2b=n

Zχa(1,0)χ
b
(1,1).
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Now if a+2b = n, then q
n
2 χa(1,0)χ

b
(1,1) = (q

1
2χ(1,0))

a(qχ(1,1))
b. As the symmetric polynomial χ(n,0)

is homogeneous of degree n, we get the inclusion

Scl(q)(Hsph(q)) ⊂ Z[q][q
1
2χ(1,0),qχ(1,1)]⊗Z Z[χ±1

(1,1)] = Z[q][q
1
2χ(1,0), χ

±1
(1,1)].

Since by definition of Scl(q) we have Scl(q)(f(1,0)(q)) = q
1
2χ(1,0), Scl(q)(f(1,1)(q)) = χ(1,1) and

Scl(q)(f(−1,−1)(q)) = χ(−1,−1) = χ−1
(1,1), this inclusion is an equality. We have thus obtained the

Z[q]-algebra isomorphism:

Scl(q)|Hsph(q) : Hsph(q)
∼ // Z[q][q

1
2χ(1,0), χ

±1
(1,1)].

Also note that T(1,0) 7→ q
1
2χ(1,0) and T(1,1) 7→ χ(1,1) since T(1,0) = f(1,0)(q) and T(1,1) = f(1,1)(q).

Finally, recall that VT̂ being the diagonalizable k-monoid scheme Spec(k[X,Y, z±1
2 ]), we have

R(VT̂)W0 = Z[X,Y, z±1
2 ]W0 = Z[X + Y,XY, z±1

2 ] = Z[X + Y,XY z−1
2 , z±1

2 ].

Hence we can define a ring isomorphism

ι : Z[q][q
1
2χ(1,0), χ

±1
(1,1)]

∼ // R(VT̂)W0

by ι(q) := XY z−1
2 , ι(q

1
2χ(1,0)) = X + Y and ι(χ(1,1)) = z2. Composing, we get the desired

isomorphism

S (q) := ι ◦Scl(q)|Hsph(q) : Hsph(q)
∼ // R(VT̂)W0 .

Note that S (q)(T(1,0)) = X + Y , S (q)(T(1,1)) = z2, S (q)(q) = XY z−1
2 , and that S (q) is

uniquely determined by these assignments since the ring Hsph(q) is the polynomial ring in the
variables q, T(1,0) and T±1

(1,1), thanks to the isomorphism Scl(q)|Hsph(q).

6.2.5. Remark. The choice of the isomorphism ι in the preceding proof may seem ad hoc.
However, it is natural from the point of view of the Vinberg fibration q : VT̂ → A1.

First, as pointed out by Herzig in [H11, §1.2], one can make the classical complex Satake

transform Scl integral, by removing the factor δ
1
2 from its definition, where δ is the modulus

character of the Borel subgroup. Doing so produces a ring embedding

S ′ : Hsph
Z
� � // Z[X•(T̂)].

The image of S ′ is not contained in the subring Z[X•(T̂)]W0 of W0-invariants. In fact,

S ′(T(1,0)) = qe(1,0) + e(0,1) and S ′(T(1,1)) = e(1,1),

so that

S ′ : Hsph
Z

∼ // Z[(qe(1,0) + e(0,1)), e±(1,1)] ⊂ Z[X•(T̂)].

Now,
Z[X•(T̂)] = Z[T̂] = Z[VT̂,1],

where T̂ ∼= VT̂,1 is the fiber at 1 of the fibration q : VT̂ → A1 considered over Z. But the algebra

Hsph
Z is the specialisation at q of the generic algebra Hsph(q). From this perspective, the morphism
S ′ is unnatural, since it mixes a 1-fiber with a q-fiber. To restore the q-compatibility, one must
consider the composition of Q⊗Z S ′ with the isomorphism

Q[VT̂,1] = Q[X,Y, z±1
2 ]/(XY − z2)

∼−→ Q[VT̂,q] = Q[X,Y, z±1
2 ]/(XY − qz2)

X 7→ q−1X

Y 7→ Y

z2 7→ z2.
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But then one obtains the formulas

Hsph
Q

∼−→ Q[VT̂,q] = Q[X,Y, z±1
2 ]/(XY − qz2)

T(1,0) 7→ X + Y

T(1,1) 7→ z2

q 7→ XY z±1
2 .

This composed map is defined over Z, its image is the subring Z[VT̂,q]
W0 of W0-invariants, and it

is precisely the specialisation q = q of the isomorphism S (q) from 6.2.4.

6.2.6. Definition. We call

S (q) : Hsph(q)
∼ // R(VT̂)W0

the generic Satake isomorphism.

6.2.7. Composing with the inverse of the character isomorphism χ−1
V
Ĝ

: R(VT̂)W0
∼−→ R(VĜ) from

5.2.8, we arrive at an isomorphism

χ−1
V
Ĝ
◦S (q) : Hsph(q)

∼ // R(VĜ).

6.2.8. Next, recall the generic Iwahori-Hecke algebra H1(q) 4.1.2, and the commutative subring
A1(q) ⊂ H1(q) 4.1.5 together with the isomorphism B1(q) in 6.1.5.

6.2.9. Definition. The generic central elements morphism is the unique ring homomrphism

Z1(q) : Hsph(q) // A1(q) ⊂ H1(q)

making the diagram

A1(q) ∼
B1(q)

// R(VT̂)

Hsph(q)

Z1(q)

OO

∼
S (q)

// R(VT̂)W0

?�

OO

commutative.

6.2.10. By construction, the morphism Z1(q) is injective, and is uniquely determined by the
following equalities in A1(q):

Z1(q)(T(1,0)) = z1, Z1(q)(T(1,1)) = z2 and Z1(q)(q) = q.

Moreover the group W0 acts on the ring A1(q) and the invariant subring A1(q)W0 is equal to
the center Z(H1(q)) ⊂ H1(q). As the isomorphism B1(q) is W0-equivariant by construction, we
obtain that the image of Z1(q) indeed is equal to the center of the generic Iwahori-Hecke algebra
H1(q):

Z1(q) : Hsph(q)
∼ // Z(H1(q)) ⊂ A1(q) ⊂ H1(q).

6.2.11. Under the identification R(VT̂) = Z[VT̂] of 6.1.5, the elements S (q)(T(1,0)) = X + Y ,
S (q)(q) = q, S (q)(T(1,1)) = z2, correspond to the Steinberg choice of coordinates z1, q, z2 on
the affine Z-scheme VT̂/W0 = Spec(Z[VT̂]W0). On the other hand, the Trace of representations

morphism Tr : R(VĜ)→ Z[VĜ]Ĝ fits into the commutative diagram

R(VT̂)W0 R(VĜ)∼

χV
Ĝoo

Tr
��

Z[VT̂]W0 Z[VĜ]Ĝ∼
Choo
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where χV
Ĝ

is the character isomorphism of 5.2.8, and Ch is the Chevalley isomorphism which is
constructed for the Vinberg monoid VĜ by Bouthier in [Bo15, Prop. 1.7]. So we have the following
commutative diagram of Z-schemes

Spec(A1(q))

Spec(Z1(q))
����

VT̂

����

Spec(B1(q))

∼
oo � � // VĜ

����

Spec(Hsph(q))

∼
(T(1,0),q,T(1,1)) ''

VT̂/W0

(z1,q,z2)

∼

yy

∼
Spec(S (q))

oo
∼

Spec(Ch)
// VĜ//Ĝ

A2 ×Gm.

Note that for Ĝ = GL2, the composed Chevalley-Steinberg map VĜ → A2×Gm is given explicitly
by attaching to a 2× 2 matrix its characteristic polynomial (when z2 = 1).

6.2.12. We have recalled that for the generic pro-p-Iwahori-Hecke algebra H(1)(q) too, the center
can be described in terms of W0-invariants, namely Z(H(1)(q)) = A(1)(q)W0 , cf. 2.3.4. As the
generic Bernstein isomorphism B(1)(q) is W0-equivariant by construction, cf. 6.1.3, we can make
the following definition.

6.2.13. Definition. We call

S (1)(q) := B(1)(q)W0 : A(1)(q)W0
∼ // R(V

(1)

T̂
)W0

the generic pro-p-Iwahori Satake isomorphism.

6.2.14. Note that with V γ
T̂

:=
∐
λ∈γ VT̂ we have V

(1)

T̂
= T∨ × VT̂ =

∐
γ∈T∨/W0

V γ
T̂

and the W0-
action on this scheme respects these γ-components. We obtain the decomposition into connected
components

V
(1)

T̂
/W0 =

∐
γ∈T∨/W0

(
∐
λ∈γ

VT̂)/W0 =
∐

γ∈T∨/W0

V γ
T̂
/W0

If γ is regular, then V γ
T̂
/W0 ' VT̂, the isomorphism depending on a choice of order on the set

γ, cf. 2.3.5. Hence, passing to Z̃ as in 6.1.5, with H̃(1)(q) := H(1)

Z̃ (q), we obtain the following

commutative diagram of Z̃-schemes.

Spec(Ã(1)(q))

����

V
(1)

T̂

����

Spec(B̃(1)(q))

∼
oo

Spec(Z(H̃(1)(q)))

∼

��

V
(1)

T̂
/W0∼

Spec(S̃ (1)(q))
oo

∼ 2.3.5

��

(A2 ×Gm)T
∨/W0

∐
(T∨/W0)reg

VT̂
∐

(T∨/W0)non-reg
VT̂/W0,∼

oo

where the bottom isomorphism of the diagram is given by the standard coordinates (x, y, z2) on the
regular components and by the Steinberg coordinates (z1,q, z2) on the non-regular components.

6.3 The generic parametrization

We keep the notation Z ⊂ Z̃ for the ring extension of 2.2.1. Then we have defined the Z̃-scheme

V
(1)

T̂
in 6.1.5, and we have considered in 6.2.14 its quotient by the natural W0-action. Also recall

that Ĝ = GL2 is the Langlands dual k-group of GL2,F .
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6.3.1. Definition. The category of quasi-coherent modules on the Z̃-scheme V
(1)

T̂
/W0 will be called

the category of Satake parameters, and denoted by SPĜ:

SPĜ := QCoh
(
V

(1)

T̂
/W0

)
.

For γ ∈ T∨/W0, we also define SPγ
Ĝ

:= QCoh
(
V γ
T̂
/W0

)
, where as above V γ

T̂
=
∐
λ∈γ VT̂.

6.3.2. Now, over Z̃, we have the isomorphism

iS̃ (1)(q) := Spec(S̃ (1)(q)) : V
(1)

T̂
/W0

∼ // Spec(Z(H̃(1)(q)))

from the scheme V
(1)

T̂
/W0 to the spectrum of the center Z(H̃(1)(q)) of the generic pro-p-Iwahori

Hecke algebra H̃(1)(q), cf. 6.2.14.

6.3.3. Corollary. The category of modules over Z(H̃(1)(q)) is equivalent to the category of Satake
parameters:

S := (iS̃ (1)(q))
∗ : Mod(Z(H̃(1)(q))) ∼

//
SPĜ : (iS̃ (1)(q))∗.oo

The equivalence S will be referred to as the functor of Satake parameters. The quasi-inverse
(iS̃ (1)(q))∗ will be denoted by S−1.

6.3.4. Still from 6.2.14, these categories decompose as products over T∨/W0 (considered as a finite
set), compatibly with the equivalences: for all γ ∈ T∨/W0,

Sγ := (iS̃ γ(q))
∗ : Mod(Z(H̃γ(q))) ∼

//
SPγ

Ĝ
: (iS̃ γ(q))∗,oo

where

SPγ
Ĝ
'
{

QCoh(VT̂) if γ is regular
QCoh(VT̂/W0) if γ is non-regular.

In the regular case, the latter isomorphism depends on a choice of order on the set γ.

6.3.5. In particular, we have the trivial orbit γ := {1}. The corresponding component H̃{1}(q) of
H̃(1)(q) is canonically isomorphic to the Z̃-base change of the generic non-regular Iwahori-Hecke
algebra H1(q). Hence from 6.2.10 we have an isomorphism

Z̃1(q) : H̃sph(q)
∼ // Z(H̃{1}(q)) ⊂ Ã{1}(q) ⊂ H̃{1}(q) ⊂ H̃(1)(q).

Using these identifications, the equivalence Sγ for γ := {1} can be rewritten as

S{1} : Mod(H̃sph(q))
∼ // SP

{1}
Ĝ

.

6.3.6. Definition. The category of quasi-coherent modules on the Z̃-scheme V
(1)

T̂
will be called

the category of Bernstein parameters, and denoted by BPĜ:

BPĜ := QCoh
(
V

(1)

T̂

)
.

6.3.7. Over Z̃, we have the isomorphism

iB̃(1)(q) := Spec(B̃(1)(q)) : V
(1)

T̂

∼ // Spec(Ã(1)(q)))

from the scheme V
(1)

T̂
to the spectrum of the commutative subring Ã(1)(q) of the generic pro-p-

Iwahori Hecke algebra H̃(1)(q), cf. 6.1.5. Also we have the restriction functor

Res
H̃(1)(q)

Ã(1)(q)
: Mod(H̃(1)(q)) // Mod(Ã(1)(q)) ∼= QCoh(Spec(Ã(1)(q)))

from the category of left H̃(1)(q)-modules to the one of Ã(1)(q)-modules, equivalently of quasi-
coherent modules on Spec(Ã(1)(q)).
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6.3.8. Definition. The functor of Bernstein parameters is the composed functor

B := (iB̃(1)(q))
∗ ◦ Res

H̃(1)(q)

Ã(1)(q)
: Mod(H̃(1)(q)) // BPĜ .

6.3.9. Still from 6.1.5, the category BPĜ decomposes as a product over the finite group T∨:

BPĜ
∼=
∏
λ∈T∨

BPλ
Ĝ
, where ∀λ ∈ T∨, BPλ

Ĝ
' QCoh(VT̂).

6.3.10. Denoting by π : V
(1)

T̂
→ V

(1)

T̂
/W0 the canonical projection, the compatibilty between the

functors S and B of Satake and Bernstein parameters is expressed by the commutativity of the
diagram

Mod(H̃(1)(q))
B //

Res
H̃(1)(q)

Z(H̃(1)(q))
��

BPĜ

π∗

��

Mod(Z(H̃(1)(q)))
S
∼
// SPĜ .

6.3.11. Definition. The generic parametrization functor is the functor

P := S ◦ Res
H̃(1)(q)

Z(H̃(1)(q))
= π∗ ◦B :

Mod(H̃(1)(q))

��

SPĜ .

6.3.12. It follows from the definitions that for all γ ∈ T∨/W0, the fiber of P over the direct factor
SPγ

Ĝ
⊂ SPĜ is the direct factor Mod(H̃γ(q)) ⊂ Mod(H̃(1)(q)):

P−1(SPγ
Ĝ

) = Mod(H̃γ(q)) ⊂ Mod(H̃(1)(q)).

Accordingly the parametrization functor P decomposes as the product over the finite set T∨/W0

of functors

P γ : Mod(H̃γ(q)) // SPγ
Ĝ
.

6.3.13. In the case of the trivial orbit γ := {1}, it follows from 6.3.5 that P {1} factors as

Mod(H̃{1}(q))

Res
H̃{1}(q)

H̃sph(q)
��

P{1}

&&

Mod(H̃sph(q)) ∼
S{1} // SP

{1}
Ĝ

.

6.4 The generic antispherical module

Recall the generic regular and non-regular antispherical representations A2(q) 3.3.1 and A1(q)
4.3.1 of H2(q) and H1(q). Thanks to 3.1.4 and 4.1.4, they are models over Z of representations
Ã γ(q) of the regular and non-regular components Ã γ(q), γ ∈ T∨/W0, of the generic pro-p-
Iwahori Hecke algebra H̃(1)(q) over Z̃, cf. 2.2.3 and 2.3.2. Taking the product over T∨/W0 of these
representations, we obtain a representation

Ã (1)(q) : H̃(1)(q) // EndZ(H̃(1)(q))(Ã(1)(q)).

By construction, the representation Ã (1)(q) depends on a choice of order on each regular orbit γ.
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6.4.1. Definition. We call Ã (1)(q) the generic antispherical representation, and the correspond-
ing left H̃(1)(q)-module M̃(1) the generic antispherical module.

6.4.2. Proposition.

1. The generic antispherical representation is faithful.

2. The Bernstein parameter of the antispherical module is the structural sheaf:

B(M(1)) = O
V

(1)

T̂

.

3. The Satake parameter of the antispherical module is the R̃(V
(1)

Ĝ
)-module of V

(1)

Ĝ
-equivariant

K-theory of the flag variety of V
(1)

Ĝ
:

c̃
V

(1)

Ĝ

: S(M(1))
∼−→ K̃

V
(1)

Ĝ (V
(1)

Ĝ
/V

(1)

B̂
).

Proof. Part 1. follows from 3.3.3 and 4.3.3, part 2. from the property (i) in 3.3.1 and 4.3.1, and
part 3. from the characteristic isomorphism in 6.1.4.

6.4.3. Now, being a left H̃(1)(q)-module, the antispherical module M̃(1) defines a functor

M̃(1) ⊗Z(H̃(1)(q)) • : Mod(Z(H̃(1)(q))) // Mod(H̃(1)(q)).

On the other hand, recall the canonical projection π : V
(1)

T̂
→ V

(1)

T̂
/W0 from 6.3.10. Then point 2.

of 6.4.2 has the following consequence.

