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Abstract

Let R be a complete discrete valuation ring with algebraically closed
residue field k and fraction field K. Let XK be a proper smooth and geo-
metrically connected scheme overK. Néron defined a canonical pairing onXK

between 0-cycles of degree zero and divisors which are algebraically equivalent
to zero. When XK is an abelian variety, and if one restricts to those 0-cycles
supported on K-rational points, Néron gave an expression of his pairing in-
volving intersection multiplicities on the Néron model A of AK over R. When
XK is a curve, Gross and Hriljac gave independently an analogous descrip-
tion of Néron’s pairing, but for arbitrary 0-cycles of degree zero, by means of
intersection theory on a proper flat regular R-model X of XK .

In this article, we show that these intersection computations are valid for
an arbitrary schemeXK as above and arbitrary 0-cyles of degree zero, by using
a proper flat normal and semi-factorial model X of XK over R. When XK =
AK is an abelian variety, and X = A is a semi-factorial compactification of its
Néron model A, these computations can be used to study the relative algebraic
equivalence on A/R. We then obtain an interpretation of Grothendieck’s
duality for the Néron model A, in terms of the Picard functor of A over R.
Finally, we give an explicit description of Grothendieck’s duality pairing when
AK is the Jacobian of a curve of index one.
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1 Introduction

Let R be a complete discrete valuation ring with algebraically closed residue field
k and fraction field K. Let XK be a proper smooth and geometrically connected
scheme over K. Denote by Z0

0 (XK) the group of 0-cycles of degree zero on XK ,
and by Div0(XK) the group of divisors which are algebraically equivalent to zero
on XK . For each cK ∈ Z0

0 (XK) and DK ∈ Div0(XK) with disjoint supports, Néron
attached a rational number

〈 cK , DK 〉 ∈ Q,

by using the unique (up to constant) Néron function associated to DK . This defines
a bilinear pairing 〈 , 〉: see [N] II 9.3.

Suppose first that XK = AK is an abelian variety, and denote by A its Néron
model over R. By definition of A, any K-rational point of AK extends to a section
of A over R. Then, if cK is supported on K-rational points, Néron showed that the
pairing attached to AK can be decomposed as follows:

〈 cK , DK 〉 = i(cK , DK) + j(cK , DK), (1)

where i(cK , DK) is the intersection multiplicity (cK .DK) ∈ Z of the schematic
closures in A, and j(cK , DK) ∈ Q depends only on the specialization of cK on the
group ΦA of connected components of the special fiber Ak: see [N] III 4.1 and [La]
11.5.1.

Suppose now that XK is a curve, and denote by X a proper flat regular model
of XK over R. Let M be the intersection matrix of the special fiber Xk of X/R:
if Γ1, . . . ,Γν are the irreducible components of Xk equipped with their reduced
scheme structure, the (i, j)th entry of M is the intersection number (Γi · Γj). Let
DK ∈ Div0(XK) and let DK be its closure in X. Computing the degree (DK .Γi)
of DK along each Γi, we get a vector ρ(DK) ∈ Zν . Next, as a consequence of
intersection theory on X, there exists a vector V ∈ Qν such that ρ(DK) = MV .
Denote again by V the Q-linear combination of the Γi where the coefficient of Γi is
the ith entry of V . Then, for any cK ∈ Z0

0 (XK) whose support is disjoint from that
of DK , the following formula holds:

〈 cK , DK 〉 = (cK .DK) + (cK .(−V )), (2)

where the second intersection number is defined by Q-linearity from the (cK .Γi).
See [G],[H] and [La2] III 5.2. Now let JK be the Jacobian of XK and let J be its
Néron model over R. Following the point of view of Bosch and Lorenzini ([BL] 4.3),
it results from Raynaud’s theory of the Picard functor PicX/R ([R] Section 8) that
the term (cK .(−V )) depends only on the specialization of (cK) ∈ JK(K) into the
group of components ΦJ of Jk.

In Section 2, we provide a unified approach to these two descriptions of Néron’s
pairing. More precisely, for an arbitrary proper geometrically normal and geome-
trically connected scheme XK , there always exists some proper flat normal semi-
factorial modelX ofXK overR ([P] Theorem 2.6). Recall thatX/R is semi-factorial
if the restriction homomorphism on Picard groups Pic(X)→Pic(XK) is surjective.
Note that a regular model is semi-factorial. Using the theory of the Picard functor
of semi-factorial models, we define a pairing [ , ] on XK involving intersection
multiplicities on X (Definition 2.1.1). It turns out that this pairing depends only
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on XK , and coincides with Néron’s pairing when the latter is defined, that is, when
XK is smooth:

〈 , 〉 = [ , ] (3)

(Theorem 2.2.1). If XK = AK is an abelian variety and X = A is a semi-factorial
compactification of its Néron model A, then equality (3) provides decomposition (1)
for 0-cycles supported on K-rational points. If XK is a curve and X a proper flat
regular model of XK , then the intersection matrix of Xk is defined, and equality
(3) is exactly formula (2).

In Section 3, we consider an abelian variety AK , with dual A′K . By definition,
the abelian variety A′K parametrizes the divisors on AK which are algebraically
equivalent to zero, that is, A′K = Pic0

AK/K . Now, let A′/R be the Néron model
of A′K , and denote by (A′)0 its identity component. By restricting to the generic
fiber, the group of sections (A′)0(R) can be viewed as a subgroup of A′K(K). On
the other hand, let A be a normal semi-factorial compactification of A, let PicA/R
be its relative Picard functor, and denote by Pic0

A/R
the component of the zero

section. By restricting to the generic fiber, the group Pic0
A/R

(R) can be viewed as
a subgroup of Pic0

AK/K(K).
In Theorem 3.2.1, we investigate the relationship between the two groups

(A′)0(R) and Pic0
A/R

(R) (contained in A′K(K) = Pic0
AK/K(K)).

We show that they are equal as soon as the duality conjecture of Grothendieck
about A and A′ is true ([SGA 7] IX 1.3). More precisely, Grothendieck defined a
pairing between the component groups of the special fibers of A and A′, and he
conjectured that this pairing is perfect. This duality statement has been proved in
many situations (e.g., see the introduction of [BL] for a detailed list of the known
cases, and also [Loe]), but it remains open in equal characteristic p > 0. Here,
we give an equivalent formulation of Grothendieck’s conjecture, in terms of Cartier
divisors on A. As a consequence, when the conjecture is true, we obtain the equal-
ity (A′)0(R) = Pic0

A/R
(R). As a Cartier divisor on A is said to be algebraically

equivalent to zero relative to R if its image into PicA/R(R) is contained Pic0
A/R

(R),
the latter equality says that these divisors are parametrized by (A′)0. The main
ingredients for the proof are a theorem of Bosch and Lorenzini about Néron’s and
Grothendieck’s pairings ([BL] 4.4), and the study of the pairing [ , ] introduced
above, especially for 0-cycles supported on non-rational points (Proposition 3.4.2).

In Section 4, we examine the relationship between Néron’s and Grothendieck’s
pairing for the Jacobian of a curve, following Bosch and Lorenzini [BL] 4.6, and
Lorenzini [Lor] 3.4. Here we take into account the index of the curve (Theorem
4.1.1). As a consequence, we obtain the perfectness of Grothendieck’s pairing when
this index is prime to the characteristic of the residue field k (Corollary 4.1.2).

Acknoledgements. I would like to thank Michel Raynaud for many enlightening
discussions about Néron’s and Grothendieck’s pairings. I am indebted to Qing
Liu for his valuable teaching of intersection theory on relative schemes. I am very
grateful to Pascal Autissier, Siegfried Bosch, Dino Lorenzini and Laurent Moret-
Bailly for their careful reading and for many helpful comments. I thank the referee
for his meticulous reading and for many useful remarks.

2 Néron’s pairing and intersection multiplicities
In this article, let us adopt the following terminology: a divisor on a scheme will
always be a Cartier divisor.
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2.1 A canonical pairing computed on semi-factorial models

Let R be a discrete valuation ring with fraction field K and residue field k. We
assume R complete and k algebraically closed. Let XK be a proper geo-
metrically normal and geometrically connected scheme over K. From [P] Theorem
2.6, there exists a model X/R of XK , that is, an R-scheme with generic fiber XK ,
which is proper, flat, normal and semi-factorial : every invertible sheaf on XK can
be extended to an invertible sheaf on X. To each 0-cycle cK ∈ Z0

0 (XK) and divisor
DK ∈ Div0(XK) with support disjoint from that of cK , we will attach a number
[cK , DK ]X ∈ Q using intersection multiplicities on X. For this purpose, let us first
recall some definitions and one result.

Intersection multiplicities. Let X/R be a proper R-scheme. Let cK be a 0-
cycle on the generic fiber XK . Denote by cK its schematic closure in X: if cK =∑
i ni[xK,i], then cK =

∑
i ni[xK,i], where xK,i is the closure in X of the closed

point xK,i of XK . On the other hand, let ∆ be a divisor on X whose support does
not meet that of cK . The intersection multiplicity (cK .∆) of cK and ∆ on X is
defined as follows. Let xK be a point of the support of cK . Let Z := xK be its
schematic closure in X. This is an integral scheme, finite and flat over R, which is
local because R is henselian. Set xk := Z ∩ Xk. If f ∈ K(X) is a local equation
for ∆ in a neighborhood of xk, then (cK .∆)xk

is the order of f |Z at xk: writing
f |Z = a/b with regular a, b ∈ O(Z), then

(cK .∆)xk
= lengthO(Z)

(
O(Z)/(a)

)
− lengthO(Z)

(
O(Z)/(b)

)
([F] page 8). The whole intersection multiplicity (cK .∆) is defined by Z-linearity.

