s

Exercices associés au cours Méthodes Numériques I1

Chapitre 2: Dérivation numérique
version du 2026/02/10 & 06:22:47

EXERCICE 1

Soit ¢ : [a,b] — R une fonction.
Q. 1 Montrer que si ¢ € C*([a,b];R) alors Vx € [a,b[, Vh > 0 tel que (z + h) € [a,b], on a

@ = p(a+h) — p(z)

e 28 o) (1)

Q. 2 Montrer que si ¢ € C*([a,b]; R) alors Vx €]a,b], Vh > 0 tel que (x — h) € [a,b], on a

dp p(z) — p(x = h)
@) = ==+ 0(h) (1.2)

Q. 3 Montrer que si p € C3([a,b];R) alors Va €]a,b[, Yh > 0 tel que (x + h) € [a,b] et (x — h) € [a,b],

e dp e +h)—p@—h)
P) = - + 0(h?) (1.3)

Q. 4 Montrer que si p € C*([a,b];R) alors Vz €]a,b[, Yh > 0 tel que (x + h) € [a,b] et (x — h) € [a,b],

(@) - AR 2EN LB L o) (1.4

o

p
dx?

ANNANANANNANNANNANNANANANNANNANNNNANNANNANNANNNNNNANNNNNNNNNNS

Correction

R. 1 On rappelle le développement de Taylor & I'ordre r d’une fonction f € C""!([a,b]; R)
Va € [a,b], V[€ R* vérifiant (z +) € [a, b],

D r+1
— 1.5
fla+0) = g P @) +o@h) (1.5)
k
o f® () = L ().
On peut ici utiliser un développement de Taylor & l'ordre r = 1 de ¢ car ¢ € C?([a,b];R) avec [] = h

dans (1.5).
Soient x € [a,b] et h € R**, tels que (z + h) € [a,b] (donc nécessairement z € [a, b[) on a

oz + h) = p(z) + heW(z) + O(h?)

ce qui donne

e () - - o(h?)
gl +h) = o)
= W + O(h)

R. 2 On peut ici utiliser un développement de Taylor & l'ordre 7 = 1 de ¢ car ¢ € C?([a,b];R) avec
[0 = —h dans dans (1.5).

On peut ici utiliser un développement de Taylor & I'ordre 2 car ¢ € C?([a, b]; R).

Soient x € [a,b] et h € R*', tels que (x — h) € [a, b] (donc nécessairement x €]a,b]) on a

pla —h) = p(x) = b (@) + O(h)

ce qui donne

50(1)(37) _ gO(.’L‘) — (,;:(.%‘ — h’) + %O(h?)
_ #l@) —plz—h)
= 5 + O(h)

R. 3 On peut ici utiliser un développement de Taylor & l'ordre r = 2 de ¢ car ¢ € C*([a, b]; R).

Dans la formule (1.3), les termes @(x + h), p(xz — h) apparaissent. Ceci suggere d’utiliser deux développe-
ment de Taylor, I'un en x + h et 'autre en = — h.

Soient x € [a,b] et h € R*T, tels que (z + h) € [a,b] et (z — h) € [a,b] (donc nécessairement = €la, b|).
On a alors

p(x+h) = m@+h¢mwmf§¢%@+om%
px—h) = ﬂ@—h¢®@y+§w®@»+omﬂ

Remarque. Attention ici, il faut bien voir que les @ dans les deux formules ne sont
mathématiquement pas forcément identiques! En effet, en revenant aux développe-
ments de Taylor sans O, pour la formule en x + h, il existe &, €|x,x + h[tel que

h3

o) = 5 ¥V (€2)

et pour la formule en x — h, il existe {_ €|x — h, x| tel que

om%=—§¢@@4

On effectuant la différence entre ces deux équations on obtient:
o(x + h) — gz — h) = 2h¢D () + O(h®)

ce qui donne

oW (z) = o(z + h)Z—h<P(33 —h)

o(x +h) —p(x —h)
B 2h +O(r)

1 3
+ﬁ0(h)

R. 4 On peut ici utiliser un développement de Taylor & ordre 7 = 3 de ¢ car ¢ € C*([a,b]; R).

Dans la formule (1.4), les termes p(x + h), p(x — h) apparaissent. Ceci suggere d’utiliser deux développe-
ment de Taylor, I'un en x + h et l'autre en = — h.

