Méthodes Numériques II

Chapitre 4: Equations aux Dérivées Partielles Exercices - épisode 2 version du 2025/03/07 à 05:30:35

EXERCICE 1: exercice 2, partiel 2, 2017/2018

Soient α, β, D trois réels, D > 0, et f une fonction définie sur [a; b] à valeurs réelles. On souhaite résoudre numériquement le problème suivant

$$-Du''(x) + u(x) = f(x), \ \forall x \in]a; b[, \tag{1.1}$$

$$u(a) = \alpha. (1.2)$$

$$3u(b) + u'(b) = \beta,$$
 (1.3)

- Q. 1 a. Quelles sont les données du problème (1.1) à (1.3)? (préciser le type de chaque donnée : réel, entier, fonction, vecteur, ...)
 - b. Quelles sont les inconnues du problème (1.1) à (1.3)? (préciser le type)
 - c. Quelles sont les conditions initiales?
 - d. Quelles sont les conditions aux limites?

Q. 2 a. Expliquer ce qu'est une discrétisation régulière de l'intervalle [a; b] avec N pas de discrétisation en espace.

b. Ecrire la fonction (algorithmique ou Matlab) DISREG permettant d'obtenir cette discrétisation.

On note x_i , $i \in [0, N]$ cette discrétisation. On souhaite résoudre (1.1) à l'aide du schéma numérique

$$-D\frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2} + u_i = f_i. \tag{1.4}$$

- **Q.** 3 a. Expliquer comment le schéma (1.4) a été obtenu à partir de (1.1) et préciser ce que représentent les termes u_i , f_i et Δx ?
 - b. Donner l'ensemble \mathcal{E} des valeurs que peut prendre i dans le schéma (1.4).
 - c. Construire une discrétisation des conditions aux limites d'ordre 2 au moins.
 - d. Le schéma global est de quel ordre? Justifiez.

On note V le vecteur de dimension N+1, de composantes $V_i=u_{i-1}, \forall i \in [1, N+1]$.

 ${f Q.}$ 4 Montrer que le vecteur ${f V}$ est solution du système linéaire

$$\mathbf{A}V = F \tag{1.5}$$

en explicitant la matrice $\mathbb A$ et le vecteur $\mathbf F$ (préciser les dimensions).

Q. 5 Ecrire la fonction (algorithmique ou Matlab) ASSEMBLEMAT retournant une matrice $\mathbb{M} \in \mathcal{M}_d(\mathbb{R})$ définie par

$$\mathbb{M} = \begin{pmatrix}
\alpha_1 & \alpha_2 & \alpha_3 & 0 & \dots & \dots & 0 \\
\mu_1 & \mu_2 & \mu_3 & 0 & \dots & \dots & 0 \\
0 & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & \dots & \dots & 0 & \mu_1 & \mu_2 & \mu_3 \\
0 & \dots & \dots & 0 & \beta_1 & \beta_2 & \beta_3
\end{pmatrix} \tag{1.6}$$

où pour tout $j \in [1,3]$, α_j , β_j , μ_j sont des réels donnés.

Q. 6 On suppose les données du problème (1.1) à (1.3) fournies et la fonction RSL permettant la résolution du système linéaire $A\mathbf{x} = \mathbf{b}$ déjà implémentée : $\mathbf{x} \leftarrow RSL(A, \mathbf{b})$. Ecrire un algorithme complet de résolution du problème (1.1) à (1.3) basé sur (1.5). (Utiliser au maximum les fonctions)

EXERCICE 2

Soit $\begin{cases} u: \mathbb{R}^+ \times \mathbb{R} \longrightarrow \mathbb{R} \\ (t,x) \longmapsto u(t,x) \end{cases}$ une fonction suffisament régulière. Voici deux exemples de formules de Taylor à l'ordre 3

$$u(t, x + h) = u(t, x) + h \frac{\partial u}{\partial x}(t, x) + \frac{h^2}{2!} \frac{\partial^2 u}{\partial x^2}(t, x) + \mathcal{O}(h^3)$$

$$u(t + h, x) = u(t, x) + h \frac{\partial u}{\partial t}(t, x) + \frac{h^2}{2!} \frac{\partial^2 u}{\partial t^2}(t, x) + \mathcal{O}(h^3)$$

