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Réaction BZ (Belousov-Zhabotinsky)

(a) Boris Pavlovich Belousov
1893-1970, Chimiste et biophysicien
russe

(b) Anatol Zhabotinsky 1938-2008,
Chimiste russe

(c) Ilya Prigogine 1917-2003,
Physicien et chimiste belge (origine
russe). Prix Nobel de chimie en 1977
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Modèle du Brusselator (1970)

Une solution de bromate de potassium et d’acide sulfurique mélangée à une solution d’acide manolique
et de bromure de sodium peut entrainer, sous certaines conditions, une oscillation de la couleur de la
solution mélange du rouge au bleue avec une période de 7 secondes.
Le modéle associé est nommé modèle du brusselator. Sous certaines hypothèses, le modèle simplifié
peut s’écrire :

"

X 1ptq “ 1 ` αX 2ptqY ptq ´ pβ ` 1qX ptq
Y 1ptq “ ´αX 2ptqY ptq ` βX ptq

(1)
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Modèle du Brusselator

Avec α “ 1.1, β “ 3 et les C.I. X p0q “ 3 et Y p0q “ 2 :
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Modèle du Bruxelator

Avec α “ 1.1, β “ 3 et les C.I. X p0q “ 3 et Y p0q “ 2 :
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Modèle du Brusselator

Avec α “ 1, β “ 3 et les C.I. X p0q “ 3 et Y p0q “ 2 :
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Modèle de Lorentz

(a) Edward Norton Lorenz
1917-2008, Mathématicien et
météorologiste américain

Le couplage Océan-Atmosphère est décrit
par un système d’E.D.P. couplées de
Navier-Stokes de la mécanique des flu-
ides.
Le modèle de Lorentz est une ver-
sion très simplifiée de ces équations pour
l’étude du phénomène de convection de
Rayleigh-Bénard :
$

&

%

x 1ptq “ ´σxptq ` σyptq
y 1ptq “ ´xptqyptq ` ρxptq ´ yptq
z 1ptq “ xptqyptq ´ βzptq

‚ xptq : proportionnel à l’intensité du mouvement de convection,
‚ yptq : proportionnel à la différence de température entre les courants ascendants et descendants,
‚ zptq :proportionnel à une variation de température
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Modèle de Lorentz : papillon

En représentant la courbe paramétrée pxptq, yptq, zptqq dans l’espace, on obtient l’attracteur étrange de
Lorenz en forme d’aile de papillon
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Modèle de Lorentz

Avec σ “ 10, ρ “ 28, β “ 8{3 et les données initiales xp0q “ ´8, yp0q “ 8, zp0q “ 27 (courbe bleue) et
des données initiales perturbées xp0q “ ´8 ` 1e ´ 4, yp0q “ 8, zp0q “ 27 (courbe rouge pointillée)
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Pendule pesant sans viscosité

Le pendule pesant : objet pesant accroché à une tige de masse négligeable, l’autre extrémité de la tige
est l’axe de rotation du pendule.

θ2ptq `
g

L
sinpθptqq “ 0. (2)

où θptq est l’angle que fait, à l’instant t, le pendule par rapport à l’axe vertical, L la longueur de la tige.

θ

L

M

Exemples d’E.D.O. Mécanique : le pendule pesant 2026/02/10 12 / 36



Pendule pesant sans viscosité

Avec g
L “ 3 et les C.I. θ0 “ 5π

6 , θ1
0 “ 0 :
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Pendule pesant sans viscosité

Avec g
L “ 3 et les C.I. θ0 “ 5π

6 , θ1
0 “ 0 :
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Soit yyy : I Ă R ÝÑ Rm de classe Cp (continûment dérivable d’ordre p).
On note yyy pkq la dérivée d’ordre k de yyy .

definition]def:EDO:order
Définition 2.1

On appelle équation différentielle ordinaire (E.D.O.) d’ordre p une équation de la forme :

Fpt,yyyptq,yyy p1qptq,yyy p2qptq, . . . ,yyy ppqptqq “ 0.

definition]def:EDO:FormeCanonique
Définition 2.2

On appelle forme canonique d’une E.D.O. une expression du type :

yyy ppqptq “ GGGpt,yyyptq,yyy p1qptq,yyy p2qptq, . . . ,yyy pp´1qptqq. (3)

proposition]prop:EDO:SysEDO
Proposition 2.1

Toute équation différentielle d’ordre p sous forme canonique peut s’écrire comme un système de
p équations différentielles d’ordre 1.
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Définition 3.1 : problème de Cauchy