Soient x € [a,b] et h € R*T, tels que (z + h) € [a,b] et (z — h) € [a,b] (donc nécessairement = €la, b|).
On a alors

plx+h) = ﬂ@+h¢W@+§w®@y%§d%@+omﬂ
oz —h) = ﬂ@7h¢W@+§w®@%J§¢W@+Omﬂ

On effectuant la somme entre ces deux équations on obtient:
p(x +h) + gz — h) = 2p(z) + > ¢ (z) + O(h*)

ce qui donne

o(x+h) —20(x)+o(x—nh 1
h)—2 —h
S
[EXERCICE 2
Soit ¢ : R — R une fonction suffisament réguliére, x € R et h € RT*.
Q. 1 Montrer que
do . —3p(x) +4o(x + h) — p(x + 2h) 5
. () = o + O(h?) (2.6)
a
Q. 2 Montrer que
d_(p(x) _ 390(‘/1") — 4(,0(.’17 — h‘) + (p(l‘ — 2h) + O(h2> (27)

2h

Correction

R. 1 Soit ¢ une fonction suffisament réguliere et h > 0
Pour cela, on écrit les deux développements de Taylor en x + h et x + 2h.
Il existe & €]z, z + h[tel que

2 72 3 73
olw+h) = ple) + ho2 () + 200y + 0 et (28)
et Il existe & €]x, z + 2h[tel que
2 72 3 73
ol +20) = () + (20) 22 (2) ¢ BTy CREC0 e (2.9)

L’objectif est d’obtenir, par une combinaison linéaire entre ces deux formules, une nouvelle équation ne
comportant plus de termes en d 5. En effectuant 4 x (2.8) — (2.9) on obtient

h3d3 2h)3 d3p
3' dx 3(51) (‘) dx5(€2)

dp(x + h) — p(x + 2h) = 3p(x) + 2hfl—i($) +4

On en déduit
d—(p(x) ~ —3p(x) + 4p(x + h) — (x4 2h)

2
dz oh +0(h%)

R. 2 Soit ¢ une fonction suffisament réguliére et h > 0.

Pour cela, on écrit les deux développements de Taylor en x — h et x — 2h.

11 existe & €]z — h, x[tel que

(=h)® ¢

N2 2
CAPd% 0y + L9 e (210)

ol —h) = plw) ~ hS(z) +

et Il existe & €]z — 2h, x| tel que

(—2h)? d27<,9
2! dz?

(—2h)3 ddi
3 dx3

pla —2h) = plz) + (~20) (@) +

(z) + () (2.11)

L’objectif est d’obtenir, par une combinaison linéaire entre ces deux formules, une nouvelle équation ne
2
comportant plus de termes en fle. En effectuant 4 x (2.10) — (2.11) on obtient

d —h)? d? —2h)3 d?
(e —) — oo —20) = 3p(x) ~ 2P () + a0 oy CHVT0
On en déduit J . A h o

EXERCICE 3

Soit f € C3([a,b];R). On note t", n € [0, N], une discrétisation réguliére de [a,b] de pas h. On note
F e RV*! le vecteur défini par F,,1 = f(t"), Vn € [0, N].

Q.1 a. Déterminer en fonction de h et F, un vecteur V.e RN+ vérifiant

Vo1 = f(t")+ O(h), VYnel[0,N].

b. Ecrire une fonction algorithmique, nommée Derivel Ordrel, permettant, a partir du vecteur F' et de
la discrétisation réguliére, de calculer le vecteur V' précédent.

Q. 2 a. Connaissant uniquement h et le vecteur F, déterminer un vecteur W € RN+ vérifiant

W, = ") +0(h?), VYne[0,N]

b. Ecrire une fonction algorithmique, nommeée DerivelOrdre2, permettant, & partir du vecteur F et de
la discrétisation réguliere, de calculer le vecteur W précédent.

A VAVAVAVAVA VAVS

Correction

R.1 a Onah=(b—a)/Nett" =a+nh, Yn € [0,N]. Par la formule de Taylor, on obtient
respectivement les formules progressives et régressives d’ordre 1 suivantes (voir Lemme 77?)

fE+h) - f(t) ft) = fE—h)

- = f'(t) + O(h) et 5

= f'(t) + O(h).