Q. 1 En écrivant des formules de Taylor à l'ordre 2, montrer que

$$\frac{\partial u}{\partial x}(t,x) = \frac{u(t,x+h) - u(t,x)}{h} + \mathcal{O}(h)$$

$$\frac{\partial u}{\partial x}(t,x) = \frac{u(t,x) - u(t,x-h)}{h} + \mathcal{O}(h)$$

$$\frac{\partial u}{\partial t}(t,x) = \frac{u(t+h,x) - u(t,x)}{h} + \mathcal{O}(h)$$

$$\frac{\partial u}{\partial t}(t,x) = \frac{u(t,x) - u(t-h,x)}{h} + \mathcal{O}(h)$$

Q. 2 En utilisant deux formules de Taylor à l'ordre 3, montrer que

$$\frac{\partial u}{\partial x}(t,x) = \frac{u(t,x+h) - u(t,x-h)}{2h} + \mathcal{O}(h^2)$$

Q. 3 En utilisant des formules de Taylor à l'ordre 3, montrer que

$$\frac{\partial u}{\partial x}(t,x) = \frac{-3u(t,x) + 4u(t,x+h) - u(t,x+2h)}{2h} + \mathcal{O}(h^2)$$

$$\frac{\partial u}{\partial x}(t,x) = \frac{3u(t,x) - 4u(t,x-h) + u(t,x-2h)}{2h} + \mathcal{O}(h^2)$$

Q. 4 En utilisant deux formules de Taylor à l'ordre 4, montrer que

$$\frac{\partial^2 u}{\partial x^2}(t,x) = \frac{u(t,x+h) - 2u(t,x) + u(t,x-h)}{h^2} + \mathcal{O}(h^2)$$
 (2.7)

EXERCICE 3: exercice 2, partiel 2, 2016/2017

On souhaite résoudre numériquement l'E.D.P. suivante

$$\frac{\partial u}{\partial t}(t,x) - \alpha \frac{\partial^2 u}{\partial x^2}(t,x) + \beta \frac{\partial u}{\partial x}(t,x) = f(t,x), \ \forall (t,x) \in]0;T] \times]a;b[, \tag{3.8}$$

$$u(0,x) = g_0(x), \ \forall x \in [a;b],$$
 (3.9)

$$u(t, a) = g_a(t), \ \forall t \in [0; T],$$
 (3.10)

$$u(t,b) = g_b(t), \ \forall t \in]0;T].$$
 (3.11)

avec α , β deux réels, $\alpha > 0$, T > 0, $(a, b) \in \mathbb{R}^2$, a < b.

- **Q.** 1 a. Que signifie l'abréviation E.D.P.?
 - b. Quelles sont les données du problème (3.8) à (3.11)? (préciser le type de chaque donnée : réel, entier, fonction, vecteur, ...)
 - c. Quelles sont les inconnues du problème (3.8) à (3.11)? (préciser le type)
 - d. Quelles sont les conditions initiales?
 - e. Quelles sont les conditions aux limites?
 - f. Ecrire la(les) condition(s) de compatibilité.

On note t^n , $n \in [0, N_t]$ et x_i , $i \in [0, N_x]$ les discrétisations régulières des intervalles [0; T] et [a; b] avec N_t pas de discrétisation en temps et N_x pas de discrétisation en espace.

Q. 2 Donner explicitement les formules permettant de calculer l'ensemble des t^n et des x_i .

On souhaite résoudre l'E.D.P. à l'aide du schéma numérique

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} - \alpha \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2} + \beta \frac{u_{i+1}^n - u_i^n}{\Delta x} = f_i^n.$$
 (3.12)

- **Q.** 3 a. Expliquer comment le schéma (3.12) a été obtenu à partir de (3.8) et préciser ce que représentent les valeurs u_i^n , f_i^n , Δt et Δx .
 - b. Donner une discrétisation (détaillée) du problème (3.8) à (3.11) en utilisant le schéma (3.12).
 - c. Le schéma est-il explicite ou implicite?
 - d. Le schéma est de quel ordre en temps? en espace?
 - e. Expliquer comment améliorer l'ordre en espace du schéma (3.12).

On note U^n les vecteurs de dimension $N_x + 1$, de composantes $U_i^n = u_{i-1}^n$, $\forall i \in [1, N_x + 1]$.

- **Q.** 4 a. Comment initialiser le vecteur U^0 ?
 - b. En supposant le vecteur U^n déjà calculé, décrire le calcul du vecteur U^{n+1} .
- Q. 5 On suppose les données du problème (3.8) à (3.11) fournies. Ecrire un algorithme complet de résolution du problème (3.8) à (3.11) en utilisant le schéma (3.12).