Soit fff l’application continue donnée par

fff : rt0, t0 ` T s ˆRm ÝÑ Rm

pt,yyyq ÞÝÑ fff pt,yyyq

avec T Ps0,`8r. Le problème de Cauchy consiste à déterminer une fonction yyy définie par

yyy : rt0, t0 ` T s ÝÑ Rm

t ÞÝÑ yyyptq “

¨

˚

˝

y1ptq
...

ymptq

˛

‹

‚

continue et dérivable, telle que

yyy 1ptq “ fff pt,yyyptqq, @t P rt0, t0 ` T s (4)
yyypt0q “ yyy r0s P Rm. (5)
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pCq

"

yyy 1ptq “ fff pt,yyyptqq, @t P rt0, t0 ` T s

yyypt0q “ yyy r0s P Rm.

Exercice
Quelles sont les données du problème de Cauchy?

‚ t0 P R, T P R`˚, m P N˚

‚ la fonction fff

‚ le vecteur yyy r0s P Rm
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TD

Exercice
Pour chacune des E.D.O. suivantes écrire le problème de Cauchy associé

paq

"

x2ptq ` αx 1ptq ` β cospxptqq “ sinptq, t Ps0, 2πs

xp0q “ 0, x 1p0q “ 1.

pbq

$

&

%

LCv2ptq `

ˆ

L

R2
` R1C

˙

v 1ptq `

ˆ

R1

R2
` 1

˙

vptq “ e, t Ps0, 100s

vp0q “ 0, v 1p0q “ 0.

pcq

"

x2ptq “ µp1 ´ x2ptqqx 1ptq ´ xptq, t Ps0, 10s

xp0q “ 1, x 1p0q “ ´1.

pdq

"

y p3qptq ´ cosptqy p2qptq ` 2 sinptqy p1qptq ´ yptq “ 0, t Ps0,T s

yp0q “ u0, y p1qp0q “ v0, y p2qp0q “ w0.

peq

$

&

%

@t Ps0,T s, x2
1 ptq ´ 2x 1

2ptq ` 3x 1
1ptq ` 4x1ptqx2ptq “ sinptq,

x2
2 ptq ` 3x 1

1ptq ´ 2x 1
2ptq ´ 3x1ptqx2ptq “ cosptq,

x1p0q “ 0, x 1
1p0q “ ´1, x2p0q “ 1, x 1

2p0q “ ´2.
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Exercice
Déterminer le problème de Cauchy associé au modèle du Brusselator simplifié :

pBq

"

X 1ptq “ 1 ` αX 2ptqY ptq ´ pβ ` 1qX ptq
Y 1ptq “ ´αX 2ptqY ptq ` βX ptq

avec C.I. X p0q “ X0 et Y p0q “ Y0.

Exercice
Déterminer le problème de Cauchy associé au modèle du pendule pesant simplifié :

pPq θp2qptq `
g

L
sinpθptqq “ 0.

avec C.I. θp0q “ θ0 et θ1p0q “ θ1
0.
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‚ Problème de Cauchy linéaire :
"

y 1ptq “ 3yptq ´ 3t, si t ą 0
yp0q “ 1

On a f pt, vq “ 3v ´ 3t et une solution yptq “ p1 ´ 1{3qe3t ` t ` 1{3.
‚ Problème de Cauchy non-linéaire :

"

y 1ptq “ 3
a

yptq, si t ą 0
yp0q “ 0

On a f pt, vq “ 3
?
v et trois solutions yptq “ 0, yptq “

a

8t3{27 et yptq “ ´
a

8t3{27.
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pPCq

"

yyy 1ptq “ fff pt,yyyptqq

yyypt0q “ yyy0 P Rm.

avec fff : U ÝÑ Rm, U un ouvert de RˆRm et pt0,yyy r0sq P U.

theorem]theo1
Théorème 3.1 : Cauchy-Lipschitz

On suppose que la fonction fff est continue sur U et quelle est localement lipschitzienne en yyy :
@pt,yyyq P U, DW voisinage ttt, DV voisinage yyy , DL ą 0 tels que

@s P W, @puuu,vvvq P V2, }fff ps,uuuq ´ fff ps,vvvq} ď L }uuu ´ vvv} (6)

Sous ces hypothèses le problème de Cauchy pPCq admet une unique solution.

