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Réaction BZ (Belousov-Zhabotinsky)

© Exemples d'E.D.O.

p s |
(a) Boris Paviovich Belousov (b) Anatol Zhabotinsky 1938-2008,  (c) llya Prigogine 1917-2003,
1893-1970, Chimiste et biophysicien Chimiste russe Physicien et chimiste belge (origine
russe russe). Prix Nobel de chimie en 1977
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Modéle du Brusselator (1970)

Une solution de bromate de potassium et d'acide sulfurique mélangée a une solution d'acide manolique
et de bromure de sodium peut entrainer, sous certaines conditions, une oscillation de la couleur de la
solution mélange du rouge au bleue avec une période de 7 secondes.

Le modéle associé est nommé modéle du brusselator. Sous certaines hypothéses, le modéle simplifié
peut s'écrire :

X'(t) = 1+aX?(t)Y(t)— (B+1)X(t) (1)
Y'(t) = —aX?(t)Y(t) + BX(¢)
40> «F»>» «E>» «E>» = Q™
Chimie : réaction BZ 2026/02/10 EED
Modéle du Bruxelator
Avec a = 1.1, =3 etles C.I. X(0) =3 et Y(0) =2
.5 Brusselat?r simpliﬁé‘[a - 1.100,‘[7 =3.000] ‘— Courbe p‘ara.métrée ‘
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Modéle du Brusselator

Avec a =11, f =3 et les C.l. X(0) =3 et Y(0) =2

Brusselator simplifié [ = 1.100, 3 = 3.000] - Concentrations
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Chimie : réaction BZ 2026/02/10 CWAED
Modéle du Brusselator
Avec a =1, 3 =3etles C.l. X(0) =3 et Y(0)=2:
.. Brusselator simplifié [ = 1.100, 3 = 3.000] - Plan de phase
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Modéle de Lorentz

(a) Edward Norton Lorenz
1917-2008, Mathématicien et
météorologiste américain

e x(t) : proportionnel a

Le couplage Océan-Atmosphére est décrit
par un systéme d'E.D.P. couplées de
Navier-Stokes de la mécanique des flu-
ides.

Le modéle de Lorentz est une ver-
sion trés simplifiée de ces équations pour
I'étude du phénoméne de convection de
Rayleigh-Bénard :

X'(t) = —ox(t)+oy(t)
y'(t) = —x(t)y(t) + px(t) — y(t)
Z(t) = x(t)y(t) — Bz(t)

I'intensité du mouvement de convection,

e y(t) : proportionnel a la difféerence de température entre les courants ascendants et descendants,
e z(t) :proportionnel & une variation de température

Modéle de Lorentz

Météorologie : modéle de Lorentz (1963)
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Avec 0 = 10, p = 28, 3 = 8/3 et les données initiales x(0) = —8, y(0) = 8,z(0) = 27 (courbe bleue) et
des données initiales perturbées x(0) = —8 + 1e — 4, y(0) = 8, z(0) = 27 (courbe rouge pointillée)

X(€)

y(0)

(1)

L L
0 10 20 30 40 50 60 70 80

Météorologie : modéle de Lorentz (1963)
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Modéle de Lorentz : papillon

En représentant la courbe paramétrée (x(t), y(t),z(t)) dans I'espace, on obtient |'attracteur étrange de
Lorenz en forme d’aile de papillon
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Pendule pesant sans viscosité

Le pendule pesant : objet pesant accroché a une tige de masse négligeable, I'autre extrémité de la tige
est |'axe de rotation du pendule.

0" (t) + %sin(e(t)) -0 (2)

ol 6(t) est I'angle que fait, a I'instant t, le pendule par rapport a I'axe vertical, L la longueur de la tige.

40> «F»>» «E>» «E>» = Q™

Mcanique I pendile pesant




Pendule pesant sans viscosité

Avec & =3etles Cl. g = 2F, 6, =0 :

Pensule simple [v = 0, L = 1, M = 1] - position angulaire

Pensule simple v = 0,L = 1, M = 1] - Courbe paramétrée
T T T T T T

4 6 8 10 12 14 16
t

®
8
0'(t) [rad/s|

Pensule simple [ = 0,L = 1, M = 1] - vitesse angulaire
T . T - - -

00),0(1))
°  (0(0),0'(0)) = (2.5,0)

© Définitions et résultats

Mécanique : le pendule pesant
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Pendule pesant sans viscosité

Avec%:3et|esC.|.00:%”,€6:0:

Pensule simple [v = 0, L = 1, M = 1] - Plan de phase

0'(t) [rad/s)

0 5 10 15 20
0(t) [rad] (Fr «Er» (Er» E OHQQ
Slimiie s peiihl e

Soit y : | € R —> RR™ de classe CP (continiment dérivable d'ordre p).
On note y(¥) |a dérivée d'ordre k de y.