6.4.4. Corollary. The diagram

Mod(H̃(1)(q))
B // BPĜ

Mod(Z(H̃(1)(q)))
S
∼
//

M̃(1)⊗
Z(H̃(1)(q))

•

OO

SPĜ

π∗

OO

is commutative.

6.4.5. Definition. The generic antispherical functor is the functor

ASph := (M̃(1) ⊗Z(H̃(1)(q)) •) ◦ S
−1 :

SPĜ
// Mod(H̃(1)(q)).

6.4.6. Corollary. The diagram

Mod(H̃(1)(q))

P

��

SPĜ

ASph
44

π∗
// BPĜ π∗

// SPĜ

is commutative.

Proof. One has P ◦ASph = π∗ ◦ (B ◦ASph) = π∗ ◦ π∗ by the preceding corollary.

6.4.7. By construction, the antispherical functor ASph decomposes as a product of functors ASphγ

for γ ∈ T∨/W0, and accordingly the previous diagram decomposes over T∨/W0.

6.4.8. In particular for γ = {1} we have the commutative diagram

Mod(H̃{1}(q))

P{1}

��

Res
H̃{1}(q)

H̃sph(q)

((

SP
{1}
Ĝ

ASph{1}
44

π∗
// BP

{1}
Ĝ π∗

// SP
{1}
Ĝ

Mod(H̃sph(q)).
S{1}

∼oo
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7 The theory at q = q = 0

We keep all the notations introduced in the preceding section. In particular, k = Fq.

7.1 Geometric representation theory at q = 0

7.1.1. Recall from 5.1 the k-semigroup scheme

VGL2,0 = Sing2×2×Gm,

which can even be defined over Z, and which is obtained as the 0-fiber of

VGL2

q

��

A1.

7.1.2. It admits
VT̂,0 = SingDiag2×2×Gm

as a commutative subsemigroup scheme. The latter has the following structure: it is the pinching
of the monoids

A1
X ×Gm := Spec(k[X, z±1

2 ]) and A1
Y ×Gm := Spec(k[Y, z±1

2 ])

along the sections X = 0 and Y = 0. These monoids are semisimple, with representation rings

R(A1
X ×Gm) = Z[X, z±1

2 ] and R(A1
Y ×Gm) = Z[Y, z±1

2 ].

There are three remarkable elements in VT̂,0, namely

εX := (diag(1, 0), 1), εY := (diag(0, 1), 1) and ε0 := (diag(0, 0), 1).

They are idempotents. Now let M be a finite dimensional k-representation of VT̂,0. The idempo-
tents act on M as projectors, and as the semigroup VT̂,0 is commutative, the k-vector space M
decomposes as a direct sum

M =
⊕

(λX ,λY ,λ0)∈{0,1}3
M(λX , λY , λ0)

where
M(λX , λY , λ0) = {m ∈M | mεX = λXm, mεY = λYm, mε0 = λ0m}.

Moreover, since VT̂,0 is commutative, each of these subspaces is in fact a subrepresentation of M .

As εXεY = ε0 ∈ VT̂,0, we have M(1, 1, 0) = 0. Next, as εX is the unit of the monoid A1
X , if

λX = 0 then Res
VT̂,0

A1
X

M(λX , λY , λ0) must be the null representation, in particular we must have

λ0 = 0; hence M(0, 0, 1) = M(0, 1, 1) = 0. Considering εY instead of εX , we get similarly that
M(0, 0, 1) = M(1, 0, 1) = 0. Consequently

M = M(1, 0, 0)
⊕

M(0, 1, 0)
⊕

M(1, 1, 1)
⊕

M(0, 0, 0).

The restriction Res
VT̂,0

A1
X

M(1, 0, 0) is a representation of the monoid A1
X where 0 acts by 0, and

Res
VT̂,0

A1
Y

M(1, 0, 0) is the null representation. Hence, if for n > 0 we still denote by Xn the character

of VT̂,0 which restricts to the characterXn of A1
X×Gm and the null map of A1

Y ×Gm, thenM(1, 0, 0)
decomposes as a sum of weight spaces

M(1, 0, 0) = ⊕n>0M(Xn) := ⊕n>0,m∈ZM(Xnzm2 ).
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Similarly

M(0, 1, 0) = ⊕n>0M(Y n) := ⊕n>0,m∈ZM(Y nzm2 ).

Finally, VT̂,0 acts through the projection VT̂,0 → Gm on

M(1, 1, 1) =: M(1) = ⊕m∈ZM(zm2 ),

and by 0 on

M(0, 0, 0) =: M(0).

Thus we have obtained the following

7.1.3. Lemma. The category Rep(VT̂,0) is semisimple, and there is a ring isomorphism

R(VT̂,0) ∼=
(
Z[X,Y, z±1

2 ]/(XY )
)
× Z.

7.1.4. Next let

VB̂,0 = SingUpTriang2×2×Gm ⊂ VGL2,0 = Sing2×2 Gm

be the subsemigroup scheme of singular upper triangular 2× 2-matrices. It contains VT̂,0, and the
inclusion VT̂,0 ⊂ VB̂,0 admits a retraction VB̂,0 → VT̂,0, namely the specialisation at q = 0 of the
retraction 5.2.2.

Let M be an object of Rep(VB̂,0). Write

Res
VB̂,0

VT̂,0
M = M(1, 0, 0)⊕M(0, 1, 0)⊕M(1)⊕M(0).

For a subspace N ⊂M , consider the following property:

(PN ) the subspace N ⊂ M is a subrepresentation, and VB̂,0 acts on N through the retraction
of k-semigroup schemes VB̂,0 → VT̂,0.

Let us show that (PM(0,1,0)) is true. Indeed for m ∈M(0, 1, 0) = ⊕n>0M(Y n), we have

m

(
x c
0 0

)
= (mεY )

(
x c
0 0

)
= mε0 = 0 = m

(
x 0
0 0

)
and

m

(
0 c
0 y

)
= (mεY )

(
0 c
0 y

)
= m

(
0 0
0 y

)
.

Next assume M(0, 1, 0) = 0, and let us show that in this case (PM(0)) is true. Indeed for m ∈M(0),
we have

m

(
x c
0 0

)
= m

(
εX

(
x c
0 0

))
= (mεX)

(
x c
0 0

)
= 0,

and if we decompose

m′ := m

(
0 c
0 y

)
= m′(1,0,0) +m′1 +m′0 ∈M(1, 0, 0)⊕M(1)⊕M(0),

then by applying εX on the right we see that 0 = m′(1,0,0) +m′1 so that m′ ∈M(0) and hence

m

(
0 c
0 y

)
= m

((
0 c
0 y

)
εY

)
= m′εY = 0.

Next assume M(0, 1, 0) = M(0) = 0, and let us show that in this case (PM(1,0,0)) is true. Indeed,
let m ∈M(1, 0, 0) = ⊕n>0M(Xn). Then for any c ∈ k,

m′ := m

(
0 c
0 0

)
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satisfies m′εX = 0, m′εY = m′, m′ε0 = 0, i.e. m′ ∈ M(0, 1, 0), and hence is equal to 0 by our
assumption. It follows that

m

(
0 c
0 y

)
= (mεX)

(
0 c
0 y

)
= m

(
εX

(
0 c
0 y

))
= m

(
0 c
0 0

)
= 0 = m

(
0 0
0 y

)
.

On the other hand, if we decompose

m′ := m

(
x c
0 0

)
= m′(1,0,0) +m′1 ∈M(1, 0, 0)⊕M(1),

then by applying ε0 on the right we find 0 = m′1, i.e. m′ ∈M(1, 0, 0) and hence

m

(
x c
0 0

)
= m′ = m′εX = m

((
x c
0 0

)
εX

)
= m

(
x 0
0 0

)
.

Finally assume M(0, 1, 0) = M(0) = M(1, 0, 0) = 0, and let us show that in this case (PM(1)) is
true, i.e. that VB̂,0 acts through the projection VB̂,0 → Gm on M = M(1). Indeed for any m we
have

m

(
x c
0 0

)
=

(
m

(
x c
0 0

))
ε0 = m

((
x c
0 0

)
ε0

)
= mε0 = m

and

m

(
0 c
0 y

)
=

(
m

(
0 c
0 y

))
ε0 = m

((
0 c
0 y

)
ε0

)
= mε0 = m.

It follows from the preceding discussion that the irreducible representations of VB̂,0 are the
characters, which are inflated from those of VT̂,0 through the retraction VB̂,0 → VT̂,0. As a
consequence, considering the restriction and inflation functors

Res
VB̂,0

VT̂,0
: Rep(VB̂,0)

//
Rep(VT̂,0) : Infl

VB̂,0

VT̂,0
,oo

which are exact and compatible with tensor products and units, we get:

7.1.5. Lemma. The ring homomorphisms

Res
VB̂,0

VT̂,0
: R(VB̂,0)

//
R(VT̂,0) : Infl

VB̂,0

VT̂,0
,oo

are isomorphisms, which are inverse one to the other.

7.1.6. Finally, note that ε0 ∈ VGL2(k) belongs to all the left VGL2(k)-cosets in VGL2(k). Hence, by
9.4.3, the catgory Rep(VB̂,0) is equivalent to the one of induced vector bundles on the semigroupoid

flag variety VGL2,0/VB̂,0:

IndVGL2,0

VB̂,0
: Rep(VB̂,0)

∼ // CVGL2,0

Ind (VGL2,0/VB̂,0) ⊂ CVGL2,0(VGL2,0/VB̂,0).

7.1.7. Corollary. We have a ring isomorphism

IndVGL2,0

VB̂,0
◦ Infl

VB̂,0

VT̂,0
: R(VT̂,0)

∼ // K
VGL2,0

Ind (VGL2,0/VB̂,0).

7.1.8. Definition. We call relevant the full subcategory

Rep(VT̂,0)rel ⊂ Rep(VT̂,0)

whose objects M satisfy M(0) = 0. Correspondingly, we have relevant full subcategories

Rep(VB̂,0)rel ⊂ Rep(VB̂,0) and CVGL2,0

Ind (VGL2,0/VB̂,0)rel ⊂ CVGL2,0

Ind (VGL2,0/VB̂,0).
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7.1.9. Corollary. We have a ring isomorphism

cVGL2,0
:= Z[X,Y, z±1

2 ]/(XY ) ∼= R(VT̂,0)rel ∼ // K
VGL2,0

Ind (VGL2,0/VB̂,0)rel,

that we call the characteristic isomorphism in the equivariantK-theory of the flag variety VGL2,0/VB̂,0.

7.1.10. We have a commutative diagram specialization at q = 0

Z[X,Y, z±1
2 ]

cVGL2

∼
//

����

KVGL2 (VGL2/VB̂)

����

Z[X,Y, z±1
2 ]/(XY )

cVGL2,0

∼
// K

VGL2,0

Ind (VGL2,0/VB̂,0)rel,

where the vertical right-hand side map is given by restricting equivariant vector bundles to the
0-fiber of q : VGL2 → A1.

7.2 The mod p Satake and Bernstein isomorphisms

7.2.1. Notation. In the sequel, we will denote by (•)Fq the specialization at q = q = 0, i.e. the
base change functor along the ring morphism

Z[q] −→ Fq =: k

q 7−→ 0.

Also we fix an embedding µq−1 ⊂ F×q , so that the above morphism factors through the inclusion

Z[q] ⊂ Z̃[q], where Z ⊂ Z̃ is the ring extension considered in 2.2.1.

7.2.2. The mod p Satake and pro-p-Iwahori Satake isomorphisms. Specializing 6.2.6, we
get an isomorphism of Fq-algebras

SFq : Hsph

Fq
∼ // Fq[VT̂,0]W0 =

(
Fq[X,Y, z±1

2 ]/(XY )
)W0

.

In [H11], Herzig constructed an isomorphism

SHer : Hsph

Fq
∼ // Fq[X•(T̂)−] = Fq[e(0,1), e±(1,1)]

(this is Fq ⊗Z S ′, with the notation S ′ from 6.2.5). They are related by the Steinberg choice
of coordinates z1 := X + Y and z2 on the quotient VT̂,0/W0, cf. 6.2.11, i.e. by the following
commutative diagram

Hsph

Fq ∼

SFq
//

SHer

∼

&&

(
Fq[X,Y, z±1

2 ]/(XY )
)W0

Fq[e(0,1), e±(1,1)].

e(0,1) 7→z1, e(1,1) 7→z2

∼
55

Specializing 6.2.13, we get an isomorphism of Fq-algebras

S
(1)

Fq
: (A(1)

Fq
)W0

∼ // Fq[V (1)

T̂,0
]W0 =

(
Fq[T][X,Y, z±1

2 ]/(XY )
)W0

.

7.2.3. The mod p Bernstein isomorphism. Specializing 6.1.3, we get an isomorphism of
Fq-algebras

B
(1)

Fq
: A(1)

Fq
∼ // Fq[V (1)

T̂,0
] = Fq[T][X,Y, z±1

2 ]/(XY ).
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Moreover, similarly as in 6.1.4 but here using 7.1.5 and 9.5.1, we get the characteristic isomorphism

c
V

(1)

Ĝ,0

: R(V
(1)

T̂,0
)
∼ // K

V
(1)

Ĝ,0

Ind (V
(1)

Ĝ,0
/V

(1)

B̂,0
).

Whence by 7.1.3 (and recalling 7.1.8) an isomorphism

crel

V
(1)

Ĝ,0
,Fq
◦B

(1)

Fq
: A(1)

Fq
∼ // K

V
(1)

Ĝ,0

Ind,Fq
(V

(1)

Ĝ,0
/V

(1)

B̂,0
)rel.

Also, specializing 6.1.5, B
(1)

Fq
splits as a product over T∨ of Fq-algebras isomorphisms Bλ

Fq
, each

of them being of the form

B1,Fq : A1,Fq
∼ // Fq[VT̂,0] = Fq[X,Y, z±1

2 ]/(XY ).

7.2.4. The mod p central elements embedding. Specializing 6.2.9, we get an embedding of
Fq-algebras

Z1,Fq : Hsph

Fq
∼ // Z(H1,Fq ) ⊂ A1,Fq ⊂ H1,Fq

making the diagram

A1,Fq ∼

B1,Fq
// Fq[VT̂,0] = Fq[X,Y, z±1

2 ]/(XY )

Hsph

Fq

?�

Z1,Fq

OO

∼

SFq
// Fq[VT̂,0]W0 =

(
Fq[X,Y, z±1

2 ]/(XY )
)W0

?�

OO

commutative. Then Z1,Fq coincides with the central elements construction of Ollivier [O14, Th.

4.3] for the case of GL2. This follows from the explicit formulas for the values of Z1(q) on T(1,0)

and T(1,1), cf. 6.2.10.

7.3 The mod p parametrization

7.3.1. Definition. The category of quasi-coherent modules on the k-scheme V
(1)

T̂,0
/W0 will be called

the category of mod p Satake parameters, and denoted by SPĜ,0:

SPĜ,0 := QCoh
(
V

(1)

T̂,0
/W0

)
.

For γ ∈ T∨/W0, we also define SPγ
Ĝ,0

:= QCoh
(
V γ
T̂,0

/W0

)
, where V γ

T̂,0
=
∐
λ∈γ VT̂,0.

7.3.2. Similarly to the generic case 6.3, the mod p pro-p-Iwahori Satake isomorphism induces an
equivalence of categories

S : Mod(Z(H(1)

Fq
))

∼ // SPĜ,0,

that will be referred to as the functor of mod p Satake parameters, and which decomposes as a
product over the finite set T∨/W0:

S =
∏
γ S

γ :
∏
γ Mod(Z(HγFq ))

∼ //
∏
γ SPγ

Ĝ,0
'
∏
γ reg QCoh(VT̂,0)

∏
γ non-reg QCoh(VT̂,0/W0).

For γ = {1} and using 7.2.4 we get an equivalence

S{1} : Mod(Hsph

Fq
)
∼ // SP

{1}
Ĝ,0

= QCoh(VT̂,0/W0).
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Note that under this equivalence, the characters Hsph

Fq
→ Fq correspond to the skyscraper sheaves

on VT̂,0/W0, and hence to its k-points. Choosing the Steinberg coordinates (z1, z2) on the k-scheme

VT̂,0/W0, they may also be regarded as the k-points of Spec(k[X•(T̂)−]), which are precisely the

mod p Satake parameters defined by Herzig in [H11].

7.3.3. Definition. The category of quasi-coherent modules on the k-scheme V
(1)

T̂,0
will be called

the category of mod p Bernstein parameters, and denoted by BPĜ,0:

BPĜ,0 := QCoh
(
V

(1)

T̂,0

)
.

7.3.4. Similarly to the generic case 6.3, the inclusion H(1)

Fq
⊃ A(1)

Fq
together with the mod p

Bernstein isomorphism define a functor of mod p Bernstein parameters

B : Mod(H(1)

Fq
) // BPĜ,0 .

Moreover the category BPĜ,0 decomposes as a product over the finite group T∨:

BPĜ,0 =
∏
λ

BPλ
Ĝ,0

=
∏
λ

QCoh(VT̂,0).

7.3.5. Notation. Let π : V
(1)

T̂,0
→ V

(1)

T̂,0
/W0 be the canonical projection.

