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§ 1. Introduction

Let R be a discrete valuation ring with fraction field K, and let AK be an abelian

variety over K. Néron showed that AK can be extended to a smooth and separated

group scheme A of finite type over R, characterized by the following extension property:

for any discrete valuation ring R′ étale over R, with fraction field K ′, the restriction

map A(R′) → AK(K ′) is surjective.

Suppose that AK is the Jacobian of a proper smooth geometrically connected curve

XK . By definition, AK is the Picard variety of XK . The curve XK being projective,

it can certainly be extended to a proper flat curve X over R. One can then ask about

the relation between the Néron model A and the Picard functor of X/R, if there is any.

The answer was given by Raynaud. To get a Néron extension property for étale points
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on the Picard side, it is enough to restrict to those X which are regular. Such models of

the curve XK do exist, after Abhyankar and Lipman. Then A is the biggest separated

quotient of the schematic closure of AK in PicX/R.

Suppose now that AK is the Picard variety of a proper smooth geometrically con-

nected scheme XK , of dimension at least two. It is still not known in general whether

XK admits a proper flat and regular model over R.

The purpose of this survey is to sketch the construction of models X of XK , whose

Picard functor does satisfy a Néron extension property for étale points. It is then

possible to reconstruct the Néron model A from the Picard functor PicX/R. As a

consequence, we obtain that the sections of the identity component A0 of A can be

interpreted as invertible sheaves on X which are algebraically equivalent to zero (when

R is complete with algebraically closed residue field). Note that the converse statement,

namely, the fact that any such sheaf defines a section of A0, is not known in general.

Precisely, we will see that this statement is related to a conjecture of Grothendieck

about the duality theory for Néron models of abelian varieties.

§ 2. Picard varieties

The Picard group of a scheme X is the group of isomorphism classes of invertible

sheaves on X, equipped with the tensor product operation. It is denoted by Pic(X).

Definition 2.1. Let X → S be a morphism of schemes. The Picard functor of

X over S is the fppf sheaf associated to the presheaf

(Sch /S)◦ −→ (Sets)

T 7−→Pic(X ×S T ).

It is denoted by PicX/S .

The Picard functor of a proper scheme X over a field K is representable by a

K-group scheme locally of finite type (Murre [26] and Oort [28]). The representing

scheme is still denoted by PicX/K and is called the Picard scheme of X. The connected

component of the identity section is denoted by Pic0X/K . It is an open and closed

subgroup scheme of finite type of PicX/K .

Theorem 2.2 ([14] 2.1 (ii) and 3.1). Let X be a proper geometrically normal

scheme over a field K. Then Pic0X/K is proper over K, and the reduced subscheme

Pic0X/K,red is a subgroup scheme of Pic0X/K .

Definition 2.3. Let X be a proper geometrically normal scheme over a field K.

The abelian variety Pic0X/K,red is the Picard variety of X.
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Definition 2.4. Let X be a proper scheme over a field K. An invertible sheaf

L on X is algebraically equivalent to zero if the image of its class under the canonical

morphism

Pic(X) −→ PicX/K(K)

is contained in the Picard variety of X. The group of classes of invertible sheaves on X

which are algebraically equivalent to zero is denoted by Pic0(X).

Example 2.5. Let X be a proper curve. As the obstruction to the smooth-

ness of PicX/K lives in H2(X,OX) ([14] 2.10 (ii)), the scheme PicX/K is smooth, and

Pic0X/K,red = Pic0X/K . It is the Jacobian of X, which is an abelian variety ifX is smooth.

The degree of an invertible sheaf L on the proper curve X is the difference of the

coherent Euler characteristics

χ(L)− χ(OX).

LetK be an algebraic closure ofK and denote byXi the reduced irreducible components

of X ⊗K K. Then an invertible sheaf on X is algebraically equivalent to zero if and

only if L|Xi
is of degree zero for all i ([9] 9.2/13).