Let us also give another description of (cK .∆)xk
, which will be useful in the

sequel. As R is excellent, the normalization Z̃→Z is finite. Moreover, as k is
algebraically closed,

lengthO(Z)

(
O(Z)/(a)

)
= lengthR

(
O(Z)/(a)

)
,

for any regular a ∈ O(Z), and the same formula holds with Z replaced by Z̃ (loc.
cit. Appendix A.1.3). But

lengthR
(
O(Z)/(a)

)
= lengthR

(
O(Z̃)/(a)

)
for any regular a ∈ O(Z) (see [BLR], end of page 237). Thus, if f ∈ K(X) is a local
equation for ∆ in a neighborhood of xk, we have obtained that

(cK .∆)xk
=

{
lengthO(Z̃)

(
O(Z̃)/(f)

)
if f |Z̃ ∈ O(Z̃),

− lengthO(Z̃)

(
O(Z̃)/(f−1)

)
otherwise.

Relative algebraic equivalence and relative τ-equivalence. ([R] 3.2 d) and
[SGA 6] XIII 4) If G is a commutative group scheme locally of finite type over a
field, the identity component G0 of G is the open subscheme of G whose underlying
topological space is the connected component of the identity element of G. The
τ -component of G is open subgroup scheme Gτ of G which is the inverse image
of the torsion subgroup of G/G0. When G is a commutative group functor over
a scheme T , whose fibers are representable by schemes locally of finite type, the
identity component (resp. τ -component) of G is the subfunctor Gτ of G whose
fibers are the G0

t , t ∈ T (resp. Gτt , t ∈ T ). Note that G0 ⊆ Gτ .
Let Z→T be a proper morphism of schemes. Then the fibers of the Picard

functor PicZ/T are representable by schemes locally of finite type ([Mur] and [O]).
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Let L be an invertible OZ-module. The sheaf L is said to be algebraically equivalent
to zero relative to T if its image into PicZ/T (T ) belongs to the subgroup Pic0

Z/T (T ),
that is Lt ∈ Pic0

Zt/t(t) for all t ∈ T . When there is no ambiguity about the base
scheme T , we will just say that L is algebraically equivalent to zero. Similarly, the
sheaf L is said to be τ -equivalent to zero relative to T if its image into PicZ/T (T )
belongs to the subgroup PicτZ/T (T ), that is Lt ∈ PicτZt/t(t) for all t ∈ T . If D
is a divisor on Z, it is algebraically equivalent to zero (resp. τ -equivalent to zero)
relative to T if the associated invertible sheaf OZ(D) is. We denote by Div0(Z/T )
(resp. Divτ (Z/T )) the group of divisors on Z which are algebraically equivalent to
zero (resp. τ -equivalent to zero) relative to T . Then Div0(Z/T ) ⊆ Divτ (Z/T ).

Relative algebraic equivalence and semi-factoriality. Let X/R be a proper
flat semi-factorial R-scheme. Suppose that the generic fiber XK is geometrically
normal and geometrically connected. Its Picard variety Pic0

XK/K,red is then an
abelian variety ([FGA VI] 3.2). Let A/R be its Néron model, and let n be the ex-
ponent of the component group of the special fiber of A. In this situation, Corollary
3.14 of [P] can be read as follows: for any divisor DK on XK which is algebraically
equivalent to zero, there exists a divisor ∆ on X which is algebraically equivalent
to zero relative to R and whose generic fiber ∆K is equal to nDK .

Definition 2.1.1. Let XK be a proper, geometrically normal and geometrically
connected scheme over K. Let X/R be a proper, flat, normal and semi-factorial
model of XK over R.

Consider cK ∈ Z0
0 (XK) and DK ∈ Divτ (XK) with disjoint supports. Let cK be

the schematic closure of cK in X. Choose any (n,∆) ∈ (Z \{0})×Divτ (X/R) such
that ∆K = nDK . Then set

[cK , DK ]X :=
1

n
(cK .∆) ∈ Q .

This definition makes sense because 1
n∆ ∈ Divτ (X/R) ⊗Z Q is uniquely de-

termined by DK , up to a rational multiple of the principal divisor Xk. Indeed,
if (n′,∆′) is another choice in Definition 2.1.1, then the divisor n′∆ − n∆′ is τ -
equivalent to zero on X and equal to zero on XK . Thus, as X is normal, this
difference is a rational multiple of Xk ([R] 6.4.1 3)). Now note that (cK .Xk) is
equal to the degree of cK , which is zero, so that 1

n (cK .∆) = 1
n′ (cK .∆

′).
Next, one checks easily that the symbol [ , ]X is bilinear (in its definition do-

main). To prove that this pairing does not depend on the choice of X, we will use
the following lemma.

We will denote by (·)∗ and (·)∗ the push-forward of cycles and the pull-back of
divisors respectively (see [F] 20.1.3, and [Li] 7.1.29, 7.1.33, 7.1.34, respectively).

Lemma 2.1.2. Let X and X ′ be integral schemes, proper over R. Let ϕ : X→X ′

be an R-morphism. Let cK ∈ Z0
0 (XK) and let cK be its schematic closure in X.

Let ∆′ be a divisor on X ′ whose support does not meet that of (ϕK)∗cK . Then the
following projection formula holds:

cK .ϕ
∗∆′ = ϕ∗cK .∆

′.

In particular, let X and X ′ be proper, flat, normal and semi-factorial schemes
over R, with geometrically normal and geometrically connected generic fibers, so that
[ , ]X and [ , ]X′ are defined. Let ϕ : X→X ′ be an R-morphism. Let cK ∈ Z0

0 (XK),
and let D′K ∈ Divτ (X ′K) whose support does not meet that of (ϕK)∗cK . Then the
following equality holds:

[cK , (ϕK)∗D′K ]X = [(ϕK)∗cK , D′K ]X′ .

5



Proof. Let us first note that the divisors ϕ∗∆′ (and (ϕK)∗D′K) are well-defined.
Indeed, as ϕ is proper, its image Y is a closed subset of X ′. Endow Y with its
reduced scheme structure. As X is reduced, ϕ factors through Y :

X
ψ //

ϕ !!

Y � _

ι

��
X ′.

Now, by hypothesis, the support of ∆′ is disjoint from that of (ϕK)∗cK . In parti-
cular, Y is not contained in the support of ∆′. So the pull-back ι∗∆′ is well-defined.
Next, X and Y being integral and ψ dominant, ϕ∗∆′ := ψ∗(ι∗∆′) is well-defined.

Let us now recall the proof of the projection formula cK .ϕ∗∆′ = ϕ∗cK .∆
′. Let

xK be a closed point of the support of cK , let Z be its schematic closure in X, set
xk := Z ∩Xk and let Z̃ be the normalization of Z. The reduced scheme V := ϕ(Z)

is the schematic closure of ϕ(xK) and we have ϕ(xk) = V ∩Xk. Denote by Ṽ the
normalization of V . The morphism ϕ induces a finite surjective morphism Z→V ,
which in turn induces a finite surjective morphism Z̃→ Ṽ (R is excellent). Let f ′

be a local equation of ∆′ at ϕ(xk). Suppose for example that f ′|Ṽ ∈ O(Ṽ ). The
equality (ϕ∗cK .∆

′)xk
= (cK .ϕ

∗∆′)xk
to be proved can be written as

[K(Z) : K(V )] · length
(
O(Ṽ )/(f ′)

)
= length

(
O(Z̃)/(ϕ∗f ′)

)
.

But [K(Z) : K(V )] is equal to the ramification index of the discrete valuation rings
extension O(Ṽ )→O(Z̃). Consequently, the above formula is true.

Now, when the pairings [ , ]X and [ , ]X′ are defined, the projection formula
can be written as the equality [cK , (ϕK)∗D′K ]X = [(ϕK)∗cK , D′K ]X′ . Indeed, let
∆′ be a divisor which is τ -equivalent to zero on X ′ and let n′ be a non-zero integer
such that (∆′)K = n′D′K . The direct image ϕ∗cK of the schematic closure of cK
coincides with the schematic closure of (ϕK)∗cK . Thus, by definition,

n′[(ϕK)∗cK , D′K ]X′ = ϕ∗cK .∆
′.

The divisor ϕ∗∆′ is τ -equivalent to zero on X, and satisfies (ϕ∗∆′)K = n′(ϕK)∗D′K .
Hence, by definition,

n′[cK , (ϕK)∗D′K ]X = cK .ϕ
∗∆′.

In the situation of Definition 2.1.1, let X ′ be another proper flat normal semi-
factorial R-model of XK . Consider the graph Γ of the rational map X 99K X ′

induced by the identity on the generic fibers. By definition, this is the schematic
closure of the graph of the identity morphism XK→X ′K in X×RX ′. In particular,
this is a closed subscheme of X ×R X ′, proper and flat over R, with generic fiber
isomorphic to XK . Applying Theorem 2.6 of [P], we can find an R-scheme X̃ which
is proper flat normal and semi-factorial, together with an R-morphism X̃→Γ which
is an isomorphism on the generic fibers. Composing with the two projections from
X ×R X ′ to X and X ′, we get arrows

X̃

  ��
X X ′
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which are isomorphisms on the generic fibers. Now, Lemma 2.1.2 shows that the
pairings [ , ]X and [ , ]X′ both coincide with [ , ]X̃ . In conclusion, the pairing [ , ]X
depends only on XK , and not on the choice of X.

Let us summarize the above considerations :

Proposition 2.1.3. Let XK be a proper, geometrically normal and geometrically
connected scheme over K. There exists a pairing

[ , ] : Z0
0 (XK)×Divτ (XK)−→Q,

defined for the pairs (cK , DK) such that the supports of cK and DK are disjoint,
and which can be computed as follows.

Let X/R be any proper flat normal and semi-factorial model of XK over R. Let
cK be the schematic closure of cK in X. Choose (n,∆) ∈ (Z \{0}) × Divτ (X/R)
such that ∆K = nDK . Then we have

[cK , DK ] =
1

n
(cK .∆) ∈ Q .