7.3.6. Definition. The mod p parametrization functor is the functor

P := S ◦ Res
H(1)

Fq

Z(H(1)

Fq
)

= π∗ ◦B :

Mod(H(1)

Fq
)

��

SPĜ,0 .

7.3.7. The functor P decomposes as a product over the finite set T∨/W0:

P =
∏
γ P

γ :
∏
γ Mod(HγFq )

∼ //
∏
γ SPγ

Ĝ,0
.

In the case of the trivial orbit γ := {1}, P {1} factors as

Mod(H{1}Fq
)

Res
H{1}

Fq
Hsph

Fq ��

P{1}

$$

Mod(Hsph

Fq
) ∼

S{1} // SP
{1}
Ĝ,0

.

7.4 The mod p antispherical module

7.4.1. Definition. We call

A
(1)

Fq
: H(1)

Fq
// End

Z(H(1)

Fq
)
(A(1)

Fq
)

the mod p antispherical representation, and the corresponding left H(1)

Fq
-module M(1)

Fq
the mod p

antispherical module.
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7.4.2. Proposition.

1. The mod p antispherical representation is faithful.

2. The mod p Bernstein parameter of the antispherical module is the structural sheaf:

B(M(1)

Fq
) = O

V
(1)

T̂,0

.

3. The mod p Satake parameter of the antispherical module is the RFq (V
(1)

T̂,0
)rel,W0-module of the

relevant induced V
(1)

Ĝ,0
-equivariant KFq -theory of the flag variety of V

(1)

Ĝ,0
:

crel

V
(1)

Ĝ,0
,Fq

: S(M(1)

Fq
)
∼−→ K

V
(1)

Ĝ,0

Ind,Fq
(V

(1)

Ĝ,0
/V

(1)

B̂,0
)rel.

Proof. Part 1. follows from 3.3.3 and 4.3.5, part 2. from the property (i) in 3.3.1 and 4.3.1, and
part 3. from the characteristic isomorphism in 7.2.3.

7.4.3. Corollary. The diagram

Mod(H(1)

Fq
)

B // BPĜ,0

Mod(Z(H(1)

Fq
))

S
∼
//

M(1)

Fq
⊗
Z(H(1)

Fq
)
•
OO

SPĜ,0

π∗

OO

is commutative.

7.4.4. Definition. The mod p antispherical functor is the functor

ASph := (M(1)

Fq
⊗
Z(H(1)

Fq
)
•) ◦ S−1 :

SPĜ,0
// Mod(H(1)

Fq
).

7.4.5. Corollary. The diagram

Mod(H(1)

Fq
)

P

��

SPĜ,0

ASph
55

π∗
// BPĜ,0 π∗

// SPĜ,0

is commutative.

7.4.6. The antispherical functor ASph decomposes as a product of functors ASphγ for γ ∈ T∨/W0,
and accordingly the previous diagram decomposes over T∨/W0. In particular for γ = {1} we have
the commutative diagram

Mod(H{1}Fq
)

P{1}

��

Res
H{1}

Fq
Hsph

Fq

&&

SP
{1}
Ĝ,0

ASph{1}
55

π∗
// BP

{1}
Ĝ,0 π∗

// SP
{1}
Ĝ,0

Mod(Hsph

Fq
).

S{1}

∼oo
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7.4.7. Now, identifying the k-points of the k-scheme V
(1)

T̂,0
/W0 with the skyscraper sheaves on it,

the antispherical functor ASph induces a map

ASph :
(
V

(1)

T̂,0
/W0

)
(k) // {left H(1)

Fq
-modules}.

Considering the decomposition of V
(1)

T̂,0
/W0 into its connected components, cf. 6.2.14,

V
(1)

T̂,0
/W0 =

∐
γ∈(T∨/W0)

V γ
T̂,0

/W0 '
∐

γ∈(T∨/W0)reg

VT̂,0

∐
γ∈(T∨/W0)non-reg

VT̂,0/W0,

the antispherical map decomposes as a disjoint union of maps

ASphγ :
(
V γ
T̂,0

/W0

)
(k) ' VT̂,0(k) // {left HγFq -modules} for γ regular,

ASphγ :
(
V γ
T̂,0

/W0

)
(k) ' (VT̂,0/W0)(k) // {left HγFq -modules} for γ non-regular.

7.4.8. In the regular case, we make the standard choice of coordinates

VT̂,0(k) =

(
{(x, 0) | x ∈ k}

∐
(0,0)

{(0, y) | y ∈ k}
)
× {z2 ∈ k×}

and we identify HγFq with H2,Fq using 3.1.4. A point v ∈ VT̂,0(k) corresponds to a character

θv : Z(H2,Fq ) ' Fq[X,Y, z±1
2 ]/(XY ) −→ Fq,

and then ASphγ(v) identifies with the central reduction

A2,θv := A2,Fq ⊗Z(H2,Fq ),θv Fq

of the mod p regular antispherical representation A2,Fq specializing 3.3.1. The latter being an
isomorphism by 3.3.3, so is

A2,θv : H2,θv
∼ // EndFq (A2,θv ).

Consequently H2,θv is a matrix algebra and A2,θv is the unique simple finite dimensional left H2,Fq -
module with central character θv, up to isomorphism. It is the standard module with character
θv, with standard basis {ε1, ε2} (in particular its Fq-dimension is 2). Conversely, any simple finite
dimensional H2,Fq -module has a central character, by Schur’s lemma.

Following [V04], a central character θ is called supersingular if θ(X +Y ) = 0, and the standard
module with character θ is called supersingular if θ is. Since XY = 0, one has θ(X+Y ) = 0 if and
only if θ(X) = θ(Y ) = 0.

7.4.9. Theorem. Let γ ∈ T∨/W0 regular. Then the antispherical map induces a bijection

ASphγ :
(
V γ
T̂,0

/W0

)
(k)

∼ // {simple finite dimensional left HγFq -modules}/ ∼ .

The singular locus of the parametrizing k-scheme V γ
T̂,0

/W0 is given by (0, 0) × Gm ⊂ VT̂,0 in

the standard coordinates, and its k-points correspond to the supersingular Hecke modules through
the correspondence ASphγ .

7.4.10. In the non-regular case, we make the Steinberg choice of coordinates

(VT̂,0/W0)(k) = {z1 ∈ k} × {z2 ∈ k×}
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and we identify HγFq with H1,Fq using 4.1.4. A point v ∈ (VT̂,0/W0)(k) corresponds to a character

θv : Z(H1,Fq ) ' Fq[z1, z
±1
2 ] −→ Fq,

and then ASphγ(v) identifies with the central reduction

A1,θv := A1,Fq ⊗Z(H1,Fq ),θv Fq

of the mod p non-regular antispherical representation A1,Fq specializing 4.3.1.

Now recall from [V04, 1.4] the classification of the simple finite dimensional H1,Fq -modules:
they are the characters and the simple standard modules. The characters

H1,Fq = Fq[S,U±1] −→ F×q

are parametrized by the set {0,−1} × F×q via evaluation on the elements S and U . On the other

hand, given v = (z1, z2) ∈ k × k× = Fq × F×q , a standard module with character θv over H1,Fq is
defined to be a module of type

M2(z1, z2) := Fqm⊕ FqUm, Sm = −m, SUm = z1m, U2m = z2m

(in particular its Fq-dimension is 2). The center Z(H1,Fq ) acts on M2(z1, z2) by the character θv.
In particular such a module is uniquely determined by its central character. It is simple if and
only if z2 6= z2

1 . It is called supersingular if z1 = 0.

7.4.11. Lemma. Set

A1,θv := A1,Fq ⊗Z(H1,Fq ),θv Fq : H1,θv
// EndFq (A1,θv ).

• Assume z2 6= z2
1 . Then A1,θv is an isomorphism, and the H1,Fq -module A1,θv is isomorphic

to the simple standard module M2(z1, z2).

• Assume z2 = z2
1 . Then A1,θv has a 1-dimensional kernel, and the H1,Fq -module A1,θv is a

non-split extension of the character (0, z1) by the character (−1,−z1).

Proof. The proof of Proposition 4.3.3 shows that H1,θv has an Fq-basis given by the elements
1, S, U, SU , and that their images

1, A1,θv (S), A1,θv (U), A1,θv (S)A1,θv (U)

by A1,θv are linearly independent over Fq if and only if z2
1 − z2 6= 0.

If z2 6= z2
1 , then A1,θv is injective, and hence bijective since dimFq A1,θv = 2 from 4.2.1. Moreover

S · Y = −Y and U · Y = (z2
1 − z2)− z1Y and so SUY = S((z2

1 − z2)− z1Y ) = S(−z1Y ) = z1Y , so
that

A1,θv = FqY ⊕ FqU · Y = M2(z1, z2).

If z2 = z2
1 , then the proof of Proposition 4.3.3 shows that A1,θv has a 1-dimensional kernel which

is the Fq-line generated by −z1(1 + S) + U + SU . Moreover FqY ⊂ A1,θv realizes the character
(−1,−z1) of H1,Fq , and A1,θv/FqY ' Fq1 realizes the character (0, z1). Finally the 0-eigenspace

of S in A1,θv is Fq1, which is not U -stable, so that the character (0, z1) does not lift in A1,θv .

7.4.12. Geometrically, the function z2 − z2
1 on VT̂,0/W0 defines a family of parabolas

VT̂,0/W0,

z2−z21
��

A1

whose parameter is 4∆, where ∆ is the discriminant of the parabola. Then the locus of VT̂,0/W0

where z2 = z2
1 corresponds to the parabola at 0, having vanishing discriminant (at least if p 6= 2).
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7.4.13. Definition. We will say that a pair of characters of H1,Fq = Fq[S,U±1] → F×q is

antispherical if there exists z1 ∈ F×q such that, after evaluating on (S,U), it is equal to

{(0, z1), (−1,−z1)}.

7.4.14. Note that the set of characters H1,Fq → F×q is the disjoint union of the antispherical pairs,
by the very definition.

7.4.15. Theorem. Let γ ∈ T∨/W0 non-regular. Consider the decomposition

V γ
T̂,0

/W0 = D(2)γ ∪D(1)γ

where D(1)γ is the closed subscheme defined by the parabola z2 = z2
1 in the Steinberg coordinates

z1, z2 and D(2)γ is the open complement. Then the antispherical map induces bijections

ASphγ(2) : D(2)γ(k)
∼ // {simple 2-dimensional left HγFq -modules}/ ∼

ASphγ(1) : D(1)γ(k)
∼ // {antispherical pairs of characters of HγFq}/ ∼ .

The branch locus of the covering

VT̂,0 −→ VT̂,0/W0 ' V γT̂,0/W0

is contained in D(2)γ , with equation z1 = 0 in Steinberg coordinates, and its k-points correspond
to the supersingular Hecke modules through the correspondence ASphγ(2).

7.4.16. Remark. The matrices of S, U and S0 = USU−1 in the Fq-basis {1, Y } of the supersin-
gular module A1,θv

∼= M2(0, z2) are

S =

(
0 0
0 −1

)
, U =

(
0 −z2

−1 0

)
, S0 =

(
−1 0
0 0

)
.

The two characters of the finite subalgebra Fq[S] corresponding to S 7→ 0 and S 7→ −1 are realized
by 1 and Y . From the matrix of S0, we see in fact that the whole affine subalgebra Fq[S0, S] acts on
1 and Y via the two supersingular affine characters, which by definition are the characters different
from the trivial character (S0, S) 7→ (0, 0) and the sign character (S0, S) 7→ (−1,−1).

7.4.17. Finally, let v be any k-point of the parametrizing space V
(1)

T̂,0
/W0. As a particular case of

7.4.5, the Bernstein parameter of the antispherical module ASph(v) is the structure sheaf of the
fiber of the quotient map π at v, and its Satake parameter is the underlying k-vector space:

B(ASph(v)) = Oπ−1(v) and S(ASph(v)) = π∗Oπ−1(v).

8 The theory at q = q = 0: Semisimple Langlands corres-
pondence

We keep the notation introduced in the preceding section. In particular, k = Fq.

8.1 Mod p Satake parameters with fixed central character

8.1.1. Let ω : F×q → k× be induced by the inclusion Fq ⊂ k. Then (F×q )∨ = 〈ω〉 is a cyclic group
of order q − 1. An element ωr defines a non-regular character of T:

ωr(t1, t2) := ωr(t1)ωr(t2)

for all (t1, t2) ∈ T = F×q ×F×q . Composing with multiplication in T∨, we get an action of (F×q )∨ on
T∨, which factors on the quotient set T∨/W0:

T∨/W0 × (F×q )∨ −→ T∨/W0, (γ, ωr) 7→ γωr.

If γ ∈ T∨/W0 is regular (non-regular), then γωr is regular (non-regular).
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8.1.2. Restricting characters of T to the subgroup F×q ' {diag(a, a) : a ∈ F×q } induces a homo-
morphism T∨ → (F×q )∨ which factors into a restriction map

T∨/W0 → (F×q )∨, γ 7→ γ|F×q .

The relation to the (F×q )∨-action on the source T∨/W0 is given by the formula

(γωr)|F×q = γ|F×q ω
2r.

We describe the fibers of the restriction map γ 7→ γ|F×q .

Let (·)|−1

F×q
(ω2r) be the fibre at a square element ω2r. By the above formula, the action of ω−r

on T∨/W0 induces a bijection with the fibre (·)|−1

F×q
(1). The fibre

(·)|−1

F×q
(1) = {1⊗ 1}

∐
{ω ⊗ ω−1, ω2 ⊗ ω−2, ..., ω

q−3
2 ⊗ ω−

q−3
2 }

∐
{ω

q−1
2 ⊗ ω−

q−1
2 }

has cardinality q+1
2 and, in the above list, we have chosen a representative in T∨ for each element

in the fibre. The q−3
2 elements in the middle of this list, i.e. the W0-orbits represented by the

characters ωr ⊗ ω−r for r = 1, ..., q−3
2 , are all regular W0-orbits. The two orbits at the two ends

of the list are non-regular orbits (note that q−1
2 ≡ − q−1

2 mod (q − 1)). Since the action of ω−r

preserves regular (non-regular) orbits, any fibre at a square element (there are q−1
2 such fibres) has

the same structure.
On the other hand, let (·)|−1

F×q
(ω2r−1) be the fibre at a non-square element ω2r−1. The action of

ω−r induces a bijection with the fibre (·)|−1

F×q
(ω−1). The fibre

(·)|−1

F×q
(ω−1) = {1⊗ ω−1, ω ⊗ ω−2, ..., ω

q−1
2 −1 ⊗ ω−

q−1
2 }

has cardinality q−1
2 and we have chosen a representative in T∨ for each element in the fibre. All

elements of the fibre are regular W0-orbits. Since the action of ω−r preserves regular (non-regular)
orbits, any fibre at a non-square element (there are q−1

2 such fibres) has the same structure.

Note that q−1
2 ( q+1

2 + q−1
2 ) = q2−q

2 is the cardinality of the set T∨/W0.

8.1.3. Recall the commutative k-semigroup scheme

V
(1)

T̂,0
= T∨ × VT̂,0 = T∨ × SingDiag2×2×Gm

together with its W0-action, cf. 6.2.14: the natural action of W0 on the factors T∨ and SingDiag2×2

and the trivial one on Gm. There is a commuting action of the k-group scheme

Z∨ := (F×q )∨ ×Gm

on V
(1)

T̂,0
: the (constant finite diagonalizable) group (F×q )∨ acts only on the factor T∨ and in the way

described in 8.1.1; an element z0 ∈ Gm acts trivially on T∨, by multiplication with the diagonal
matrix diag(z0, z0) on SingDiag2×2 and by multiplication with the square z2

0 on Gm. Therefore

the quotient V
(1)

T̂,0
/W0 inherits a Z∨-action. Now, according to 7.4.7, one has the decomposition

V
(1)

T̂,0
/W0 =

∐
γ∈(T∨/W0)reg

VT̂,0

∐
γ∈(T∨/W0)non-reg

VT̂,0/W0.

Then the (F×q )∨-action is by permutations on the index set T∨/W0, i.e. on the set of connected

components of V
(1)

T̂,0
/W0; as observed above, it preserves the subsets of regular and non-regular

components. The Gm-action on V
(1)

T̂,0
/W0 preserves each connected component.
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8.1.4. Recall from 7.4.7 the antispherical map

ASph : (V
(1)

T̂,0
/W0)(k) // {left H(1)

Fq
-modules}/ ∼ .

The H(1)

Fq
-modules in the image of this map are of length 1 or 2, cf. 7.4.9 and 7.4.15. We write

ASph(v)ss for the semisimplification of the module ASph(v), for v ∈ (V
(1)

T̂,0
/W0)(k).

Let (ωr, z0) ∈ Z∨(k). Recall that the standard or irreducible H(1)

Fq
-modules may be ‘twisted

by the character (ωr, z0)’ : in the regular case, the actions of X,Y, U2 get multiplied by z0, z0, z
2
0

respectively and the component γ gets multiplied by ωr, cf. [V04, 2.4]; in the non-regular case,
the action of U gets multiplied by z0, the action of S remains unchanged and the component γ
gets multiplied by ωr, cf. [V04, 1.6]. This gives an action of the group of k-points of Z∨ on the

standard or irreducible H(1)

Fq
-modules. It extends to an action on semisimple H(1)

Fq
-modules.