Example 2.6. Let X be an abelian variety. Denote by

m, p1, p2 : X ×K X −→ X

the group law on X, the first and the second projection. An invertible sheaf on X is

primitive if the invertible sheaf

m∗L ⊗ p∗1L−1 ⊗ p∗2L−1

on X×KX is trivial. In [25] § 13, Mumford constructs an abelian variety which parame-

trizes the primitive invertible sheaves onX. In particular, these sheaves are algebraically

equivalent to zero. Conversely, any invertible sheaf on X which is algebraically equiv-

alent to zero is primitive ([25] (vi) page 75). Hence the abelian variety constructed in

[25] § 13 coincides with the Picard variety of X. As it is realized as a quotient of X

by a finite subgroup scheme, it is of the same dimension as X. Moreover, the tangent

space at the identity section of PicX/K is H1(X,OX) ([14] 2.10 (iii)), whose rank over

K is the dimension of X ([25] Corollary 2 page 129). It follows that PicX/K is smooth,

so that Pic0X/K is the Picard variety of X, called the dual abelian variety of X. It is

denoted by X ′.

As X admits a section, the identity map in PicX/K(PicX/K) can be represented by

an invertible sheaf on X ×K PicX/K , which is trivial on the two slices X ×K {0} and

{0} ×K PicX/K ([9] 8.1.4). Its restriction to the product X ×K X ′ is the birigidified

Poincaré sheaf of X.
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§ 3. Néron models of abelian varieties

From now on, K will be the fraction field of a discrete valuation ring R, and k will

be the residue field of R.

Definition 3.1. Let AK be an abelian variety over K. A Néron model A of AK

is a smooth and separated scheme of finite type over R with generic fiber AK , such that

for all smooth R-scheme Y , the canonical restriction map

HomR(Y,A) −→ HomK(YK , AK)

is bijective.

A Néron model of AK is unique up to unique isomorphism, and is a group scheme

over R such that the canonical open immersion AK → A is a group homomorphism.

Moreover, for any étale extension of discrete valuation rings R → R′, any point of AK

with value in the fraction field of R′ extends uniquely as an R′-point of A. In other

words, denoting by Rsh the strict henselization of R and by Ksh its fraction field, any

Ksh-point of AK extends as an Rsh-point of A. Conversely:

Proposition 3.2 ([9] 7.1/1). Let AK be an abelian variety over K and A be a

smooth and separated group scheme of finite type with generic fiber AK . Assume that

the restriction map

A(Rsh) −→ A(Ksh)

is surjective. Then A is the Néron model of AK .

Néron models of abelian varieties were constructed in [27].

Theorem 3.3 (Néron). An abelian variety over K admits a Néron model.

See [9] for a proof in the language of schemes. See [1], [9] 1.3 and [13] for surveys.

When the abelian variety AK is given as a Picard variety, we will see in the next

section that its Néron model can be constructed using the theory of the Picard func-

tor. Before that, let us illustrate the notion of Néron models by quoting an ad hoc

construction for elliptic curves.

Definition 3.4. Let XK be a proper smooth geometrically connected curve over

K. A regular model of XK is a proper flat regular scheme X over R with generic fiber

XK . It is minimal if for all regular model Y of XK , every birational map Y 99K X

extends as a morphism Y → X.
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A minimal regular model is unique up to unique isomorphism. The existence of

regular models is due to Abhyankar [3] and Lipman [19]. Lipman’s proof is also presented

in [2]. Lichtenbaum [18], Shafarevich [33] and Néron [27] proved the existence of minimal

ones for curves of genus at least one. It is also presented in [20] 9.3.21.

Theorem 3.5. A proper smooth geometrically connected curve over K of genus

at least one admits a minimal regular model.

Theorem 3.6 (Néron). The Néron model of an elliptic curve over K is realized

by the smooth locus of its minimal regular model.

See [27] Chapter III. It is also presented in [9] 1.5 and [20] 10.2.14.

§ 4. Néron models of Picard varieties

§ 4.1. The case of Jacobians

Let XK be a proper smooth geometrically connected curve over K, JK := Pic0XK/K

be its Jacobian and J be the Néron model of JK . Let X be a (not necessarily minimal)

regular model X of XK and PicX/R be its Picard functor. Raynaud showed that J can

be constructed from PicX/R ([31] 8.1.4).

