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Abstract

We explain how to construct (virtual) quotients in the context of semigroups and how to
construct categories of equivariant vector bundles and their K-theory on such quotients. The
usual induction functor for vector bundles gives a characteristic homomorphism, which is an
isomorphism in the case of monoids.
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1 Virtual quotients for actions of semigroups

A semigroup is a set equipped with an internal law which is associative. If the law admits a
(necessary unique) identity element then the semigroup is a monoid, and if furthermore every
element is invertible then it is a group. These set theoretic notions induce corresponding notions
for set-valued functors on a given category, in particular on the category of schemes. Using the
Yoneda embedding, we get the notions of a semigroup scheme, monoid scheme and group scheme
(over a fixed base scheme).

We explain how to construct (virtual) quotients in the context of semigroups and how to
construct categories of equivariant vector bundles and their K-theory on such quotients. The usual
induction functor for vector bundles gives a characteristic homomorphism, which is an isomorphism
in the case of monoids. Although maybe well-known, we could not find this material in the
literature.

The main application we have in mind is the construction of the characteristic homomorphism
in the equivariant K-theory over the Vinberg monoid of a given connected split reductive group,
cf. [PS, Thm. D] for the case of the group GL2.

Notation: We fix a base scheme S and let (Sch/S) be the category of schemes over S. We fix
a semigroup scheme G over S and a subsemigroup scheme B ⊂ G (i.e. a subsemigroup functor
which is representable by a scheme). We denote by αG,G : G × G → G the law of G (resp.
αB,B : B ×B → B the law of B). If G is a monoid we denote by eG its identity section and then
we suppose that B ⊂ G is a submonoid: eB := eG ∈ B. If G is a group then we suppose that
B ⊂ G is a subgroup, and denote by iG : G → G the inverse map of G (resp. iB : B → B the
inverse map of B).

1



1.1 Virtual quotients

Recall that an S-space in groupoids is a pair of sheaves of sets (R,U) on (Sch/S) with five mor-
phisms s, t, e, c, i (source, target, identity, composition, inversion)

R
s //

t
// U

e // R R×s,U,t R
c // R R

i // R

satifying certain natural compatibilities. Given a groupoid space, one defines the fibered groupoid
over (Sch/S) to be the category [R,U ]′ over (Sch/S) whose objects resp. morphisms over a scheme
T are the elements of the set U(T ) resp. R(T ). Given a morphisms f : T ′ → T in (Sch/S) one
defines the pull-back functor f∗ : [R,U ]′(T ) → [R,U ]′(T ′) using the maps U(T ) → U(T ′) and
R(T ) → R(T ′). An equivalent terminology for ‘fibered groupoid over (Sch/S)’ is ‘prestack over
S’, and given a Grothendieck topology on (Sch/S), one can associate a stack to a prestack; in the
case of the prestack [R,U ]′, the associated stack is denoted by [R,U ].

If X is a scheme equipped with a (right) action of a group scheme B, one takes U = X,
R = X × B, and let s be the action of the group and t = p1 be the first projection. Then c is
the product in the group and e, i are defined by means of the identity and the inverse of B. By
definition, the quotient stack [X/B] is the stack [X × B,X]. For all of this, we refer to [LM00,
(2.4.3)].

In the context of semigroups, we adopt the same point of view, however, the maps e and i are
missing. This leads to the following definition.

1.1.1. Definition. The virtual quotient associated to the inclusion of semigroups B ⊂ G is the
semigroupoid consisting of the source and target maps αG,B := αG,G|G×B and first projection p1

G×B
αG,B

//

p1
// G

together with the composition

c : (G×B)αG,B
×G p1(G×B) −→ G×B(
(g, b), (gb, b′)

)
7−→ (g, bb′).

We denote it by G/B.

1.1.2. Saying that these data define a semigroupoid means that they satisfy the following axioms:

(0) αG,B ◦ c = αG,B ◦ p2 and p1 ◦ c = p1 ◦ p1 where we have denoted the two projections
(G×B)αG,B

×G p1(G×B)→ G×B by p1, p2 ;

(i) (associativity) the two composed maps

(G×B)αG,B
×G p1(G×B)αG,B

×G p1(G×B)
c×idG×B

//

idG×B ×c
// (G×B)αG,B

×G p1(G×B)
c // (G×B)

are equal.

1.1.3. If B ⊂ G is an inclusion of monoids, then G/B becomes a monoidoid thanks to the
additional datum of the identity map

ε : G
idG×eB // G×B.

