Travaux dirigés - Dérivation numérique

EXERCICE 1

Soit $\varphi : [a, b] \longrightarrow \mathbb{R}$ une fonction.

Q. 1 Montrer que si $\varphi \in \mathcal{C}^2([a,b];\mathbb{R})$ alors $\forall x \in [a,b[, \forall h > 0 \text{ tel que } (x+h) \in [a,b], \text{ on } a$

$$\frac{d\varphi}{dx}(x) = \frac{\varphi(x+h) - \varphi(x)}{h} + \mathcal{O}(h) \tag{1}$$

Q. 2 Montrer que si $\varphi \in C^2([a,b];\mathbb{R})$ alors $\forall x \in]a,b], \forall h > 0$ tel que $(x-h) \in [a,b],$ on a

$$\frac{d\varphi}{dx}(x) = \frac{\varphi(x) - \varphi(x - h)}{h} + \mathcal{O}(h) \tag{2}$$

Q. 3 Montrer que si $\varphi \in \mathcal{C}^3([a,b];\mathbb{R})$ alors $\forall x \in]a,b[, \forall h>0$ tel que $(x+h)\in [a,b]$ et $(x-h)\in [a,b]$, on a

$$\frac{d\varphi}{dx}(x) = \frac{\varphi(x+h) - \varphi(x-h)}{2h} + \mathcal{O}(h^2) \tag{3}$$

 $\mathbf{Q.~4}~\textit{Montrer que si }\varphi\in\mathcal{C}^4([a,b];\mathbb{R})~\textit{alors }\forall x\in]a,b[,~\forall h>0~\textit{tel que }(x+h)\in [a,b]~\textit{et }(x-h)\in [a,b],~\textit{on }a$

$$\frac{d^2\varphi}{dx^2}(x) = \frac{\varphi(x+h) - 2\varphi(x) + \varphi(x-h)}{h^2} + \mathcal{O}(h^2)$$
(4)

EXERCICE 2

Soit φ une fonction suffisament régulière et h>0

Q. 1 Montrer que

$$\frac{d\varphi}{dx}(x) = \frac{-3\varphi(x) + 4\varphi(x+h) - \varphi(x+2h)}{2h} + \mathcal{O}(h^2)$$
(1)

Q. 2 Montrer que

$$\frac{d\varphi}{dx}(x) = \frac{3\varphi(x) - 4\varphi(x - h) + \varphi(x - 2h)}{2h} + \mathcal{O}(h^2)$$
(2)

- **Q.** 3 Déterminer une formule permettant de calculer une approximation à l'ordre 2 de $\frac{d^2\varphi}{dx^2}(x)$ en utilisant uniquement des valeurs de la fonction φ aux points x+ih avec $i\in\mathbb{N}$.
- **Q.** 4 Déterminer une formule permettant de calculer une approximation à l'ordre 2 de $\frac{d^2\varphi}{dx^2}(x)$ en utilisant uniquement des valeurs de la fonction φ aux points x-ih avec $i\in\mathbb{N}$.

EXERCICE 3

Soit $f \in C^3([a,b];\mathbb{R})$. On note t^n , $n \in [0,N]$, une discrétisation **régulière** de [a,b] de pas h. On note $\mathbf{F} \in \mathbb{R}^{N+1}$ le vecteur défini par $F_{n+1} = f(t^n)$, $\forall n \in [0,N]$.

Q. 1 a. Déterminer en fonction de h et \mathbf{F} , un vecteur $\mathbf{V} \in \mathbb{R}^{N+1}$ vérifiant

$$V_{n+1} = f'(t^n) + \mathcal{O}(h), \quad \forall n \in [0, N].$$

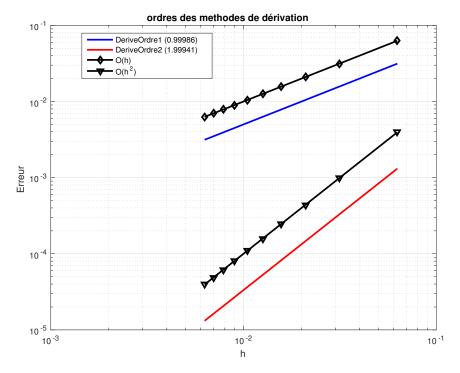
- $m{b}$. Ecrire une fonction algorithmique $m{DerOrder1}$ permettant, à partir du vecteur $m{F}$ et de h, de calculer le vecteur $m{V}$ précédent.
- **Q. 2** a. Connaissant uniquement le vecteur \mathbf{F} , déterminer un vecteur $\mathbf{W} \in \mathbb{R}^{N+1}$ vérifiant

$$\boldsymbol{W}_n = f'(t^n) + \mathcal{O}(h^2), \quad \forall n \in [0, N]$$

 $m{b}$. Ecrire une fonction algorithmique $m{DerOrder2}$ permettant, à partir du vecteur $m{F}$ et de h, de calculer le vecteur $m{W}$ précédent.

EXERCICE 4

Voici une figure permettant de mettre en en évidence de l'ordre des méthodes utilisées dans les fonctions DerOrder1 et DerOrder2 de l'exercice précédent:



- **Q. 1** a. Ecrire un programme Matlab/Octave permettant de calculer l'ensemble des données nécessaires à cette représentation graphique.
 - b. A l'aide de ces données, calculer les pentes des droites bleue et rouge.

Les commandes Matlab/Octave permettant de représenter des données en échelles logarithmique sont loglog, semilogx et semilogy. Elles s'utilisent globalement comme la fonction plot.

Q. 2 Ajouter au programme précédent le code permettant de représenter la figure.