First note that the generic fiber of PicX/R is the whole Picard scheme of XK . In

order to restrict to a relevant subfunctor with generic fiber JK , one uses the process of

schematic closure.

Definition 4.1. Let F be an fppf sheaf over the category of R-schemes and GK

be a subsheaf of the generic fiber FK . The schematic closure of GK in F is the fppf

sheaf associated to the presheaf pGK defined as follows: for all R-scheme T , pGK(T ) is

the set of morphisms T → F such that there exists a factorization

T //

��@
@@

@@
@@

Z

u

��
F

with Z a flat R-scheme and uK ∈ FK(ZK) contained in GK(ZK).

Let P be the schematic closure of JK in PicX/R. By definition, an invertible sheaf L
on X defines an element of P (R) if and only if its restriction to XK defines an element of

JK(K), that is, L⊗K is of degree zero (Example 2.5). In particular, P is not separated

as soon as the special fiber Xk is not integral: any integral component of Xk is then a
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non-principal divisor, and hence defines a non-zero section of P whose generic fiber is

zero. Hence to go from P to a separated sheaf, it is necessary to make these sections

equal to zero, that is, to divide P by the schematic closure E ⊂ P of the zero section

of JK .

Theorem 4.2 (Raynaud). Assume that the map Br(Ksh) → Br(XKsh) induced

by XKsh/Ksh on the Brauer groups is injective. Then J = P/E.

We have denoted by Ksh the fraction field of the strict henselization of R. The

map Br(Ksh) → Br(XKsh) is injective for instance if the residue field k is perfect or if

XK(Ksh) is non-empty (see [9] page 203 for references).

Sketch of proof. We have seen that the fppf sheaf P/E is separated. Its repre-

sentability by a scheme comes from the following fact: a group object in the category of

algebraic spaces which is locally of finite type and separated over R is a scheme (Anan-

tharaman [4]). In general, one cannot apply this result directly because P is not always

an algebraic space. However, there exists an algebraic space (P, Y ) locally of finite type

over R together with an étale epimorphism

r : (P, Y ) −→ P.

The space (P, Y ) is constructed using the theory of rigidificators ([31] §2). Then P/E

can be rewritten as (P, Y )/H where H is the schematic closure of the kernel of rK in

(P, Y ). Now the above representability result can be applied to conclude that P/E is a

separated group scheme locally of finite type over R.

The scheme P/E is smooth because the relative dimension of X over R is one:

as mentioned in Example 2.5, the obstruction to the (formal) smoothness of PicX/R

vanishes if the H2 of the fibers of X/R are trivial.

The scheme P/E is of finite type. This can be seen in two different ways. The first

one is a consequence of the intersection theory on the regular scheme X ([9] 9.5/11).

The second one relies on the finiteness of the Néron-Severi groups of the fibers of X/R,

and makes use of the existence of the Néron model J of JK (loc. cit. 9.5/7).

To prove that J = P/E, it remains to see that the restriction map (P/E)(Rsh) →
(P/E)(Ksh) is surjective (Proposition 3.2). First, using the Leray spectral sequence

for the multiplicative group on XKsh , the injectivity assumption at the level of Brauer

groups ensures that PicXK/K(Ksh) = Pic(XKsh). It follows that

(P/E)(Rsh) → (P/E)(Ksh)

is surjective if

Pic(XRsh) −→ Pic(XKsh)
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is. The latter is true because X is regular. Indeed, as regularity is a local notion with

respect to the étale topology, the scheme XRsh is regular too. So if LKsh is an invertible

sheaf on XKsh , which can be interpreted as a divisor on XKsh , one can consider the

associated cycle and take its schematic closure in XRsh . Then, because of the regular-

ity of XRsh , the resulting 1-codimensional cycle on XRsh is a divisor. The associated

invertible sheaf extends LKsh on XRsh .