@ Définition 2.1

On appelle équation différentielle ordinaire (E.D.O.) d’ordre p une équation de la forme :

F(ty(t),yD(t),y@(t),...,yP (1)) = 0.

@ Définition 2.2

On appelle forme canonique d’une E.D.O. une expression du type :

yP(t) = G(t,y(t),y (1), y@(2),....y " V(1)) ®3)

Proposition 2.1

Toute équation différentielle d'ordre p sous forme canonique peut s'écrire comme un systéme de
p équations différentielles d'ordre 1.

40> «F»>» «E>» «E>» = Q™
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@ Définition 3.1 : probléme de Cauchy PAgkakohedtd

Soit f I'application continue donnée par

fo [0+ T]xR™ — R™
(t.y) — f(t,y)

avec T €]0,+o0[. Le probléme de Cauchy consiste & déterminer une fonction y définie par

y @ [t%t°+T] — R7

yi(t)
© Probléme de Cauchy ¢ — y(t) = :
Ym(t)
continue et dérivable, telle que
Y'() = flty(t), Vee[® ¢ +T] 4)
y(°) = yl%emrm (5)
40> «F»>» «E>» «E>» = Q™ 40> «F>» «E>» « E>» = Q™
y'(t) = f(ty(t), Vte[t®+T] ©) y'(t) = f(ty(t), Vte[tt®+T]
y(t®) = yleRrm y(t% = ylleRrm

Exercice

Exercice

Quelles sont les données du probléme de Cauchy? Quelles sont les données du probléme de Cauchy?

e t% R, TeRt*, me IN*
o la fonction f

o le vecteur y[0 e R™

40> «F»r» «E>» «E>» = Q™
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'—| Exercice '—| Exercice -

Pour chacune des E.D.O. suivantes écrire le probléme de Cauchy associé Déterminer le probléme de Cauchy associé au modéle du Brusselator simplifié :
(a ( ) + ax’( )+ Bcos(x(t)) =sin(t), t €]0,2n] B) X'(t) = 1+aX?(t)Y(t)— (B +1)X(t)
0, X'(0) = Y'(t) = —aX?()Y(t) + BX(t)
{ LOV'(t) + ( + Rlc> V(t) + (% + 1) v(t) = e, t€]0,100] avec C1. X(0) = Xo et Y(0) = Yo.
> \ J
0, v'(0) = 0. '—| Exercice | Y
u(l— X 2(6))x'(t) — x(¢), t€]0,10] Déterminer le probléme de Cauchy associé au modéle du pendule pesant simplifié :
x(0) = 1 X'(0) = —1.
P) () += sm(9(t))
y(3 — cos(t)y® (1) + 2sin(t)y™ (1) - y(t) = 0, t€]0, T]
= uo y(0) = v, y@(0) = we. avec C.1. 6(0) = 0 et 0(0) = 6).
vt €]0, T], x1 t) — 2x5(t) + 3x1(t) + 4x1(t)x2(t) = sin(t),
(£) + 3x1(t) — 2x5(t) — 3x1(t)x2(t) = cos(t),
0) =0, x{(0) = —1, x(0) = 1, x5(0) = —2.
40> «F»>» «E>» «E>» = Q™ 40> «F>» «E>» « E>» = Q™

o) { y'(t) = f(ty(t)
\ L y(t% = yoeR™.
e Probléme de Cauchy linéaire :
avec f: U— R™, U un ouvert de R x R™ et (t°,y[%) e U.

{ yl((ot)) i’y(f) =3t si t>0 Théoréme 3.1 : Cauchy-Lipschitz
y =

On suppose que la fonction f est continue sur U et quelle est localement lipschitzienne en y :

On a f(t,v) = 3v — 3t et une solution y(t) = (1 —1/3)e* + t +1/3. V(t,y) € U, IW voisinage t, 3V voisinage y, 3L > 0 tels que

o Probléme de Cauchy non-linéaire :

{y’(t) = {/y(t), si t>0

y(0) = 0 Sous ces hypothéses le probléme de Cauchy (PC) admet une unique solution.