8.1.5. Lemma. The map ASph(−)ss is Z∨(k)-equivariant.

Proof. Let (ωr, z0) ∈ Z∨(k). Let v ∈ (V
(1)

T̂,0
/W0)(k) and let its connected component be indexed by

γ ∈ T∨/W0. Suppose that γ is regular, choose an ordering γ = (χ, χs) on the set γ and standard
coordinates. Then ASph(v) = ASphγ(v) is a simple two-dimensional standard HγFp -module, cf.

7.4.9, i.e. of the form M(x, y, z2, χ) [V04, 3.2]. Then

ASph(v.(ωr, z0)) 'M(z0x, z0y, z
2
0z2, χ.ω

r) ' ASph(v).(ωr, z0).

Suppose that γ = {χ} is non-regular and choose Steinberg coordinates. (a) If v ∈ D(2)γ(k), then
ASph(v) = ASphγ(2)(v) is a simple two-dimensional HγFp -module, cf. 7.4.15, i.e. of the form

M(z1, z2, χ) [V04, 3.2]. Then

ASph(v.(ωr, z0)) 'M(z0z1, z
2
0z2, χ.ω

r) ' ASph(v).(ωr, z0).

(b) If v ∈ D(1)γ(k), then the semisimplified module ASph(v)ss is the direct sum of the two
characters in the antispherical pair ASphγ(1)(v) = {(0, z1), (−1,−z1)} where z2 = z2

1 . Similarly
ASph(v.(ωr, z0))ss is the direct sum of the characters {(0, z0z1), (−1,−z0z1)} in the component
γ.ωr, and hence is isomorphic to ASph(v)ss.(ωr, z0).

8.1.6. The two canonical projections from V
(1)

T̂,0
to T∨ and Gm respectively induce two projection

morphisms

V
(1)

T̂,0
/W0

prT∨/W0

zz

prGm

##

T∨/W0 Gm.

Then we may compose the map prT∨/W0
with the restriction map (·)|F×q : T∨/W0 → (F×q )∨, set

θ :=
(
(·)|F×q ◦ prT∨/W0

)
× prGm

and view V
(1)

T̂,0
/W0 as fibered over the space Z∨:

V
(1)

T̂,0
/W0

θ

��

Z∨.
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The relation to the Z∨-action on the source V
(1)

T̂,0
/W0 is given by the formula

θ(x.(ωr, z0)) = θ(x)(ω2r, z2
0) = θ(x)(ωr, z0)2

for x ∈ V
(1)

T̂,0
/W0 and (ωr, z0) ∈ Z∨. This formula follows from the formula in 8.1.2 and the

definition of the Gm-action in 8.1.3.

8.1.7. Definition. Let ζ ∈ Z∨. The space of mod p Satake parameters with central character ζ
is the k-scheme

(V
(1)

T̂,0
/W0)ζ := θ−1(ζ).

8.1.8. Let ζ = (ζ|F×q , z2) ∈ Z∨(k) = (F×q )∨ × k×. Denote by (V
(1)

T̂,0
/W0)z2 the fibre of prGm at

z2 ∈ k×. Then by 7.4.7 we have

(V
(1)

T̂,0
/W0)ζ =

∐
γ∈(T∨/W0)reg,γ|F×q

=ζ|
F×q

VT̂,0,z2

∐
γ∈(T∨/W0)non-reg,γ|F×q

=ζ|
F×q

VT̂,0,z2/W0.

Recall that the choice of standard coordinates x, y identifies

VT̂,0,z2 ' A1 ∪0 A1

with two affine lines over k, intersecting at the origin, cf. 7.4.8. On the other hand, the choice of
the Steinberg coordinate z1 identifies

VT̂,0,z2/W0 ' A1

with a single affine line over k, cf. 7.4.10.

8.1.9. Lemma. Let ζ, η ∈ Z∨. The action of η on V
(1)

T̂,0
/W0 induces an isomorphism of k-schemes

(V
(1)

T̂,0
/W0)ζ ' (V

(1)

T̂,0
/W0)ζη2 .

Proof. Follows from the last formula in 8.1.6.

8.2 Mod p Langlands parameters with fixed determinant for F = Qp

8.2.1. Notation. In this section, we let F = Qp with p ≥ 5. We fix an algebraic closure Qp
and let Gal(Qp/Qp) be the absolute Galois group. We normalize local class field theory Q×p →
Gal(Qp/Qp)ab by sending p to a geometric Frobenius. In this way, we identify the k-valued smooth

characters of Gal(Qp/Qp) and of Q×p . Finally, ω : Q×p → k× denotes the extension of the character
ω : F×p → k× to Q×p satisfying ω(p) = 1, and unr(x) : Q×p → k× denotes the character trivial on
F×p and sending p to x.

8.2.2. Let ζ : Q×p → k× be a character. Recall from [Em19] that the Emerton-Gee moduli curve
with character ζ is a certain projective curve Xζ over k whose points parametrize (isomorphism
classes of) two-dimensional semisimple continuous Galois representations over k with determinant
ωζ:

Xζ(k) ∼=
{

semisimple continuous ρ : Gal(Qp/Qp)→ Ĝ(k) with det ρ = ωζ
}
/ ∼ .

It is expected to serve as a moduli space for the stack of étale (ϕ,Γ)-modules (X det=ωζ
2 )red appearing

in [EG19] (see also [CEGS19]) for K = Qp (in their notation).

The curve Xζ is a chain of projective lines over k of length p±1
2 , whose irreducible components

intersect at ordinary double points. The sign ±1 is equal to −ζ(−1). We refer to ζ in the case
−ζ(−1) = −1 resp. −ζ(−1) = +1 as an even character resp. odd character. There is a finite set
of closed points X irred

ζ ⊂ Xζ which correspond to the classes of irreducible representations. Its

open complement Xred
ζ = Xζ \X irred

ζ parametrizes the reducible representations (i.e. direct sums
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of characters). Let η : Gal(Qp/Qp) → k× be a character. Since det(ρ ⊗ η) = (det ρ)η2, twisting
representations with η induces an isomorphism

(·)⊗ η : Xζ
∼−→ Xζη2 .

Hence one is reduced to consider only two ‘basic’ cases: the even case where ζ(p) = 1 and ζ|F×p = 1

and the odd case where ζ(p) = 1 and ζ|F×p = ω−1. Indeed, if ζ|F×p = ωr for some even r, then

choosing η with η(p)2 = ζ(p)−1 and η|F×p = ω−
r
2 , one finds that (ζη2)(p) = 1 and (ζη2)|F×p = 1; if

ζ|F×p = ωr for some odd r, then choosing η with η(p)2 = ζ(p)−1 and η|F×p = ω−
r+1
2 , one finds that

(ζη2)(p) = 1 and (ζη2)|F×p = ω−1.

8.2.3. We make explicit some structure elements of Xζ in the even case ζ(p) = 1 and ζ|F×p = 1.

Every irreducible component of Xζ is isomorphic to P1 and there are p−1
2 components. They are

labelled by pairs of Serre weights of the following form:

Sym0 | Symp−3⊗det

Sym2⊗det−1 | Symp−5⊗det2

Sym4⊗det−2 | Symp−7⊗det3

...
...

...

Symp−3⊗det
p+1
2 | Sym0⊗det

p−1
2 .

The component with label ” Sym0 | Symp−3⊗det ” intersects the next component at the point
of X irred

ζ parametrizing the irreducible Galois representation whose associated Serre weights are

{Sym2⊗det−1,Symp−3⊗det}. The component with label ” Sym2⊗det−1 | Symp−5⊗det2 ” in-
tersects the next component at the point of X irred

ζ parametrizing the irreducible Galois represen-

tation whose associated Serre weights are {Sym4⊗det−2,Symp−5⊗ det2}. Continuing in this way,
one finds p−3

2 points of X irred
ζ , which correspond to the p−3

2 double points of the chain Xζ . There

are two more points in X irred
ζ : they are smooth points, each one lies on one of the two ‘exterior’

components and corresponds there to the irreducible Galois representation whose associated Serre

weights are {Sym0,Symp−1} and {Sym0⊗det
p−1
2 ,Symp−1⊗det

p−1
2 } respectively. So X irred

ζ has

cardinality p+1
2 . Suppose we are on one of the two exterior components P1. There is a canonical

affine coordinate z1 on the open complement of the double point, identifying this open complement
with A1. We call the four points where z1 = ±1 the four exceptional points of Xζ .

8.2.4. We make explicit some structure elements of Xζ in the odd case ζ(p) = 1 and ζ|F×p = ω−1.

Every irreducible component of Xζ is isomorphic to P1 and there are p+1
2 components. They are

labelled by pairs of Serre weights of the following form:

Symp−2 | ” Sym−1 ”

Symp−4⊗det | Sym1⊗det−1

Symp−6⊗ det2 | Sym3⊗det−2

...
...

...

Sym1⊗det
p−3
2 | Symp−4⊗det

p+1
2

” Sym−1⊗ det
p−1
2 ” | Symp−2⊗det

p−1
2 .

The component with label ” Symp−2 | ” Sym−1 ”” intersects the next component at the point
of X irred

ζ parametrizing the irreducible Galois representation whose associated Serre weights are

{Sym1⊗det−1,Symp−2}. The component with label ” Symp−4⊗det | Sym1⊗det−1 ” intersects
the next component at the point of X irred

ζ parametrizing the irreducible Galois representation

whose associated Serre weights are {Sym3⊗det−2,Symp−4⊗det}. Continuing in this way, one
finds p−1

2 points of X irred
ζ , which correspond to the p−1

2 double points of the chain Xζ . There are

no more points in X irred
ζ and X irred

ζ has cardinality p−1
2 . Suppose we are on one of the two exterior

components P1. There is a canonical affine coordinate t on the open complement of the double
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point, identifying this open complement with A1. We call the four points where t = ±2 the four
exceptional points of Xζ .

2

8.2.5. Definition. The category of quasi-coherent modules on the Emerton-Gee moduli curve Xζ

will be called the category of mod p Langlands parameters with determinant ωζ, and denoted by
LPĜ,0,ωζ :

LPĜ,0,ωζ := QCoh(Xζ).

8.3 A semisimple mod p Langlands correspondence in families for F = Qp

8.3.1. Let us consider W to be a subgroup of G, by sending s to the matrix

(
0 1
1 0

)
and by

identifying the group Λ with a subgroup of T via (1, 0) 7→ diag($−1, 1) and (0, 1) 7→ diag(1, $−1).
We obtain for example (recall that u = (1, 0)s ∈W )

u =

(
0 $−1

1 0

)
, u−1 =

(
0 1
$ 0

)
, us =

(
$−1 0

0 1

)
, su =

(
1 0
0 $−1

)
.

Moreover, u2 = diag($−1, $−1).3 Since(
0 $−1

1 0

)(
a b
c d

)(
0 1
$ 0

)
=

(
d $−1c
$b a

)
the element u ∈ G normalizes the group I(1).

8.3.2. Let Modsm(k[G]) be the category of smooth G-representations over k. Taking I(1)-invariants

yields a functor π 7→ πI
(1)

from Modsm(k[G]) to the category Mod(H(1)

Fq
). If F = Qp, it induces a

bijection between the irreducible G-representations and the irreducible H(1)

Fp
-modules, under which

supersingular representations correspond to supersingular Hecke modules [V04].

For future reference, let us recall the I(1)-invariants for some classes of representations. If

π = IndGB(χ) is a principal series representation with χ = χ1⊗χ2, then πI
(1)

is a standard module
in the component γ := {χ|T, χs|T}.

In the regular case, one chooses the ordering (χ|T, χs|T) on the set γ and standard coordinates
x, y. Then

IndGB(χ)I
(1)

= M(0, χ(su), χ(u2), χ|T) = M(0, χ2($−1), χ1($−1)χ2($−1), χ|T)

In the non-regular case, one has

IndGB(χ)I
(1)

= M(χ(su), χ(u2), χ|T) = M(χ2($−1), χ1($−1)χ2($−1), χ|T).

These standard modules are irreducible if and only if χ 6= χs [V04, 4.2/4.3].4

Let F = Qp. If π = π(r, 0, η) is a standard supersingular representation with parameter

r = 0, ..., p − 1 and central character η : Q×p → k×, then πI
(1)

is a supersingular module in the
component γ = {χ, χs} represented by the character χ := (ωr ⊗ 1) · (η|F×p ), cf. [Br07, 5.1/5.3]. If

π is the trivial representation 1 or the Steinberg representation St, then γ = 1 and πI
(1)

is the
character (0, 1) or (−1,−1) respectively.

2The Galois representations living on the two exterior components in the odd case are unramified (up to twist),

i.e. of type ρ =

(
unr(x) 0

0 unr(x−1)

)
⊗ η and t equals the ‘trace of Frobenius’ x + x−1. Hence t = ±2 if and

only if x = ±1.
3Note that our element u equals the element u−1 in [Be11],[Br07] and [V04].
4Our formulas differ from [V04, 4.2/4.3] by χ(·)↔ χ(·)−1, since we are working with left modules; also compare

with the explicit calculation with right convolution given in [V04, Appendix A.5].
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8.3.3. Let π ∈ Modsm(k[G]). Since u ∈ G normalizes the group I(1), one has I(1)uI(1) = uI(1). It

follows that the convolution action of the Hecke operator U (resp. U2) on πI
(1)

is therefore induced
by the action of u (resp. u2 on π). Similarly, the group I(1) is normalized by the Iwahori subgroup

I and I/I(1) ' T. It follows that the convolution action of the operators Tt, t ∈ T on πI
(1)

is the
factorization of the T(oF )-action on π.

8.3.4. We identify F× with the center Z(G) via a 7→ diag(a, a). A (smooth) character

ζ : Z(G) = F× −→ k×

is determined by its value ζ($−1) ∈ k× and its restriction ζ|o×F . Since the latter is trivial on the

subgroup 1 + $oF , we may view it as a character of F×q ; we will write ζ|F×q for this restriction in

the following. Thus the group of characters of Z(G) gets identified with the group of k-points of
the group scheme Z∨ = (F×q )∨ ×Gm:

Z(G)∨
∼−→ Z∨(k), ζ 7→ (ζ|F×q , ζ($−1)).

8.3.5. Lemma. Suppose that π ∈ Modsm(k[G]) has a central character ζ : Z(G)→ k×. Then the

Satake parameter S(πI
(1)

) of πI
(1) ∈ Mod(H(1)

Fq
) has central character ζ, i.e. it is supported on the

closed subscheme

(V
(1)

T̂,0
/W0)(ζ|

F×q
,ζ($−1)) ⊂ V

(1)

T̂,0
/W0.

Proof. If M is any H(1)

Fq
-module, then

M =
⊕

γ∈T∨/W0

εγM =
⊕

γ∈T∨/W0

⊕λ∈γελM,

and T ⊂ Fq[T] ⊂ H(1)

Fq
acts on ελM through the character λ : T→ F×q . Now if M = πI

(1)

, then the

T-action on M is the factorization of the T(oF )-action on π, cf. 8.3.3. In particular, the restriction
of the T-action along the diagonal inclusion F×q ⊂ T is the factorization of the action of the central

subgroup o×F ⊂ Z(G) on π, which is given by ζ|o×F by assumption. Hence

εγM 6= 0 =⇒ ∀λ ∈ γ, λ|F×q = ζ|F×q i.e. γ|F×q = ζ|F×q .

Moreover, the element u2 = diag($−1, $−1) ∈ Z(G) acts on π by multiplication by ζ($−1) by

assumption. Therefore, by 8.3.3, the Hecke operator z2 := U2 ∈ H(1)

Fq
acts on πI

(1)

by multiplication

by ζ($−1). Thus we have obtained that S(πI
(1)

) is supported on∐
γ∈(T∨/W0)reg,γ|F×q

=ζ|
F×q

VT̂,0,ζ($−1)

∐
γ∈(T∨/W0)non-reg,γ|F×q

=ζ|
F×q

VT̂,0,ζ($−1)/W0 = (V
(1)

T̂,0
/W0)(ζ|

F×q
,ζ($−1)).

Next, recall the twisting action of the group Z∨(k) on the standard H(1)

Fq
-modules and their simple

constituents 8.1.4.

8.3.6. Proposition. Let π ∈ Modladm(k[G]) be irreducible or a reducible principal series repre-
sentation. Let η : F× → k× be a character. Then

(π ⊗ η)I
(1)

= πI
(1)

.(η|F×q , η($−1))

as H(1)

Fq
-modules.
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Proof. An irreducible locally admissible representation, being a finitely generated k[G]-module, is
admissible [Em10, 2.2.19]. A principal series representation (irreducible or not) is always admissible
[Em10, 4.1.7]. The list of irreducible admissible smooth G-representations is given in [H11b,
Thm. 1.1]. There are four families: principal series representations, supersingular representations,
characters and twists of the Steinberg representation.

We first suppose that π is a principal series representation (irreducible or not), i.e. of the form
IndGB(χ) with a character χ = χ1⊗χ2. Then π⊗η ' IndGB(χ1η⊗χ2η). We use the results from 8.3.2.

The modules πI
(1)

and (π ⊗ η)I
(1)

are standard modules in the components γ := {χ|T, χs|T} and
γ(η|F×q ) respectively. Suppose that γ is regular. We choose the ordering (χ|T, χs|T) and standard

coordinates x, y. Then

IndGB(χ)I
(1)

= M(0, χ2($−1), χ1($−1)χ2($−1), χ|T)

and

IndGB(χ1η ⊗ χ2η)I
(1)

= M(0, χ2($−1)η($−1), χ1($−1)χ2($−1)η($−2), (χ|T).(η|F×q )).

