On virtual quotients for actions of semigroups

Cdric PEPIN and Tobias SCHMIDT

September 19, 2021

Abstract

We explain how to construct (virtual) quotients in the context of semigroups and how to construct categories of equivariant vector bundles and their K-theory on such quotients. The usual induction functor for vector bundles gives a characteristic homomorphism, which is an isomorphism in the case of monoids.

Contents

1 Virtual quotients for actions of semigroups 1
1.1 Virtual quotients 2
1.2 Categories on the virtual quotient 3
1.3 Equivariant categories on the virtual quotient 4
1.4 Induction of representations 6
1.5 Grothendieck rings of equivariant vector bundles 7

1 Virtual quotients for actions of semigroups

A semigroup is a set equipped with an internal law which is associative. If the law admits a (necessary unique) identity element then the semigroup is a monoid, and if furthermore every element is invertible then it is a group. These set theoretic notions induce corresponding notions for set-valued functors on a given category, in particular on the category of schemes. Using the Yoneda embedding, we get the notions of a semigroup scheme, monoid scheme and group scheme (over a fixed base scheme).

We explain how to construct (virtual) quotients in the context of semigroups and how to construct categories of equivariant vector bundles and their K-theory on such quotients. The usual induction functor for vector bundles gives a characteristic homomorphism, which is an isomorphism in the case of monoids. Although maybe well-known, we could not find this material in the literature.

The main application we have in mind is the construction of the characteristic homomorphism in the equivariant K-theory over the Vinberg monoid of a given connected split reductive group, cf. [PS, Thm. D] for the case of the group $G L_{2}$.

Notation: We fix a base scheme S and let $(S c h / S)$ be the category of schemes over S. We fix a semigroup scheme G over S and a subsemigroup scheme $B \subset G$ (i.e. a subsemigroup functor which is representable by a scheme). We denote by $\alpha_{G, G}: G \times G \rightarrow G$ the law of G (resp. $\alpha_{B, B}: B \times B \rightarrow B$ the law of $\left.B\right)$. If G is a monoid we denote by e_{G} its identity section and then we suppose that $B \subset G$ is a submonoid: $e_{B}:=e_{G} \in B$. If G is a group then we suppose that $B \subset G$ is a subgroup, and denote by $i_{G}: G \rightarrow G$ the inverse map of G (resp. $i_{B}: B \rightarrow B$ the inverse map of B).

1.1 Virtual quotients

Recall that an S-space in groupoids is a pair of sheaves of sets (R, U) on $(S c h / S)$ with five morphisms s, t, e, c, i (source, target, identity, composition, inversion)

$$
R \xrightarrow[t]{\stackrel{s}{\longrightarrow}} U \xrightarrow{e} R \quad R \times_{s, U, t} R \xrightarrow{c} R \quad R \xrightarrow{i} R
$$

satifying certain natural compatibilities. Given a groupoid space, one defines the fibered groupoid over $(S c h / S)$ to be the category $[R, U]^{\prime}$ over $(S c h / S)$ whose objects resp. morphisms over a scheme T are the elements of the set $U(T)$ resp. $R(T)$. Given a morphisms $f: T^{\prime} \rightarrow T$ in $(S c h / S)$ one defines the pull-back functor $f^{*}:[R, U]^{\prime}(T) \rightarrow[R, U]^{\prime}\left(T^{\prime}\right)$ using the maps $U(T) \rightarrow U\left(T^{\prime}\right)$ and $R(T) \rightarrow R\left(T^{\prime}\right)$. An equivalent terminology for 'fibered groupoid over ($S c h / S$)' is 'prestack over $S '$, and given a Grothendieck topology on $(S c h / S)$, one can associate a stack to a prestack; in the case of the prestack $[R, U]^{\prime}$, the associated stack is denoted by $[R, U]$.

If X is a scheme equipped with a (right) action of a group scheme B, one takes $U=X$, $R=X \times B$, and let s be the action of the group and $t=p_{1}$ be the first projection. Then c is the product in the group and e, i are defined by means of the identity and the inverse of B. By definition, the quotient stack $[X / B]$ is the stack $[X \times B, X]$. For all of this, we refer to LM00, (2.4.3)].