This means that the following additional axioms are satisfied:

(0)’ αG,B ◦ (idG×eB) = p1 ◦ (idG×eB) = idG ;
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(ii) (identity element) the two composed maps

G×B = (G×B)αG,B
×G G = G×G p1(G×B)

ε×idG×B
//

idG×B ×ε
// (G×B)αG,B

×G p1(G×B)
c // (G×B)

are equal.

1.1.4. If B ⊂ G is an inclusion of groups, then G/B becomes a groupoid thanks to the additional
datum of the inverse map

i : G×B
αG,B×iB

// G×B.

This means that the following additional axioms are satisfied:

(0)” αG,B ◦ (αG,B × iB) = p1 and p1 ◦ (αG,B × iB) = αG,B ;

(iii) (inverse) the two diagrams

G×B

αG,B

��

(αG,B×iB)×idG×B
// (G×B)αG,B

×G p1(G×B)

c

��

G
idG×eB // G×B

G×B

p1

��

idG×B ×(αG,B×iB)
// (G×B)αG,B

×G p1(G×B)

c

��

G
idG×eB // G×B

are commutative.

1.2 Categories on the virtual quotient

Let C be a category fibered over (Sch/S).

1.2.1. Definition. The (fiber of the) category C over G/B is the category C(G/B) defined by:

(Obj) an object of C(G/B) is a couple (F , φB) where F is an object of C(G) and

φB : p∗1F −→ α∗G,BF

is a morphism in C(G×B) satisfying the following cocycle condition: considering the maps

G×B ×B −→ G

p1 = p1 ◦ (idG×αB,B) = p1 ◦ p12

q := αG,B ◦ (idG×αB,B) = αG,B ◦ (αG,B × idB)

r := p1 ◦ (αG,B × idB) = αG,B ◦ p12,

the diagram in C(G×B ×B)

p∗1F

p∗12φB ""

(idG×αB,B)∗φB
// q∗(F , φB)

r∗F
(αG,B×idB)∗φB

99

is commutative ;
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(Hom) a morphism (F1, φ1B)→ (F2, φ2B) in C(G/B) is a morphism ϕ : F1 → F2 in C(G) such that
the diagram in C(G×B)

p∗1F1
p∗1ϕ //

φ1
B

��

p∗1F2

φ2
B

��

α∗G,BF1
α∗G,Bϕ

// α∗G,BF2

is commutative.

1.2.2. If B ⊂ G is an inclusion of monoids, then an object of C(G/B) is a couple (F , φB) as in
1.2.1 which is required to satisfy the additional condition that the morphism in C(G)

ε∗(φB) := (idG×eB)∗φB : F // F

is equal to the identity. Homomorphisms in C(G/B) remain the same as in the case of semigroups.

1.2.3. If B ⊂ G is an inclusion of groups, then given an object (F , φB) of C(G/B) as in 1.2.2, the
morphism φB in C(G × B) is automatically an isomorphism, whose inverse is equal to i∗(φB) :=
(αG,B × iB)∗(φB). The category C(G/B) coincides therefore with the category attached to the
underlying inclusion of monoids.

1.3 Equivariant categories on the virtual quotient

1.3.1. By taking the direct product idG×• of all the maps appearing in the definition 1.1.1 of the
semigroupoid G/B, we get a semigroupoid G×G/B, whose source and target maps are

(G×G)×B
αG×G,B

//

p1
// G×G.

Then given C we define the category C(G×G/B) exactly as we defined the category C(G/B), but
now using the semigroupoid G × G/B instead of G/B. Applying once more idG×•, we also get
the semigroupoid G×G×G/B with source and target maps

(G×G×G)×B
αG×G×G,B

//

p1
// G×G×G,

and then the category C(G×G×G/B).

1.3.2. A morphism f : G×G→ G is B-equivariant if the diagram

(G×G)×B
f×idB //

αG×G,B

��

G×B

αG,B

��

G×G
f

// G

commutes. Then there is a well-defined pull-back functor

f∗ : C(G/B) // C(G×G/B),

given by the rules (F , φB) 7→ (f∗F , (f × idB)∗φB) and ϕ 7→ f∗ϕ. One defines similarly the
B-equivariant morphisms f : G × G × G → G × G and the associated pull-back functors f∗ :
C(G×G/B)→ C(G×G×G/B).

1.3.3. With this preparation, we will now be able to define the G-equivariant version of the
category C(G/B). It relies on the semigroupoid G\G consisting of the source and target maps

G×G
αG,G

//

p2
// G
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together with the composition

(G×G)αG,G
×G p2(G×G) −→ G×G(

(g1, g0), (g2, g1g0)
)
7−→ (g2g1, g0).

Note that the source and target maps αG,G and p2 are B-equivariant.