This shows (π ⊗ η)I
(1)

= πI
(1)

.(η|F×q , η($−1)) in the regular case. Suppose that γ is non-regular.

Then
IndGB(χ)I

(1)

= M(χ2($−1), χ1($−1)χ2($−1), χ|T)

and

IndGB(χ1η ⊗ χ2η)I
(1)

= M(χ2($−1)η($−1), χ1($−1)χ2($−1)η($−2), (χ|T).(η|F×q )).

This shows (π ⊗ η)I
(1)

= πI
(1)

.(η|F×q , η($−1)) in the non-regular case.

We now treat the case where π is a character or a twist of the Steinberg representation. Consider
the exact sequence

1→ 1→ IndGB(1)→ St→ 1.

According to [V04, 4.4] the sequence of invariants

(S) : 1→ 1
I(1) → IndGB(1)I

(1)

→ StI
(1)

→ 1

is still exact and 1
I(1) resp. StI

(1)

is the trivial character (0, 1) resp. sign character (−1,−1) in the
Iwahori component γ = 1. Tensoring the first exact sequence with η produces the exact sequence

1→ η → IndGB(1)⊗ η → St⊗ η → 1.

Since the restriction η|o×F is trivial on 1 +$oF , one has (η ◦ det)|I(1) = 1 and so, as a sequence of

k-vector spaces with k-linear maps, the sequence of invariants

1→ ηI
(1)

→ (IndGB(1)⊗ η)I
(1)

→ (St⊗ η)I
(1)

→ 1

coincides with the sequence (S). It is therefore an exact sequence of H(1)

Fq
-modules, with outer

terms being characters of H(1)

Fq
. From the discussion above, we deduce

(IndGB(1)⊗ η)I
(1)

= IndGB(1)I
(1)

.(η|F×q , η($)−1) = M(η($−1), η($−2), 1.(η|F×q )).

It follows then from [V04, 1.1] that ηI
(1)

must be the trivial character (0, η($−1)) in the component

1.(η|F×q ) and (St⊗η)I
(1)

must be the sign character (−1,−η($−1)) in the component 1.(η|F×q ). This

implies

ηI
(1)

= 1
I(1) .(η|F×q , η($)−1) and (St⊗ η)I

(1)

= StI
(1)

.(η|F×q , η($)−1).

This proves the claim in the cases π = 1 or π = St. If, more generally, π = η′ is a general character
of G, then

(π ⊗ η)I
(1)

= (η′η)I
(1)

= 1
I(1) .((η′η)|F×q , (η

′η)($)−1) = πI
(1)

.(η|F×q , η($)−1).

48



On the other hand, if π = St⊗ η′ is a twist of Steinberg, then

(π ⊗ η)I
(1)

= (St⊗ (η′η))I
(1)

= StI
(1)

.((η′η)|F×q , (η
′η)($)−1) = πI

(1)

.(η|F×q , η($)−1).

It remains to treat the case where π is a supersingular representation. In this case π ⊗ η

is also supersingular and the two modules πI
(1)

and (π ⊗ η)I
(1)

are supersingular H(1)

Fq
-modules

[V04, 4.9]. Let γ be the component of the module πI
(1)

. By 8.3.3, the component of (π ⊗ η)I
(1)

equals γ(η|F×q ). Moreover, if U2 acts on πI
(1)

via the scalar z2 ∈ k×, then U2 acts on (π⊗η)I
(1)

via

z2(η◦det)(u2) = z2η($)−2, cf. 8.3.3. Since the supersingular modules are uniquely characterized by

their component and their U2-action, we obtain (π⊗ η)I
(1)

= πI
(1)

.(η|F×q , η($)−1), as claimed.

8.3.7. Let F = Qp with p ≥ 5. We let Modladm
ζ (k[G]) be the full subcategory of Modsm(k[G])

consisting of locally admissible representations having central character ζ. By work of Paškūnas
[Pas13], the blocks b of the category Modladm

ζ (k[G]), defined as certain equivalence classes of simple
objects, can be parametrized by the set of isomorphism classes [ρ] of semisimple continuous Galois

representations ρ : Gal(Qp/Qp) → Ĝ(k) having determinant det ρ = ωζ, i.e. by the k-points of
Xζ . There are three types of blocks. Blocks of type 1 are supersingular blocks. Each such block
contains only one irreducible G-representation, which is supersingular. Blocks of type 2 contain
only two irreducible representations. These two representations are two generic principal series
representations of the form IndGB(χ1 ⊗ χ2ω

−1) and IndGB(χ2 ⊗ χ1ω
−1) (where χ1χ2 6= 1, ω±1).

There are four blocks of type 3 which correspond to the four exceptional points. In the even case,
each such block contains only three irreducible representations. These representations are of the
form η,St ⊗ η and IndGB(ω ⊗ ω−1) ⊗ η. In the odd case, each block of type 3 contains only one
irreducible representation. It is of the form IndGB(χ⊗ χω−1).

8.3.8. Let F = Qp with p ≥ 5. Paškūnas’ parametrization [ρ] 7→ b[ρ] is compatible with Breuil’s
semisimple mod p local Langlands correspondence

ρ 7→ π(ρ)

for the group G [Br07, Be11], in the sense that if ρ has determinant ωζ, then the simple constituents
of the G-representation π(ρ) lie in the block b[ρ] of Modladm

ζ (k[G]).
The correspondence and the parametrizations (for varying ζ) commute with twists: for a char-

acter η : Q×p → k×, π(ρ⊗ η) = π(ρ)⊗ η and b[ρ] ⊗ η = b[ρ⊗η].

8.3.9. Theorem. Suppose F = Qp with p ≥ 5. Fix a character ζ : Z(G) = Q×p → k×,
corresponding to a point (ζ|F×p , ζ(p−1)) ∈ Z∨(k) under the identification Z(G)∨ ∼= Z∨(k) from

8.3.4. Let (V
(1)

T̂,0
/W0)ζ be the space of mod p Satake parameters with central character ζ and Xζ be

the moduli space of mod p Langlands parameters with determinant ωζ.
There exists a morphism of k-schemes

Lζ : (V
(1)

T̂,0
/W0)ζ −→ Xζ

such that the quasi-coherent OXζ -module

Lζ∗S(M(1)

Fp
)|

(V
(1)

T̂,0
/W0)ζ

equal to the push-forward along Lζ of the restriction to (V
(1)

T̂,0
/W0)ζ ⊂ V

(1)

T̂,0
/W0 of the Satake

parameter of the mod p antispherical module M(1)

Fp
, cf. 7.4.2 3., interpolates the I(1)-invariants of

the semisimple mod p Langlands correspondence

Xζ(k) −→ Modladm
ζ (k[G]) −→ Mod(H(1)

Fp
)

x 7−→ π(ρx) 7−→ π(ρx)I
(1)

,
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in the sense that for all x ∈ Xζ(k),((
Lζ∗S(M(1)

Fp
)|

(V
(1)

T̂,0
/W0)ζ

)
⊗OXζ k(x)

)ss

=
(
M(1)

Fp
⊗
Z(H(1)

Fp
)

(S
(1)

Fp
)−1(OL−1

ζ (x))
)ss ∼= π(ρx)I

(1)

in Mod(H(1)

Fp
).

8.3.10. The connected components of (V
(1)

T̂,0
/W0)ζ are either regular and then of type A1 ∪0 A1,

or non-regular and then of type A1. The morphism Lζ appearing in the theorem depends on the
choice of an order of the two affine lines in each regular component. It is surjective and quasi-finite.

Moreover, writing Lγζ for its restriction to the connected component (V γ
T̂,0

/W0)ζ ⊂ (V
(1)

T̂,0
/W0)ζ ,

one has:

(e) Even case. All connected components are of type A1 ∪0 A1, except for the two ‘exterior’
components which are of type A1. Lγζ is an open immersion for any γ.

(o) Odd case. All connected components are of type A1 ∪0 A1. Lζ is an open immersion on all
connected components, except for the two ‘exterior’ ones. On an ‘exterior’ component γ, the
restriction of Lγζ to one irreducible component A1 is an open immersion, and its restriction to
the open complement Gm is a degree 2 finite flat covering of its image, with branched locus
equal to the intersection of this image with the exceptional locus of Xζ .

8.3.11. Note that the semisimple mod p Langlands correspondence associates with any semisimple
ρ : Gal(Qp/Qp)→ Ĝ(k) a semisimple smooth G-representation π(ρ) of length 1, 2 or 3, hence whose

semisimple H(1)

Fp
-module of I(1)-invariants π(ρ)I

(1)

has length 1, 2 or 3. On the other hand, the

antispherical map

ASph : (V
(1)

T̂,0
/W0)(k) // {left H(1)

Fq
-modules}

has an image consisting of H(1)

Fq
-modules are of length 1 or 2, cf. 7.4.9 and 7.4.15. Theorem

8.3.9 combined with the properties 8.3.10 of the morphism Lζ provide the following case-by-case

elucidation of the H(1)

Fp
-modules π(ρ)I

(1)

.

8.3.12. Corollary. Let x ∈ Xζ(k), corresponding to ρx : Gal(Qp/Qp) → Ĝ(k). Then the H(1)

Fp
-

module π(ρ)I
(1)

admits the following explicit description.

(i) If x ∈ Xirred
ζ (k), then the fibre L−1

ζ (x) = {v} has cardinality 1 and

π(ρx)I
(1)

' ASph(v).

It is irreducible and supersingular.

(ii) If x ∈ Xred
ζ (k) \ {the four exceptional points}, then L−1

ζ (x) = {v1, v2} has cardinality 2 and

π(ρx)I
(1)

' ASph(v1)⊕ASph(v2).

It has length 2.

(iiie) If x ∈ Xred
ζ (k) is exceptional in the even case, then L−1

ζ (x) = {v1, v2} has cardinality 2 and

π(ρx)I
(1)

' ASph(v1)ss ⊕ASph(v2).

It has length 3.

(iiio) If x ∈ Xred
ζ (k) is exceptional in the odd case, then L−1

ζ (x) = {v} has cardinality 1 and

π(ρx)I
(1)

' ASph(v)⊕ASph(v).

It has length 2.
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8.3.13. Now we proceed to the proof of 8.3.9, 8.3.10 and 8.3.12.

We start by defining the morphism Lζ at the level of k-points. Let v ∈ (V
(1)

T̂,0
/W0)ζ(k) and let

its connected component be indexed by γ ∈ T∨/W0.

1. Suppose that γ is regular. Then ASph(v) = ASphγ(v) is a simple two-dimensional HγFp -

module, cf. 7.4.9. Let π ∈ Modsm(k[G]) be the simple module, unique up to isomorphism, such

that πI
(1) ' ASphγ(v), cf. 8.3.2. Then π ∈ Modladm

ζ (k[G]) with

ζ = (ζ|F×p , ζ(p−1)) = (γ|F×p , z2)

by 8.3.5. Let b be the block of Modladm
ζ (k[G]) which contains π. We define Lζ(v) to be the point

of Xζ(k) which corresponds to b.

2. Suppose that γ is non-regular.

(a) If v ∈ D(2)γ(k), then ASph(v) = ASphγ(2)(v) is a simple two-dimensional HγFp -module, cf.

7.4.15. As in the regular case, there is a simple module π, unique up to isomorphism, such that

πI
(1) ' ASphγ(2)(v). It has central character ζ = (γ|F×p , z2) and there is a block b of Modladm

ζ (k[G])

which contains π. We define Lζ(v) to be the point of Xζ(k) which corresponds to b.

(b) If v ∈ D(1)γ(k), then ASph(v)ss is the direct sum of the two characters forming the
antispherical pair ASphγ(1)(v) = {(0, z1), (−1,−z1)} where z2 = z2

1 , cf. 7.4.15. As in the regular

case, there are two simple modules π1 and π2, unique up to isomorphism, such that πI
(1)

1 ' (0, z1)

and πI
(1)

2 ' (−1,−z1) and π1, π2 have central character ζ = (γ|F×p , z2). Moreover, we claim that

there is a unique block b of Modladm
ζ (k[G]) which contains both π1 and π2. Indeed, if γ = {1⊗ 1}

and z1 = 1, then π1 = 1 and π2 = St, cf. 8.3.2. Then by 8.3.6 it follows more generally that if
γ = {ωr ⊗ ωr}, then π1 = η and π2 = St ⊗ η with η = (η|F×p , η(p−1)) := (ωr, z1). Consequently

π1, π2 are contained in a unique block b of type 3, cf. 8.3.7. We define Lζ(v) to be the point of
Xζ(k) which corresponds to b.

Thus we have a well-defined map of sets Lζ : (V
(1)

T̂,0
/W0)ζ(k) −→ Xζ(k).

We show property (i) of 8.3.12. Let x ∈ X irred
ζ (k) and suppose Lζ(v) = x. Then bx is a

supersingular block, contains a unique irreducible representation π, which is supersingular, and

π = π(ρx), cf. 8.3.7-8.3.8. By definition of Lζ , one has ASph(v) ' πI
(1)

. Since the antispherical
map ASph is 1 : 1 over supersingular modules, cf. 7.4.9 and 7.4.15, such a preimage v of x exists

and is uniquely determined by x. Summarizing, we have L−1
ζ (x) = {v} and ASph(v) ' π(ρx)I

(1)

.
This is property (i).

As a next step, we take a second character η : Q×p → k× and show that the diagram

(V
(1)

T̂,0
/W0)ζ(k)

Lζ
//

'.η

��

Xζ(k)

' (·)⊗η

��

(V
(1)

T̂,0
/W0)ζη2(k)

Lζη2
// Xζη2(k)

commutes. Here, the vertical arrows are the bijections coming from 8.1.9 and 8.2.2. To verify the

commutativity, let v ∈ (V
(1)

T̂,0
/W0)ζ(k) and let its connected component be indexed by γ ∈ T∨/W0.

Suppose that γ is regular or that γ is non-regular with v ∈ D(2)γ(k). Let π be the simple G-

module with πI
(1) ' ASph(v) and let b[ρ] be the block corresponding to the point Lζ(v). By the

equivariance property 8.1.5, one has ASph(v.η) ' ASph(v).η. Taking I(1)-invariants is compatible
with twist, cf. 8.3.6, and so Lζη2(v.η) corresponds to the block which contains the representation
π ⊗ η, i.e. to b[ρ] ⊗ η = b[ρ⊗η], cf. 8.3.8, and so Lζη2(v.η) = [ρ⊗ η] = Lζ(v).η.

If v ∈ D(1)γ(k), let π1 and π2 be the simple modules such that (π1 ⊕ π2)I
(1) ' ASphγ(v)ss.

As before, we conclude from ASph(v.η)ss ' ASph(v)ss⊗ η that Lζη2(v.η) corresponds to the block
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which contains π1⊗η and π2⊗η and that Lζη2(v.η) = Lζ(v).η. The commutativity of the diagram
is proved.

Thus, we are reduced to prove that the map Lζ comes from a morphism of k-schemes satisfying
8.3.9 and the remaining parts of 8.3.12 in the two basic cases of a character ζ such that ζ(p−1) = 1
and ζ|F×p ∈ {1, ω

−1}. This is established in the next two subsections.

8.4 The morphism Lζ in the basic even case

Let ζ : Q×p → k× be the trivial character. Here we show that the map of sets Lζ : (V
(1)

T̂,0
/W0)ζ(k)→

Xζ(k) that we have defined in 8.3.13 satisfies properties (ii) and (iiie) of 8.3.12, and we define a

morphism of k-schemes Lζ : (V
(1)

T̂,0
/W0)ζ −→ Xζ which coincides with the previous map of sets at

the level of k-points. By construction, it will have the properties 8.3.10. This will complete the
proof of 8.3.12, 8.3.10 and 8.3.9 in the case of an even character.

8.4.1. We verify the properties (ii) and (iiie). We work over an irreducible component P1 with
label ” Symr ⊗deta | Symp−3−r ⊗detr+1+a ” where 0 ≤ r ≤ p − 3 and 0 ≤ a ≤ p − 2, cf. 8.2.3.
On this component, we choose an affine coordinate x around the double point having Symr ⊗deta

as one of its Serre weights. Away from this point, we have x 6= 0 and the corresponding Galois
representation has the form

ρx =

(
unr(x)ωr+1 0

0 unr(x−1)

)
⊗ η

with η = ωa. By [Be11, 1.3] or [Br07, 4.11], we have

π(ρx) = π(r, x, η)ss ⊕ π([p− 3− r], x−1, ωr+1η)ss =: π1 ⊕ π2

where [p− 3− r] denotes the unique integer in {0, ..., p− 2} which is congruent to p− 3− r modulo
p− 1. Now suppose that Lζ(v) = x. We distinguish two cases.