In the context of semigroups, we adopt the same point of view, however, the maps e and i are missing. This leads to the following definition.
1.1.1. Definition. The virtual quotient associated to the inclusion of semigroups $B \subset G$ is the semigroupoid consisting of the source and target maps $\alpha_{G, B}:=\left.\alpha_{G, G}\right|_{G \times B}$ and first projection p_{1}

$$
G \times B \xrightarrow[p_{1}]{\stackrel{\alpha_{G, B}}{\longrightarrow}} G
$$

together with the composition

$$
\begin{aligned}
c:(G \times B)_{\alpha_{G, B}} \times_{G p_{1}}(G \times B) & \longrightarrow G \times B \\
\left((g, b),\left(g b, b^{\prime}\right)\right) & \longmapsto\left(g, b b^{\prime}\right) .
\end{aligned}
$$

We denote it by G / B.
1.1.2. Saying that these data define a semigroupoid means that they satisfy the following axioms:
(0) $\alpha_{G, B} \circ c=\alpha_{G, B} \circ p_{2}$ and $p_{1} \circ c=p_{1} \circ p_{1}$ where we have denoted the two projections $(G \times B)_{\alpha_{G, B}} \times_{G p_{1}}(G \times B) \rightarrow G \times B$ by $p_{1}, p_{2} ;$
(i) (associativity) the two composed maps

$$
(G \times B)_{\alpha_{G, B}} \times{ }_{G} p_{1}(G \times B)_{\alpha_{G, B}} \times{ }_{G} p_{1}(G \times B) \xrightarrow{\stackrel{c \times \operatorname{id}_{G \times B}}{\longrightarrow}}(G \times B)_{\alpha_{G, B}} \times{ }_{G p_{1}}(G \times B) \xrightarrow{c}(G \times B)
$$

are equal.
1.1.3. If $B \subset G$ is an inclusion of monoids, then G / B becomes a monoidoid thanks to the additional datum of the identity map

$$
\varepsilon: G \xrightarrow{\operatorname{id}_{G} \times e_{B}} G \times B .
$$

This means that the following additional axioms are satisfied:
(0)' $\alpha_{G, B} \circ\left(\operatorname{id}_{G} \times e_{B}\right)=p_{1} \circ\left(\operatorname{id}_{G} \times e_{B}\right)=\operatorname{id}_{G} ;$
(ii) (identity element) the two composed maps

$$
G \times B=(G \times B)_{\alpha_{G, B}} \times{ }_{G} G=G \times_{G p_{1}}(G \times B) \xrightarrow{\substack{\varepsilon \times \mathrm{id}_{G \times B} \\ G \times B \times \varepsilon}}(G \times B)_{\alpha_{G, B}} \times_{G p_{1}}(G \times B) \xrightarrow{c}(G \times B)
$$

are equal.
1.1.4. If $B \subset G$ is an inclusion of groups, then G / B becomes a groupoid thanks to the additional datum of the inverse map

$$
i: G \times B \xrightarrow{\alpha_{G, B} \times i_{B}} G \times B .
$$

This means that the following additional axioms are satisfied:
(0)" $\alpha_{G, B} \circ\left(\alpha_{G, B} \times i_{B}\right)=p_{1}$ and $p_{1} \circ\left(\alpha_{G, B} \times i_{B}\right)=\alpha_{G, B} ;$
(iii) (inverse) the two diagrams

are commutative.

1.2 Categories on the virtual quotient

Let \mathcal{C} be a category fibered over $(S c h / S)$.
1.2.1. Definition. The (fiber of the) category \mathcal{C} over G / B is the category $\mathcal{C}(G / B)$ defined by: (Obj) an object of $\mathcal{C}(G / B)$ is a couple $\left(\mathcal{F}, \phi_{B}\right)$ where \mathcal{F} is an object of $\mathcal{C}(G)$ and

$$
\phi_{B}: p_{1}^{*} \mathcal{F} \longrightarrow \alpha_{G, B}^{*} \mathcal{F}
$$

is a morphism in $\mathcal{C}(G \times B)$ satisfying the following cocycle condition: considering the maps

$$
\begin{gathered}
G \times B \times B \longrightarrow G \\
p_{1}=p_{1} \circ\left(\mathrm{id}_{G} \times \alpha_{B, B}\right)=p_{1} \circ p_{12} \\
q:=\alpha_{G, B} \circ\left(\operatorname{id}_{G} \times \alpha_{B, B}\right)=\alpha_{G, B} \circ\left(\alpha_{G, B} \times \operatorname{id}_{B}\right) \\
r:=p_{1} \circ\left(\alpha_{G, B} \times \operatorname{id}_{B}\right)=\alpha_{G, B} \circ p_{12},
\end{gathered}
$$

