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@ Exemples d'E.D.O.
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Réaction BZ (Belousov-Zhabotinsky)

russe

(a) Boris Pavlovich Belousov

1893-1970, Chimiste et biophysicien

a

Chimiste russe

Exemples d'E.D.O.

(b) Anatol Zhabotinsky 1938-2008,  (c) llya Prigogine 1917-2003,

Physicien et chimiste belge (origine
russe). Prix Nobel de chimie en 1977

«O» «F> «E» «E>» = DA
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Modele du Brusselator (1970)

Une solution de bromate de potassium et d'acide sulfurique mélangée 3 une solution d’acide manolique
et de bromure de sodium peut entrainer, sous certaines conditions, une oscillation de la couleur de la
solution mélange du rouge au bleue avec une période de 7 secondes.

Le modéle associé est nommé modéle du brusselator. Sous certaines hypothéses, le modéle simplifié

peut s'écrire :
X(1) = 1+aX2(t)Y(0)— (5+ DX() 1
{ Y'(t) = —aX?(t)Y(t) + BX(t) (1)

«O» «F> «E» «E>» = DA
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Modéle du Brusselator

Avec a =11, 8 =3 et les C.I. X(0) =3 et Y(0)=2:

.5 Brusselator simplifié [a = 1.100, 8 = 3.000] - Concentrations
X T T T T T
:l H it H I H

25 i

0.5

. . . . .
0 10 20 30 40 50 60 _ _
t «EFr o« > «E>» = A

B Y — (G ¢ e =72 20z6y 02/ IO y/koe



Modéle du Bruxelator

Avec a =11, 8 =3 et les C.I. X(0) =3 et Y(0)=2:

s Brusselator simplifié [« = 1.100, 8 = 3.000] - Courbe paramétrée
. T T T T T

— (X(1), Y(1)

35r-

251

Y(t)

05 bt

° . \ , . , X(0)
0 05 1 15 2 25 3 35 4

X(t) «Fr o« > « = A
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Modéle du Brusselator

Avecaa =1, =3¢etles Cl. X(0) =3 et Y(0)=2:

Brusselator simplifié [ = 1.100, 8 = 3.000] - Plan de phase

b))}

\ \ \ \
0 1 2 3 4 5 6 7

X(t) EFr «Er» «E>» = VAl
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Modéle de Lorentz

Le couplage Océan-Atmosphére est décrit
par un systéme d'E.D.P. couplées de
Navier-Stokes de la mécanique des flu-
ides.
Le modéle de Lorentz est une ver-
sion trés simplifiée de ces équations pour
I'étude du phénomeéne de convection de
Rayleigh-Bénard :

(a) Edward Norton Lorenz ,

1917-2008, Mathématicien et x'(t) = —ox(t) +oy(t)

météorologiste américain y'(t) = —x(t)y(t) + px(t) — y(t)

Z'(t) = x(t)y(t) — Bz(t)

e x(t) : proportionnel a I'intensité du mouvement de convection,

e y(t) : proportionnel a la différence de température entre les courants ascendants et descendants,
e z(t) :proportionnel a une variation de température

«O» «F> «E» «E>» = DA
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Modéle de Lorentz : papillon

En représentant la courbe paramétrée (x(t), y(t), z(t)) dans I'espace, on obtient |'attracteur étrange de
Lorenz en forme d'aile de papillon
50
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Modéle de Lorentz

20

Avec o = 10, p = 28, 8 = 8/3 et les données initiales x(0)
des données initiales perturbées x(0)

x(t)

—8,y(0) = 8,z(0) = 27 (courbe bleue) et
8+ le — 4,y(0) = 8,z(0) = 27 (courbe rouge pointillée)

y(®

z(t)

t
Météorologie

modéle de Lorentz (1963)

s 4T«
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Pendule pesant sans viscosité

est I'axe de rotation du pendule.

0'(t) + &

Zsin(6(t)) = 0.
€ sin0(1)
ou O(t) est I'angle que fait, a I'instant t, le pendule par rapport a I'axe vertical, L la longueur de la tige.