2.2 Comparison with Néron’s pairing
As before, let R be a complete discrete valuation ring with fraction field K and
algebraically closed residue field k. Let XK be a proper smooth and geometrically
connected scheme over K. Let v be the normalized valuation on K, which maps
any uniformizing element of R to 1 ∈ Z. We fix an algebraic closure K of K, and
we still denote by v the unique valuation on K extending v. Néron attached to XK

a pairing 〈 , 〉 with respect to the valuation v ([N] II 9.3). This is a pairing

〈 , 〉 : Z0
0 (XK)×Divτ (XK)−→R,

defined for (cK , DK) when the supports of cK and DK are disjoint (the definition
of Néron’s pairing is briefly reviewed at the beginning of the proof of Theorem
2.2.1). Actually, Néron considers divisors belonging to the subgroup Div0(XK) ⊆
Divτ (XK) consisting of divisors which are algebraically equivalent to zero on XK .
However, the group (R,+) being divisible, the real number 〈 cK , DK 〉 is naturally
defined when DK is only τ -equivalent to zero. Néron shows in loc.cit III 4.2 that
the pairing takes values in Q. This fact will be recovered and made more precise
below (Corollary 2.2.2).

Our goal in this subsection is to prove the following common generalization of
Néron [N] III 4.1, Gross [G], Hriljac [H], Lang [La2] III 5.2 and Bosch-Lorenzini
[BL] 4.3, over a complete discrete valuation ring R with algebraically closed residue
field k and fraction field K.

Theorem 2.2.1. For every proper, smooth and geometrically connected scheme
over K, the pairing [ , ] defined in Proposition 2.1.3 coincides with Néron’s pairing
〈 , 〉 defined in [N] II.9 Theorem 3.

In particular, the pairing [ , ] generalizes Néron’s pairing to K-schemes which
are proper geometrically normal and geometrically connected, but not necessarily
smooth.

Before proving the theorem, let us note the following consequence of Proposition
2.1.3.

Corollary 2.2.2. Let XK be a proper, geometrically normal and geometrically
connected scheme over K. Let n be the exponent of the component group of the
special fiber of the Néron model of the Picard variety AK = Pic0

XK/K,red. Then
Néron’s pairing on Z0

0 (XK)×Div0(XK) takes values in (1/n)Z.
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Proof. As recalled before Definition 2.1.1, the exponent n has the following pro-
perty: for any DK ∈ Div0(XK) and any proper flat normal and semi-factorial
model X of XK , there exists ∆ ∈ Div0(X/R) such that ∆K = nDK . In particular,
for any DK ∈ Div0(XK), we can choose this integer n, together with a divisor
∆ ∈ Div0(X/R), to compute

[cK , DK ] =
1

n
(cK .∆) ∈ 1

n
Z .

Now Theorem 2.2.1 asserts that 〈 cK , DK 〉 = [cK , DK ].

Corollary 2.2.2 provides a refinement of [N] III 4.2. More precisely, Néron shows
that the pairing

〈 , 〉 : Z0
0 (XK)×Div0(XK)−→R

takes values in (1/2n′ab)Z, where n′, a and b are defined as follows. The integer
n′ is the exponent of the component group of the special fiber of the Néron model
of the Albanese variety A′K of XK . Conjecturally, n′ is equal to n (see Subsection
3.1). Next, a is the smallest positive integer such that there exists a map h :
XK→A′K from XK to its Albanese variety, with the property that for any divisor
DK ∈ Div0(XK), there exists a divisor WK ∈ Div0(A′K) such that h∗WK is linearly
equivalent to aDK . We can have a > 1 if XK(K) is empty. Finally, b is the smallest
degree of a polarization of the Albanese variety A′K .

In [MT] (1.5) and (2.3), or [La] 11.5.1-11.5.2, it is proved that 〈 cK , DK 〉 belongs
to (1/n′)Z when XK is an abelian variety and if cK is supported on rational points.
This statement is also a consequence of [BL] 4.4. Moreover, note that Néron’s
pairing can take the value 1/n, for instance when XK is an elliptic curve (see [BL]
Example 5.8).

Let us go back to Theorem 2.2.1. To prove the theorem, we will use the charac-
terization of Néron’s pairing given in [La] 11.3.2 and that we recall now.

An element cK of Z0
0 (XK) can be written uniquely as a difference of two positive

0-cycles with disjoint supports: cK = c+K − c
−
K . Denoting by deg the degree of a

0-cycle, let us set
deg+ cK := deg(c+K) = deg(c−K) ≥ 0.

Lemma 2.2.3. ([La] 11.3.2) Suppose that for each projective smooth and geome-
trically connected scheme XK over K, we are given a bilinear pairing

Z0
0 (XK)×Div0(XK) −→ R

(cK , DK) 7−→ δ(cK , DK)

such that the following properties are true:

1. If DK is a principal divisor on XK , then δ(cK , DK) = 0.

2. Let ϕK : XK→X ′K be a K-morphism. For all cK ∈ Z0
0 (XK), and for all

D′K ∈ Div0(X ′K) whose support does not meet that of the 0-cycle (ϕK)∗cK ,
the following equality holds

δ(cK , (ϕK)∗D′K) = δ((ϕK)∗cK , D′K).

3. For DK ∈ Div0(XK) fixed and deg+ cK bounded, the values δ(cK , DK) are
bounded.

Then δ(cK , DK) = 0 for all cK , DK and XK .
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Remark 2.2.4. In the statement of [La] 11.3.2, one reads ‘projective variety V
over K’ instead of ‘projective smooth and geometrically connected scheme XK over
K’. According to the general conventions of [La] page 21, a ‘variety over K’ is a
‘geometrically integral scheme of finite type over K’. However, the given proof of
[La] 11.3.2 works if and only if the Albanese variety of each V is an abelian variety.
The latter is true, for example, if each V is geometrically normal, or if each V is
smooth. For our purposes, namely the proof of Theorem 2.2.1, we need the version
of the lemma where all the V are smooth.

Proof of Theorem 2.2.1. Starting from the existence of Néron functions on a proper
smooth and geometrically connected K-scheme XK ([N] II 8.2), let us recall the
definition of Néron’s pairing. Let

cK =
∑
i

ni[xK,i] ∈ Z0
0 (XK)

and DK ∈ Div0(XK) whose support Supp(DK) does not contain any of the xK,i.
Let λDK

: (XK − Supp(DK))(K)→R be a Néron function associated to DK . For
each i, the scheme xK,i ⊗K K is supported on some K-points xK,ji , ji = 1, . . . , si,
where si is the separable degree of K(xK,i)/K. Denoting by li the inseparable
degree of K(xK,i)/K, then

λDK
(xK,i) :=

si∑
ji=1

liλDK
(xK,ji) and 〈 cK , DK 〉 :=

∑
i

niλDK
(xK,i).

The real number 〈 cK , DK 〉 is well-defined because λDK
is unique up to constant

and cK has degree zero.
Comparison of the pairings for a principal divisor DK .
Let us keep the previous notation, and suppose that DK = divXK

f for a non-
zero f ∈ K(XK). Let z ∈ (XK − Supp(divXK

f))(K), mapping to a closed point
xK ∈ XK . The evaluation of f at z is defined by the pull-back z∗ : OXK ,xK

→K,
that is, f(z) := z∗f . The formula λf (z) = v(f(z)) then defines a Néron function
for the divisor divXK

f .
Fix an i. There is a 1-1 correspondence between the xK,ji and theK-embeddings

of the residue field extension K(xK,i)/K into K/K. By pulling back the valuation
v, each of these embeddings induces a valuation on K(xK,i). However, as R is com-
plete, these valuations are equal to the unique valuation on K(xK,i) which extends
the normalized valuation on K, and that we can also denote by v. Consequently,

λf (xK,i) =

si∑
ji=1

liv(f(xK,i)) = [K(xK,i) : K]v(f(xK,i))

where f(xK,i) is the image of f by the canonical surjection OXK ,xK,i
→K(xK,i).

Now, take the schematic closure Zi of xK,i in X, denote by Z̃i its normalization
and set xk,i := Xk∩Zi. The ring O(Z̃i) is a discrete valuation ring with fraction field
K(xK,i). So it is precisely the valuation ring of v in K(xK,i). As k is algebraically
closed, its ramification index overR is equal to [K(xK,i) : K]. From this observation,
we get

v(f(xK,i)) =

{
1/[K(xK,i) : K] lengthO(Z̃i)

(
O(Z̃i)/(f)

)
if f |

Z̃i
∈ O(Z̃i),

−1/[K(xK,i) : K] lengthO(Z̃i)

(
O(Z̃i)/(f

−1)
)

otherwise.

We have thus obtained [K(xK,i) : K]v(f(xK,i)) = (cK .divXf)xk,i
(recall the begin-

ning of Subsection 2.1). But divXf is a divisor on X which is τ -equivalent to zero
and extends divXK

f . The desired equality 〈 cK , divXK
f 〉 = [cK , divXK

f ] follows.
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Functoriality of the pairing [ , ].
Let ϕK : XK→X ′K be a K-morphism of proper smooth and geometrically

connected schemes over K. Let us show that for all cK ∈ Z0
0 (XK), and for all

D′K ∈ Divτ (X ′K) whose support does not meet that of the 0-cycle (ϕK)∗cK , the
following equality holds

[cK , (ϕK)∗D′K ] = [(ϕK)∗cK , D′K ].

Let X/R (resp. X ′/R) be a proper flat normal semi-factorial model of XK (resp.
X ′K). Consider the graph Γ of the rational map X 99K X ′ defined by ϕK . Applying
Theorem 2.6 of [P] to Γ, we obtain a proper flat normal semi-factorial X̃/R and
R-morphisms

X̃

α

��

β

  
X X ′

such that on the generic fibers, α is an isomorphism and β coincides with ϕK .
In particular, the pairing [ , ] for XK can be computed on X̃, and the desired
functoriality follows from Lemma 2.1.2 applied to β.