the diagram in $\mathcal{C}(G \times B \times B)$

is commutative ;
(Hom) a morphism $\left(\mathcal{F}^{1}, \phi_{B}^{1}\right) \rightarrow\left(\mathcal{F}^{2}, \phi_{B}^{2}\right)$ in $\mathcal{C}(G / B)$ is a morphism $\varphi: \mathcal{F}^{1} \rightarrow \mathcal{F}^{2}$ in $\mathcal{C}(G)$ such that the diagram in $\mathcal{C}(G \times B)$

is commutative.
1.2.2. If $B \subset G$ is an inclusion of monoids, then an object of $\mathcal{C}(G / B)$ is a couple $\left(\mathcal{F}, \phi_{B}\right)$ as in 1.2 .1 which is required to satisfy the additional condition that the morphism in $\mathcal{C}(G)$

$$
\varepsilon^{*}\left(\phi_{B}\right):=\left(\operatorname{id}_{G} \times e_{B}\right)^{*} \phi_{B}: \mathcal{F} \longrightarrow \mathcal{F}
$$

is equal to the identity. Homomorphisms in $\mathcal{C}(G / B)$ remain the same as in the case of semigroups.
1.2.3. If $B \subset G$ is an inclusion of groups, then given an object $\left(\mathcal{F}, \phi_{B}\right)$ of $\mathcal{C}(G / B)$ as in 1.2 .2 , the morphism ϕ_{B} in $\mathcal{C}(G \times B)$ is automatically an isomorphism, whose inverse is equal to $i^{*}\left(\phi_{B}\right):=$ $\left(\alpha_{G, B} \times i_{B}\right)^{*}\left(\phi_{B}\right)$. The category $\mathcal{C}(G / B)$ coincides therefore with the category attached to the underlying inclusion of monoids.

1.3 Equivariant categories on the virtual quotient

1.3.1. By taking the direct product $\mathrm{id}_{G} \times \bullet$ of all the maps appearing in the definition 1.1 .1 of the semigroupoid G / B, we get a semigroupoid $G \times G / B$, whose source and target maps are

$$
(G \times G) \times B \xrightarrow[p_{1}]{\alpha_{G \times G, B}} G \times G .
$$

Then given \mathcal{C} we define the category $\mathcal{C}(G \times G / B)$ exactly as we defined the category $\mathcal{C}(G / B)$, but now using the semigroupoid $G \times G / B$ instead of G / B. Applying once more $\mathrm{id}_{G} \times \bullet$, we also get the semigroupoid $G \times G \times G / B$ with source and target maps

$$
(G \times G \times G) \times B \xrightarrow[p_{1}]{\alpha_{G \times G \times G, B}} G \times G \times G,
$$

and then the category $\mathcal{C}(G \times G \times G / B)$.
1.3.2. A morphism $f: G \times G \rightarrow G$ is B-equivariant if the diagram

commutes. Then there is a well-defined pull-back functor

$$
f^{*}: \mathcal{C}(G / B) \longrightarrow \mathcal{C}(G \times G / B)
$$

given by the rules $\left(\mathcal{F}, \phi_{B}\right) \mapsto\left(f^{*} \mathcal{F},\left(f \times \mathrm{id}_{B}\right)^{*} \phi_{B}\right)$ and $\varphi \mapsto f^{*} \varphi$. One defines similarly the B-equivariant morphisms $f: G \times G \times G \rightarrow G \times G$ and the associated pull-back functors f^{*} : $\mathcal{C}(G \times G / B) \rightarrow \mathcal{C}(G \times G \times G / B)$.
1.3.3. With this preparation, we will now be able to define the G-equivariant version of the category $\mathcal{C}(G / B)$. It relies on the semigroupoid $G \backslash G$ consisting of the source and target maps

$$
G \times G \underset{p_{2}}{\stackrel{\alpha_{G, G}}{\longrightarrow}} G
$$

together with the composition

$$
\begin{aligned}
(G \times G)_{\alpha_{G, G}} \times G p_{2}(G \times G) & \longrightarrow G \times G \\
\left(\left(g_{1}, g_{0}\right),\left(g_{2}, g_{1} g_{0}\right)\right) & \longmapsto\left(g_{2} g_{1}, g_{0}\right) .
\end{aligned}
$$