On va utiliser ces formules en t = . On note que la formule progressive n’est pas utilisable en
t =tV (car tN +h=0b+h¢[a,b]!) et que la formule régressive n’est pas utilisable en ¢ = t° (car
t —h=a—h¢[a,b]). Plus précisement, on a

fmt) —)
h

fm) — f)
h

= f'(t")+0O(h), Vne[0,N[, (3.12)

")+ o(h), ¥nel0,N] (3.13)

On peut alors construire le vecteur V' en prenant

1y _ £(40
Ve w = f'(t° + o(h), formule progressive (3.12) avec n =0

Ny N-1
Vi 22 L)

= f'(t") + O(h), formule régressive (3.13) avec n = N

et pour les points strictement intérieurs les deux formules sont possible :

wr fE"TY) = f(t7)
N h

ny __ n—1
v, < % = f'(t") + O(h), formule régressive (3.13) avec n €]0, N[

Vi = f'(t") + O(h), formule progressive (3.12) avec n €]0, N[

En choisissant par exemple la formule progressive pour les points intérieurs, on obtient en fonction

de F et h
vzl — F(%) + O(h)
Vn €]0, N[, V,, & @ = f'(t") + o(h)
Vigs 2 T 20 — F(E) + O(h).

b. On représente tout d’abord les vecteurs F et 'V en Figure 1.

F 1@ () f@nh G F)
F(1) F(2) F(n) F(N) F(N +1)
f’(to) f’(tl) f/(tn—l) f’(tN_l) f’(tN)

A% + + + +
o(h) O(h) O(h) o(h) o(h)
V(1) V(2) V(n) V(N) V(N +1)

Figure 1: Représentation mémoire du vecteur F € RN*! et du vecteur V e RV*1,

En utilisant les formules trouvées précédemment, la fonction algorithmique peut s’écrire sous la
forme :

Algorithme 1 Calcul numérique de dérivées premiéres d’ordre 1 d’une fonction f définie sur un inter-
valle en utilisant uniquemment les valeurs de f aux points (¢"))_, d'une discrétisation réguliére de cet
intervalle. Les approximations sont calculées en tous les points de la discrétisation.

Données : F : vecteur de RV*! tel que
F,i1 = f(t"), Yne [0, N].
h : nombre réel strictement positif.
Résultat : V : vecteur de RV*! tel que

Vi1 = f/(t") + O(h), ¥n € [0, N].

1: Fonction V « DerivelOrdrel(h, F')
2 V(1) — (F(2) - F)/h

3 Pour n < 2 a N faire

4 V(in) < (F(n+1)— F(n))/h
5. Fin Pour
6
7

V(N+1)«— (F(N+1)—F(N))/h
Fin Fonction

D’autres facons de présenter le probléme sont possibles mais les données peuvent differer de celles
de I’énoncé. Par exemple une autre fonction algorithmique pourrait étre

Algorithme 2 Approximations d’ordre 1 de dérivées premiéres d’une fonction f définie sur un intervalle
[a,b] en utilisant uniquemment les valeurs de f aux points (t")Y_, d’une discrétisation réguliére de cet
intervalle. Les approximations sont calculées en tous les points de la discrétisation.
fila,b] — R
b : deuxréels, a < b,
nombre de pas de discrétisation
vecteur de RN*! tel que V11 = f/(t") + O(h)

avec (t")N_, discrétisation réguliére de [a, b].

Données :

<2\'@kﬁ

Résultat :

1: Fonction V « DeriveOrdrel-vl(f,a,b, N)
2: t < DisReg(a,b, N) > fonction retournant la discrétisation réguliére...
33 h<« (b—a)/N

4 V(1) < (f(t(2)) — f(t(1))/h
5. Pour n <« 2 a N faire
6 Vi(n) < (f(t(n+1)) = f(t(n)))/h
7. Fin Pour

8 V(N +1) < (f(t(N +1)) = f(t(N))/h
9: Fin Fonction

R. 2 a. Du lemme 77, on a la formule centrée d’ordre 2

ft+h)—f{t—h)
2h

= f'(t) + O(h?).
On va utiliser cette formule en ¢ = ¢”. On note que la formule n’est pas utilisable en t = ¢t = b et

t =19 = a. On obtient

fEh - fE
2h

(") = +0(h?), Vne]o,N. (3.14)
Il reste donc & établir une formule progressive en t° d’ordre 2 (i.e. une formule utilisant les points

t0 t1, #2, ...) et une formule régressive en tN d’ordre 2 (i.e. une formule utilisant les points N,
=L N=2 0).