Le pendule pesant : objet pesant accroché a une tige de masse négligeable, I'autre extrémité de la tige

L

)

0

Mécanique : le pendule pesant

«O» «F> «E» «E>» DA
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Pendule pesant sans viscosité

Avec & =3 etles C.l. 6o = 3F, 6 =0 :

Pensule simple [v = 0, = 1, M = 1] - Courbe paramétude
;

Pensule simple [v =0, L =1, M = 1] - position angulaire r
: : : T T T (0(1),6'(1))
2f 1 (6(0).8(0)) = (2.5,0)
1 R 4l 1
]
I, |
S
At 4 5L 1
2t 1
1 1 1 1 L L 1 z
0 2 4 6 8 10 12 14 16 18 20 Té
t =0 +
Pensule simple [ = 0,L = 1, M = 1] - vitesse angulaire =
T T T T T T T
2F 1
=
g
£
B 4k 1
>
5 7 . . .
-2.5 0 05 1 15 2 25
0(t) [rad]
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© Définitions et résultats
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7

3

Soity : I ¢ R —> R™ de classe CP (continiment dérivable d’ordre p).
On note y¥) |a dérivée d'ordre k de y.
@ Définition 2.1

On appelle équation différentielle ordinaire (E.D.O.) d’ordre p une équation de la forme :

F(t,y @),y (1), y?(t),....yP (1) =0
' Définition 2.2

On appelle forme canonique d’une E.D.O. une expression du type :

y® (1) = G(t.y(2),yM (2),yP(2),....yP V(1))
Proposition 2.1

(3)
Toute équation différentielle d'ordre p sous forme canonique peut s'écrire comme un systéme de
p équations différentielles d'ordre 1.

\.

J

Définitions et résultats

= = A

A4O0> «F» «E» « >
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© Probléme de Cauchy

«O» «F> «E» «E>» DA
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' Définition 3.1 : probléme de Cauchy

Soit f I'application continue donnée par

f

(t,y)

[t t° + T] x R™

y

YAgAgkahoAs

[t9,¢0 + T]

continue et dérivable, telle que

Probléme de Cauchy

- RM
avec T €]0,+o0[. Le probléme de Cauchy consiste a déterminer une fonction y définie par
— Rm

= f(t,y(t), Vte[t%t°+ T]
= ylllerm

— f(ty)

)
«4O>» «Fr «E» «E>» = DA
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o |
Exercice

Vte [t 0 + T]
Quelles sont les données du probléme de Cauchy?

«4O0> «F>» «F» «E>» = Q>
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o |
Exercice

Vte [t 0 + T]
Quelles sont les données du probléme de Cauchy?

e t% R, TeRt*, me IN*
e la fonction f

o le vecteur yl® e R™

«4O>» «Fr «E» «E>» E DAl
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'—i Exercice
Pour chacune des E.D.O. suivantes écrire le probléme de Cauchy associé
(3) X"(t) + ax'(t) + Bcos(x(t)) =sin(t), t €]0,2n]
1 x(0) =0, X (0) = 1.
( L
(b)

{ LCV"(t) + R + R1C) V(L) + (
v(0) = 0, v/(0) = 0.

CRES

{

1

Bt
= (1 -2
(0)=1, x'(0) = -1

> v(t) = e, t€]0,100]

(£))x'(t) — x(¢), t€]0,10]

— cos(t)y@(t) + 2sin(t)y ™M (t) — y(t) = 0, t€]0, T]
o, ,V(l)(o) = Vo, y(z)(o) = W.
Vte]0, T], x{(t) — 2x5(t) + 3x{(t) + 4x1(t)xa(t) = sin(t),
x5 (t) + 3x1(t) — 2x5(t) — 3x1(t)xa(t) = cos(t),
~ Probléme de Cauchy

x1(0) =0, x;(0) = —1, x(0) = 1, x5(0) = —2.

«4O>» «Fr «E» «E>» E DAl
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r—| Exercice

Y'(t)

® {3
avec C.I. X(0) = Xp et Y(0) = Yo
r—| Exercice |

Déterminer le probléme de Cauchy associé au modéle du Brusselator simplifié :

1+aX?(t)Y(t) — (B+1)X(t)
—aX2(t)Y(t) + BX(t)

Déterminer le probléme de Cauchy associé au modéle du pendule pesant simplifié
avec C.I. 0(0) = 6 et 0'(0) = 6.

(P) 92(t) + Esin(6(2) = 0

«4O>» «Fr «E» «E>» E DAl
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e Probléme de Cauchy linéaire

y'(t) = 3y(t) -3t

y(0) =1

On a f(t,v) = 3v — 3t et une solution y(t)
e Probléme de Cauchy non-linéaire

si t>0

=(1-1/3)e3 +t+1/3
Ona f(t,v) =3

Vy(t), si t>0
=0
/v et trois solutions y(t)

0, y(t) =

4/8t3/27 et y(t)

Probléme de Cauchy

\/8t3/27

«4O0> «F>» «F» «E>» = Q>
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o {20

y(t°)
avec f : U —> R™, U un ouvert de R x R™ et (¢°,y[%) e U.
Théoréme 3.1 : Cauchy-Lipschitz

f(t,y(t))

Yo € R™.