Note that the source and target maps $\alpha_{G, G}$ and p_{2} are B-equivariant.
1.3.4. Definition. The (G-)equivariant (fiber of the) category \mathcal{C} over G / B is the category $\mathcal{C}^{G}(G / B)$ defined by:
(Obj) an object of $\mathcal{C}^{G}(G / B)$ is a triple $\left(\mathcal{F}, \phi_{B},{ }_{G} \phi\right)$ where $\left(\mathcal{F}, \phi_{B}\right)$ is an object of $\mathcal{C}(G / B)$ and

$$
{ }_{G} \phi: p_{2}^{*}\left(\mathcal{F}, \phi_{B}\right) \longrightarrow \alpha_{G, G}^{*}\left(\mathcal{F}, \phi_{B}\right)
$$

is an isomorphism in $\mathcal{C}(G \times G / B)$ satisfying the following cocycle condition: considering the B-equivariant maps

$$
\begin{gathered}
G \times G \times G \longrightarrow G \\
p_{3} \\
q:=\alpha_{G, G} \circ\left(\alpha_{G, G} \times \operatorname{id}_{G}\right)=\alpha_{G, G} \circ\left(\operatorname{id}_{G} \times \alpha_{G, G}\right) \\
r:=p_{2} \circ\left(\mathrm{id}_{G} \times \alpha_{G, G}\right)=\alpha_{G, G} \circ p_{23},
\end{gathered}
$$

and the B-equivariant maps $\alpha_{G, G} \times \operatorname{id}_{G}, p_{23}, \operatorname{id}_{G} \times \alpha_{G, G}$ from $G \times G \times G$ to $G \times G$, the diagram in $\mathcal{C}(G \times G \times G / B)$

is commutative ;
(Hom) a morphism $\left(\mathcal{F}^{1}, \phi_{B}^{1},{ }_{G} \phi^{1}\right) \rightarrow\left(\mathcal{F}^{2}, \phi_{B}^{2},{ }_{G} \phi^{2}\right)$ in $\mathcal{C}^{G}(G / B)$ is a morphism $\varphi:\left(\mathcal{F}^{1}, \phi_{B}^{1}\right) \rightarrow$ $\left(\mathcal{F}^{2}, \phi_{B}^{2}\right)$ in $\mathcal{C}(G / B)$ such that the diagram in $\mathcal{C}(G \times G / B)$

$$
\begin{gathered}
p_{2}^{*}\left(\mathcal{F}^{1}, \phi_{B}^{1}\right) \xrightarrow{p_{2}^{*} \varphi} p_{2}^{*}\left(\mathcal{F}^{2}, \phi_{B}^{2}\right) \\
{ }_{G} \phi^{1} \downarrow \\
\alpha_{G, G}^{*}\left(\mathcal{F}^{1}, \phi_{B}^{1}\right) \xrightarrow{\alpha_{G, G}^{*} \varphi} \alpha_{G, G}^{*}\left({ }_{G} \phi^{2}\right. \\
\left.\mathcal{F}^{2}, \phi_{B}^{2}\right)
\end{gathered}
$$

is commutative (which by definition means that the diagram in $\mathcal{C}(G \times G)$

is commutative).
1.3.5. If $B \subset G$ is an inclusion of monoids, then an object of $\mathcal{C}^{G}(G / B)$ is a triple $\left(\mathcal{F}, \phi_{B},{ }_{G} \phi\right)$ as in 1.3.4 where now the object $\left(\mathcal{F}, \phi_{B}\right)$ of $\mathcal{C}(G / B)$ is as in 1.2 .2 , which is required to satisfy the additional condition that the morphism in $\mathcal{C}(G)$

$$
\left(e_{G} \times \operatorname{id}_{G}\right)^{*}{ }_{G} \phi: \mathcal{F} \longrightarrow \mathcal{F}
$$

is equal to the identity. Homomorphisms in $\mathcal{C}^{G}(G / B)$ remain the same as in the case of semigroups.
1.3.6. As in the non-equivariant setting, cf. 1.2 .3 if $B \subset G$ is an inclusion of groups, then the category $\mathcal{C}^{G}(G / B)$ coincides with the category attached to the underlying inclusion of monoids.