De maniére générique pour établir une formule progressive en t d’ordre 2 approchant f'(t), on écrit
les deux formules de Taylor aux points ¢ + h et t + 2h.

e Ent+hona)
h

Ft+h) = f(t) + hf'(£) + 55 f2 1) + O(h?). (3.15)

Plus précisément, on a I'existence d'un &; €]t,t + h[tel que 'on peut remplacer le @(h?) de

h3
(3.15) par o /9 (&),
e Ent+2hon a,
F(t+2h) = f(t) + (2h)f'(t) + (22#)2 FA@) +ond). (3.16)
Plus précisément, on a lexistence d'un &3 €]t,t + 2h[‘éel que l'on peut remplacer le O(h?) de

(3.15) par C1°)

On va utiliser les formules de Taylor avec les restes explicites mais il est tout & fait possible d’utiliser
celles avec les restes sous forme de O(h?).

L’objectif étant d’obtenir une formule d’ordre 2 en ¢ pour approcher f/(t), on va éliminer les termes
en f@(t) en effectuant la combinaison 4 x (3.15) — (3.16).

On obtient alors

3
A(+ B) — e+ 2h) = 35(0) + 20 (1) + 4 O e) - EE 9 ()
et donc
_ _ 2 31,2
pay = OPTEEDZJCI) 1 o) + 200 j0(ey)
_ =3f(t) +4f(t+h) = f(t+2h)
= 5 + O(h?)

Cette derniére formule permet alors I’obtention d’une formule d’ordre 2 ent =t = a :

—3f(t°) +4f(t") — ()
2h

(%) = +0(h?) (3.17)

De la méme maniére pour établir une formule régressive en t d’ordre 2 approchant f/(t), on écrit
les deux formules de Taylor aux points t — h et t — 2h :

e Ent—hona

1P + o), (3.18)
e Ent—2hona
(—2h)*
2!
L’objectif étant d’obtenir une formule d’ordre 2 en ¢ pour approcher f’(¢), on va éliminer les
termes en f? () en effectuant la combinaison 4 x (3.18) — (3.19). On obtient alors
Af(t —h) — f(t —2h) = 3f(t) — 2hf'(t) + O(h®)

car toute combinaison de @O(h3) reste en @(h*). On obtient donc

f’(t) _ 3f(t)_4f(t_2£b)+f(t_2h)+O(h2).

F(t—2h) = f(t) + (=2h)f'(t) + FA) + o), (3.19)

Cette derniére formule permet alors I’obtention d’une formule d’ordre 2 en t =tV = b :

Bf(Y) —4f (Y + f(EV?)

5 + O(h?) (3.20)

JN) =

On peut alors construire le vecteur W en utilisant les formules (3.14), (3.17) et (3.20) :
e —3f (%) +4f(t1) — (%)
2h
Bf(EY) — 4f (VT + f(EV7?)
2h

-8

Wi = f/(t° + ©(h?), formule progressive (3.17)

o
@
=8

W1 = f'(t") + 0o(h?), formule régressive (3.20)

et pour les points strictement intérieurs

&f fem) —) = f'(t") + O(h?), formule centrée (3.14) avec n €]0, N

Wa 2h

On obtient alors en fonction de F et h

« —3F; +4F, — F:
Wl d:f 1 o 2 3 _ f/(to) +O(h2)
F,1—F,_
Vn €0, N[, W, & % = f/(t") + O(h?)
o 3F —4F N + Fyn_
Wy & N QhN Nl = f/<tN) +O(h).

b. On représente tout d’abord les vecteurs F et W en Figure 2.

F F(t%) fth) a G o G G
F(1) F(2) F(n) F(N) F(N +1)
f/(tO) f/(tl) f/(tnfl) f/(thl) f/(tN)

w + + + + +
O(h?) O(h?) O(h?) O(h?) O(h?)
W(1) W(2) W(n) W(N) W(N +1)

Figure 2: Représentation mémoire du vecteur F € RN*! et du vecteur W e RN +1.