1.3.4. Definition. The (G-)equivariant (fiber of the) category C over G/B is the category
CG(G/B) defined by:

(Obj) an object of CG(G/B) is a triple (F , φB ,Gφ) where (F , φB) is an object of C(G/B) and

Gφ : p∗2(F , φB) −→ α∗G,G(F , φB)

is an isomorphism in C(G×G/B) satisfying the following cocycle condition: considering the
B-equivariant maps

G×G×G −→ G

p3

q := αG,G ◦ (αG,G × idG) = αG,G ◦ (idG×αG,G)

r := p2 ◦ (idG×αG,G) = αG,G ◦ p23,
and the B-equivariant maps αG,G × idG, p23, idG×αG,G from G × G × G to G × G, the
diagram in C(G×G×G/B)

p∗3(F , φB)

p∗23Gφ &&

(αG,G×idG)∗Gφ
// q∗(F , φB)

r∗(F , φB)

(idG×αG,G)∗Gφ

88

is commutative ;

(Hom) a morphism (F1, φ1B ,Gφ
1) → (F2, φ2B ,Gφ

2) in CG(G/B) is a morphism ϕ : (F1, φ1B) →
(F2, φ2B) in C(G/B) such that the diagram in C(G×G/B)

p∗2(F1, φ1B)
p∗2ϕ //

Gφ
1

��

p∗2(F2, φ2B)

Gφ
2

��

α∗G,G(F1, φ1B)
α∗G,Gϕ

// α∗G,G(F2, φ2B)

is commutative (which by definition means that the diagram in C(G×G)

p∗2F1
p∗2ϕ //

Gφ
1

��

p∗2F2

Gφ
2

��

α∗G,GF1
α∗G,Gϕ

// α∗G,GF2

is commutative).

1.3.5. If B ⊂ G is an inclusion of monoids, then an object of CG(G/B) is a triple (F , φB ,Gφ) as
in 1.3.4, where now the object (F , φB) of C(G/B) is as in 1.2.2, which is required to satisfy the
additional condition that the morphism in C(G)

(eG × idG)∗Gφ : F // F

is equal to the identity. Homomorphisms in CG(G/B) remain the same as in the case of semigroups.

1.3.6. As in the non-equivariant setting, cf. 1.2.3, if B ⊂ G is an inclusion of groups, then the
category CG(G/B) coincides with the category attached to the underlying inclusion of monoids.
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1.4 Induction of representations

From now on, the fixed base scheme is a field k and C is the fibered category of vector bundles.

1.4.1. Definition. The category Rep(B) of right representations of the k-semigroup scheme B
on finite dimensional k-vector spaces is defined as follows:

(Obj) an object of Rep(B) is a couple (M,αM,B) where M is a finite dimensional k-vector space
and

αM,B : M ×B −→M

is a morphism of k-schemes such that

∀(m, b1, b2) ∈M ×B ×B, αM,B(αM,B(m, b1), b2) = αM,B(m,αB,B(b1, b2)).

(Hom) a morphism (M1, αM1,B) → (M2, αM2,B) in Rep(B) is a k-linear map f : M1 → M2 such
that

∀(m, b) ∈M1 ×B, f(αM1,B(m, b)) = αM2,B(f(m), b).

1.4.2. We define an induction functor

IndGB : Rep(B) // CG(G/B)

as follows. Let (M,αM,B) be an object of Rep(B). Set F := G×M ∈ C(G). There are canonical
identifications p∗1F = G×M ×B and α∗G,BF = G×B ×M in C(G×B). Set

φB : G×M ×B −→ G×B ×M
(g,m, b) 7→ (g, b, αM,B(m, b)).

Then (F , φB) is an object of C(G/B). Next, there are canonical identifications p∗2F = G×G×M
and α∗G,GF = G×G×M in C(G×G). Set

Gφ := idG×G×M .

Then Gφ is an isomorphism p∗2(F , φB) → α∗G,G(F , φB) in C(G × G/B), and ((F , φB),Gφ) is an

object of CG(G/B).
Let f : (M1, αM1,B)→ (M2, αM2,B) be a morphism in Rep(B). Then

idG×f : F1 = G×M1 −→ F2 = G×M2

defines a morphism ϕ : ((F1, φ1B),Gφ
1)→ ((F2, φ2B),Gφ

2) in CG(G/B).
These assignments are functorial.

1.4.3. Lemma. The functor IndGB is faithful. Suppose moreover that the k-semigroup scheme G
has the following property:

There exists a k-point of G which belongs to all the G(k)-left cosets in G(k), and the underlying
k-scheme of G is locally of finite type.

Then the functor IndGB is fully faithful.