YseW, Y(u,v) e V2, [f(s,u) —f(s,v)| < L|u—v| (6)

On a f(t,v) = {/v et trois solutions y(t) = 0, y(t) = 4/8t3/27 et y(t) = —4/8t3/27. Proposition 3.1

f
Si %(t,y) est continue et bornée, alors f satisfait (6).

40> «F»r» «E>» «E>» = Q™ 40> «F»>» «E>» «E>» = Q™
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@ Différences finies m = 1

Différences finies m = 1

On veut résoudre le probléme de Cauchy scalaire:

7 {3

40> «Fr «

yoGR.

f(t,y(t), Vee[tt®+ T]
avec f : [t%,t° + T] x R — R. On a vu (chapitre Dérivation numérique):

t"+1 _ tn+1 —h
y/(tn+1) _ y( ) i’/( )

n+1y\ _ n
= f(tn+l,y(tn+l)) — y(t ) y(t )
La méthode d'Euler régressive est donnée par le schéma

h
{y[m] -
Yo

+0(h)

+0(h)

ylrl - hf (et ylnH) Yne [0, N — 1]
y(t°)
avec yl ~ y(tM).

Différences finies m = 1

Ce schéma est implicite, car yl"t1] est définit implicitement en fonction de y["). Il faut donc résoudre a

chaque pas de temps une équation non-linéaire en utilisant des méthodes de point fixe par exemple.
40> «Fr <«

(8)

Er (= Q>

Q.4

@3

On veut résoudre le probléme de Cauchy scalaire:

Y'(t) = flty(t), Vee[t? 0+ T]
PC
(PC) { y(t° = yeR.
avec f : [t%t% + T] x R — R. On a vu (chapitre Dérivation numérique):
y'(t") =

y(t" +h) — y(t")
h

=

+0(h)

F(t", y(t") = y("h) — y(t")

La méthode d'Euler progressive est alors donnée par le schéma

X+ o)
{y[n+1] =
10!

ylrl 4 hf (e, ylh), Wne [o,N — 1]
y(t°)
avec y["l ~ y(t").

Ce schéma est explicite, car il permet le calcul direct de yl™+1] en fonction de y["].
Différences finies m = 1

40> «F>»

On veut résoudre numériquement le probléme (P) suivant :

trouver y telle que

P { Y'(®)
dont la solution exacte est y(t) = sin(t) + t.

(7)

«<Er» «Er» E DAQ

cos(t) + 1, Vt € [0,4n]
¥(0) 0.
On rappelle le schéma d'Euler progressif pour la résolution d'un probléme de Cauchy
Q. 1}

) ylrt1 = ylnl g (en) Lol
ylol donné.

avec (t")N) discrétisation réguliere de I'intervalle [0, 47] avec N pas de discrétisation.

@2

données, les inconnues, les dimensions des variables, lien entre y!"+11 et la fonction y,
discrétisation.

g Expliquer en détail comment utiliser le schéma d’Euler progressif pour résoudre le probléme (P) en précisant entre autres les

E>» «E>» E DAX

-

~ Soit a, b, a < b deux réels. Ecrire une fonction DisReg retournant une discrétisation réguliére de I'intervalle [a; b] avec N pas de

J

T Ecrire une fonction redEUPsca retournant 'ensemble des couples (t", ylI"+1N_ " calculés par le schéma d'Euler progressif.
? Ecrire un algorithme complet de résolution de (P) par le schéma d’Euler progressif.

Différences finies m = 1

«E>» «E>» E DA™



Résultats graphiques obtenus a partir des données de I'exercice
Erreur redEUP (N=20)

/() = cos(t) + 1 avec y(0) = 0

14 T T T 06 T
05 1
12+ — 04 4
03 1
10 4 02 4
0.1 B
81 1 % ; ; ; é 40 ;2 14
t
sl 1 Erreur redEUP (N=200)
ool : : : : : .
0.05 - T
4r ] 0.04 B
0.03 - T
2r ] 002 B
0.01 - T
. ‘ ‘ ‘ ‘ ‘ . ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
t t
o Comment obtenir ces figures avec Matlab/Octave?
e Que peut-on conjecturer sur la convergence du schéma?
40> «F»>» «E>» «E>» = Q™
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fCauchy=@(t,y) cos(t)+1; X a modifier pour un autre probleme de Cauchy scalaire
solex=@(t) sin(t)+t; 4 idem

t0=0; T=4%pi;N1=20;N2=10%N1; / idenm

yo=solex(t0);

[t1,yEP1]=redEUPsca (fCauchy,t0,T,y0,N1);
[t2,yEP2]=redEUPsca(fCauchy,t0,T,y0,N2);

tex=DisReg (t0,t0+T,1000) ;
10 yex=solex(tex); / doit etre vectorisee!