The pairing δ( , ).
At this point, we recall that for any proper smooth and geometrically connected

scheme XK over K, there exists a non-zero integer a and a map XK→A′K from
XK to its Albanese variety, with the property that for any divisor DK ∈ Divτ (XK),
there exists a divisor WK ∈ Div0(A′K) such that h∗WK is well-defined and linearly
equivalent to aDK ([N] II 2.1). Let cK ∈ Z0

0 (XK) and DK ∈ Divτ (XK) with
disjoint supports. Keep the previous notation. After moving WK on the projective
smooth scheme A′K if necessary (e.g. [Li] 9.1.11), we can assume that the support
of h∗WK does not meet that of cK . Then, using the functoriality of [ , ], we can
write

a[cK , DK ] = [cK , h∗WK ] + [cK , divXK
f ] = [h∗cK , WK ] + [cK , divXK

f ]

for some non-zero f ∈ K(XK). By definition, Néron’s pairing has the same functo-
riality property as [ , ]. And we have seen that both pairings coincide for principal
divisors. Consequently, as A′K is projective smooth geometrically connected over K,
Theorem 2.2.1 is proved if we know that both pairings coincide on such schemes. So,
until the end of the proof, we will only consider the pairings for projective smooth
geometrically connected schemes. Furthermore, by Z-linearity, we can only consider
divisors which are algebraically equivalent to zero.

Now, both [ , ] and 〈 , 〉 are bilinear in their definition domain, and they coincide
for principal divisors. Using a moving lemma on the projective smooth scheme XK ,
we see that

δ(cK , DK) := 〈 cK , DK 〉−[cK , DK ]

is well-defined on the whole product Z0
0 (XK)×Div0(XK). And conditions 1 and 2

of Lemma 2.2.3 are satisfied by δ.
Condition 3 of 2.2.3 is satisfied by δ( , ).
Denote by R the valuation ring of v in K.
Fix DK ∈ Div0(XK). Let (n,∆) ∈ (Z \{0})×Divτ (XK) satisfying ∆K = nDK .

Represent the divisor ∆ by a family (Ut, gt)t=1,...,m, where the Ut are affine open
subsets of X and the gt are rational functions on X. Let Et be the set of K-
points of XK which extend to R-points of Ut. As X is proper over R, we see that
X(K) = ∪mt=1Et. The family (Ut,K , gt)t=1,...,m represents the divisor nDK on XK .

10



Let us choose a Néron function λnDK
on XK . By definition, we can find some

v-continuous locally bounded functions αt : Ut,K(K)→R such that

λnDK
(z) = v(gt(z)) + αt(z)

for all z ∈ (Ut,K − Supp(DK))(K). As Et is bounded in Ut(K) (by construction),
the function αt is bounded on Et.

Let cK =
∑
i ni[xK,i] ∈ Z0

0 (XK) whose support does not meet that of DK . Fix
an i, let Zi be the schematic closure of xK,i in X, set xk,i := Xk ∩ Zi and let ti
be such that Zi ⊂ Uti . The same local computation as in the case of a principal
divisor shows that

(cK .∆)xk,i
= [K(xK,i) : K]v(gti(xK,i)) =

si∑
ji=1

liv(gti(xK,i)).

On the other hand, keeping the same notation as in the beginning of the proof,

〈 cK , nDK 〉 =
∑
i

ni

si∑
ji=1

liλnDK
(xK,ji).

Consequently,

nδ(cK , DK) =
∑
i

ni

si∑
ji=1

liαti(xK,ji).

By construction, the K-point xK,ji of XK belongs to Eti . Denoting by | · | the usual
absolute value on R, and setting

B := max
t=1,...,m

(sup
Et

|αt|) ∈ R,

we obtain

|δ(cK , DK)| ≤ 1

|n|
∑
i

|ni|[K(xK,i) : K]B =
2B

|n|
deg+ cK .

As the divisor DK is fixed, the numbers n and B are fixed, and so the right-hand
side of the above inequality is bounded if deg+ cK is.

Let us note the following properties of the pairing [ , ], and consequently of
Néron’s pairing.

Proposition 2.2.5. Let XK be a proper, geometrically normal and geometrically
connected scheme over K. Let cK ∈ Z0

0 (XK) and let DK ∈ Divτ (XK) with disjoint
supports. If cK or DK is rationally equivalent to zero, then [cK , DK ] ∈ Z .

Proof. The case where DK is rationally equivalent to zero follows directly from the
definition of [ , ]: if DK = divKf with f ∈ K(XK) \ {0}, then [cK , divKf ] =
(cK .divf) ∈ Z.

Let us now suppose that cK is rationally equivalent to zero. As [ , DK ] is
Z-linear, we have to show that if cK = (ϕK)∗divCK

f for some K-morphism

ϕK : CK −→XK

from a proper normal connected curve CK to XK , and some non-zero f ∈ K(CK),
then

[cK , DK ] ∈ Z .
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As R is excellent, there exists a proper flat regular model C/R of CK . On the
other hand, let us consider a proper flat normal semi-factorial model X/R of XK .
After replacing C by a desingularization of the graph of the rational map C 99K X
induced by ϕK , we can suppose that ϕK extends to an R-morphism ϕ : C→X. If
∆ is a divisor on X which is τ -equivalent to zero and such that ∆K = nDK for
some integer n 6= 0, then

[cK , DK ] :=
1

n

(
(ϕK)∗divCK

f.∆
)

=
1

n

(
divCK

f.ϕ∗∆
)

by the projection formula (Lemma 2.1.2). Let us write

divCf = divCK
f − V and ϕ∗∆ = (ϕK)∗∆K −W

for some vertical divisors V and W on C/R. Denote by Γ1, . . . ,Γν the reduced
irreducible components of Ck, by M the intersection matrix associated to Ck (as
defined in the introduction), and by ρ : Pic(C)→Zν the degree homomorphism
(E) 7→ (E · Γi)i=1,...,ν . Following [BLR] 9.2/13, the divisor E on the R-curve C
is algebraically equivalent to zero if and only if (E) belongs to the kernel of ρ.
Therefore the τ -equivalence relation and the algebraic equivalence relation on C/R
are the same, and the linear equivalence classes of ϕ∗∆ and divCf belongs to the
kernel of ρ. Thus we get:

ρ(divCK
f) = ρ(V ) = MV and ρ((ϕK)∗∆K) = ρ(W ) = MW,

where we have identified a vertical divisor on C/R with an element of Zν . Next, we
use that the matrix M is symmetric to obtain

(divCK
f.W ) = tWρ(divCK

f) = tWMV = tVMW = ((ϕK)∗∆K .V ).

Then it follows that

[cK , DK ] =
1

n

(
(ϕK)∗∆K .divCf

)
=
(
(ϕK)∗DK .divCf

)
∈ Z .

Remark 2.2.6. Let us keep the notation of the proof of 2.2.5. If the curve CK
is geometrically normal and geometrically connected, the pairing [ , ] is defined on
CK and (

(ϕK)∗DK .divCf
)

= [(ϕK)∗DK , divCK
f ].

In other words, in this case, the proof consists in using the functoriality of the
pairing [ , ], then showing that it is symmetric for curves, and finally to apply the
definition of the pairing for a principal divisor. The symmetry property of Néron’s
pairing 〈 , 〉 for such a curve is well known: e.g. see [La] 11.3.6 et 11.3.7. But here,
there is no reason for the curve CK coming from the rational equivalence relation to
satisfy the above geometric hypotheses. So we could not use directly the properties
of the pairing 〈 , 〉. However, over an excellent discrete valuation ring, there is no
need of these geometric hypotheses on CK for the existence of the regular model
C/R. So we have been able to prove the proposition for the pairing [ , ], and thus
also for Néron’s pairing 〈 , 〉 thanks to Theorem 2.2.1.

3 Duality and algebraic equivalence for models
of abelian varieties

3.1 Grothendieck’s duality for Néron models
Let us recall here Grothendieck’s duality theory for Néron models of abelian varie-
ties, as developed in [SGA 7] VII-VIII-IX.
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Let R be a discrete valuation ring with perfect residue field k and fraction field
K. Let AK be an abelian variety over K, with dual A′K . Let A/R, A′/R be the
Néron models of AK , A′K , and ΦA, ΦA′ be the étale k-group schemes of connected
components of the special fibers Ak, A′k.

By definition, the abelian varietyA′K represents the identity component Pic0
AK/K

of the Picard functor of AK , and the canonical isomorphism A′K = Pic0
AK/K is given

by the Poincaré sheaf PK on AK ×K A′K birigidified along the unit sections of AK
and A′K . Now, this sheaf is canonically endowed with the structure of a biextension
of (AK , A

′
K) by Gm,K (loc. cit. VII 2.9.5). Then the duality theory for Néron

models is to understand how this biextension extends at the level of Néron models.
For this, Grothendieck attached to PK a canonical pairing

〈 , 〉 : ΦA ×k ΦA′ −→Q /Z,

which measures the obstruction to extending PK as a biextension of (A,A′) by
Gm,R. The duality statement is: this pairing is a perfect duality (loc. cit. IX
1.3). As mentioned in the introduction, it has been proved in various situations,
including the semi-stable case (Grothendieck loc. cit. IX 11.4 and Werner [W])
and the mixed characteristic case (Bégueri [Beg]). In general, the duality statement
remains a conjecture.

3.2 Duality and Picard functor
Keep the notation of the previous subsection. From [P] Corollary 2.23, it is always
possible to find an R-compactification of A, that is, an open R-immersion of A into
a proper R-scheme A with dense image, such that A/R is flat, A is normal and
the canonical map Pic(A)→Pic(A) is surjective. Note that, in particular, A/R
is semi-factorial: the map Pic(A)→Pic(AK) is surjective because A is regular, so
that Pic(A)→Pic(AK) is surjective by composition. As A/R is proper, it makes
sense to consider the notion of algebraic equivalence on A relative to R using the
identity component of the Picard functor PicA/R, as defined in Subsection 2.1. Our
goal in this section is to understand the duality from the point of view of algebraic
equivalence, starting from the canonical isomorphism A′K = Pic0

AK/K . To do this,
we need the following notions.

Q-divisors and relative τ-equivalence. Let Z be a normal locally noetherian
scheme, so that the canonical homomorphism from the group of divisors on Z into
that of 1-codimensional cycles is injective ([EGA IV]4 21.6.9 (i)). A 1-codimensional
cycle C on Z is said to be a Q-divisor if there exists n ∈ Z \{0} such that nC is a
divisor.