Proof. Faithfulness is obvious. Now let ϕ : IndGB(M1) = G ×M1 → IndGB(M2) = G ×M2. The
compatibilty of ϕ with Gφ

i, i = 1, 2, reads as

idG×ϕ = α∗G,Gϕ : G×G×M1 −→ G×G×M2.

For g ∈ G(k), denote by φg : M1
k
→ M2

k
the fiber of ϕ over g. Taking the fiber at (g′, g) in the

above equality implies that ϕg = ϕg′g for all g, g′ ∈ G(k), i.e. ϕg depends only on the left coset
G(k)g, hence is independent of g if all the left cosets share a common point. Assuming that such a
point exists and is defined over k, let f : M1 →M2 be the corresponding k-linear endomorphism.
Then ϕ− idG×f is a linear morphism between two vector bundles on G, which vanishes on each
geometric fiber. Then it follows from Nakayama’s Lemma that ϕ − idG×f = 0 on G, at least if
the latter is locally of finite type over k.
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1.4.4. Definition. When the functor IndGB is fully faithful, we call its essential image the category
of induced vector bundles on G/B, and denote it by CGInd(G/B):

IndGB : Rep(B)
∼ // CGInd(G/B) ⊂ CG(G/B).

1.4.5. If B ⊂ G is an inclusion of monoids, then an object of Rep(B) is a couple (M,αM,B) as in
1.4.1 which is required to satisfy the additional condition that the k-morphism

αM,B ◦ (idM ×eB) : M // M

is equal to the identity. Homomorphisms in Rep(B) remain the same as in the case of semigroups.
In particular, comparing with 1.3.5, the same assignments as in the case of semigroups define

an induction functor

IndGB : Rep(B) // CG(G/B).

Now set e := eB = eG ∈ B(k) ⊂ G(k), the identity element. We define a functor fiber at e

Fibe : CG(G/B) // Rep(B)

as follows. Let (F , φB ,Gφ) be an object of CG(G/B). Set M := F|e, a finite dimensional k-vector
space. There are canonical identifications (p∗1F)|e×B = M × B, (α∗G,BF)|e×B = (α∗G,GF)|B×e =
F|B and (p∗2F)|B×e = B ×M . Set

αM,B : M ×B
φB |e×B

// F|B B ×MGφ|B×e

∼
oo

p2 // M.

Then (M,αM,B) is an object of Rep(B).
Let ϕ : (F1, φ1B ,Gφ

1)→ (F2, φ2B ,Gφ
2) be a morphism in CG(G/B). Then

f = ϕe : F1|e = M1 −→ F2|e = M2

defines a morphism (M1, αM1,B)→ (M2, αM2,B) in Rep(B).
These assignments are functorial.

1.4.6. Proposition. For an inclusion of k-monoid schemes B ⊂ G with unit e, the functors
IndGB and Fibe are equivalences of categories, which are quasi-inverse one to the other.

Proof. Left to the reader.

1.4.7. Analogous to the property 1.3.6 for equivariant vector bundles, we have that if B ⊂ G
is an inclusion of groups, then given an object (M,αM,B) of Rep(B), the right B-action on M
defined by αM,B factors automatically through the k-group scheme opposite to the one of k-linear
automorphisms of M , the inverse of αM,B(•, b) being equal to αM,B(•, iB(b)) for all b ∈ B. The
category Rep(B) coincides therefore with the category attached to the underlying monoid of B.

In particular, we have the functors IndGB and Fibe attached to the underlying inclusion of
monoids B ⊂ G, for which Proposition 1.4.6 holds.

1.5 Grothendieck rings of equivariant vector bundles

1.5.1. For a k-semigroup scheme B, the category Rep(B) is abelian k-linear symmetric monoidal
with unit. Hence, for an inclusion of k-semigroup schemes B ⊂ G such that the functor IndGB is
fully faithful, the essential image CGInd(G/B) has the same structure. In particular, it is an abelian
category whose Grothendieck group KG

Ind(G/B) is a commutative ring, which is isomorphic to
the ring R(B) of right representations of the k-semigroup scheme B on finite dimensional k-vector
spaces:

IndGB : R(B)
∼ // KG

Ind(G/B).
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1.5.2. If B ⊂ G is an inclusion of monoids, then it follows from 1.4.6 that the category CG(G/B)
is abelian k-linear symmetric monoidal with unit. In particular, it is an abelian category whose
Grothendieck group KG(G/B) is a commutative ring, which is isomorphic to the ring R(B) of
right representations of the k-monoid scheme B on finite dimensional k-vector spaces:

IndGB : R(B)
∼ // KG(G/B).

1.5.3. If B ⊂ G is an inclusion of groups, then 1.5.2 applies to the underlying inclusion of monoids.
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