12 figure (1)

13 plot(tex,yex,’kx-’,’linewidth’,1
12 hold on

15 plot(t1,yEP1,’bo-’,’linewidth’,1
16 plot (t2,yEP2,°r<-’,’linewidth’,1.5

5,’Markerindices’,50:150:1000)

5,’Markerindices?’,1:3:N1)
,’Markerindices’,15:30:N2)

1z legend(’exacte’, sprintf(’redEUP (N=%d)’,N1), sprintf(’redEUP (N=%
fontsize’,12,’Location’,’Best’)

19 xlabel(’$t$’,’interpreter’,’latex’,’fontsize’,12)

20 title(sprintf ("$y’(t)=\\cos(t)+1$ avec $y(0)=/gé",y0), ’interpreter’, *latez’, ’fontsize’,12)

22 figure(2)

23 subplot(2,1,1)

22 plot (t1,abs (yEP1-solex(t1)),’b’)

25 xlabel(’$t$’,’interpreter’,’latex’,’fontsize’,12)
26 title(sprintf (’Erreur redEUP (N=%d)’,N1))

25 subplot(2,1,2)

20 plot (t2,abs (yEP2-solex(t2)),’b’)

30 xlabel(’$t$’,’interpreter’,’latex’,’fontsize’,12)
31 title([’Erreur redEUP (N=’,num2str(N2),’)’])

Listing: programme Matlab associé a I'exercice avec représentations graphiques « 5 » «

d)’,N2),’interpreter’,’latex’,’...

ax

2026/02/10 EWED

function x=DisReg(a,b,N)

Z Discretisation reguliere de l’intervalle [a,b]
% avec N pas de discretisation

% Donnees:

/4 a,b : deuz reels, a<b

4 N : nb de pas de discretisation
/ Resultat:

3 z tableau 1-par-(N+1) de reels

h=(b-a)/N;

x=zeros (1,N+1);

for i=1:N+1,x(i)=a+(i-1)*h;end
end

Listing: Fonction DisReg: fichier DisReg.m

e Différences finies m > 1

1 function [t,Y]=redEUPsca(f,t0,T,y0,N)
2 / Resolution d’un probleme de Cauchy scalaire
3 % d’inconnue la fonction

sl y: [to,t0.T] -> R

s / par le schema d’Euler progressif

6 / Donnees:

7 f: [to,t0.T] = R -> R

s 1  t0,T,y0 trois reels, T>0

o / ¥ un entier non nul, nb de pas de discretisation
10 / Resultat:

u t tableau de 1z(N+1) reels, discretisation

12 /Y tableau Iz (N+1) reels, resultat tel que

5 Y(n) approzimation de y(t(n))

w 4 avec n dans {1,...,N+1}.

15 assert(length(y0)==1,’Utiliser la fonction redEUPvec

pour pb Cauchy vectoriel’)
16 t=DisReg (t0,t0+T,N);
7 h=T/Nj
15 Y=zeros (1,N+1);
w Y(1)=y0;

20 for n=1:N

2 Y(n+1) =Y (n)+h*f (t(n),¥(n));
22 end

23 end

Listing: Fonction redEUPsca: fichier redEUPsca.m

a
a}
a
v

it
v
a

it
v
it
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On veut résoudre le probléme de Cauchy vectoriel :

(PC)

y'(t)
y(t%)

avec f: [t9, %+ T] x R™ — R™, m > 2.
La méthode d'Euler progressive est donnée par le schéma

ylrt1l Il pf (e ylly e [0, N —1]

RM

y(t°%)

f(t,y(t)), Vte[t? O+ T]
yoe R™.

Ce schéma est explicite, car il permet le calcul direct de y["+1] en fonction de y[7!

Différences finies m > 1

'—{ Exercice

(9)

ax
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Soit le probléme de Cauchy vectoriel

progressif

@.1}

{y'(!) = f(ty(t), Vee[tt°+ T,
y(t) = yoeR™

{ ylr =yl pf e,y ne [0.N - 1]

=y

avec (t")N_, la discrétisation réguliere de [t°, t° + T] avec N pas de discrétisation et y[" =

e

[n]

ym

avec f : [t% % + T] x R™ — R™. On souhaite écrire une fonction algorithmique redEUPVec permettant de résoudre ce probléme de Cauchy (vectoriel) par le schema vectoriel explicite d'Euler

et y[") ~ y(t"). Cette fonction devra retourner I'ensemble des t” et des y!") pour n[0, N].