En utilisant les formules trouvées précédemment, la fonction algorithmique peut s’écrire sous la
forme :

Algorithme 3 Approximations d’ordre 2 de dérivées premiéres d’une fonction f définie sur un inter-
valle en utilisant uniquemment les valeurs de f aux points (¢"))_, d’une discrétisation réguliére de cet
intervalle. Les approximations sont calculées en tous les points de la discrétisation.

Données : F : vecteur de RV*! tel que
Foi1 = f(t"), Vn e [0, N].
h : nombre réel strictement positif.
Reésultat : W : vecteur de RV*+tel que

Wos1 = f/(t") + O(h?), Yn € [0, N].

1: Fonction W « DerivelOrdre2(h, F')
W(1)«— (=3«F(1)+4=F(2)— F(3))/(2=h)
Pour i < 2 &4 N faire
W (i) — (F(i +1) = F(i—1))/(2 %)
Fin Pour
W(IN+1)«— B«xF(N+1)—4«F(N)+ F(N —1))/(2*h)
: Fin Fonction

D’autres fagons de présenter le probléme sont possibles mais les données peuvent différer de celles
de I’énoncé. Par exemple une autre fonction algorithmique pourrait étre

Algorithme 4 Approximations d’ordre 2 de dérivées premiéres d’une fonction f définie sur un intervalle
[a,b] calculées aux points de de la discrétisation réguliére de [a,b] avec N pas de discrétisation. Les
approximations sont calculées en tous les points de la discrétisation

Données : f : fifa,b] — R
a,b . deux réels, a < b,
N : nombre de pas de discrétisation
Résultat : W : vecteur de RV tel que W, 11 = f/(t") + O(h?)

avec (t"))_, discrétisation réguliére de [a, b].

1: Fonction W «— DerivelOrdre2-v1(f,a,b, N)
2: t < DisReg(a,b, N) = fonction retournant la discrétisation réguliére...
33 h< (b—a)/N

4 W(L) < (=3= f(t(1)) + 4= f(t(2)) = f((3)))/(2 % h)
5. Pour i« 2 a N faire
6 W(i) < (f@(i+ 1)) = f(t(i = 1)))/(2 x h)

7 Fin Pour

8 W(N+1)«— B f(t(N+1))—4x f(t(N))+ f(t(N —=1)))/(2*h)
9: Fin Fonction

[EXERCICE 4

On suppose écrites les fonctions Matlab/Octave DerivelOrderl et DerivelOrder2 correspondant aux
fonctions algorithmiques de l’exercice 3. Leurs syntaxes sont les suivantes:

V=DerivelOrdrel(h,F) et W=DerivelOrdre2(h,F)

h=2m/100
T T

Erreur DerivelOrdrel : h = 27/100
15 T T T T

<10 Erreur DerivelOrdre2 : h = 27/100
15 T T T T T

Figure 3: Avec f(z) = sin(x), a = 0, b = 2w, N = 100, a gauche, les différentes dérivées, a droite les
erreurs commises par les deux fonctions.

Q. 1 Ecrire un programme Matlab/Octave permettant de reproduire ces deux graphiques. o

EXERCICE 5

Voici une figure mettant en évidence l'ordre des méthodes utilisées dans les fonctions DerivelOrderl et
DerivelOrder2 de ’exercice 3.

Ordres des méthodes de dérivation

10— ! —

=—— DerivelOrdrel (0.99986)
=—©— DerivelOrdre2 (1.99941)
————— o)

- - —o@)

107

On suppose écrites les fonctions Matlab/Octave DerivelOrderl et DerivelOrder2 correspondant aux
fonctions algorithmiques de 'exercice 3. Leurs syntaxes sont les suivantes:

V=DerivelOrdrel(h,F) et W=DerivelOrdre2(h,F)

Q.1 a. Ecrire un programme Matlab/Octave permettant de calculer 'ensemble des données néces-
saires & la représentation graphique de lordre des deux méthodes (voir figure).

b. A laide de ces données, calculer numériquement l’ordre des deuxr méthodes.
]

Les commandes Matlab/Octave permettant de représenter des données en échelles logarithmique sont
loglog, semilogx et semilogy. Elles s’utilisent globalement comme la fonction plot.

Q. 2 Ajouter au programme précédent le code permettant de reproduire la figure. o

10