Let Z→T be a proper morphism of schemes, with Z locally noetherian and
normal. A Q-divisor C on Z is said to be τ -equivalent to zero relative to T (or
τ -equivalent to zero if there is no ambiguity on the base scheme T ) if there exists
n ∈ Z \{0} such that nC is a divisor on Z which is τ -equivalent to zero relative to
T (see 2.1). The group of classes of Q-divisors on Z which are τ -equivalent to zero
relative to T , modulo the principal divisors, will be denoted by PicQ,τ (Z/T ).

When Z = A, the restriction to the generic fiber induces an injective morphism

PicQ,τ (A/R) ↪→ PicτAK/K(K) = Pic0
AK/K(K) = A′K(K).

The fact that PicτAK/K(K) = Pic0
AK/K(K) can be found in [Mum] (v) p. 75. To see

that the above morphism is injective, let (C) be in its kernel. After modifying C
by a principal divisor if necessary, we can assume that CK = 0, that is, the support
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of C is contained in the special fiber Ak of A/R. Let n be a non-zero integer
such that nC is a divisor on A which is τ -equivalent to zero relative to R. As Ak
admits at least one irreducible component Γ with multiplicity 1 (the component
containing the unit element of Ak), the vertical divisor nC is principal ([R] 6.4.1
3)). In other words, there exists an integer m such that nC = mdiv(π), where π
is a uniformizing element of R. Taking the associated cycles, and comparing the
coefficients of Γ, we obtain that n divides m. Consequently, the Q-divisor C is a
principal divisor, whence the injectivity.

By definition, the group PicQ,τ (A/R) contains the group Pic0(A/R) of classes
of divisors on A which are algebraically equivalent to zero relative to R, modulo
principal divisors. Now, when R is complete with algebraically closed residue field,
we know from [P] Corollary 3.14 that the image of the composition

Pic0(A/R) ↪→ PicQ,τ (A/R) ↪→ A′K(K)

contains the subgroup (A′)0(R) of A′K(K).
Conversely, we will show that Grothendieck’s duality statement for A and A′

is equivalent to the following assertion: the image of PicQ,τ (A/R) ↪→ A′K(K) is
contained in the subgroup (A′)0(R).

Theorem 3.2.1. Let R be a complete discrete valuation ring with algebraically
closed residue field k and fraction field K. Let AK be an abelian variety over K,
with dual A′K . Let A (resp. A′) be the Néron model of AK (resp. A′K) over R.
Let A be a proper flat normal model of AK over R, equipped with a dense open
R-immersion A→A, such that the induced map Pic(A)→Pic(A) is surjective. Let
PicQ,τ (A/R) be the group of Q-divisors on A which are τ -equivalent to zero relative
to R, modulo the principal divisors. Then, the duality statement recalled in 3.1 is
equivalent to the following:

The image of the restriction map PicQ,τ (A/R) ↪→ A′K(K) is contained in the
subgroup (A′)0(R).

Let Pic0(A/R) be the group of divisors on A which are algebraically equivalent to
zero relative to R, modulo the principal divisors. Then, when the duality statement
is true, the inclusion Pic0(A/R) ↪→ PicQ,τ (A/R) is an equality, and there is a
canonical commutative diagram

Pic0(AK)
∼ // A′K(K)

Pic0(A/R)
∼ //

?�

OO

(A′)0(R)
?�

OO

where the two vertical maps are injective, and the two horizontal maps are bijective.

See the end of Subsection 3.4 for the proof.

Remark 3.2.2. With the notation of Theorem 3.2.1, the canonical morphisms of
abstract groups

Pic0(AK)−→Pic0
AK/K(K), Pic0(A/R)−→Pic0

A/R
(R)

are isomorphisms. For the second one, note that PicA/R can be defined using the
étale topology, and that R is strictly henselian. Note also that, when A is locally
factorial (e.g. regular), the group PicQ,τ (A/R) coincides with the group Picτ (A/R)
of divisors on A which are τ -equivalent to zero relative to R, modulo the principal
divisors, which in turn can be identified with the group Picτ

A/R
(R).
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The last assertion of Theorem 3.2.1 provides a refinement of [P] Corollary 3.14
in the present case X = A. Here, when Grothendieck’s duality holds, we obtain a
necessary and sufficient condition for an invertible sheaf which is algebraically equiv-
alent to zero on AK to extend into an invertible sheaf on A which is algebraically
equivalent to zero relative to R: the corresponding point a′K ∈ A′K(K) must ex-
tend in the identity component of A′. Thus, conjecturally, the group (A′)0(R)
parametrizes the invertible sheaves on A which are algebraically equivalent to zero
relative to R.

To make the link between Grothendieck’s duality for A and A′, and algebraic
equivalence on A, we need some preparation about non-rational 0-cycles on AK ,
especially those which are supported on inseparable points over K.

3.3 About non-rational 0-cycles on abelian varieties

Let K be a field, and denote by K its algebraic closure. Let AK be an abelian
variety over K. Let d be a positive integer and let HilbdAK/K be the Hilbert scheme
of points of degree d on AK . The Grothendieck-Deligne norm map

σd : HilbdAK/K −→A
(d)
K

defined in [SGA 4] XVII page 184 (see also [BLR] pages 252-254) maps HilbdAK/K

to the d-fold symmetric product A(d)
K . On the other hand, the map

AdK −→AK , (x1, . . . , xd) 7−→ x1 + · · ·+ xd,

induces a map
md : A

(d)
K −→AK .

Let us set
Sd := md ◦ σd : HilbdAK/K −→AK .

Let aK ∈ AK be a closed point of degree d, that is to say, the residue field
extension K(aK)/K has degree d. It corresponds to a rational point

h(aK) ∈ HilbdAK/K(K).

We will need an explicit description of its image Sd(h(aK)) ∈ AK(K), when con-
sidered as an element of AK(K).

Let us consider the artinian K-scheme aK ⊗K K. It is supported on some
aj ∈ AK(K), j = 1, . . . , s, where s is the separable degree of K(aK)/K. The length
of each local component of aK⊗KK is equal to the inseparable degree of K(aK)/K,
and will be denoted by l. So the effective 0-cycle associated to aK ⊗K K is

s∑
j=1

l[aj ] ∈ Z0(AK).

We are going to show that

Sd(h(aK)) =

s∑
j=1

laj ∈ AK(K).

Note that, in particular, this will show that the right-hand-side of the equality
belongs to AK(K).
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Lemma 3.3.1. Let C be an artinian algebra over an algebraically closed field K.
Let C1, . . . , Cs be the local components of C, with respective lengths l1, . . . , ls, and
let uj : Cj→K be the canonical surjection from Cj to its residue field. Then, for
all

c = (c1, . . . , cs) ∈ C = C1 × · · · × Cs,

the following formula holds for the norm of c over K:

NC/K(c) =

s∏
i=1

(uj(cj))
lj .

Proof. We can assume that C is local, with length l. Let m be the maximal ideal
of C. Let n be the smallest integer such that mn = 0. Choose a basis E =
E0

∐
. . .
∐
En−1 of C over K which is adapted to the filtration

0 = mn ⊂ mn−1 ⊂ · · ·m ⊂ C,

that is, E i is contained in mi \mi+1 and induces a basis of the K-vector space
mi /mi+1.

Fix c ∈ C and let M be the matrix of multiplication-by-c in the basis E . Write
c = λ + ε with λ ∈ K and ε ∈ m. Then M is a l × l lower triangular matrix, with
all diagonal entries equal to λ. Hence NC/K(c) = λl, as required.

Let us use the lemma to compute σd(h(aK)), considered as an element of
A

(d)

K
(K). Let C be the K-algebra of global sections of the scheme aK ⊗K K. Set

TSd
K

(C) := (C⊗d)Sd ⊆ C⊗d whereSd is the symmetric group acting on C⊗d by per-
muting factors. By definition, the point σd(h(aK)) ∈ (aK ⊗K K)(d)(K) ⊂ A

(d)

K
(K)

corresponds to the unique K-algebra homomorphism

TSd
K

(C)−→K, c⊗d 7−→ NC/K(c).

Now, from Lemma 3.3.1, this homomorphism is induced by the point(
a1, . . . , a1, a2, . . . , a2, . . . , as, . . . , as

)
∈ Ad

K
(K),

where aj is repeated l times.
Next, the element Sd(h(aK)) ∈ AK(K) is just the sum

md(σd(h(aK))) =

s∑
j=1

laj ∈ AK(K),

as claimed.

Notation 3.3.2. The above K-morphisms Sd induce a homomorphism

S : Z0(AK) −→ AK(K)

from the group of 0-cycles on AK to that of K-rational points: if aK ∈ AK is a closed
point of degree d, defining h(aK) ∈ HilbdAK/K(K), then S([aK ]) := Sd(h(aK)).

We will also need to ‘translate divisors on AK by non-rational points’.
Let DivAK/K be the scheme of relative effective divisors on AK ([FGA VI] 4.1).

Fix a positive integer d and consider the map

AdK ×K DivAK/K −→DivAK/K
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which is given by the functorial formula(
(a1, . . . , ad) , D

)
7−→ Da1 + · · ·+Dad ,

where Da is obtained from D by translation by the section a. By symmetry, it
induces a map

A
(d)
K ×K DivAK/K −→ DivAK/K .

By composing with the norm map σd, the latter gives rise to a map

HilbdAK/K ×K DivAK/K −→ DivAK/K .