1. The generic case 0 < r < p − 3. In this case, the point x lies on one of the ‘interior’
components of the chain Xζ , which has no exceptional points. The length of π(ρx) is 2. Indeed,
π1 = π(r, x, η) and π2 = π(p−3−r, x−1, ωr+1η) are two irreducible principal series representations
[Br07, Thm. 4.4]. The block bx is of type 2 and contains only these two irreducible representations,
cf. 8.3.7-8.3.8. We may write

π1 = IndGB(χ)⊗ η

with χ = unr(x) ⊗ ωr unr(x−1), according to [Br07, Rem. 4.4(ii)]. By our assumptions on r, the
character χ|T = 1⊗ ωr is regular (i.e. different from its s-conjugate). We conclude from 8.3.6 and

8.3.2 that πI
(1)

1 is a simple 2-dimensional standard module in the regular component represented
by the character (1⊗ ωr).(η|F×p ) = (η|F×p )⊗ (η|F×p )ωr ∈ T∨. Similarly, we may write

π2 = IndGB(χ)⊗ ωr+1η

where now χ = unr(x−1) ⊗ ωp−3−r unr(x). By our assumptions on r, the character χ|T =

1 ⊗ ωp−3−r is regular and we conclude, as above, that the I(1)-invariants πI
(1)

2 form a simple 2-
dimensional standard module in the regular component represented by the character (η|F×p )ωr+1⊗
(η|F×p )ωr+1ωp−3−r ∈ T∨. Note that the component of πI

(1)

1 is different from the component of

πI
(1)

2 , by our assumptions on r.

We conclude from Lζ(v) = x that either ASph(v) = πI
(1)

1 or ASph(v) = πI
(1)

2 . Since for
γ regular, the map ASphγ is a bijection onto all simple HγFp -modules, cf. 7.4.9, one finds that

L−1
ζ (x) = {v1, v2} has cardinality 2 and

ASph(v1)⊕ASph(v2) ' π(ρx)I
(1)

.

This settles property (ii) of 8.3.12 in the generic case.
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2. The boundary cases r ∈ {0, p− 3}. In this case, the point x lies on one of the two ‘exterior’
components of Xζ . On such a component, we will denote the variable x rather by z1, which is the
notation5 which we used already in 8.2.3.

(a) Suppose that z1 6= ±1. The length of π(ρz1) is 2. Indeed, as in the generic case, π1 =
π(r, z1, η) and π2 = π(p−3−r, z−1

1 , ωr+1η) are two irreducible principal series representations. The
block bz1 is of type 2 and contains only these two irreducible representations. It follows, as above,

that their invariants πI
(1)

1 and πI
(1)

2 are simple 2-dimensional standard modules, in the components
represented by (η|F×p ) ⊗ (η|F×p )ωr ∈ T∨ and (η|F×p )ωr+1 ⊗ (η|F×p )ωr+1ωp−3−r ∈ T∨ respectively.

Since r ∈ {0, p − 3}, one of these components is regular, the other non-regular. In particular,

the two components are different. We conclude from Lζ(v) = z1 that either ASph(v) = πI
(1)

1 or

ASph(v) = πI
(1)

2 . Since for non-regular γ, the map ASphγ(2) is a bijection from D(2)γ(k) onto
all simple standard HγFp -modules, cf. 7.4.15, we may conclude as in the generic case: L−1

ζ (z1) =

{v1, v2} has cardinality 2 and

ASph(v1)⊕ASph(v2) ' π(ρz1)I
(1)

.

This settles property 8.3.12 (ii) in the remaining case z1 6= ±1.
(b) Suppose now that z1 = ±1, i.e. we are at one of the four exceptional points. We will

verify property (iiie). The length of π(ρz1) is 3. Indeed, the representation π(0,±1, η) is a twist of
the representation π(0, 1, 1) (note that π(r, z1, η) ' π(r,−z1,unr(−1)η) according to [Br07, Rem.
4.4(v)]), which itself is an extension of 1 by St, cf. [Br07, Thm. 4.4(iii)]. As in the case (a), the
representation π2 = π(p−3,±1, ωη) is an irreducible principal series representation. The block bz1
is of type 3 and contains only these three irreducible representations. The invariants πI

(1)

1 form a
direct sum of two antispherical characters in a non-regular component γ, whereas the invariants

πI
(1)

2 form a simple standard module in a regular component, as before. Since for non-regular γ,
the map ASphγ(1) is a bijection from D(1)γ(k) onto all antispherical pairs of characters of HγFp ,

cf. 7.4.15, we may conclude that L−1
ζ (z1) = {v1, v2} has cardinality 2 with v1 ∈ D(1)γ(k) and

ASphγ(1)(v1)ss = πI
(1)

1 . In particular,

ASph(v1)ss ⊕ASph(v2) ' π(ρx)I
(1)

.

This settles property 8.3.12 (iiie).

8.4.2. We define a morphism of k-schemes Lζ : (V
(1)

T̂,0
/W0)ζ −→ Xζ which coincides on k-points

with the map of sets Lζ : (V
(1)

T̂,0
/W0)ζ(k) −→ Xζ(k). We work over a connected component of

(V
(1)

T̂,0
/W0)ζ , indexed by some γ ∈ T∨/W0. Let v be a k-point of this component.

Since ζ|F×p = 1, the connected components of (V
(1)

T̂,0
/W0)ζ are indexed by the fibre (·)|−1

F×p
(1).

This fibre consists of the p−3
2 regular components, represented by the characters of T

χk = ωk ⊗ ω−k

for k = 1, ..., p−3
2 , and of the two non-regular components, given by χ0 and χ p−1

2
, cf. 8.1.2. We

distinguish two cases. Note that z2 = ζ(p−1) = 1.

1. The regular case 0 < k < p−1
2 . We fix the order γ = (χk, χ

s
k) on the set γ and choose the

standard coordinates x, y. According to 7.4.7, our regular connected component identifies with
two affine lines intersecting at the origin:

VT̂,0,1 ' A1 ∪0 A1.

Suppose that v = (0, 0) is the origin, so that ASph(v) is a supersingular module. Let π(r, 0, η) be the
corresponding supersingular representation. It corresponds to the irreducible Galois representation
ρ(r, η) = ind(ωr+1

2 )⊗η, in the notation of [Be11, 1.3], whence Lζ(v) = [ρ(r, η)]. According to 8.3.2,

5The reason for this notation will become clear in the discussion of the non-regular case in 8.4.2.
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the component of the Hecke module π(r, 0, η)I
(1)

is given by (ωr ⊗ 1) · (η|F×p ). Setting η|F×p = ωa,

this implies (ωr ⊗ 1) · (η|F×p ) = ωr+a ⊗ ωa = χk and hence a = −k and r = 2k. Therefore the

Serre weights of the irreducible representation ρ(r, η) are {Sym2k ⊗det−k,Symp−1−2k ⊗detk}, cf.
[Br07, 1.9].

Comparing these pairs of Serre weights with the list 8.2.3 shows that the p−3
2 points

{origin (0, 0) on the component (χk, χ
s
k)}

for 0 < k < p−1
2 are mapped successively to the p−3

2 double points of the chain Xζ .

Fix 0 < k < p−1
2 and consider the double point

Q = Lζ(origin (0, 0) on the component γ = (χk, χ
s
k)).

As we have just seen, Q lies on the irreducible component P1 whose label includes the weight
Sym2k ⊗det−k (i.e. on the component ” Sym2k ⊗ det−k | Symp−3−2k ⊗detk+1 ”). We fix an affine
coordinate on this P1 around Q, which we will also call x (there will be no risk of confusion with
the standard coordinate above!). Away from Q, the affine coordinate x 6= 0 parametrizes Galois
representations of the form

ρx =

(
unr(x)ω2k+1 0

0 unr(x−1)

)
⊗ η

with η := ω−k. As we have seen above, π(ρx) = π(2k, x, η)⊕ π(p− 3− 2k, x−1, ωr+1η) =: π1 ⊕ π2.
Moreover, π1 = IndGB(χ)⊗ η with χ = unr(x)⊗ ω2k unr(x−1). Since

(1⊗ ω2k).(η|F×p ) = ω−k ⊗ ωk = χsk ∈ T∨,

we deduce from the regular case of 8.3.2 that

πI
(1)

1 = M(0, x, 1, χsk)

is a simple 2-dimensional standard module. Note that M(0, x, 1, χsk) = M(x, 0, 1, χk) according to
[V04, Prop. 3.2].

Now suppose that v = (x, 0), x 6= 0, denotes a point on the x-line of A1
k ∪0 A1

k. In particular,
ASphγ(v) = M(x, 0, 1, χk). By our discussion, the point Lζ((x, 0)) corresponds to the block which
contains π1. Since π1 lies in the block parametrized by [ρx], cf. 8.3.8, it follows that

Lζ((x, 0)) = [ρx] = x ∈ Gm ⊂ P1 ⊂ Xζ .

Since (0, 0) maps to Q, i.e. to the point at x = 0, the map Lζ identifies the whole affine x-line
A1 = {(x, 0) : x ∈ k} ⊂ VT̂,0,1 with the affine x-line A1 ⊂ P1 ⊂ Xζ .

On the other hand, the double point Q lies also on the irreducible component P1 whose labelling
includes the other weight of Q, i.e. the weight Symp−1−2k ⊗ detk. We fix an affine coordinate y on
this P1 around Q. Away from Q, the coordinate y 6= 0 parametrizes Galois representations of the
form

ρx =

(
unr(y)ωp−2k 0

0 unr(y−1)

)
⊗ η

with η := ωk. As in the first case, π(ρy) contains π1 := π(p − 1 − 2k, y, η) = IndGB(χ) ⊗ η as a
direct summand, where now χ = unr(y)⊗ ωp−1−2k unr(y−1). Since

(1⊗ ωp−1−2k).(η|F×p ) = ωk ⊗ ω−k = χk ∈ T∨,

we deduce, as above, that πI
(1)

1 = M(0, y, 1, χk) is a simple 2-dimensional standard module.
Now suppose that v = (0, y), y 6= 0, denotes a point on the y-line of A1

k ∪0 A1
k. In particular,

ASphγ(v) = M(0, y, 1, χk). By our discussion, the point Lζ((0, y)) corresponds to the block which
contains π1. Since π1 lies in the block parametrized by [ρy], cf. 8.3.8, it follows that

Lζ((0, y)) = [ρy] = y ∈ Gm ⊂ P1 ⊂ Xζ .
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Since (0, 0) maps to Q, i.e. to the point at y = 0, the map Lζ identifies the whole affine y-line
A1 = {(0, y) : y ∈ k} ⊂ VT̂,0,1 with the affine y-line A1 ⊂ P1 ⊂ Xζ .

In this way, we get an open immersion of each regular connected component of (V
(1)

T̂,0
/W0)ζ in

the scheme Xζ , which coincides on k-points with the restriction of the map of sets Lζ .

2. The non-regular case k ∈ {0, p−1
2 }. We choose the Steinberg coordinate z1. According to

7.4.7, our non-regular connected component identifies with an affine line :

VT̂,0,z2/W0 ' A1.

Suppose that v = (0) is the origin, so that ASph(v) is a supersingular module. Let π(r, 0, η)
be the corresponding supersingular representation so that Lζ(v) = [ρ(r, η)]. Exactly as in the
regular case, we may conclude that the Serre weights of the irreducible representation ρ(r, η)
are {Sym2k ⊗det−k,Symp−1−2k ⊗ detk}. For the two values of k = 0 and k = p−1

2 we find

{Sym0,Symp−1} and {Sym0⊗ det
p−1
2 ,Symp−1⊗ det

p−1
2 } respectively. Comparing with the list

8.2.3 shows that the 2 points

{origin (0) on the component (χk = χsk)}

for k ∈ {0, p−1
2 } are mapped to the 2 smooth points in X irred

ζ , which lie on the two ‘exterior’
components of Xζ , cf. 8.2.3.

Fix k ∈ {0, p−1
2 } and consider the point

Q = Lζ(origin (0) on the component γ = (χk = χsk)).

As we have just seen, Q lies on an ‘exterior’ irreducible component P1 whose label includes the
weight Sym0⊗detk. We fix an affine coordinate on this P1 around Q, which we call z1 (there will
be no risk of confusion with the Steinberg coordinate above!). Away from Q, the affine coordinate
z1 6= 0 parametrizes Galois representations of the form

ρz1 =

(
unr(z1)ω 0

0 unr(z−1
1 )

)
⊗ η

with η := ωk. As in the regular case, π(ρz1) = π(0, z1, η)ss ⊕ π(p − 3, z−1
1 , ωη)ss. Moreover,

π(0, z1, η) = IndGB(χ)⊗ η with χ = unr(z1)⊗ unr(z−1
1 ) 6. Since

(1⊗ 1).(η|F×p ) = ωk ⊗ ωk = χk = χsk ∈ T∨,

we deduce from the non-regular case of 8.3.2 that π(0, z1, η)I
(1)

= M(z1, 1, χk) is a 2-dimensional
standard module. Moreover, the standard module is simple if and only if χ 6= χs, i.e. if and only
if z1 6= ±1.

Now let v = z1 6= 0 denote a nonzero point on our connected component A1 = VT̂,0,1/W0.

Suppose that z1 6= ±1, i.e. v ∈ D(2)γ . In particular, ASph(v) = M(z1, 1, γ) is irreducible. By our
discussion, the point Lζ(z1) corresponds to the block (a block of type 2) which contains π(0, z1, η).
Suppose that z1 = ±1, i.e. v ∈ D(1)γ . In particular, ASphss(v) = M(z1, 1, χk)ss and again,
Lζ(z1) corresponds to the block (now a block of type 3) which contains the simple constituents of
π(0, z1, η)ss. In both cases, we conclude

Lζ(z1) = [ρz1 ] = z1 ∈ Gm ⊂ P1 ⊂ Xζ .

Since (0) maps to Q, i.e. to the point at z1 = 0, the map Lζ identifies the whole z1-line A1 =
VT̂,0,1/W0 with the z1-line A1 ⊂ P1 ⊂ Xζ .

In this way, we get an open immersion of each non-regular connected component of (V
(1)

T̂,0
/W0)ζ

in the scheme Xζ , which coincides on k-points with the restriction of the map of sets Lζ .

6The representations π(0, z1, η) constitute the unramified principal series of G.
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8.5 The morphism Lζ in the basic odd case

Let ζ := ω−1 : Q×p → k×. Here we show that the map of sets Lζ : (V
(1)

T̂,0
/W0)ζ(k) → Xζ(k) that

we have defined in 8.3.13 satisfies properties (ii) and (iiio) of 8.3.12, and we define a morphism

of k-schemes Lζ : (V
(1)

T̂,0
/W0)ζ −→ Xζ which coincides with the previous map of sets at the level

of k-points. By construction, it will have the properties 8.3.10. This will complete the proof of
8.3.12, 8.3.10 and 8.3.9 in the case of an odd character.

8.5.1. We verify properties (ii) and (iiio). We work over an irreducible component P1 with label
” Symr ⊗deta | Symp−3−r ⊗detr+1+a ” where 1 ≤ r ≤ p − 2 and 0 ≤ a ≤ p − 2, cf. 8.2.4. We
distinguish two cases.

1. The generic case r 6= p − 2. In this case, the irreducible component of Xζ we consider is
an ‘interior’ component and has no exceptional points. On this component, we choose an affine
coordinate x around the double point having Symr ⊗deta as one of its Serre weights. Away from
this point, we have x 6= 0 and the corresponding Galois representation has the form

ρx =

(
unr(x)ωr+1 0

0 unr(x−1)

)
⊗ η

with η = ωa. As before, we have

π(ρx) = π(r, x, η)ss ⊕ π([p− 3− r], x−1, ωr+1η)ss.

The length of π(ρx) is 2. Indeed, by our assumptions on r, the principal series representations
π(r, x, η) and π(p − 3 − r, x−1, ωr+1η) are irreducible and the block bx contains only these two
irreducible representations. We may follow the argument of the generic case of 8.4.1 word for word
and deduce property 8.3.12 (ii).

2. The two boundary cases r = p− 2. In this case, the irreducible component is one of the two

‘exterior’ components with labels ” Symp−2 | ” Sym−1 ”” or ”” Sym−1 det
p−1
2 ” | Symp−2 det

p−1
2 ”.

Points of the open locus Xred
ζ lying on such a component correspond to twists of unramified Galois

representations of the form

ρx+x−1 =

(
unr(x) 0

0 unr(x−1)

)
⊗ η

with η = 1 or η = ω
p−1
2 . Let us concentrate on one of the two components, i.e. let us fix η.

Mapping an unramified Galois representation ρx+x−1 to t := x + x−1 ∈ k identifies this open
locus with the t-line A1 ⊂ P1. We have

π(ρt) = π(p− 2, x, η)ss ⊕ π(p− 2, x−1, η)ss =: π1 ⊕ π2

since [p − 3 − (p − 2)] = p − 2 (indeed, p − 3 − (p − 2) = −1 ≡ p − 2 mod (p − 1)). The length
of π(ρt) is 2. Indeed, π1 = π(p − 2, x, η) and π2 = π(p − 2, x−1, η) are two irreducible principal
series representations and the block bt contains only these two irreducible representations. They
are isomorphic if and only if x = ±1, i.e. if and only if t = ±2 is an exceptional point. In this
case, bt contains only one irreducible representation and is of type 3, otherwise it is of type 2.