V(t,y) € U, 3IW voisinage t, 3V voisinage y, L > 0 tels que

Proposition 3.1

dy

On suppose que la fonction f est continue sur U et quelle est localement lipschitzienne en y :

VseW, V(U, V) € Vza ”f(S,U) - f(S7V)H <L HU - V”

Sous ces hypothéses le probléme de Cauchy (PC) admet une unique solution.
o

(6)
Probléme de Cauchy

J
«4O>» «Fr «E» «E>» = DA
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@ Différences finies m = 1
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On veut résoudre le probléme de Cauchy scalaire

(PC) {i((tt) -

f(t,y(t), Vte[t?%t?+ T]
0) = Yo € R.
avec f: [t t% + T] x R — R. On a vu (chapitre Dérivation numérique)
n t"+ h) — y(t"
V(") = y( /)7 y(t")
= f(t"

y(t") =
La méthode d'Euler progressive est alors donnée par le schéma

+ O(h)
tn+1 _ tn
A A | o
{ y[n+1] _ y[n] +hf(t"
yo
avec yl" ~ y(t").

= y(t9

(")), Vne[0,N—1]
Ce schéma est explicite, car il permet le calcul direct de y["t1] en fonction de yl
Différences finies m = 1

n]
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On veut résoudre le probléme de Cauchy scalaire:

(1) = f(ty(r), Vee[t%®+ T
poy {719 < ) e e

avec f : [t%t% + T] x R — R. On a vu (chapitre Dérivation numérique):

1) — y(¢71 — )

y/(tn+1) _ y( . +0(h)
= (et ety = LY o)
La méthode d'Euler régressive est donnée par le schéma
ylrrth = ylel o pf(entt Ity yne [0, N —1]
{ yol =y (19 (8)

avec yl" ~ y(t").
Ce schéma est implicite, car y!"1] est définit implicitement en fonction de y[". Il faut donc résoudre a
chaque pas de temps une équation non-linéaire en utilisant des méthodes de point fixe par exemple.

«4O0> «F>» «F» «E>» = Q>
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f—‘ Exercice

On veut résoudre numériquement le probléme (P) suivant : trouver y telle que
P) { y'(t) cos(t) + 1, Vt € [0,4r]
y(0) 0.

dont la solution exacte est y(t) = sin(t) + t.
On rappelle le schéma d'Euler progressif pour la résolution d'un probléme de Cauchy
[n+1]  _ [n] n . [n]
y =y 4 hf(t", yln),
(S) { ylol donné.

avec (t")N discrétisation réguliére de I'intervalle [0, 4] avec N pas de discrétisation.

Q.1
? Expliquer en détail comment utiliser le schéma d’Euler progressif pour résoudre le probléme (P)

en précisant entre autres les
données, les inconnues, les dimensions des variables, lien entre yl"+1l et la fonction y,

Soit a, b, a < b deux réels. Ecrire une fonction DisReg retournant une discrétisation réguliére de I'intervalle [a; b] avec N pas de
dlscretlsatlon

Ecrire une fonction redEUPsca retournant I'ensemble des couples (", yl"+™)N_ . calculés par le schéma d’Euler progressif. J
Q.4
T) Ecrire un algorithme complet de résolution de (P) par le schéma d'Euler progressif. J
«O» «F> «E» «E>» = DA
Différences finies m = 1
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Résultats graphiques obtenus a partir des données de |'exercice

Y1) = cos(t) + 1 avec y(0) = 0 Erreur redEUP (N=20)
: :

4 T 06 ]
05
12 g 04 |
03f ]
0 1 02t |
01 F ]
—%— exacte
8 —e—redEUP (N=20) | | 0 - s L - L L
—<—redEUP (N=200) 0 2 4 6 . 8 10 12 14
6 | Erreur redEUP (N=200)
0.06 | ! ! ]
005 | ]
4 T oo0ap ]
0.03 - 4
2r 1 oo2f —
001 ]
o . . . . . . 0 . . . . .
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

e Comment obtenir ces figures avec Matlab/Octave?

e Que peut-on conjecturer sur la convergence du schéma?
«O» «F> «E»>» « » = DA
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function x=DisReg(a,b,N)
% Discretisation reguliere de l’intervalle [a,b]

/4 avec N pas de discretisation

X Donnees:

X a,b : deuz reels, a<b

z N : nb de pas de discretisation

/4 Resultat:

X z : tableau 1-par-(N+1) de reels
h=(b-a)/N;

x=zeros (1,N+1);
for i=1:N+1,x(i)=a+(i-1)*h;end
end

Listing: Fonction DisReg: fichier DisReg.m

function [t

Donnees:

t0,7T,y0

Resultat:

Y(n)

avec

SRR R NN

,Yl=redEUPsca(f,t0,T,y0,N)
Resolution d’un probleme de Cauchy scalaire
d’inconnue la fonction

y: [t0,t0.7] -> R
par le schema d’Euler progressif

f: [t0,t0.T] & R -> R

trois reels, 10

NV un entier non nul, nb de pas de discretisation

t tableau de Iz (N+1) reels, discretisation
Y tableau fz(N+1) reels, resultat tel que

approzimation de y(t(n))
n dans {1,...,N+1}.

assert(length(y0)==1,’Utiliser la fonction redEUPvec ...

pour pb

Cauchy vectoriel’)

t=DisReg (t0,t0+T,N);

h=T/N;
Y=zeros (1
Y(1)=y0;
for n=1:N

,N+1) 5

Y(n+1)=Y(n)+h*£(t(n),¥(n));

end
end

Listing: Fonction redEUPsca: fichier redEUPsca.m

DA
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fCauchy=0(t,y) cos(t)+1; / a modifier pour un autre probleme de Cauchy scalaire
solex=@(t) sin(t)+t; /4 didem

t0=0;T=4*pi;N1=20;N2=10%N1; / idem

yO0=solex (t0);

[t1,yEP1]=redEUPsca (fCauchy,t0,T,y0,N1);
[t2,yEP2]=redEUPsca (fCauchy,t0,T,y0,N2);

tex=DisReg (t0,t0+T,1000) ;
yex=solex(tex); / doit etre wectorisee!

figure (1)

plot (tex,yex,’kx-’,’linewidth’,1.5,’Markerindices’ ,50:150:1000)
hold on

plot (t1,yEP1,’bo-’,’linewidth’,1.5, ’Markerindices’,1:3:N1)
plot(t2,yEP2,’r<-’,’linewidth’,1.5, ’Markerindices’,15:30:N2)

legend(’exacte’, sprintf (’redEUP (N=%d)’,N1), sprintf(’redEUP (N=%d)’,N2),’interpreter’,’latex’,’...
fontsize’,12,’Location’,’Best’)

xlabel(’$t$’,’ interpreter’,’latex’,’fontsize’,12)

title(sprintf ("$y’ (t)=\\cos(t)+1$ avec $y(0)=/g$",y0), interpreter’, ’latex’, ’fontsize’,12)

figure (2)

subplot (2,1,1)

plot (t1,abs (yEP1-solex(t1)),’b’)

xlabel (’$t$’,’interpreter’,’latex’,’fontsize’,12)
title(sprintf (’Erreur redEUP (N=%d)’,N1))

subplot (2,1,2)

plot (t2,abs (yEP2-solex(t2)),’b’)

xlabel (’$t$’,’interpreter’,’latex’,’fontsize’,12)
title ([’Erreur redEUP (N=’,num2str(N2),’)’])

Listing: programme Matlab associé a I'exercice avec représentations graphiques « 5 » « » <= T 9Hao

Differences finies m = 1




© Différences finies m > 1
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On veut résoudre le probléme de Cauchy vectoriel :

(PC) { y'(t)
avec f: [t% 9+ T] x R™" — R™, m > 2

y(t9) =

f(t,y(t)), Vte[t°t°+ T]
Yo € R™.
La méthode d'Euler progressive est donnée par le schéma

y [n+1] lg
J00

RrM

y(t%)

yl + hf(t7 yllh W¥ne [0,N —1]

Différences finies m > 1

Ce schéma est explicite, car il permet le calcul direct de yl"+1] en fonction de yl".