Let aK ∈ AK be a closed point of degree d and let DK be an effective divisor on
AK . Denote by (DK)aK ∈ DivAK/K(K) the image of (h(aK), DK) by the previous
arrow. As above, write

d∑
r=1

[aK,r]

for the 0-cycle associated to aK ⊗K K. In this expression, repetitions are allowed.
Then, using the above computation of σd(h(aK)), we see that (DK)aK , as an element
of the group DivAK/K

(K), is equal to

d∑
r=1

(DK)aK,r
,

where DK denotes the pull-back of DK on AK . When aK is étale over K, it is
easy to see that the latter divisor descends on AK . But this turns out to be true in
general because of the above construction. Moreover, this description shows that
the formation of (DK)aK is additive in DK . We can thus associate a divisor (DK)aK
on AK to any divisor DK in the following way: identifying divisors on AK with
1-codimensional cycles, first use the above to define (DK)aK when DK is a prime
cycle, and then extend by Z-linearity.

Notation 3.3.3. If cK is a 0-cycle on AK and DK a divisor on AK , define the
divisor (DK)cK on AK by Z-linearity from the above situation where cK is a closed
point.

3.4 Relative algebraic equivalence on semi-factorial
compactifications

Our goal in this subsection is to prove Theorem 3.2.1. So, until the end of the
subsection, we fix a complete discrete valuation ring R with algebraically
closed residue field k and fraction field K.

The starting point is the link between Grothendieck’s pairing and Néron’s pair-
ing, which has been established by Bosch and Lorenzini: Grothendieck’s pairing is
the specialization of Néron’s pairing.

Theorem 3.4.1. ([BL] 4.4) Keep the notation of Theorem 3.2.1. Moreover, let
ΦA (resp. ΦA′) be the group of connected components of Ak (resp. A′k). On the
one hand, consider Grothendieck’s pairing [SGA 7] IX 1.3

〈 , 〉 : ΦA × ΦA′ −→Q /Z,

and on the other hand, consider Néron’s pairing [N] II 9.3

〈 , 〉 : Z0
0 (AK)×Div0(AK)−→Q
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(defined for (cK , DK) when the supports of cK and DK are disjoint).
Let (a, a′) ∈ ΦA×ΦA′ . Fix a point aK ∈ AK(K) specializing to a, and a divisor

D′K ∈ Div0(AK) whose image in A′K(K) specializes to a′. Assume that aK and 0K
do not belong to the support of D′K . Then

〈 a , a′ 〉 = −〈 [aK ]− [0K ] , D′K 〉 modZ .

The next proposition is a key result about the pairing [ , ] defined in Proposition
2.1.3.

Proposition 3.4.2. Let XK be a proper geometrically normal and geometrically
connected scheme over K. Let X be a proper flat normal semi-factorial model of
XK over R. Let ν be the number of irreducible components of the special fiber Xk.
There exist some 0-cycles of degree zero cK,1, . . . , cK,ν on XK , with the following
property:

If DK is a divisor on XK which is τ -equivalent to zero, whose support is disjoint
from those of the cK,i, and if [cK,i , DK ] is an integer for all i = 1, . . . , ν, then
there exists a Q-divisor on X which is τ -equivalent to zero relative R, with generic
fiber DK .

Proof. Let U be the open subset of X consisting of the regular points. As X is
normal, for any irreducible closed subset C of codimension 1 in X, the intersection
C ∩ U is a dense open subset of C. Furthermore, for any 1-codimensional cycle C
on X, the restriction C|U is a divisor on U .

Next, let Γ1, . . . ,Γν be the reduced irreducible components of Xk. Let ξ1, . . . , ξν
be the generic points of Γ1, . . . ,Γν . Set di := length(OXk,ξi). From [R] 7.1.2, there
exists, for all i = 1, . . . , ν, an R-immersion ui : Zi→U , with Zi finite and flat over
R, with rank di, such that ui,k(Zi,k) is a point xi,k of Γi. Then the intersection
multiplicity of Zi and Γj∩U is equal to 1 if i = j, and 0 otherwise. In particular, the
generic fiber of Zi is a closed point xK,i ∈ UK of degree di. Moreover, as Zi is proper
over R, the immersion Zi→X is closed. Finally, setting d := gcd(di, i = 1, . . . , ν),
an appropriate Z-linear combination of the xK,i provides a 0-cycle cK on XK of
degree d. We set

cK,i := [xK,i]−
di
d
cK ∈ Z0

0 (XK).

Let DK ∈ Divτ (XK) whose support is disjoint from those of the cK,i. Choose
∆ ∈ Divτ (X/R) with a non-zero integer n such that ∆K = nDK . Denoting by DK

the schematic closure of DK in X, we can view ∆ as a 1-codimensional cycle on X,
and write

∆ = nDK +

ν∑
i=1

niΓi

for some integers n1, . . . , nν . Set V :=
∑ν
i=1 niΓi. As the schematic closures cK,i

of the cK,i in X are contained in U (by construction), the following computation is
valid:

cK,i.∆ = n(cK,i.DK) + (xK,i.V )− di
d

(cK .V )

= n(cK,i.DK) + ni −
di
d

(cK .V ).

Assume that [cK,i , DK ] belongs to Z. Then, the left-hand side of the above equality
belongs to nZ. Consequently, there exists ri ∈ Z such that

nri = ni −
di
d

(cK .V ).
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Now, consider the vertical cycle (with integral coefficients)

W := (cK .V )
1

d
[Xk].

By definition,

V −W = n

ν∑
i=1

riΓi, that is, ∆−W = n(DK −
ν∑
i=1

riΓi).

The cycle D := DK −
∑ν
i=1 riΓi is equal to DK on the generic fiber. This is a

Q-divisor on X which is τ -equivalent to zero because dnD is a divisor on X which
is τ -equivalent to zero.

Keep the notation of Proposition 3.4.2. Even if X/R admits a section, so that
d is equal to 1, the closed point xK,i is not rational as soon as the special fiber Xk

is not reduced at the generic point of the irreducible component Γi. Therefore, if
we want to combine Theorem 3.4.1 and Proposition 3.4.2 when X = A (notation
of Theorem 3.2.1), we need to compare the values of Néron’s pairing on the abelian
variety AK for 0-cycles which are supported on non-rational points, with its values
for 0-cycles of the form [aK ] − [0K ], with aK ∈ AK(K). Here we will use the
constructions of Subsection 3.3, together with some biduality argument. To take
care of the conditions on supports involved in the computations of Néron’s pairings,
let us first note the following lemma.

Lemma 3.4.3. Let AK be an abelian variety over K with dual A′K . Let a′K ∈
A′K(K) and let E be a finite set of closed points of AK . Then there exists a Poincaré
divisor on AK×KA′K , that is, a divisor such that the invertible sheaf OAK×KA′K

(P )
is a Poincaré sheaf which is birigidified along 0K ∈ AK(K) and 0′K ∈ A′K(K),
satisfying the following conditions:

1. P0K
:= P |0K×KA′K

and P0′K
:= P |AK×K0′K

are well-defined and equal to zero;

2. Pa′K := P |AK×Ka′K
is well-defined, and its support does not meet E;

3. For all aK ∈ E, PaK := P |aK×KA′K
is well-defined, and its support does not

meet {0′K , a′K}.

Proof. Consider the finite set F whose elements are the following closed points of
the product AK ×K A′K :

aK ×K 0′K or aK ×K a′K , with aK ∈ ({0K}
∐
E).

Let P be a Poincaré sheaf on AK ×K A′K , birigidified along 0K ∈ AK(K) and
0′K ∈ A′K(K). Choose an arbitrary divisor Q such that OAK×KA′K

(Q) ' P. Using a
moving lemma on the product AK ×K A′K if necessary ([Li] 9.1.11), one can assume
that the support of Q is disjoint from the finite set F . As 0K ×K 0′K ∈ F , the
divisors Q|0K×KA′K

and Q|AK×K0′K
are well-defined, and are principal. Then

P := Q− p∗2(Q|0K×KA′K
)− p∗1(Q|AK×K0′K

)

(where p1 : AK ×K A′K→AK and p2 : AK ×K A′K→A′K are the projections) is a
Poincaré divisor again.

Now, let aK ∈ ({0K}
∐
E). Then aK ×K a′K does not belong to the support

Supp(Q) of Q because aK ×K a′K ∈ F . Next, aK ×K a′K /∈ Supp(p∗2(Q|0K×KA′K
)):

indeed, 0K×K a′K ∈ F by definition, hence 0K×K a′K /∈ Supp(Q), and consequently
a′K /∈ Supp(Q|0K×KA′K

). Finally aK ×K a′K /∈ Supp(p∗1(Q|AK×K0′K
)), because oth-

erwise aK ∈ Supp(Q|AK×K0′K
) and aK ×K 0′K ∈ Supp(Q), which is not the case
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because aK ×K 0′K ∈ F . We have thus shown that the point aK ×K a′K does not
belong to the support of P . Similarly, the point aK ×K 0′K does not belong to the
support of P . In conclusion:

1. P |0K×KA′K
and P |AK×K0′K

are well-defined, and are equal to zero, by definition
of P ;

2. P |AK×Ka′K
is well-defined, and its support does not meet E , because aK ×K

a′K /∈ Supp(P ) for all aK ∈ E ;

3. P |aK×KA′K
is well-defined for all aK ∈ E , and its support does not meet

{0′K , a′K}, because aK ×K a′K /∈ Supp(P ) and aK ×K 0′K /∈ Supp(P ) for all
aK ∈ E .

We can now proceed to the announced comparison of some values of Néron’s
pairing.

Proposition 3.4.4. Let AK be an abelian variety with dual A′K . Let cK ∈ Z0
0 (AK)

and D′K ∈ Div0(AK). Assume that the support of D′K is disjoint from that of cK
and that of [S(cK)] − [0K ] (Notation 3.3.2). Then the following relation between
values of Néron’s pairing on AK is true:

〈 cK , D′K 〉 ≡ 〈 [S(cK)]− [0K ] , D′K 〉 modZ .

Proof. Let a′K ∈ A′K(K) corresponding to D′K . Let E be a finite set of closed points
of AK , containing the supports of cK and [S(cK)]− [0K ]. From Lemma 3.4.3, there
exists a Poincaré divisor P satisfying the following conditions:

1. P0K
:= P |0K×KA′K

and P0′K
:= P |AK×K0′K

are well-defined and equal to zero;

2. Pa′K := P |AK×Ka′K
is well-defined, and its support does not meet E ;

3. PaK := P |aK×KA′K
is well-defined for all aK ∈ E , and its support does not

meet {0′K , a′K}.