Proposition 3.1

Si
Bfff

Byyy
pt,yyyq est continue et bornée, alors fff satisfait (6).
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On veut résoudre le problème de Cauchy scalaire:

pPCq

"

y 1ptq “ f pt, yptqq, @t P rt0, t0 ` T s

ypt0q “ y0 P R.

avec f : rt0, t0 ` T s ˆR ÝÑ R. On a vu (chapitre Dérivation numérique):

y 1ptnq “
yptn ` hq ´ yptnq

h
` Ophq

ñ f ptn, yptnqq “
yptn`1q ´ yptnq

h
` Ophq

La méthode d’Euler progressive est alors donnée par le schéma
"

y rn`1s “ y rns ` hf ptn, y rnsq, @n P v0,N ´ 1w

y r0s “ ypt0q
(7)

avec y rns « yptnq.
Ce schéma est explicite, car il permet le calcul direct de y rn`1s en fonction de y rns.
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On veut résoudre le problème de Cauchy scalaire:

pPCq

"

y 1ptq “ f pt, yptqq, @t P rt0, t0 ` T s

ypt0q “ y0 P R.

avec f : rt0, t0 ` T s ˆR ÝÑ R. On a vu (chapitre Dérivation numérique):

y 1ptn`1q “
yptn`1q ´ yptn`1 ´ hq

h
` Ophq

ñ f ptn`1, yptn`1qq “
yptn`1q ´ yptnq

h
` Ophq

La méthode d’Euler régressive est donnée par le schéma
"

y rn`1s “ y rns ` hf ptn`1, y rn`1sq, @n P v0,N ´ 1w

y r0s “ ypt0q
(8)

avec y rns « yptnq.
Ce schéma est implicite, car y rn`1s est définit implicitement en fonction de y rns. Il faut donc résoudre à
chaque pas de temps une équation non-linéaire en utilisant des méthodes de point fixe par exemple.

Différences finies m “ 1 2026/02/10 26 / 36



Exercice
On veut résoudre numériquement le problème pPq suivant : trouver y telle que

pPq

"

y 1ptq “ cosptq ` 1, @t P r0, 4πs

yp0q “ 0.

dont la solution exacte est yptq “ sinptq ` t.
On rappelle le schéma d’Euler progressif pour la résolution d’un problème de Cauchy

pSq

"

y rn`1s “ y rns ` hf ptn, y rnsq,

y r0s donné.

avec ptnqNn0 discrétisation régulière de l’intervalle r0, 4πs avec N pas de discrétisation.

Q. 1
Expliquer en détail comment utiliser le schéma d’Euler progressif pour résoudre le problème pPq en précisant entre autres les
données, les inconnues, les dimensions des variables, lien entre y rn`1s et la fonction y , ...

Q. 2
Soit a, b, a ă b deux réels. Ecrire une fonction DisReg retournant une discrétisation régulière de l’intervalle ra; bs avec N pas de
discrétisation.

Q. 3
Ecrire une fonction redEUPsca retournant l’ensemble des couples ptn, y rn`1sqNn“0 calculés par le schéma d’Euler progressif.

Q. 4
Ecrire un algorithme complet de résolution de pPq par le schéma d’Euler progressif.
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Résultats graphiques obtenus à partir des données de l’exercice

‚ Comment obtenir ces figures avec Matlab/Octave?

‚ Que peut-on conjecturer sur la convergence du schéma?
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1 function x=DisReg(a,b,N)
2 % Discretisation reguliere de l’intervalle [a,b]
3 % avec N pas de discretisation
4 % Donnees:
5 % a,b : deux reels , a<b
6 % N : nb de pas de discretisation
7 % Resultat:
8 % x : tableau 1-par -(N+1) de reels
9 h=(b-a)/N;

10 x=zeros(1,N+1);
11 for i=1:N+1,x(i)=a+(i-1)*h;end
12 end

Listing: Fonction DisReg: fichier DisReg.m

1 function [t,Y]= redEUPsca(f,t0,T,y0,N)
2 % Resolution d’un probleme de Cauchy scalaire
3 % d’inconnue la fonction
4 % y: [t0,t0.T] -> R
5 % par le schema d’Euler progressif
6 % Donnees:
7 % f: [t0,t0.T] x R -> R
8 % t0 ,T,y0 trois reels , T>0
9 % N un entier non nul , nb de pas de discretisation

10 % Resultat:
11 % t tableau de 1x(N+1) reels , discretisation
12 % Y tableau 1x(N+1) reels , resultat tel que
13 % Y(n) approximation de y(t(n))
14 % avec n dans {1,...,N+1}.
15 assert(length(y0)==1,’Utiliser la fonction redEUPvec ...

pour pb Cauchy vectoriel ’)
16 t=DisReg(t0 ,t0+T,N);
17 h=T/N;
18 Y=zeros(1,N+1);
19 Y(1)=y0;
20 for n=1:N
21 Y(n+1)=Y(n)+h*f(t(n),Y(n));
22 end
23 end