«4O0> «F>» «F» «E>» = Q>
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On veut résoudre le probléme de Cauchy vectoriel :

(PC) { y'(t)
avec f: [t% 9+ T] x R™" — R™, m > 2

y(t9) =

f(t,y(t)), Vte[t°t°+ T]
Yo € R™.
y[n+1] R
ylol

La méthode d'Euler régressive est donnée par le schéma
R

y[n] + hf(t”Jrl,y["Jrl])
y(°)

Vne[0,N —1]

Différences finies m > 1

b
Ce schéma est implicite, car y["*! est définit implicitement en fonction de yl"]

(10)

«4O0> «F>» «F» «E>» = Q>
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Soit le probléme de Cauchy vectoriel
y(t) = f(ty(t), Ve[t ®+T],
{ y(t°) = yoeRm™,
avec f : [t%,t° + T] x R™ — R™. On souhaite écrire une fonction algorithmique redEUPVec permettant de résoudre ce probléme de Cauchy (vectoriel) par le schéma vectoriel explicite d'Euler
progressif
{ ylrttl =yl g pf (e, yl7)), yne [0, N - 1]

ylo! = Yo
i
avec (t")V_, la discrétisation réguliere de [t°, 0 + T] avec N pas de discrétisation et yl") = | : | et yl")) ~ y(t"). Cette fonction devra retourner I'ensemble des ¢ et des y!”l pour n[0, NJ.
[n]
Ym

1 Rappeler précisement les données du probléme de Cauchy vectoriel.
2 Quelles sont les données de la fonction algorithmique redEUPVec en précisant le type et la dimension pour chacune?
3 Quelles sont les sorties/résultats de la fonction algorithmique redEUPVec en précisant le type et la dimension pour chacun?

On rappelle I'écriture simplifiée d'accés aux colonnes d'une matrice décrit en section ?7

Algorithmique

fonction version simplifiée Description mathématique

U cealCol(A)) | U< ALl € R™ est determiné par u; = A, Vi € [1,n]

A — setMatCol(A,u,j) | A(,j) —u la colonne j de A est remplacée par u € R™
etonaAjj=uwj Vie[l,n].

Table: Accés algorithmique aux colonnes d'une matrice A € M »(R) décrit en section ??

Q.2 -
* Ecrire la fonction algorithmique redEUPVec permettant de résoudre ce probléme de Cauchy (vectoriel) par le schéma explicite d’Euler progressif. On utilisera I'écriture algorithmique simplifiée
d'accés aux éléments d’une matrice (voir Table 1).

@3
7 Ecrire la fonction algorithmique redEUPVecfun permettant de résoudre ce probléme de Cauchy (vectoriel) par le schéma explicite d'Euler progressif. On utilisera I'écriture algorithmique avec
fonctions pour I'accés aux éléments d’une matrice (voir Table 1).

«O» < Fr o« DAy
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'—‘ Exercice

Soit I'équation différentielle ordinaire linéaire du troisiéme ordre avec conditions initiales données par

A+t+2)yO () + (3+6t)yD () +6yV(r) =6t,  vte [0, T],
y(©O) =a. YU =5 y2(0) =1

Ici ¥ note la derivée k-ieme de y.
Pour cette EDO, il existe une unique solution donnée par
9= 4 2A2 +4Bt+4C
- 4(2+t+1)
avec (A, B, C) € R? vérifiant
C=a, B-C=p et A-2B=1.

On a aussi
W) ErAt+B (4242 + 4Bt +4C)(2t+1)
4 Ererl @il
Yoy 324+ A 2(0+ A+ B)2t+1) N (£ +2A2 + 4Bt +4C) 2t +1)  t4 4242 1 4Bt +4C
[CETE (2 +t+1? 2(2 +t+1)° 2(2+t+1)7
Q.1}
Déterminer le probléme de Cauchy vectoriel associé & cette EDO
Dans la suite, on prendra T =10, a =6, f = —5 et y = —2.
(@2}
= Ecrire un de résoudre numéri le probléme de Cauchy associé 3 cette EDO 3 Iaide de la fonction algorithmique [t, Y] « redEUPvec(f, t0, T, YO, N) (voir Exercice précédent)

On suppose que notre language algorithmique dispose d'une fonction graphique plot(X, Y) reliant par des segments les points successifs
(X(1). Y(1)). (X(2), Y(2))...., (X(end). Y (end))

les tableaux X et Y ayant méme longeurs et correspondent respectivement aux tableaux des abscisses et des ordonnées.
On pourra utiliser la version simplifiée du langage algorithmique.

Q3

Donner les commandes permettant, aprés avoir utilisé le ithmique précédent, de é: i les imations obtenues par le schéma, de

() g (YO et (YO,

[@. a}
@4 Ecrire un it it de it les solutions exactes aux points de discrétisation, c'est a dire
N 1)y \V 2) (4 \N
| () (YO, et (YR (M),
Q.5) N - B b 5 B . 5
Ecrire un de les erreurs commises en valeurs absolues par le schéma pour les approximations de

(g (YD), e (YO,
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