Then, the divisors D′K and Pa′K are linearly equivalent. Consequently, we can
assume D′K = Pa′K (Proposition 2.2.5).

Write cK = c+K−c
−
K where c+K and c−K are positive 0-cycles with disjoint supports.

Let L/K be a finite field extension such that

c+K ⊗K L =

d∑
r=1

[ar,+] and c−K ⊗K L =

d∑
r=1

[ar,−]

where d := deg c+K = deg c−K and with ar,+, ar,− in AL(L) (repetitions allowed).
Computing Néron’s pairings over K and over L with normalized valuations, we get

〈 cK , Pa′K 〉AK
=

1

eL
〈

d∑
r=1

[ar,+]−
d∑
r=1

[ar,−] , (PL)a′L 〉AL
,

where PL is the pull-back of P over L, the point a′L ∈ A′L(L) is the image of
a′K ∈ A′K(K) by the inclusion A′K(K) ⊆ A′L(L), and eL is the ramification index of
L/K. As (PL)0′L

= 0, the reciprocity law for Néron’s pairing ([La] 11.4.2) 1 asserts

1Here we use the reciprocity law in the case where the divisorial correspondence is the Poincaré
divisor PL. By using a definition of Néron’s pairing relying on the Poincaré biextension (see [Z] §5
or [MT] §2), the reciprocity law for PL is a direct consequence of the biduality of abelian varieties.
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that the right-hand side of the equality is equal to the (well-defined) quantity

1

eL
〈 [a′L]− [0′L] ,

d∑
r=1

(PL)ar,+ −
d∑
r=1

(PL)ar,− 〉A′L .

Now, with Notation 3.3.3, the divisor
∑d
r=1(PL)ar,+ −

∑d
r=1(PL)ar,− is precisely

the pull-back over L of the divisor PcK on A′K . Furthermore, as the Poincaré map

AL(L)−→Pic0
A′L/L

(L)

is a group homomorphism, the divisors PcK and PS(cK) are linearly equivalent on
A′L, and thus on A′K (because Pic0

A′K/K
(K) is contained in Pic0

A′K/K
(L)). Let f ∈

K(A′K) be such that PcK − PS(cK) = div(f). As the normalized valuation on K
takes values in Z, the (well-defined) pairing

1

eL
〈 [a′L]− [0′L] , (div(f))L 〉A′L = 〈 [a′K ]− [0′K ] , div(f) 〉A′K

is an integer. Consequently,

〈 cK , Pa′K 〉AK
≡ 〈 [a′K ]− [0′K ] , PS(cK) 〉A′K modZ .

As P0K
= 0 and P0′K

= 0, we conclude by using once again the reciprocity law.

We can now interpret Grothendieck’s obstruction (Subsection 3.1) in terms of
relative algebraic equivalence.

Theorem 3.4.5. Keep the notation of Theorem 3.2.1. Moreover, let ΦA (resp.
ΦA′) be the group of connected components of Ak (resp. A′k).

Let a′ ∈ ΦA′ . Lift a′ to a point a′K ∈ A′K(K), representing the linear equivalence
class of a divisor D′K on AK . Then the homomorphism

〈 , a′ 〉 : ΦA−→Q /Z

induced by Grothendieck’s pairing is identically zero if and only if D′K can be ex-
tended to a Q-divisor on A which is τ -equivalent to zero relative to R.

Proof. Suppose that the obstruction 〈 , a′ 〉 vanishes. Choose 0-cycles of degree zero
cK,1, . . . , cK,ν on AK satisfying the conclusion of Proposition 3.4.2 when applied to
the model A/R of AK . To prove that D′K extends to a Q-divisor on A which is
τ -equivalent to zero, we can replace D′K by any divisor on AK which is linearly
equivalent to D′K . In particular, using moving lemma [Li] 9.1.11, we can assume
that the support of D′K does not meet the finite set

{0K , S(cK,1), . . . , S(cK,ν)}
ν∐
i=1

Supp(cK,i).

Then, as 〈 , a′ 〉 = 0, we get from Bosch-Lorenzini’s Theorem 3.4.1 that

〈 [S(cK,i)]− [0K ] , D′K 〉 ∈ Z

for all i = 1, . . . , ν. Proposition 3.4.4 and Theorem 2.2.1 then imply that

[cK,i , D
′
K ] ∈ Z

for all i = 1, . . . , ν. Due to the choice of the cK,i, the divisor D′K can then be
extended to a Q-divisor on A which is τ -equivalent to zero.
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Conversely, suppose that there is a Q-divisor D′ on A which is τ -equivalent to
zero, with generic fiber D′K . To prove that 〈 , a′ 〉 = 0, we can assume that 0K does
not belong to the support of D′K , by adding to D′ the divisor of a rational function
on A if needed. Let n′ be a non-zero integer such that ∆′ := n′D′ is a divisor on A
which is τ -equivalent to zero. For each aK ∈ AK(K) which is not in the support of
D′K , we get:

[ [aK ]− [0K ] , D′K ] =
1

n′
(
[aK ]− [0K ].∆′

)
=
(
[aK ]− [0K ].D′

)
∈ Z .

The first equality holds by definition of the pairing [ , ], and the second one is
true because [aK ] − [0K ] is contained in the regular locus of A. Now observe that
an element a ∈ ΦA can always be lifted to a point aK ∈ AK(K) which is not in
the support of D′K . Thus, it follows from Theorem 2.2.1 and Bosch-Lorenzini’s
Theorem 3.4.1 that the obstruction 〈 , a′ 〉 vanishes.

Proof of Theorem 3.2.1. By biduality of abelian varieties, Grothendieck’s duality
statement is equivalent to the following: the obstruction 〈 , a′ 〉 vanishes if and only
if a′ = 0.

Suppose that this assertion is true. Let (C) ∈ PicQ,τ (A/R) and let a′K be its
canonical image in A′K(K). By Theorem 3.4.5, the obstruction 〈 , a′ 〉 vanishes.
Hence a′ = 0, that is, aK′ ∈ (A′)0(R).

Conversely, suppose that the canonical image of PicQ,τ (A/R) in A′K(K) is con-
tained in (A′)0(R). Let a′ ∈ ΦA′ , and assume that the corresponding obstruction
〈 , a′ 〉 vanishes. Choose a lifting a′K ∈ A′K(K) of a′. Then, by Theorem 3.4.5, the
point a′K belongs to the image of PicQ,τ (A/R). In particular, it belongs to (A′)0(R),
and a′ = 0.

Thus, we have proved that Grothendieck’s conjecture is equivalent to the fact
that the image of PicQ,τ (A/R) in A′K(K) is contained in (A′)0(R). Now suppose
that the conjecture is true. Then, from [P] Corollary 3.14, we obtain isomorphisms

Pic0(A/R)
∼−→ PicQ,τ (A/R)

∼−→ (A′)0(R).

The last assertion of Theorem 3.2.1 follows.

4 Grothendieck’s pairing for Jacobians

4.1 Statement of the results
Let R be a complete discrete valuation ring with algebraically closed residue field
k and fraction field K. Let XK be a proper smooth geometrically connected curve
over K, and let JK := Pic0

XK/K be its Jacobian. Denote by J (resp. J ′) the Néron
model of JK (resp. J ′K) over R, and ΦJ (resp. ΦJ′) the group of connected compo-
nents of the special fiber of J/R (resp. J ′/R). Theorems 3.4.1 and 2.2.1 describe
Grothendieck’s pairing associated to JK in terms of intersection multiplicities on
some compactification J of J . It is natural to wonder if these computations can be
replaced by intersection computations on a proper flat regular model X of XK .

Assume that XK(K) is nonempty. In this case, the curve XK can be embedded
into JK , and can be used to define a classical theta divisor on JK . Then, using
Theorem 3.4.1, Bosch and Lorenzini described Grothendieck’s pairing associated to
JK in terms of the Néron pairing on XK , and so in terms of intersection multiplicities
on X, thanks to Gross’s and Hriljac’s Theorems [G] and [H]. Their precise result is
as follows. LetM be the intersection matrix of the special fiber ofX/R: if Γ1, . . . ,Γν
are the irreducible components of Xk equipped with their reduced scheme structure,
the (i, j)th entry ofM is the intersection number (Γi ·Γj). Denote by ΦM the torsion
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part of the cokernel of M : Zν→Zν . According to Raynaud’s work on the sheaf
PicX/S , there is a canonical isomorphism ΦJ = ΦM (see [BLR] 9.6/1). Now, on the
product ΦM × ΦM , there is the canonical pairing

〈 , 〉M : ΦM × ΦM −→ Q /Z
(T , T ′) 7−→ (tS/n)M(S′/n′) modZ

for any n, n′ ∈ Z \{0} and S, S′ ∈ Zν such that MS = nT , MS′ = n′T ′. Now let
(a, a′) ∈ ΦJ × ΦJ′ . By identifying JK and J ′K with the help of the opposite of the
canonical principal polarization defined by a theta divisor, Grothendieck’s pairing
of a and a′ can be computed by the formula

〈 a , a′ 〉 = 〈 a , a′ 〉M

([BL] Theorem 4.6).
Now assume that XK(K) is empty. Choosing a field extension L/K such that

XK(L) is nonempty, one can consider a theta divisor on JL, and it is a classical
fact that the associated canonical principal polarization is defined over K. Using
its opposite, one can still identify ΦJ with ΦJ′ , and thus ΦJ′ with ΦM (as k is alge-
braically closed, the identification ΦJ = ΦM holds without assuming that XK(K)
is nonempty). Then the authors of [BL] ask if both pairings 〈 , 〉 and 〈 , 〉M still
coincide in this situation (loc. cit. Remark 4.9). In [Lor] Theorem 3.4, Lorenzini
gives a positive answer to this question when the special fiber of X/R admits two ir-
reducible components Ci and Cj with multiplicities di and dj such that (Ci ·Cj) > 0
and gcd(di, dj) = 1. Here we show that this result still holds if we only assume that
the global gcd of the multiplicities of the irreducible components of Xk is equal to
1. Note that, due to the hypotheses on R and on X, this global gcd coincides with
the index of the curve XK , that is, the smallest positive degree of a divisor on XK

([R] 7.1.6 1)).