Listing: Fonction redEUPsca: fichier redEUPsca.m
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1 fCauchy=@(t,y) cos(t)+1; % a modifier pour un autre probleme de Cauchy scalaire
2 solex=@(t) sin(t)+t; % idem
3 t0=0;T=4*pi;N1=20;N2=10*N1; % idem
4 y0=solex(t0);
5

6 [t1 ,yEP1]= redEUPsca(fCauchy ,t0,T,y0 ,N1);
7 [t2 ,yEP2]= redEUPsca(fCauchy ,t0,T,y0 ,N2);
8

9 tex=DisReg(t0 ,t0+T ,1000);
10 yex=solex(tex); % doit etre vectorisee!
11

12 figure (1)
13 plot(tex ,yex ,’kx-’,’linewidth ’ ,1.5,’Markerindices ’ ,50:150:1000)
14 hold on
15 plot(t1,yEP1 ,’bo-’,’linewidth ’ ,1.5,’Markerindices ’ ,1:3:N1)
16 plot(t2,yEP2 ,’r<-’,’linewidth ’ ,1.5,’Markerindices ’ ,15:30:N2)
17

18 legend(’exacte ’, sprintf(’redEUP (N=%d)’,N1), sprintf(’redEUP (N=%d)’,N2),’interpreter ’,’latex ’,’...
fontsize ’,12,’Location ’,’Best’)

19 xlabel(’$t$’,’interpreter ’,’latex’,’fontsize ’ ,12)
20 title(sprintf ("$y ’(t)=\\cos(t)+1$ avec $y(0)=%g$",y0),’interpreter ’,’latex ’,’fontsize ’,12)
21

22 figure (2)
23 subplot (2,1,1)
24 plot(t1,abs(yEP1 -solex(t1)),’b’)
25 xlabel(’$t$’,’interpreter ’,’latex’,’fontsize ’ ,12)
26 title(sprintf(’Erreur redEUP (N=%d)’,N1))
27

28 subplot (2,1,2)
29 plot(t2,abs(yEP2 -solex(t2)),’b’)
30 xlabel(’$t$’,’interpreter ’,’latex’,’fontsize ’ ,12)
31 title ([’Erreur redEUP (N=’,num2str(N2),’)’])

Listing: programme Matlab associé à l’exercice avec représentations graphiques
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On veut résoudre le problème de Cauchy vectoriel :

pPCq

"

yyy 1ptq “ fff pt,yyyptqq, @t P rt0, t0 ` T s

yyypt0q “ yyy0 P Rm.

avec f : rt0, t0 ` T s ˆRm ÝÑ Rm, m ě 2.
La méthode d’Euler progressive est donnée par le schéma

#

yyy rn`1s Rm

“ yyy rns ` hfff ptn,yyy rnsq, @n P v0,N ´ 1w

yyy r0s Rm

“ yyypt0q
(9)

Ce schéma est explicite, car il permet le calcul direct de yyy rn`1s en fonction de yyy rns.
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On veut résoudre le problème de Cauchy vectoriel :

pPCq

"

yyy 1ptq “ fff pt,yyyptqq, @t P rt0, t0 ` T s

yyypt0q “ yyy0 P Rm.

avec f : rt0, t0 ` T s ˆRm ÝÑ Rm, m ě 2.
La méthode d’Euler régressive est donnée par le schéma

#

yyy rn`1s Rm

“ yyy rns ` hfff ptn`1,yyy rn`1sq, @n P v0,N ´ 1w

yyy r0s Rm

“ yyypt0q
(10)

Ce schéma est implicite, car yyy rn`1s est définit implicitement en fonction de yyy rns.
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Exercice
Soit le problème de Cauchy vectoriel

"

yyy 1ptq “ fff pt,yyyptqq, @t P rt0, t0 ` T s,
yyypt0q “ yyy0 P Rm,

avec fff : rt0, t0 ` T s ˆRm ÝÑ Rm. On souhaite écrire une fonction algorithmique redEUPVec permettant de résoudre ce problème de Cauchy (vectoriel) par le schéma vectoriel explicite d’Euler
progressif

"

yyy rn`1s “ yyy rns ` hfff ptn,yyy rnsq, @n P v0,N ´ 1w

yyy r0s “ yyy0

avec ptnqNn“0 la discrétisation régulière de rt0, t0 ` T s avec N pas de discrétisation et yyy rns “

¨

˚

˚

˝

y
rns

1
...

y
rns
m

˛

‹

‹

‚

et yyy rnsq « yyyptnq. Cette fonction devra retourner l’ensemble des tn et des yyy rns pour nv0,Nw.