1.4 Induction of representations

From now on, the fixed base scheme is a field k and \mathcal{C} is the fibered category of vector bundles.
1.4.1. Definition. The category $\operatorname{Rep}(B)$ of right representations of the k-semigroup scheme B on finite dimensional k-vector spaces is defined as follows:
(Obj) an object of $\operatorname{Rep}(B)$ is a couple $\left(M, \alpha_{M, B}\right)$ where M is a finite dimensional k-vector space and

$$
\alpha_{M, B}: M \times B \longrightarrow M
$$

is a morphism of k-schemes such that

$$
\forall\left(m, b_{1}, b_{2}\right) \in M \times B \times B, \quad \alpha_{M, B}\left(\alpha_{M, B}\left(m, b_{1}\right), b_{2}\right)=\alpha_{M, B}\left(m, \alpha_{B, B}\left(b_{1}, b_{2}\right)\right) .
$$

(Hom) a morphism $\left(M^{1}, \alpha_{M^{1}, B}\right) \rightarrow\left(M^{2}, \alpha_{M^{2}, B}\right)$ in $\operatorname{Rep}(B)$ is a k-linear map $f: M^{1} \rightarrow M^{2}$ such that

$$
\forall(m, b) \in M^{1} \times B, \quad f\left(\alpha_{M_{1}, B}(m, b)\right)=\alpha_{M_{2}, B}(f(m), b) .
$$

1.4.2. We define an induction functor

$$
\mathcal{I} n d_{B}^{G}: \operatorname{Rep}(B) \longrightarrow \mathcal{C}^{G}(G / B)
$$

as follows. Let $\left(M, \alpha_{M, B}\right)$ be an object of $\operatorname{Rep}(B)$. Set $\mathcal{F}:=G \times M \in \mathcal{C}(G)$. There are canonical identifications $p_{1}^{*} \mathcal{F}=G \times M \times B$ and $\alpha_{G, B}^{*} \mathcal{F}=G \times B \times M$ in $\mathcal{C}(G \times B)$. Set

$$
\begin{array}{rll}
\phi_{B}: G \times M \times B & \longrightarrow & G \times B \times M \\
(g, m, b) & \mapsto & \left(g, b, \alpha_{M, B}(m, b)\right) .
\end{array}
$$

Then $\left(\mathcal{F}, \phi_{B}\right)$ is an object of $\mathcal{C}(G / B)$. Next, there are canonical identifications $p_{2}^{*} \mathcal{F}=G \times G \times M$ and $\alpha_{G, G}^{*} \mathcal{F}=G \times G \times M$ in $\mathcal{C}(G \times G)$. Set

$$
{ }_{G} \phi:=\operatorname{id}_{G \times G \times M} .
$$

Then ${ }_{G} \phi$ is an isomorphism $p_{2}^{*}\left(\mathcal{F}, \phi_{B}\right) \rightarrow \alpha_{G, G}^{*}\left(\mathcal{F}, \phi_{B}\right)$ in $\mathcal{C}(G \times G / B)$, and $\left(\left(\mathcal{F}, \phi_{B}\right),{ }_{G} \phi\right)$ is an object of $\mathcal{C}^{G}(G / B)$.

Let $f:\left(M^{1}, \alpha_{M^{1}, B}\right) \rightarrow\left(M^{2}, \alpha_{M^{2}, B}\right)$ be a morphism in $\operatorname{Rep}(B)$. Then

$$
\operatorname{id}_{G} \times f: \mathcal{F}^{1}=G \times M^{1} \longrightarrow \mathcal{F}^{2}=G \times M^{2}
$$

defines a morphism $\varphi:\left(\left(\mathcal{F}^{1}, \phi_{B}^{1}\right),{ }_{G} \phi^{1}\right) \rightarrow\left(\left(\mathcal{F}^{2}, \phi_{B}^{2}\right),{ }_{G} \phi^{2}\right)$ in $\mathcal{C}^{G}(G / B)$.
These assignments are functorial.
1.4.3. Lemma. The functor $\mathcal{I} n d_{B}^{G}$ is faithful. Suppose moreover that the k-semigroup scheme G has the following property:

