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Exercice 1

Soit φ : ra, bs ÝÑ R une fonction.

Q. 1 Montrer que si φ P C2pra, bs;Rq alors @x P ra, br, @h ą 0 tel que px ` hq P ra, bs, on a

dφ

dx
pxq “

φpx ` hq ´ φpxq

h
` Ophq (1.1)

˝

Q. 2 Montrer que si φ P C2pra, bs;Rq alors @x Psa, bs, @h ą 0 tel que px ´ hq P ra, bs, on a

dφ

dx
pxq “

φpxq ´ φpx ´ hq

h
` Ophq (1.2)

˝

Q. 3 Montrer que si φ P C3pra, bs;Rq alors @x Psa, br, @h ą 0 tel que px ` hq P ra, bs et px ´ hq P ra, bs,
on a

dφ

dx
pxq “

φpx ` hq ´ φpx ´ hq

2h
` Oph2q (1.3)

˝

Q. 4 Montrer que si φ P C4pra, bs;Rq alors @x Psa, br, @h ą 0 tel que px ` hq P ra, bs et px ´ hq P ra, bs,
on a

d2φ

dx2
pxq “

φpx ` hq ´ 2φpxq ` φpx ´ hq

h2
` Oph2q (1.4)

˝

Correction

R. 1 On rappelle le développement de Taylor à l’ordre r d’une fonction f P Cr`1pra, bs;Rq

@x P ra, bs, @l P R˚ vérifiant px ` lq P ra, bs,

fpx ` lq “ fpxq `

r
ÿ

k“1

lk

k!
f pkq

pxq ` Oplr`1q (1.5)

où f pkq
pxq “

dkf
dxk pxq.

On peut ici utiliser un développement de Taylor à l’ordre r “ 1 de φ car φ P C2pra, bs;Rq avec l “ h
dans (1.5).
Soient x P ra, bs et h P R˚`, tels que px ` hq P ra, bs (donc nécessairement x P ra, br) on a

φpx ` hq “ φpxq ` hφp1qpxq ` Oph2q

ce qui donne

φp1qpxq “
φpx ` hq ´ φpxq

h
´

1

h
Oph2q

“
φpx ` hq ´ φpxq

h
` Ophq.
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R. 2 On peut ici utiliser un développement de Taylor à l’ordre r “ 1 de φ car φ P C2pra, bs;Rq avec
l “ ´h dans dans (1.5).
On peut ici utiliser un développement de Taylor à l’ordre 2 car φ P C2pra, bs;Rq.
Soient x P ra, bs et h P R˚`, tels que px ´ hq P ra, bs (donc nécessairement x Psa, bs) on a

φpx ´ hq “ φpxq ´ hφp1qpxq ` Oph2q

ce qui donne

φp1qpxq “
φpxq ´ φpx ´ hq

h
`

1

h
Oph2q

“
φpxq ´ φpx ´ hq

h
` Ophq.

R. 3 On peut ici utiliser un développement de Taylor à l’ordre r “ 2 de φ car φ P C3pra, bs;Rq.
Dans la formule (1.3), les termes φpx`hq, φpx´hq apparaissent. Ceci suggère d’utiliser deux développe-
ment de Taylor, l’un en x ` h et l’autre en x ´ h.
Soient x P ra, bs et h P R˚`, tels que px ` hq P ra, bs et px ´ hq P ra, bs (donc nécessairement x Psa, br).
On a alors

φpx ` hq “ φpxq ` hφp1qpxq `
h2

2
φp2qpxq ` Oph3q,

φpx ´ hq “ φpxq ´ hφp1qpxq `
h2

2
φp2qpxq ` Oph3q.

Remarque. Attention ici, il faut bien voir que les O dans les deux formules ne sont
mathématiquement pas forcément identiques! En effet, en revenant aux développe-
ments de Taylor sans O, pour la formule en x ` h, il existe ξ` Psx, x ` hr tel que

Oph3q “
h3

3!
φp3qpξ`q

et pour la formule en x ´ h, il existe ξ´ Psx ´ h, xr tel que

Oph3q “ ´
h3

3!
φp3qpξ´q.