Q. 1
1 Rappeler précisement les données du problème de Cauchy vectoriel.
2 Quelles sont les données de la fonction algorithmique redEUPVec en précisant le type et la dimension pour chacune?
3 Quelles sont les sorties/résultats de la fonction algorithmique redEUPVec en précisant le type et la dimension pour chacun?

On rappelle l’écriture simplifiée d’accès aux colonnes d’une matrice décrit en section ??

Algorithmique
fonction version simplifiée Description mathématique
uuu Ð getMatColpA, jq uuu Ð Ap:, jq uuu P Rm est déterminé par uuui “ Ai,j , @i P v1, nw

A Ð setMatColpA,uuu, jq Ap:, jq Ð uuu la colonne j de A est remplacée par uuu P Rm

et on a Ai,j “ uuui , @i P v1, nw.

Table: Accès algorithmique aux colonnes d’une matrice A P Mm,npRq décrit en section ??

Q. 2
Ecrire la fonction algorithmique redEUPVec permettant de résoudre ce problème de Cauchy (vectoriel) par le schéma explicite d’Euler progressif. On utilisera l’écriture algorithmique simplifiée
d’accès aux éléments d’une matrice (voir Table 1).

Q. 3
Ecrire la fonction algorithmique redEUPVecfun permettant de résoudre ce problème de Cauchy (vectoriel) par le schéma explicite d’Euler progressif. On utilisera l’écriture algorithmique avec
fonctions pour l’accès aux éléments d’une matrice (voir Table 1).
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Exercice
Soit l’équation différentielle ordinaire linéaire du troisième ordre avec conditions initiales données par

p1 ` t ` t2q y p3qptq ` p3 ` 6tq y p2qptq ` 6 y p1qptq “ 6t, @t P r0,T s,

yp0q “ α, y p1qp0q “ β, y p2qp0q “ γ.

Ici y pkq note la dérivée k-ième de y .
Pour cette EDO, il existe une unique solution donnée par

yptq “
t4 ` 2At2 ` 4Bt ` 4C

4 pt2 ` t ` 1q

avec pA,B,C q P R3 vérifiant
C “ α, B ´ C “ β et A ´ 2B “ γ.

On a aussi

y p1qptq “
t3 ` At ` B

t2 ` t ` 1
´

`

t4 ` 2At2 ` 4Bt ` 4C
˘

p2 t ` 1q

4 pt2 ` t ` 1q
2

y p2qptq “
3 t2 ` A

t2 ` t ` 1
´

2
`

t3 ` At ` B
˘

p2 t ` 1q

pt2 ` t ` 1q
2 `

`

t4 ` 2At2 ` 4Bt ` 4C
˘

p2 t ` 1q
2

2 pt2 ` t ` 1q
3 ´

t4 ` 2At2 ` 4Bt ` 4C

2 pt2 ` t ` 1q
2 .

Q. 1

Déterminer le problème de Cauchy vectoriel associé à cette EDO

Dans la suite, on prendra T “ 10, α “ 6, β “ ´5 et γ “ ´2.

Q. 2
Ecrire un programme permettant de résoudre numériquement le problème de Cauchy associé à cette EDO à l’aide de la fonction algorithmique rttt,Ys Ð redEUPvecpf , t0,T ,Y 0,Nq (voir Exercice précédent).

On suppose que notre language algorithmique dispose d’une fonction graphique plotpX ,Y q reliant par des segments les points successifs
`

X p1q,Y p1q
˘

,
`

X p2q,Y p2q
˘

, . . . ,
`

X pendq,Y pendq
˘

les tableaux X et Y ayant même longeurs et correspondent respectivement aux tableaux des abscisses et des ordonnées.
On pourra utiliser la version simplifiée du langage algorithmique.

Q. 3
Donner les commandes permettant, après avoir utilisé le programme algorithmique précédent, de représenter graphiquement les approximations obtenues par le schéma, de

`

yptnq
˘N

n“0,
`

y p1qptnq
˘N

n“0 et
`

y p2qptnq
˘N

n“0

Q. 4
Ecrire un programme algorithmique permettant de représenter graphiquement les solutions exactes aux points de discrétisation, c’est à dire

`

yptnq
˘N

n“0,
`

y p1qptnq
˘N

n“0 et
`

y p2qptnq
˘N

n“0

Q. 5
Ecrire un programme algorithmique permettant de représenter graphiquement les erreurs numériques commises en valeurs absolues par le schéma pour les approximations de

`

yptnq
˘N

n“0,
`

y p1qptnq
˘N

n“0 et
`

y p2qptnq
˘N

n“0
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