We may write
π1 = IndGB(χ)⊗ η

with χ = unr(x) ⊗ ωp−2 unr(x−1). Similarly for π2. The character χ|F×p = 1 ⊗ ωp−2 is regular

(i.e. different from its s-conjugate) and we are in the regular case of 8.3.2. We conclude that

πI
(1)

1 = M(0, x, 1, (1⊗ωp−2).η) and πI
(1)

2 = M(0, x−1, 1, (1⊗ωp−2).η) are both simple 2-dimensional
standard modules in the regular component γ represented by the character (1 ⊗ ωp−2).(η|F×p ) =

(η|F×p ) ⊗ (η|F×p )ωp−2 ∈ T∨. They are isomorphic if and only if t = ±2. We choose an order

γ = ((η|F×p ) ⊗ (η|F×p )ωp−2, (η|F×p )ωp−2 ⊗ (η|F×p )) on the set γ. Then from Lζ(v) = t we get that

either ASphγ(v) = πI
(1)

1 or ASphγ(v) = πI
(1)

2 . Since for regular γ, the map ASphγ is a bijection
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onto all simple HγFp -modules, cf. 7.4.9, one finds that L−1
ζ (t) = {v1, v2} has cardinality 2 if t 6= ±2

and then
ASph(v1)⊕ASph(v2) ' π(ρt)

I(1) .

This settles property 8.3.12 (ii). In turn, if t = ±2 is an exceptional point, then L−1
ζ (t) = {v} has

cardinality 1 and

ASph(v)⊕ASph(v) ' π(ρt)
I(1) .

This settles property 8.3.12 (iiio).

8.5.2. We define a morphism of k-schemes Lζ : (V
(1)

T̂,0
/W0)ζ −→ Xζ which coincides on k-points

with the map of sets Lζ : (V
(1)

T̂,0
/W0)ζ(k) −→ Xζ(k). We work over a connected component of

(V
(1)

T̂,0
/W0)ζ , indexed by some γ ∈ T∨/W0. Let v be a k-point of this component.

Since ζ|F×p = ω−1, the connected components of (V
(1)

T̂,0
/W0)ζ are indexed by the fibre (·)|−1

F×p
(ω−1).

This fibre consists of the p−1
2 regular components, represented by the characters

χk = ωk−1 ⊗ ω−k

for k = 1, ..., p−1
2 , cf. 8.1.2. Recall that z2 = ζ(p) = 1.

Fix an order γ = (χk, χ
s
k) on the set γ and choose standard coordinates x, y. According to

7.4.7, our regular connected component identifies with two affine lines intersecting at the origin:

VT̂,0,1 ' A1 ∪0 A1.

Suppose that v = (0, 0) is the origin, so that ASph(v) is a supersingular module. Let π(r, 0, η) be the
corresponding supersingular representation. It corresponds to the irreducible Galois representation
ρ(r, η), in the notation of [Be11, 1.3], whence Lζ(v) = [ρ(r, η)]. According to 8.3.2, the component

of π(r, 0, η)I
(1)

is given by (ωr ⊗ 1) · (η|F×p ). Setting η|F×p = ωa, this implies (ωr ⊗ 1) · (η|F×p ) =

ωr+a ⊗ ωa = χk and hence a = −k and r = 2k − 1. The Serre weights of the irreducible
representation ρ(r, η) are therefore {Sym2k−1⊗ det−k,Symp−2k ⊗detk−1}, cf. [Br07, 1.9].

Comparing these pairs of Serre weights with the list 8.2.4 shows that the p−1
2 points

{origin (0, 0) on the component (χk, χ
s
k)}

for k = 1, ..., p−1
2 are mapped successively to the p−1

2 double points of the chain Xζ . We distinguish
two cases.

1. The generic case 1 < k < p−1
2 . In this case, the argument proceeds as in the regular case of

8.4.2. Consider the double point

Q = Lζ(origin (0, 0) on the component γ = (χk, χ
s
k)).

As we have just seen, Q lies on an ‘interior’ irreducible component P1 whose label includes the
weight Sym2k−1⊗det−k. We fix an affine coordinate on this P1 around Q, which we will also call
x. Away from Q, the affine coordinate x 6= 0 parametrizes Galois representations of the form

ρx =

(
unr(x)ω2k 0

0 unr(x−1)

)
⊗ η

with η := ω−k. As we have seen above, π(ρx) = π(2k−1, x, η)⊕π(p−3−2k+1, x−1, ω2kη) =: π1⊕π2.
Moreover, π1 = IndGB(χ)⊗ η with χ = unr(x)⊗ ω2k−1 unr(x−1). Since

(1⊗ ω2k−1).(η|F×p ) = ω−k ⊗ ωk−1 = χsk ∈ T∨,

we deduce from the regular case of 8.3.2 that πI
(1)

1 = M(0, x, 1, χsk) is a simple 2-dimensional
standard module. Note that M(0, x, 1, χsk) = M(x, 0, 1, χk) according to [V04, Prop. 3.2].
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Now suppose that v = (x, 0), x 6= 0, denotes a nonzero point on the x-line of A1 ∪0 A1. In
particular, ASphγ(v) = M(x, 0, 1, χk). Our discussion shows that the point Lζ((x, 0)) corresponds
to the block which contains π1. Since π1 lies in the block parametrized by [ρx], cf. 8.3.8, it follows
that

Lζ((x, 0)) = [ρx] = x ∈ Gm ⊂ P1.

Since (0, 0) maps to Q, i.e. to the point at x = 0, the map Lζ identifies the whole affine x-line
A1 = {(x, 0) : x ∈ k} ⊂ VT̂,0,1 with the affine x-line A1 ⊂ P1 ⊂ Xζ .

On the other hand, the double point Q also lies on the irreducible component whose labelling
includes the other weight of Q, i.e. the weight Symp−2k ⊗detk−1. We fix an affine coordinate y on
this P1 around Q. Away from Q, the coordinate y 6= 0 parametrizes Galois representations of the
form

ρy =

(
unr(y)ωp−2k+1 0

0 unr(y−1)

)
⊗ η

with η := ωk−1. As in the first case, π(ρy) contains π1 := π(p− 2k, y, η) = IndGB(χ)⊗ η as a direct
summand, where now χ = unr(y)⊗ ωp−2k unr(y−1). Since

(1⊗ ωp−2k).(η|F×p ) = ωk−1 ⊗ ω−k = χk ∈ T∨,

we deduce from the regular case of 8.3.2 that πI
(1)

1 = M(0, y, 1, χk) is a simple 2-dimensional
standard module.

Now suppose that v = (0, y), y 6= 0, denotes a nonzero point on the y-line of A1 ∪0 A1. In
particular, ASphγ(v) = M(0, y, 1, χk). Our discussion shows that the point Lζ((0, y)) corresponds
to the block which contains π1, parametrized by [ρy]. Hence

Lζ((0, y)) = [ρy] = y ∈ Gm ⊂ P1.

Since (0, 0) maps to Q, i.e. to the point at y = 0, the map Lζ identifies the whole y-line A1 =
{(0, y) : y ∈ k} ⊂ VT̂,0,1 with the affine y-line A1 ⊂ P1 ⊂ Xζ .

In this way, we get an open immersion of each connected component (V γ
T̂,0

/W0)ζ of (V
(1)

T̂,0
/W0)ζ

such that γ = (χk, χ
s
k) with 1 < k < p−1

2 , in the scheme Xζ , which coincides on k-points with the
restriction of the map of sets Lζ .

2. The two boundary cases k ∈ {1, p−1
2 }. Consider the double point

Q = Lζ(origin (0, 0) on the component γ = (χk, χ
s
k)).

As we have just seen, Q lies on an ‘interior’ irreducible component P1 whose label includes the

weight Sym1⊗det−1 (for k = 1) or the weight Sym1⊗det
p−3
2 (for k = p−1

2 ). We fix an affine
coordinate on this P1 around Q, which we will call z. Away from Q, the coordinate z 6= 0
parametrizes Galois representations of the form

ρz =

(
unr(z)ω2 0

0 unr(z−1)

)
⊗ η

with η = ω−1 or η = ω
p−3
2 .

Let k = 1, i.e. η = ω−1. Following the argument in the generic case word for word, we may
conclude that Lζ identifies the x-line A1 = {(x, 0) : x ∈ k} ⊂ VT̂,0,1 with the z-line A1 ⊂ P1 ⊂ Xζ .

Let k = p−1
2 , i.e. η = ω

p−3
2 . As in the generic case, we may conclude that Lζ identifies the

y-line A1 = {(0, y) : y ∈ k} ⊂ VT̂,0,1 with the z-line A1 ⊂ P1 ⊂ Xζ .

On the other hand, the double point Q lies also on the irreducible component P1 whose labelling

includes the other weight of Q, i.e. the weight Symp−2 (for k = 1) or the weight Symp−2⊗det
p−1
2

(for k = p−1
2 ). These are the two ‘exterior’ components. Points of the open locus Xred

ζ lying on
such a component correspond to unramified (up to twist) Galois representations of the form

ρt =

(
unr(z) 0

0 unr(z−1)

)
⊗ η
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where η = 1 (for k = 1) or η = ω
p−1
2 (for k = p−1

2 ) and with t = z + z−1 ∈ A1 ⊂ P1. As
in the boundary case of 8.5.1, we have π(ρt) = π(p − 2, z, η) ⊕ π(p − 2, z−1, η) =: π1 ⊕ π2 and
these are irreducible principal series representations. We may write π1 = IndGB(χ) ⊗ η with χ =
unr(z)⊗ωp−2 unr(z−1). The character χ|F×p = 1⊗ωp−2 is regular (i.e. different from its s-conjugate)

and we are in the regular case of 8.3.2. We conclude that

πI
(1)

1 = M(0, z, 1, (1⊗ ωp−2).η)

is a simple 2-dimensional standard module in the regular component represented by the character

(1⊗ ωp−2).(η|F×p ) = (η|F×p )⊗ (η|F×p )ωp−2 = (η|F×p )⊗ (η|F×p )ω−1 ∈ T∨.

This latter character equals χ1 for η = 1 and (χ p−1
2

)s for η = ω
p−1
2 (indeed, note that p−1

2 ≡ −p−1
2

mod p− 1).
Now suppose that k = 1, i.e. η = 1. Let v = (0, y), y 6= 0, be a nonzero point on the y-line of

A1 ∪0 A1. In particular, ASphγ(v) = M(0, y, 1, χ1). Our discussion shows that the point Lζ((0, y))
corresponds to the block which contains π1, i.e. which is parametrized by [ρt]. It follows that

Lζ((0, y)) = [ρt] = t = y + y−1 ∈ A1 ⊂ P1.

Since (0, 0) maps to Q, i.e. to the point at t = ∞, the map of sets Lζ maps the k-points of
the whole affine y-line A1 = {(0, y) : y ∈ k} ⊂ VT̂,0,1 to the k-points of the whole ‘left exterior’

component P1 ⊂ Xζ via the formula

A1 −→ P1

y 7−→
{
y + y−1 if y 6= 0
∞ = Q if y = 0.

This formula is algebraic: indeed, for y ∈ A1 \ {±i} (where ±i are the roots of the polynomial
f(y) = y2 + 1), we have y + y−1 6= 0 and (y + y−1)−1 = y/(y2 + 1), which is equal to 0 at y = 0.
Moreover, it glues at the origin (0, 0) with the open immersion of the x-line of VT̂,0,1 = A1 ∪0 A1

in Xζ defined above, since both map (0, 0) to Q. We take the resulting morphism of k-schemes

A1∪0 A1 → Xζ as the definition of Lζ on the connected component (V
(χ1,χ

s
1)

T̂,0
/W0)ζ of (V

(1)

T̂,0
/W0)ζ .

Note that its restriction to the open subset {y 6= 0} in the y-line A1 is the morphism Gm → A1

corresponding to the ring extension

k[t] −→ k[y, y−1] = k[t][y]/(y2 − ty + 1),

and that the discriminant t2 − 4 of y2 − ty + 1 ∈ k[t][y] vanishes precisely at the two exceptional
points t = ±2.

Suppose k = p−1
2 , i.e. η = ω

p−1
2 . Let v = (x, 0), x 6= 0, denote a nonzero point on the x-line of

A1 ∪0 A1. In particular,

ASphγ(v) = M(0, x, 1, (χ p−1
2

)s) = M(x, 0, 1, χ p−1
2

).

Our discussion shows that the point Lζ((x, 0)) corresponds to the block which contains π1, i.e.
which is parametrized by [ρt]. It follows that Lζ((x, 0)) = [ρt] = t = x + x−1 ∈ A1 ⊂ P1. Since
(0, 0) maps to the point Q at t =∞, the map of sets Lζ maps the k-points of the whole affine x-line
A1 = {(x, 0) : y ∈ k} ⊂ VT̂,0,1 to the k-points of the whole ‘right exterior’ component P1 ⊂ Xζ via
the formula

A1 −→ P1

x 7−→
{
x+ x−1 if x 6= 0
∞ = Q if x = 0.

This formula is algebraic. Moreover, it glues at the origin (0, 0) with the open immersion of the
y-line of VT̂,0,1 = A1 ∪0 A1 in Xζ defined above, since both map (0, 0) to Q. We take the resulting

morphism of k-schemes A1 ∪0 A1 → Xζ as the definition of Lζ on the connected component

(V
(χ p−1

2
,(χ p−1

2
)s)

T̂,0
/W0)ζ of (V

(1)

T̂,0
/W0)ζ .
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8.6 A mod p Langlands parametrization in families for F = Qp

In this subsection we continue to assume that F = Qp with p ≥ 5.

8.6.1. Recall the mod p parametrization functor P : Mod(H(1)

Fp
) → SPĜ,0 from 7.3.6. For

ζ ∈ Z∨(k), let Modζ(H(1)

Fp
) be the full subcategory of Mod(H(1)

Fp
) whose objets are the H(1)

Fp
-

modules whose Satake parameter is supported on the closed subscheme (V
(1)

T̂,0
/W0)ζ ⊂ V

(1)

T̂,0
/W0.

A H(1)

Fp
-module M lies in the category Modζ(H(1)

Fp
) if and only if: M is only supported in γ-

components where γ|F×p = ζ|F×p and the operator U2 acts on M via the Gm-part of ζ. Set SPĜ,0,ζ :=

QCoh((V
(1)

T̂,0
/W0)ζ), the category of quasi-coherent modules on the k-scheme (V

(1)

T̂,0
/W0)ζ . Then P

induces a mod p ζ-parametrization functor

Pζ : Modζ(H(1)

Fp
) // SPĜ,0,ζ .

For ζ ∈ Z∨(k), also recall the category LPĜ,0,ζ := QCoh(Xζ) of mod p Langlands parameters
with determinant ωζ from 8.2.5; it induces the functor

Lζ∗ : SPĜ,0,ζ
// LPĜ,0,ζ

push-forward along the k-morphism Lζ : (V
(1)

T̂,0
/W0)ζ → Xζ from 8.3.9.

Finally recall that for ζ ∈ Z∨(k), the functor of I(1)-invariants (·)I(1) : Modsm(k[G]) →
Mod(H(1)

Fp
) induces a functor

(·)I
(1)

ζ : Modsm
ζ (k[G])→ Modζ(H(1)

Fp
),

by 8.3.5.

8.6.2. Definition. Let ζ ∈ Z∨(k). The mod p ζ-Langlands parametrization functor is the functor

LζPζ := Lζ∗ ◦ Pζ :

Modζ(H(1)

Fq
)

��

LPĜ,0,ζ .

Identifying ζ with a central character of G, the functor LζPζ extends to the category Modsm
ζ (k[G])

by precomposing with the functor (·)I(1)ζ : Modsm
ζ (k[G])→ Modζ(H(1)

Fp
):

LζPζ ◦(·)I
(1)

ζ :

Modsm
ζ (k[G])

��

LPĜ,0,ζ .

8.6.3. Theorem. Suppose F = Qp with p ≥ 5. Fix a character ζ : Z(G) = Q×p → k×,
corresponding to a point (ζ|F×p , ζ(p−1)) ∈ Z∨(k) under the identification Z(G)∨ ∼= Z∨(k) from
8.3.4.

The mod p ζ-Langlands parametrization functor LζPζ interpolates the Langlands parametriza-

tion of the blocks of the category Modladm
ζ (k[G]), cf. 8.3.7 : for all x ∈ Xζ(k) and for all π ∈ b[ρx],

LζPζ(π
I(1)) =

{
ix∗(π

I(1)) if x is not an exceptional point in the odd case

ix∗(π
I(1))⊕2 otherwise

∈ LPĜ,0,ζ

where ix : Spec(k)→ Xζ is the k-point x.
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Proof. By definition of a block of a category as a certain equivalence class of simple objects [Pas13],

if π ∈ b[ρx] then in particular π is simple. Then πI
(1)

is simple too, and hence has a central

character. Therefore Pζ(π
I(1)) is the underlying k-vector space of πI

(1)

supported at the k-point

v ∈ (V
(1)

T̂,0
/W0)ζ corresponding to its central character under the isomorphism S

(1)

Fp
, which lies

on some connected component γ. Suppose dimk(πI
(1)

) = 2. Then πI
(1)

is isomorphic to the
simple standard module of HγFp with central character v, i.e. to ASphγ(v), and hence Lζ(v) = x

by definition of the map of sets Lζ(k). Suppose dimk(πI
(1)

) = 1. Then πI
(1)

is one of the two
antispherical characters of HγFp whose restriction to the center Z(HγFp) is equal to v, i.e. it is one

of the simple constituents of (ASphγ(v))ss, and hence again Lζ(v) = x by definition of the map of
sets Lζ(k). Now if x is not an exceptional point in an odd case, then Lζ is an open immersion at
v, and otherwise it has ramification index 2 at v. The theorem follows.