There exists a k-point of G which belongs to all the $G(\bar{k})$-left cosets in $G(\bar{k})$, and the underlying k-scheme of G is locally of finite type.
Then the functor $\mathcal{I} n d_{B}^{G}$ is fully faithful.
Proof. Faithfulness is obvious. Now let $\varphi: \operatorname{Ind} d_{B}^{G}\left(M^{1}\right)=G \times M^{1} \rightarrow \mathcal{I}^{n} d_{B}^{G}\left(M^{2}\right)=G \times M^{2}$. The compatibilty of φ with ${ }_{G} \phi^{i}, i=1,2$, reads as

$$
\operatorname{id}_{G} \times \varphi=\alpha_{G, G}^{*} \varphi: G \times G \times M^{1} \longrightarrow G \times G \times M^{2} .
$$

For $g \in G(\bar{k})$, denote by $\phi_{g}: M_{\bar{k}}^{1} \rightarrow M_{\bar{k}}^{2}$ the fiber of φ over g. Taking the fiber at $\left(g^{\prime}, g\right)$ in the above equality implies that $\varphi_{g}=\varphi_{g^{\prime} g}$ for all $g, g^{\prime} \in G(\bar{k})$, i.e. φ_{g} depends only on the left coset $G(\bar{k}) g$, hence is independent of g if all the left cosets share a common point. Assuming that such a point exists and is defined over k, let $f: M^{1} \rightarrow M^{2}$ be the corresponding k-linear endomorphism. Then $\varphi-\operatorname{id}_{G} \times f$ is a linear morphism between two vector bundles on G, which vanishes on each geometric fiber. Then it follows from Nakayama's Lemma that $\varphi-\operatorname{id}_{G} \times f=0$ on G, at least if the latter is locally of finite type over k.
1.4.4. Definition. When the functor $\mathcal{I} n d_{B}^{G}$ is fully faithful, we call its essential image the category of induced vector bundles on G / B, and denote it by $\mathcal{C}_{\mathcal{I} n d}^{G}(G / B)$:

$$
\mathcal{I} n d_{B}^{G}: \operatorname{Rep}(B) \xrightarrow{\sim} \mathcal{C}_{\mathcal{I} n d}^{G}(G / B) \subset \mathcal{C}^{G}(G / B)
$$

1.4.5. If $B \subset G$ is an inclusion of monoids, then an object of $\operatorname{Rep}(B)$ is a couple ($M, \alpha_{M, B}$) as in 1.4.1 which is required to satisfy the additional condition that the k-morphism

$$
\alpha_{M, B} \circ\left(\operatorname{id}_{M} \times e_{B}\right): M \longrightarrow M
$$

is equal to the identity. Homomorphisms in $\operatorname{Rep}(B)$ remain the same as in the case of semigroups.
In particular, comparing with 1.3 .5 , the same assignments as in the case of semigroups define an induction functor

$$
\mathcal{I} n d_{B}^{G}: \operatorname{Rep}(B) \longrightarrow \mathcal{C}^{G}(G / B)
$$

Now set $e:=e_{B}=e_{G} \in B(k) \subset G(k)$, the identity element. We define a functor fiber at e

$$
\operatorname{Fib}_{e}: \mathcal{C}^{G}(G / B) \longrightarrow \operatorname{Rep}(B)
$$

as follows. Let $\left(\mathcal{F}, \phi_{B},{ }_{G} \phi\right)$ be an object of $\mathcal{C}^{G}(G / B)$. Set $M:=\left.\mathcal{F}\right|_{e}$, a finite dimensional k-vector space. There are canonical identifications $\left.\left(p_{1}^{*} \mathcal{F}\right)\right|_{e \times B}=M \times B,\left.\left(\alpha_{G, B}^{*} \mathcal{F}\right)\right|_{e \times B}=\left.\left(\alpha_{G, G}^{*} \mathcal{F}\right)\right|_{B \times e}=$ $\left.\mathcal{F}\right|_{B}$ and $\left.\left(p_{2}^{*} \mathcal{F}\right)\right|_{B \times e}=B \times M$. Set

$$
\alpha_{M, B}: M \times\left. B \xrightarrow{\left.\phi_{B}\right|_{e \times B}} \mathcal{F}\right|_{B} \stackrel{G}{\stackrel{\left.G\right|_{B \times e}}{\sim}} B \times M \xrightarrow{p_{2}} M .
$$