§ 4.2. Semi-factorial models

In proving Theorem 4.2, the regularity of the model X is used to show that the

scheme P/E is of finite type over R, via intersection theory on X. However we have

quoted an alternative argument which is valid even if X is singular. The regularity of

X is also used to ensure that the restriction map

Pic(XRsh) −→ Pic(XKsh)

is surjective. In higher dimension, it is not known at the present time whether a proper

smooth scheme over K admits a proper flat regular model over R. However, the above

surjectivity is a weaker property.

Definition 4.3. Let X be a scheme over R. It is semi-factorial over R if the

restriction map

Pic(X) −→ Pic(XK)

is surjective.

Theorem 4.4 ([29] 3.1). A proper geometrically normal scheme over K admits

a proper flat normal and semi-factorial model over R, which remains semi-factorial

after the extension R → Rsh.

The first step in the proof of 4.4 is a modification process of a coherent module over

a smooth morphism by a blowing-up of the base. The latter comes from the flattening

techniques of Raynaud and Gruson [32].

Lemma 4.5. Let B be a noetherian scheme and Y → B be a smooth morphism

of finite type. Let M be a coherent OY -module which is invertible above a schematically

dense open subset U ⊂ B. Then there exists a U -admissible blowing-up B′ → B and an

invertible sheaf on Y ×B B′ which coincides with M⊗B B′ above U ×B B′.

Sketch of proof of Theorem 4.4. Relying on Lemma 4.5, we will sketch the con-

struction of a semi-factorial model of XK in the case where the identity map in

PicXK/K(PicXK/K)
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can be represented by an invertible sheaf PK on XK ×K PicXK/K (e.g. if XK admits a

section [9] 8.1.4).

By Nagata’s compactification ([11], [12], [23]), the K-scheme XK admits a proper

flat model X/R. As the Néron-Severi group of XK is finitely generated, there exist

invertible sheaves LK,1, . . . ,LK,r on XK which generate the image of

Pic(XK) −→ PicXK/K(K)/Pic0XK/K(K).

Each LK,i can be extended to a coherent module on X ([16] 9.4.8). Let Λ0 be the Néron

model of the abelian variety Pic0XK/K,red and extend PK |XK×KPic0
XK/K,red

to a coherent

module on X ×R Λ0. We obtain in this way a coherent module M on X ×R Λ, where

Λ := Λ0

r⨿
i=1

Spec(R).

Applying Lemma 4.5 with (Y → B) = (X×R Λ → X) and U = XK , we find a blowing-

up X ′ → X centered in the special fiber of X/R and an invertible sheaf M̃ on X ′ ×R Λ

which extends M⊗K.

Let us show thatX ′ is a semi-factorial model ofXK over R. Let LK be an invertible

sheaf on XK . Its image λK in PicXK/K(K) can be written as

λK,0 +
r∑

i=1

niλK,i

where λK,0 ∈ Pic0XK/K(K) and for i = 1, . . . , r, λK,i is the image of LK,i in PicXK/K(K)

and ni is some integer. But there are sections λi of Λ extending the λK,i, and the

invertible sheaf

M̃|1×Rλ0 ⊗r
i=1 (M̃|1×Rλi)

⊗ni

extends

PK |1×KλK,0
⊗r

i=1 L
⊗ni

K,i ≃ PK |1×KλK,0
⊗r

i=1 (PK |1×KλK,i
)⊗ni ≃ PK |1×KλK

≃ LK

on X ′.

Using semi-factorial models instead of regular ones, the proof of Theorem 4.2 re-

mains valid in higher dimension, except for the fact that the Picard functor PicX/R is

formally smooth, which is no longer true in general. Thus we have to include another

step in the process of constructing the Néron model of the Picard variety of XK from

PicX/R.

Definition 4.6. Let G be a group scheme over R which is locally of finite type.

A group smoothening of G is a morphism G̃ → G of R-group schemes, with G̃ smooth,

satisfying the following universal property: any R-morphism from a smooth R-scheme

to G admits a unique factorization through G̃ → G.
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A group smoothening of G exists and is unique up to unique isomorphism ([9]

7.1/4)1.