9 Appendix: Virtual quotients for actions of semigroups

A semigroup is a set equipped with an internal law which is associative. If the law admits a
(necessary unique) identity element then the semigroup is a monoid, and if furthermore every
element is invertible then it is a group. These set theoretic notions induce corresponding notions
for set-valued functors on a given category, in particular on the category of schemes. Using the
Yoneda embedding, we get the notions of a semigroup scheme, monoid scheme and group scheme
(over a fixed base scheme).

In this appendix, we consider the following setup. We fix a base scheme S and let (Sch/S)
be the category of schemes over S. We fix a semigroup scheme G over S and a subsemigroup
scheme B ⊂ G (i.e. a subsemigroup functor which is representable by a scheme). We denote by
αG,G : G × G → G the law of G (resp. αB,B : B × B → B the law of B). If G is a monoid we
denote by eG its identity section and then we suppose that B ⊂ G is a submonoid: eB := eG ∈ B.
If G is a group then we suppose that B ⊂ G is a subgroup, and denote by iG : G→ G the inverse
map of G (resp. iB : B → B the inverse map of B).

9.1 Virtual quotients

Recall that an S-space in groupoids is a pair of sheaves of sets (R,U) on (Sch/S) with five mor-
phisms s, t, e, c, i (source, target, identity, composition, inversion)

R
s //

t
// U

e // R R×s,U,t R
c // R R

i // R

satifying certain natural compatibilities. Given a groupoid space, one defines the fibered groupoid
over (Sch/S) to be the category [R,U ]′ over (Sch/S) whose objects resp. morphisms over a scheme
T are the elements of the set U(T ) resp. R(T ). Given a morphisms f : T ′ → T in (Sch/S) one
defines the pull-back functor f∗ : [R,U ]′(T ) → [R,U ]′(T ′) using the maps U(T ) → U(T ′) and
R(T ) → R(T ′). An equivalent terminology for ‘fibered groupoid over (Sch/S)’ is ‘prestack over
S’, and given a Grothendieck topology on (Sch/S), one can associate a stack to a prestack; in the
case of the prestack [R,U ]′, the associated stack is denoted by [R,U ].

If X is a scheme equipped with a (right) action of a group scheme B, one takes U = X,
R = X × B, and let s be the action of the group and t = p1 be the first projection. Then c is
the product in the group and e, i are defined by means of the identity and the inverse of B. By
definition, the quotient stack [X/B] is the stack [X × B,X]. For all of this, we refer to [LM00,
(2.4.3)].

In the context of semigroups, we adopt the same point of view, however, the maps e and i are
missing. This leads to the following definition.

9.1.1. Definition. The virtual quotient associated to the inclusion of semigroups B ⊂ G is the
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semigroupoid consisting of the source and target maps αG,B := αG,G|G×B and first projection p1

G×B
αG,B

//

p1
// G

together with the composition

c : (G×B)αG,B ×G p1(G×B) −→ G×B(
(g, b), (gb, b′)

)
7−→ (g, bb′).

We denote it by G/B.

9.1.2. Saying that these data define a semigroupoid means that they satisfy the following axioms:

(0) αG,B ◦ c = αG,B ◦ p2 and p1 ◦ c = p1 ◦ p1 where we have denoted the two projections
(G×B)αG,B ×G p1(G×B)→ G×B by p1, p2 ;

(i) (associativity) the two composed maps

(G×B)αG,B ×G p1(G×B)αG,B ×G p1(G×B)
c×idG×B

//

idG×B ×c
// (G×B)αG,B ×G p1(G×B)

c // (G×B)

are equal.

9.1.3. If B ⊂ G is an inclusion of monoids, then G/B becomes a monoidoid thanks to the
additional datum of the identity map

ε : G
idG×eB // G×B.

This means that the following additional axioms are satisfied:

(0)’ αG,B ◦ (idG×eB) = p1 ◦ (idG×eB) = idG ;

(ii) (identity element) the two composed maps

G×B = (G×B)αG,B ×G G = G×G p1(G×B)
ε×idG×B

//

idG×B ×ε
// (G×B)αG,B ×G p1(G×B)

c // (G×B)

are equal.

9.1.4. If B ⊂ G is an inclusion of groups, then G/B becomes a groupoid thanks to the additional
datum of the inverse map

i : G×B
αG,B×iB

// G×B.
This means that the following additional axioms are satisfied:

(0)” αG,B ◦ (αG,B × iB) = p1 and p1 ◦ (αG,B × iB) = αG,B ;

(iii) (inverse) the two diagrams

G×B

αG,B

��

(αG,B×iB)×idG×B
// (G×B)αG,B ×G p1(G×B)

c

��

G
idG×eB // G×B

G×B

p1

��

idG×B ×(αG,B×iB)
// (G×B)αG,B ×G p1(G×B)

c

��

G
idG×eB // G×B

are commutative.
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9.2 Categories on the virtual quotient

Let C be a category fibered over (Sch/S).

9.2.1. Definition. The (fiber of the) category C over G/B is the category C(G/B) defined by:

(Obj) an object of C(G/B) is a couple (F , φB) where F is an object of C(G) and

φB : p∗1F −→ α∗G,BF

is a morphism in C(G×B) satisfying the following cocycle condition: considering the maps

G×B ×B −→ G

p1 = p1 ◦ (idG×αB,B) = p1 ◦ p12

q := αG,B ◦ (idG×αB,B) = αG,B ◦ (αG,B × idB)

r := p1 ◦ (αG,B × idB) = αG,B ◦ p12,

the diagram in C(G×B ×B)

p∗1F

p∗12φB ""

(idG×αB,B)∗φB
// q∗(F , φB)

r∗F
(αG,B×idB)∗φB

99

is commutative ;

(Hom) a morphism (F1, φ1
B)→ (F2, φ2

B) in C(G/B) is a morphism ϕ : F1 → F2 in C(G) such that
the diagram in C(G×B)

p∗1F1
p∗1ϕ //

φ1
B

��

p∗1F2

φ2
B

��

α∗G,BF1
α∗G,Bϕ

// α∗G,BF2

is commutative.

9.2.2. If B ⊂ G is an inclusion of monoids, then an object of C(G/B) is a couple (F , φB) as in
9.2.1 which is required to satisfy the additional condition that the morphism in C(G)

ε∗(φB) := (idG×eB)∗φB : F // F

is equal to the identity. Homomorphisms in C(G/B) remain the same as in the case of semigroups.

9.2.3. If B ⊂ G is an inclusion of groups, then given an object (F , φB) of C(G/B) as in 9.2.2, the
morphism φB in C(G × B) is automatically an isomorphism, whose inverse is equal to i∗(φB) :=
(αG,B × iB)∗(φB). The category C(G/B) coincides therefore with the category attached to the
underlying inclusion of monoids.

9.3 Equivariant categories on the virtual quotient

9.3.1. By taking the direct product idG×• of all the maps appearing in the definition 9.1.1 of the
semigroupoid G/B, we get a semigroupoid G×G/B, whose source and target maps are

(G×G)×B
αG×G,B

//

p1
// G×G.
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Then given C we define the category C(G×G/B) exactly as we defined the category C(G/B), but
now using the semigroupoid G × G/B instead of G/B. Applying once more idG×•, we also get
the semigroupoid G×G×G/B with source and target maps

(G×G×G)×B
αG×G×G,B

//

p1
// G×G×G,

and then the category C(G×G×G/B).

9.3.2. A morphism f : G×G→ G is B-equivariant if the diagram

(G×G)×B
f×idB //

αG×G,B

��

G×B

αG,B

��

G×G
f

// G

commutes. Then there is a well-defined pull-back functor

f∗ : C(G/B) // C(G×G/B),

given by the rules (F , φB) 7→ (f∗F , (f × idB)∗φB) and ϕ 7→ f∗ϕ. One defines similarly the
B-equivariant morphisms f : G × G × G → G × G and the associated pull-back functors f∗ :
C(G×G/B)→ C(G×G×G/B).

9.3.3. With this preparation, we will now be able to define the G-equivariant version of the
category C(G/B). It relies on the semigroupoid G\G consisting of the source and target maps

G×G
αG,G

//

p2
// G

together with the composition

(G×G)αG,G ×G p2(G×G) −→ G×G(
(g1, g0), (g2, g1g0)

)
7−→ (g2g1, g0).

Note that the source and target maps αG,G and p2 are B-equivariant.

9.3.4. Definition. The (G-)equivariant (fiber of the) category C over G/B is the category
CG(G/B) defined by:

(Obj) an object of CG(G/B) is a triple (F , φB ,Gφ) where (F , φB) is an object of C(G/B) and

Gφ : p∗2(F , φB) −→ α∗G,G(F , φB)

is an isomorphism in C(G×G/B) satisfying the following cocycle condition: considering the
B-equivariant maps

G×G×G −→ G

p3

q := αG,G ◦ (αG,G × idG) = αG,G ◦ (idG×αG,G)

r := p2 ◦ (idG×αG,G) = αG,G ◦ p23,

and the B-equivariant maps αG,G × idG, p23, idG×αG,G from G × G × G to G × G, the
diagram in C(G×G×G/B)

p∗3(F , φB)

p∗23Gφ &&

(αG,G×idG)∗Gφ
// q∗(F , φB)

r∗(F , φB)

(idG×αG,G)∗Gφ

88

is commutative ;
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(Hom) a morphism (F1, φ1
B ,Gφ

1) → (F2, φ2
B ,Gφ

2) in CG(G/B) is a morphism ϕ : (F1, φ1
B) →

(F2, φ2
B) in C(G/B) such that the diagram in C(G×G/B)

p∗2(F1, φ1
B)

p∗2ϕ //

Gφ
1

��

p∗2(F2, φ2
B)

Gφ
2

��

α∗G,G(F1, φ1
B)

α∗G,Gϕ
// α∗G,G(F2, φ2

B)

is commutative (which by definition means that the diagram in C(G×G)

p∗2F1
p∗2ϕ //

Gφ
1

��

p∗2F2

Gφ
2

��

α∗G,GF1
α∗G,Gϕ

// α∗G,GF2

is commutative).

9.3.5. If B ⊂ G is an inclusion of monoids, then an object of CG(G/B) is a triple (F , φB ,Gφ) as
in 9.3.4, where now the object (F , φB) of C(G/B) is as in 9.2.2, which is required to satisfy the
additional condition that the morphism in C(G)

(eG × idG)∗Gφ : F // F

is equal to the identity. Homomorphisms in CG(G/B) remain the same as in the case of semigroups.

9.3.6. As in the non-equivariant setting, cf. 9.2.3, if B ⊂ G is an inclusion of groups, then the
category CG(G/B) coincides with the category attached to the underlying inclusion of monoids.

9.4 Induction of representations

From now on, the fixed base scheme is a field k and C is the fibered category of vector bundles.

9.4.1. Definition. The category Rep(B) of right representations of the k-semigroup scheme B
on finite dimensional k-vector spaces is defined as follows:

(Obj) an object of Rep(B) is a couple (M,αM,B) where M is a finite dimensional k-vector space
and

αM,B : M ×B −→M

is a morphism of k-schemes such that

∀(m, b1, b2) ∈M ×B ×B, αM,B(αM,B(m, b1), b2) = αM,B(m,αB,B(b1, b2)).

(Hom) a morphism (M1, αM1,B) → (M2, αM2,B) in Rep(B) is a k-linear map f : M1 → M2 such
that

∀(m, b) ∈M1 ×B, f(αM1,B(m, b)) = αM2,B(f(m), b).

9.4.2. We define an induction functor

IndGB : Rep(B) // CG(G/B)

as follows. Let (M,αM,B) be an object of Rep(B). Set F := G×M ∈ C(G). There are canonical
identifications p∗1F = G×M ×B and α∗G,BF = G×B ×M in C(G×B). Set

φB : G×M ×B −→ G×B ×M
(g,m, b) 7→ (g, b, αM,B(m, b)).
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Then (F , φB) is an object of C(G/B). Next, there are canonical identifications p∗2F = G×G×M
and α∗G,GF = G×G×M in C(G×G). Set

Gφ := idG×G×M .

Then Gφ is an isomorphism p∗2(F , φB) → α∗G,G(F , φB) in C(G × G/B), and ((F , φB),Gφ) is an

object of CG(G/B).
Let f : (M1, αM1,B)→ (M2, αM2,B) be a morphism in Rep(B). Then

idG×f : F1 = G×M1 −→ F2 = G×M2

defines a morphism ϕ : ((F1, φ1
B),Gφ

1)→ ((F2, φ2
B),Gφ

2) in CG(G/B).
These assignments are functorial.

9.4.3. Lemma. The functor IndGB is faithful. Suppose moreover that the k-semigroup scheme G
has the following property:

There exists a k-point of G which belongs to all the G(k)-left cosets in G(k), and the underlying
k-scheme of G is locally of finite type.

Then the functor IndGB is fully faithful.

Proof. Faithfulness is obvious. Now let ϕ : IndGB(M1) = G ×M1 → IndGB(M2) = G ×M2. The
compatibilty of ϕ with Gφ

i, i = 1, 2, reads as

idG×ϕ = α∗G,Gϕ : G×G×M1 −→ G×G×M2.

For g ∈ G(k), denote by φg : M1
k
→ M2

k
the fiber of ϕ over g. Taking the fiber at (g′, g) in the

above equality implies that ϕg = ϕg′g for all g, g′ ∈ G(k), i.e. ϕg depends only on the left coset
G(k)g, hence is independent of g if all the left cosets share a common point. Assuming that such a
point exists and is defined over k, let f : M1 →M2 be the corresponding k-linear endomorphism.
Then ϕ− idG×f is a linear morphism between two vector bundles on G, which vanishes on each
geometric fiber. Then it follows from Nakayama’s Lemma that ϕ − idG×f = 0 on G, at least if
the latter is locally of finite type over k.

9.4.4. Definition. When the functor IndGB is fully faithful, we call its essential image the category
of induced vector bundles on G/B, and denote it by CGInd(G/B):

IndGB : Rep(B)
∼ // CGInd(G/B) ⊂ CG(G/B).

9.4.5. If B ⊂ G is an inclusion of monoids, then an object of Rep(B) is a couple (M,αM,B) as in
9.4.1 which is required to satisfy the additional condition that the k-morphism

αM,B ◦ (idM ×eB) : M // M

is equal to the identity. Homomorphisms in Rep(B) remain the same as in the case of semigroups.
In particular, comparing with 9.3.5, the same assignments as in the case of semigroups define

an induction functor
IndGB : Rep(B) // CG(G/B).

Now set e := eB = eG ∈ B(k) ⊂ G(k), the identity element. We define a functor fiber at e

Fibe : CG(G/B) // Rep(B)

as follows. Let (F , φB ,Gφ) be an object of CG(G/B). Set M := F|e, a finite dimensional k-vector
space. There are canonical identifications (p∗1F)|e×B = M × B, (α∗G,BF)|e×B = (α∗G,GF)|B×e =
F|B and (p∗2F)|B×e = B ×M . Set

αM,B : M ×B
φB |e×B

// F|B B ×MGφ|B×e
∼

oo
p2 // M.
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Then (M,αM,B) is an object of Rep(B).
Let ϕ : (F1, φ1

B ,Gφ
1)→ (F2, φ2

B ,Gφ
2) be a morphism in CG(G/B). Then

f = ϕe : F1|e = M1 −→ F2|e = M2

defines a morphism (M1, αM1,B)→ (M2, αM2,B) in Rep(B).
These assignments are functorial.

9.4.6. Proposition. For an inclusion of k-monoid schemes B ⊂ G with unit e, the functors
IndGB and Fibe are equivalences of categories, which are quasi-inverse one to the other.

Proof. Left to the reader.

9.4.7. Analogous to the property 9.3.6 for equivariant vector bundles, we have that if B ⊂ G
is an inclusion of groups, then given an object (M,αM,B) of Rep(B), the right B-action on M
defined by αM,B factors automatically through the k-group scheme opposite to the one of k-linear
automorphisms of M , the inverse of αM,B(•, b) being equal to αM,B(•, iB(b)) for all b ∈ B. The
category Rep(B) coincides therefore with the category attached to the underlying monoid of B.

In particular, we have the functors IndGB and Fibe attached to the underlying inclusion of
monoids B ⊂ G, for which Proposition 9.4.6 holds.

9.5 Grothendieck rings of equivariant vector bundles

9.5.1. For a k-semigroup scheme B, the category Rep(B) is abelian k-linear symmetric monoidal
with unit. Hence, for an inclusion of k-semigroup schemes B ⊂ G such that the functor IndGB is
fully faithful, the essential image CGInd(G/B) has the same structure. In particular, it is an abelian
category whose Grothendieck group KG

Ind(G/B) is a commutative ring, which is isomorphic to
the ring R(B) of right representations of the k-semigroup scheme B on finite dimensional k-vector
spaces:

IndGB : R(B)
∼ // KG

Ind(G/B).

9.5.2. If B ⊂ G is an inclusion of monoids, then it follows from 9.4.6 that the category CG(G/B)
is abelian k-linear symmetric monoidal with unit. In particular, it is an abelian category whose
Grothendieck group KG(G/B) is a commutative ring, which is isomorphic to the ring R(B) of
right representations of the k-monoid scheme B on finite dimensional k-vector spaces:

IndGB : R(B)
∼ // KG(G/B).

9.5.3. If B ⊂ G is an inclusion of groups, then 9.5.2 applies to the underlying inclusion of monoids.
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