+ Rappeler précisement les données du probléme de Cauchy vectoriel.

2 Quelles sont les données de la fonction algorithmique redEUPVec en précisant le type et la dimension pour chacune?

3 Quelles sont les sortie Itats de la fonction redBUPVec en précisant le type et la dimension pour chacun?

@

On rappelle I'écriture simplifiée d'accés aux colonnes d'une matrice décrit en section 77

Algorithmique

fonction

version simplifiée

Description mathématique

U wiCol(A)) |4 AL

w e R™ est déterminé par u; — A,,, Vi€ [L.n]

A setMatCol(A,u]) | AG.J) — u

Ta colonne J de A est remplacée par u € R™
etona A = u, Vie [1n].

Table: Accés algorithmique aux colonnes d'une matrice A € M »(R) décrit en section 77

“* Ecrire la fonction algorithmigue redEUPVee permettant de résoudre ce probléme de Cauchy (vectoriel) par le schéma explicite d'Euler progressif. On utilisera I'ecriture algorithmique simplifiée
d'acces aux éléments d'une matrice (voir Table 1).

@3]

. 3} 5
Ecrire I fonction algorithmique redEUPVecfun permettant de résoudre ce probléme de Cauchy (vectoriel) par le schéma explicite d'Euler progressif. On utilisera I'scriture algorithmique avec
fonctions pour I'accés aux éléments d'une matrice (voir Table 1).

Différences finies m > 1

ax

On veut résoudre le probléme de Cauchy vectoriel :

f(t,y(t)), Vte[t? "+ T]

y'(t)
(PC) Yo e R

y(t%)

avec f: [t%t°+ T] x R™ — R™, m > 2.
La méthode d'Euler régressive est donnée par le schéma

y[n+1] y[n] + hf(tn+l’y[n+1])7 VYne[0,N —1] (10)
yo =y

=
1%

Ce schéma est implicite, car y["*1] est définit implicitement en fonction de y["l.

40> «F»r «

ax
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Soit I'équation différentielle ordinaire linéaire du troisiéme ordre avec conditions initiales données par

1+ t+2)y@(t) + 3+6t)y@(e) + 6V (t) =6t, Vee[0,T],
y(0)=a, yP(0) =8 y@(0)=n.
Ici ) note la deérivée k-ieme de y.
Pour cette EDO, il existe une unique solution donnée par
4242+ 4Bt +4C

G ey ]

avec (A, B, C) € R? vérifiant
C=a, B-C=p et A-2B=7

On a aussi
g - CIALE (¢ 12AR 4B 4C)R01Y)
’ T FErel YR T I
Yo - 32+A 72(r°+At+E)[2(+l)+(r‘+2A\‘z+AEzf4C](2r+l)77z‘+2AzZ+‘Bt+6C
CENESt [CETES 2E 1) 2@+ e+ 1)
Q1)

Déterminer le probléme de Cauchy vectoriel associé 4 cette EDO

Dans la suite, on prendra T =10, a = 6, § = —5 et 4 = 2.

.
Ecrire un programme permettant de résoudre numériquement le probléme de Cauchy associé 4 cette EDO a I'aide de a fonction algorithmique [£. Y] « redEUPvec(f, t0, T, Y0, N) (voir Exercice précédent).
On suppose que notre language algorithmique dispose d'une fonction graphique plot(X. ¥) reliant par des segments les points successifs

(X(1), Y(1)), (X(2), Y(2)),.... (X(end), Y (end))

les tableaux X et ¥ ayant méme longeurs et correspondent respectivement aux tableaux des abscisses et des ordonnées
On pourra utiliser la version simplifiée du langage algorithmique.

Donner les commandes permettant, aprés avoir utilisé le programme algorithmique précédent, de représenter graphiquement les approximations obtenues par le schéma, de
N v Y
() g (YOE), 0 et (YOE)5 o

. 4) - - - P 0 -
" Ecrire un programme algorithmique permettant de représenter graphiquement les solutions exactes aux points de discrétisation, c'est 3 dire

(g (YO, et (YO),

Ecrire un programme algorithmique permettant de représenter graphiquement les erreurs numériques commises en valeurs absolues par le schéma pour les approximations de
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