Theorem 4.7. Let XK be a proper geometrically normal and geometrically con-

nected scheme over K, and AK := Pic0XK/K,red be its Picard variety. Let X be a

proper flat model of XK which is semi-factorial over Rsh. Denote by P the schematic

closure of AK in PicX/R and by E that of the unit section. Assume that the map

Br(Ksh) → Br(XKsh) induced by XKsh/Ksh on the Brauer groups is injective. Then

P/E is a scheme and its group smoothening realizes the Néron model of AK .

§ 4.3. Identity components

Definition 4.8. Let G be a commutative group functor over the category of R-

schemes, whose fibers are representable by schemes locally of finite type. The identity

component of G is the subfunctor G0 defined as follows. For all R-scheme T , G0(T ) is

the set of morphisms T → G whose two fibers TK → GK and Tk → Gk factor through

the identity components of GK and Gk respectively.

Let us examine the relationship between the identity components of the Picard

functor and of the Néron model.

Theorem 4.9 (Raynaud). In the situation of Theorem 4.2, the canonical map

Pic0X/R −→ J0

is an epimorphism of fppf sheaves. It is an isomorphism if the gcd of the geometric

multiplicities of the irreducible components of Xk is 1.

See [31] 4.2.1 1) and 8.2.1.

Theorem 4.10 ([9] 9.6/1). In the situation of Theorem 4.2, assume that R is

complete and k algebraically closed. Then the canonical map

Pic0X/R(R) −→ J0(R)

is surjective.

In the situation of Theorem 4.7, there is no canonical map from Pic0X/R to A,

because of the defect of smoothness of PicX/R. Hence, to get analogous statements, it

1In loc. cit., the group scheme G is assumed to be of finite type over R. However, the result remains
true without the quasi-compactness assumption. Indeed, as G is a group scheme, its defect of
smoothness is the same at any Rsh-section; in particular, this defect is bounded, so that the same
proof works if G is only locally of finite type.
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is necessary to smooth the Picard functor. However, as the latter is not representable in

general, the group smoothening process cannot be applied directly to PicX/R. We thus

have to replace the Picard functor by the rigidified one, which is an algebraic space, for

which the group smoothening does make sense. See [29] 10.3 and 10.5. As a corollary,

we obtain some information on the algebraic equivalence on X/R.

Definition 4.11. Let X be a proper R-scheme. An invertible sheaf on X is

algebraically equivalent to zero (relative to R) if the image of its class under the canonical

morphism

Pic(X) −→ PicX/R(R)

is contained in the subgroup Pic0X/R(R). The group of classes of invertible sheaves on

X which are algebraically equivalent to zero is denoted by Pic0(X).

In other words, an invertible OX -module is algebraically equivalent to zero if its

restrictions to the fibers XK and Xk are (Definition 2.4).

Theorem 4.12 ([29] 10.9). In the situation of Theorem 4.7, assume that R is

complete and k algebraically closed. Then the image of the restriction map

A0(R) −→ AK(K)

is contained in the image of the restriction map

Pic0(X) −→ Pic0(XK) −→ AK(K).

There is a particular situation where the inverse inclusion holds.

§ 4.4. A conjecture of Grothendieck

Let AK be an abelian variety over K and A′
K be its Picard variety, that is, its dual

abelian variety (Example 2.6). Let A be the Néron model of AK and A′ be that of

A′
K . When A is semi-abelian, Künnemann showed in [17] that there exists a canonical

projective flat regular R-scheme containing A as a dense open subscheme. In general,

a variant of Theorem 4.4 provides a projective flat normal R-scheme A containing A as

a dense open subscheme, such that the restriction map

Pic(A) −→ Pic(A)

is surjective, and remains surjective after the extensionR → Rsh ([29] 6.2). In particular,

Theorem 4.7 applies with X = A to get a construction of A′ from PicA/R. Moreover,

when R is complete and k algebraically closed, Theorem 4.12 asserts that there is a
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canonical commutative diagram

A′
K(K)

∼ // Pic0(AK)

(A′)0(R) //
?�

OO

Pic0(A)
?�

OO

(the injectivity of Pic0(A) → Pic0(AK) comes from the fact that A admits a section,

[31] 6.4.1 3)). In particular, the bottom map is injective. The question of its surjectivity

is related to a conjecture of Grothendieck about the Néron models A and A′.