Theorem 4.1.1. Let R be a complete discrete valuation ring with algebraically
closed residue field k and fraction field K. Let XK be a proper smooth geometrically
connected curve over K, with index d. Let JK be the Jacobian of XK , identified
with its dual using the opposite of its canonical principal polarization. Let X/R be
a proper flat regular model of XK . The following relation between Grothendieck’s
pairing for JK and the above pairing defined by the intersection matrix M of Xk is
true:

d 〈 a , a′ 〉 = d 〈 a , a′ 〉M .

In particular, we get the following partial answers to Grothendieck’s conjecture
[SGA 7] IX 1.3 in this case:

Corollary 4.1.2. Keep the notation of Theorem 4.1.1. Then:

• The kernel of Grothendieck’s pairing for JK is killed by d.

• If d is prime to the characteristic of k, then Grothendieck’s pairing for JK is
perfect.

Proof. From [BL] Theorem 1.3, the pairing 〈 , 〉M is a perfect duality. So the first
point follows directly from Theorem 4.1.1. For the second point, denote by p the
characteristic of k. Then Grothendieck’s pairing is perfect when restricted to the
prime-to-p parts of the component groups: [SGA 7] IX 11.3 and [Ber] Theorem 1.
Consequently, the second point follows again from the perfectness of 〈 , 〉M and
Theorem 4.1.1.

23



4.2 Proof of Theorem 4.1.1

Here are two lemmas to prepare the proof of the theorem.
Recall that, as R is complete with algebraically closed residue field, a classical

result of Lang asserts that the Brauer group of K is zero, whence Pic0(XK) =
JK(K).

Lemma 4.2.1. Let a, a′ ∈ ΦJ = ΦM , and choose divisors DK , D′K on XK with
disjoint supports, such that aK := (DK), a′K := (D′K) ∈ JK(K) = Pic0(XK)
specialize to a, a′. The relationship between the pairing 〈 , 〉M and Néron’s pairing
on XK is given by:

〈 a, a′ 〉M = −〈DK , D
′
K 〉 modZ .

Proof. This is an immediate consequence of the definitions, and of the description
of Néron’s pairing for the curve XK in terms of intersection multiplicities on X.
Indeed, let ρ : Pic(X)→Zν be the degree morphism (Z) 7→ (Z · Γi)i=1,...,ν . Denote
by DK the schematic closure of DK in X. By definition of Raynaud’s isomorphism
ΦJ = ΦM , the image of ρ(DK) ∈ Zν in Zν / ImM is contained in the torsion
part ΦM , and the resulting element is precisely the image of a ∈ ΦJ under the
isomorphism. In particular, there are n, n′ ∈ Z \{0} and S, S′ ∈ Zν such that
MS = nρ(DK),MS′ = n′ρ(D′K), and by definition of the symmetric pairing 〈 , 〉M ,
we get

〈 a, a′ 〉M = (tS′/n′)ρ(DK) modZ .

Under the identification ⊕νi=1 ZΓi ' Zν , the right-hand side can also be written as
an intersection multiplicity:

〈 a, a′ 〉M =
1

n′
(DK .S

′) = − 1

n′
(
DK .(n

′D′K − S
′)
)
∈ Q /Z .

Now, the equality MS′ = n′ρ(D′K) means that the divisor n′D′K − S′ on X is
algebraically equivalent to zero relative to R ([BLR] 9.2/13). Applying Theorem
2.2.1 to the curve XK , we conclude that

〈 a, a′ 〉M = −[DK , D′K ] = −〈DK , D′K 〉 ∈ Q /Z .

Next, the index d of XK divides g − 1 where g is the genus of XK ([R] 9.5.1).
Let us fix a divisor E of degree d on XK , and consider the linear equivalence class of
divisors of degree g−1 given by tK := (g−1)d−1(E) ∈ Picg−1

XK/K
(K). The canonical

image of the (g − 1)-fold symmetric product X(g−1)
K in Picg−1

XK/K
can be translated

by tK to a divisor on JK , that we will denote by Θ. Then, by extending K and
reducing to the case whereXK(K) is nonempty, one sees that the canonical principal
polarization ϕ of JK can be written explicitly here as ϕ(z) = −(Θz −Θ), where Θz

is obtained from Θ by translation by the point z. On the other hand, denoting by
∆ the diagonal of XK ×K XK , the divisor d∆− E ×K XK on XK ×K XK defines
an element of Pic0

XK/K(XK), hence a K-morphism h : XK→Pic0
XK/K = JK .

Lemma 4.2.2. The following diagram of K-morphisms is commutative:

J ′K
h∗

!!
JK

−ϕ
>>

d // JK .
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The commutativity can be stated as follows. Let z ∈ JK(K). Let Z be any divisor
of degree 0 on XK , whose linear equivalence class (Z) corresponds to z via the
canonical isomorphism Pic0(XK) = JK(K). Then the following relation holds:

h∗(Θz −Θ) = d(Z) ∈ Pic0(XK) = JK(K).

In particular, there is a nonempty open subset UK of JK such that h∗Θz is a well-
defined divisor on XK for all z ∈ UK(K), and whose degree does not depend on the
point z.

Proof. To check that the diagram is commutative, one can replaceK by its algebraic
closure, and so we can assume that K is algebraically closed. As the pull-back by
the multiplication-by-d on JK acts as multiplication-by-d on the group Pic0(JK),
the lemma then follows from the classical situation where XK can be embedded
into JK using a rational point of XK .

Proof of Theorem 4.1.1. Let (a, a′) ∈ ΦJ ×ΦJ . Choose a point aK ∈ JK(K) which
specializes to a ∈ ΦJ . The point aK corresponds, under the equality JK(K) =
Pic0(XK), to the linear equivalence class of a divisor D(a)K of degree 0 on XK .
Write D(a)K = D(a)+

K − D(a)−K with D(a)+
K and D(a)−K positive with disjoint

supports. Let L/K be a finite field extension such that

D(a)+
K ⊗K L =

α∑
r=1

[ar,+] and D(a)−K ⊗K L =

α∑
r=1

[ar,−]

where α := degD(a)+
K = degD(a)−K and with ar,+, ar,− in XL(L) (repetitions

allowed).
Next, still denoting by UK the open subset of JK provided by Lemma 4.2.2, one

can find a′K and zK in UK(K) specializing respectively to a′ and 0 in ΦJ , and such
that

daK , 0K /∈ Supp(Θa′K
−ΘzK )

ār,+, ār,− /∈ Supp
(
(Θa′K

−ΘzK )L
)
∀r = 1, . . . , α,

where ār,+ := h(ar,+) and ār,− := h(ar,−). The points a′K and zK correspond to
the classes of some divisors D(a′)K and D(0)K on XK , under the identification
JK(K) = Pic0(XK). From Lemma 4.2.2, we get:

h∗(Θa′K
−ΘzK ) = d(D(a′)K −D(0)K) = d(a′K − zK)

in Pic0(XK) = JK(K). And by construction, the K-point d(a′K − zK) of JK
specializes to da′ ∈ ΦJ . As a consequence, Lemma 4.2.1 provides the formula:

〈 a , da′ 〉M = −〈D(a)K , h∗(Θa′K
−ΘzK ) 〉XK

modZ

(note that h∗(Θa′K
− ΘzK ) is a well-defined divisor, and not only a class, because

a′K , zK ∈ UK(K)).
Still working with normalized valuations to compute Néron’s pairing, and using

functoriality, we obtain:

〈 a , da′ 〉M = − 1

eL
〈
α∑
r=1

[ār,+]− [ār,−] , (Θa′K
−ΘzK )L 〉JL modZ .

where eL is the ramification index of L/K. Then we apply the reciprocity law for
Néron’s pairing with the divisorial correspondence (δ∗Θ − p∗1Θ − p∗2Θ)L, where δ,
p1 and p2 : JK ×K JK→ JK are the difference map and the two projections, to get:

〈 a , da′ 〉M = − 1

eL
〈 [a′L]− [zL] ,

α∑
r=1

(ΘL)−ār,+ − (ΘL)−ār,− 〉JL modZ .
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Here (ΘL)− stands for [−1]∗(ΘL).
Now, with Notation 3.3.3, the divisor

∑α
r=1(ΘL)−ār,+ − (ΘL)−ār,− is the pull-back

on JL of the divisor (Θ−)h∗D(a) defined on JK . On the other hand,

α∑
r=1

ār,+ − ār,− =

α∑
r=1

(d[ar,+]− EL)− (d[ar,−]− EL)

= d(D(a)L) ∈ JK(L)

= daK ∈ JK(K).

Therefore the theorem of the square on JL shows that the two divisors (Θ−)h∗D(a)

and Θ−daK −Θ− on JK are linearly equivalent over L, hence also over K (J ′K(K) in-
jects into J ′L(L)). From this observation, and the fact that the normalized valuation
on K takes values in Z, we deduce that

〈 a , da′ 〉M = −〈 [a′K ]− [zK ] , Θ−daK −Θ− 〉JK modZ .

Applying once more the reciprocity law, we find

〈 a , da′ 〉M = −〈 [daK ]− [0K ] , Θa′K
−ΘzK 〉 modZ .

Finally, note that (Θa′K
− ΘzK ) = −ϕ(a′K − zK) ∈ J ′(K) and a′K − zK specializes

to a′ ∈ ΦJ . Consequently, if we use −ϕ to identify JK with its dual, Theorem 3.4.1
tells us that

−〈 [daK ]− [0K ] , Θa′K
−ΘzK 〉 = 〈 da , a′ 〉 modZ .

Whence

〈 a , da′ 〉M = 〈 da , a′ 〉,

as claimed.
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