Then $\left(M, \alpha_{M, B}\right)$ is an object of $\operatorname{Rep}(B)$.
Let $\varphi:\left(\mathcal{F}^{1}, \phi_{B}^{1},{ }_{G} \phi^{1}\right) \rightarrow\left(\mathcal{F}^{2}, \phi_{B}^{2},{ }_{G} \phi^{2}\right)$ be a morphism in $\mathcal{C}^{G}(G / B)$. Then

$$
f=\varphi_{e}:\left.\mathcal{F}^{1}\right|_{e}=\left.M^{1} \longrightarrow \mathcal{F}^{2}\right|_{e}=M^{2}
$$

defines a morphism $\left(M^{1}, \alpha_{M^{1}, B}\right) \rightarrow\left(M^{2}, \alpha_{M^{2}, B}\right)$ in $\operatorname{Rep}(B)$.
These assignments are functorial.
1.4.6. Proposition. For an inclusion of k-monoid schemes $B \subset G$ with unit e, the functors $\mathcal{I n d}_{B}^{G}$ and Fib_{e} are equivalences of categories, which are quasi-inverse one to the other.

Proof. Left to the reader.
1.4.7. Analogous to the property 1.3 .6 for equivariant vector bundles, we have that if $B \subset G$ is an inclusion of groups, then given an object $\left(M, \alpha_{M, B}\right)$ of $\operatorname{Rep}(B)$, the right B-action on M defined by $\alpha_{M, B}$ factors automatically through the k-group scheme opposite to the one of k-linear automorphisms of M, the inverse of $\alpha_{M, B}(\bullet, b)$ being equal to $\alpha_{M, B}\left(\bullet, i_{B}(b)\right)$ for all $b \in B$. The category $\operatorname{Rep}(B)$ coincides therefore with the category attached to the underlying monoid of B.

In particular, we have the functors $\mathcal{I} n d_{B}^{G}$ and Fib_{e} attached to the underlying inclusion of monoids $B \subset G$, for which Proposition 1.4.6 holds.

1.5 Grothendieck rings of equivariant vector bundles

1.5.1. For a k-semigroup scheme B, the category $\operatorname{Rep}(B)$ is abelian k-linear symmetric monoidal with unit. Hence, for an inclusion of k-semigroup schemes $B \subset G$ such that the functor $\mathcal{I} n d_{B}^{G}$ is fully faithful, the essential image $\mathcal{C}_{\mathcal{I} n d}^{G}(G / B)$ has the same structure. In particular, it is an abelian category whose Grothendieck group $K_{\mathcal{I n d}}^{G}(G / B)$ is a commutative ring, which is isomorphic to the ring $R(B)$ of right representations of the k-semigroup scheme B on finite dimensional k-vector spaces:

$$
\mathcal{I} n d_{B}^{G}: R(B) \xrightarrow{\sim} K_{\mathcal{I} n d}^{G}(G / B) .
$$

1.5.2. If $B \subset G$ is an inclusion of monoids, then it follows from 1.4 .6 that the category $\mathcal{C}^{G}(G / B)$ is abelian k-linear symmetric monoidal with unit. In particular, it is an abelian category whose Grothendieck group $K^{G}(G / B)$ is a commutative ring, which is isomorphic to the ring $R(B)$ of right representations of the k-monoid scheme B on finite dimensional k-vector spaces:

$$
\mathcal{I} n d_{B}^{G}: R(B) \xrightarrow{\sim} K^{G}(G / B)
$$

1.5.3. If $B \subset G$ is an inclusion of groups, then 1.5 .2 applies to the underlying inclusion of monoids.

References

[LM00] G. Laumon, L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 39, Springer-Verlag, Berlin 2000.
[PS] C. Ppin, T. Schmidt, Generic and Mod p Kazhdan-Lusztig Theory for GL L_{2}, Preprint (2020) arXiv:2007.01364v2.

Cdric Ppin, LAGA, Universit Paris 13, 99 avenue Jean-Baptiste Clment, 93430 Villetaneuse, France
E-mail address: cpepin@math.univ-paris13.fr
Tobias Schmidt, IRMAR, Université de Rennes 1, Campus Beaulieu, 35042 Rennes, France
E-mail address: tobias.schmidt@univ-rennes1.fr