Let PK be the birigidified Poincaré sheaf on AK ×K A′
K . Considering PK as a

line bundle, and removing its zero section, one gets a Gm,K-torsor on AK ×K A′
K , still

denoted by PK . The torsor PK is endowed with a richer structure, coming from the fact

that there is no non-trivial homomorphism from an abelian scheme to the multiplicative

group and from the Theorem of the Square for abelian schemes. The resulting structure

is the one of a biextension of (AK , A′
K) by Gm,K ([15] VII 2.9.5). The latter means that

PK admits two partial group scheme structures, namely one over each of the factors

of the product AK ×K A′
K , and that for each of these structures it is an extension of

AK ×K A′
K by the multiplicative group, in a compatible manner (loc. cit. 2.1).

Grothendieck studied the question of the extension of PK over R as a biextension

of (A,A′) by Gm,R. Precisely, he constructed the obstruction to the existence of such an

extension. This obstruction lives on the group of connected components of the special

fibers of A and A′. The latter are the étale k-group schemes ΦA := Ak/A
0
k and ΦA′ :=

A′
k/(A

′
k)

0, and the obstruction is a pairing

⟨ , ⟩ : ΦA ×k ΦA′ −→ Q/Z

canonically defined from PK ([15] IX 1.2.1).

Conjecture 4.13 (Grothendieck). The pairing ⟨ , ⟩ is perfect.

In particular, as soon as ΦA is non-zero, the obstruction ⟨ , ⟩ should not vanish, and

the Poincaré biextension PK should not extend to the Néron models A and A′. However,

the duality between AK and A′
K should be reflected at the level of the component groups

ΦA and ΦA′ .

Let us indicate the cases where the conjecture is proved. First, Grothendieck stud-

ied the restriction of the pairing to the ℓ-parts of the component groups, with ℓ prime

to the characteristic of k, and he also investigated the semi-stable reduction case; see

[15] IX 11.3 and 11.4. See [7] and [34] for full proofs. In [15] IX 1.3, Grothendieck

also mentions an unpublished work of Artin and Mazur in the case of the Jacobian of
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a proper smooth curve. Next, Bégueri proved the conjecture in the mixed character-

istic case with perfect residue field ([6]), and McCallum in the case where k is finite

([24]). Then Bosch proved the conjecture for abelian varieties with potentially multi-

plicative reduction, again for perfect residue fields ([10]). Bertapelle and Bosch provided

counter-examples to the conjecture when the residue field k is not perfect ([5]). In the

case where AK is the Jacobian of a proper smooth geometrically connected curve XK ,

Bosch and Lorenzini proved the conjecture when XK admits a point in an unramified

extension of K ([8]; see also [22] and [30] for slight generalizations). They also provide

new counter-examples in the case where k is not perfect. Finally, Loerke proved the

conjecture for abelian varieties of small dimension ([21]). The equal characteristic case

with infinite residue field remains open in general.

Here is a consequence of the perfectness of Grothendieck’s pairing ⟨ , ⟩.

Theorem 4.14 ([30] 3.2.1). Assume R complete and k algebraically closed. Let

A be a proper flat normal R-scheme containing A as a dense open subscheme, and such

that the restriction map Pic(A) → Pic(A) is surjective. If Conjecture 4.13 attached to

the abelian variety AK is true, then the canonical map

(A′)0(R) −→ Pic0(A)

is bijective.

There are two steps in the proof of 4.14. First, Bosch and Lorenzini showed that

Grothendieck’s pairing is a specialization of Néron’s local height pairing attached to AK

([8] 4.4). Second, one describes Néron’s pairing in terms of intersection multiplicities

on the semi-factorial compactification A. One can then interpret the perfectness of

Grothendieck’s pairing as a condition on the algebraic equivalence on A, and when the

latter holds, the map (A′)0(R) → Pic0(A) is surjective.
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