On effectuant la différence entre ces deux équations on obtient:

φpx ` hq ´ φpx ´ hq “ 2hφp1qpxq ` Oph3q

ce qui donne

φp1qpxq “
φpx ` hq ´ φpx ´ hq

2h
`

1

2h
Oph3q

“
φpx ` hq ´ φpx ´ hq

2h
` Oph2q

R. 4 On peut ici utiliser un développement de Taylor à l’ordre r “ 3 de φ car φ P C4pra, bs;Rq.
Dans la formule (1.4), les termes φpx`hq, φpx´hq apparaissent. Ceci suggère d’utiliser deux développe-
ment de Taylor, l’un en x ` h et l’autre en x ´ h.
Soient x P ra, bs et h P R˚`, tels que px ` hq P ra, bs et px ´ hq P ra, bs (donc nécessairement x Psa, br).
On a alors

φpx ` hq “ φpxq ` hφp1qpxq `
h2

2
φp2qpxq `

h3

3
φp3qpxq ` Oph4q,

φpx ´ hq “ φpxq ´ hφp1qpxq `
h2

2
φp2qpxq ´

h3

3
φp3qpxq ` Oph4q.
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On effectuant la somme entre ces deux équations on obtient:

φpx ` hq ` φpx ´ hq “ 2φpxq ` h2 φp2qpxq ` Oph4q

ce qui donne

φp2qpxq “
φpx ` hq ´ 2φpxq ` φpx ´ hq

h2
`

1

h2 Oph4q

“
φpx ` hq ´ 2φpxq ` φpx ´ hq

h2
` Oph2q

˛

Exercice 2

Soit φ : R ÝÑ R une fonction suffisament régulière, x P R et h P R`˚.

Q. 1 Montrer que
dφ

dx
pxq “

´3φpxq ` 4φpx ` hq ´ φpx ` 2hq

2h
` Oph2q (2.6)

˝

Q. 2 Montrer que
dφ

dx
pxq “

3φpxq ´ 4φpx ´ hq ` φpx ´ 2hq

2h
` Oph2q (2.7)

˝

Correction

R. 1 Soit φ une fonction suffisament régulière et h ą 0
Pour celà, on écrit les deux développements de Taylor en x ` h et x ` 2h.
Il existe ξ`

1 Psx, x ` hr tel que

φpx ` hq “ φpxq ` h
dφ

dx
pxq `

h2

2!

d2φ

dx2
pxq `

h3

3!

d3φ

dx3
pξ`

1 q (2.8)

et Il existe ξ`
2 Psx, x ` 2hr tel que

φpx ` 2hq “ φpxq ` p2hq
dφ

dx
pxq `

p2hq2

2!

d2φ

dx2
pxq `

p2hq3

3!

d3φ

dx3
pξ`

2 q (2.9)

L’objectif est d’obtenir, par une combinaison linéaire entre ces deux formules, une nouvelle équation ne
comportant plus de termes en d2φ

dx2 . En effectuant 4 ˆ (2.8) ´ (2.9) on obtient

4φpx ` hq ´ φpx ` 2hq “ 3φpxq ` 2h
dφ

dx
pxq ` 4

h3

3!

d3φ

dx3
pξ`

1 q ´
p2hq3

3!

d3φ

dx3
pξ`

2 q

On en déduit
dφ

dx
pxq “

´3φpxq ` 4φpx ` hq ´ φpx ` 2hq

2h
` Oph2q

R. 2 Soit φ une fonction suffisament régulière et h ą 0.
Pour celà, on écrit les deux développements de Taylor en x ´ h et x ´ 2h.
Il existe ξ´

1 Psx ´ h, xr tel que

φpx ´ hq “ φpxq ´ h
dφ

dx
pxq `

p´hq2

2!

d2φ

dx2
pxq `

p´hq3

3!

d3φ

dx3
pξ´

1 q (2.10)
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et Il existe ξ´
2 Psx ´ 2h, xr tel que

φpx ´ 2hq “ φpxq ` p´2hq
dφ

dx
pxq `

p´2hq2

2!

d2φ

dx2
pxq `

p´2hq3

3!

d3φ

dx3
pξ`

2 q (2.11)

L’objectif est d’obtenir, par une combinaison linéaire entre ces deux formules, une nouvelle équation ne
comportant plus de termes en d2φ

dx2 . En effectuant 4 ˆ (2.10) ´ (2.11) on obtient

4φpx ´ hq ´ φpx ´ 2hq “ 3φpxq ´ 2h
dφ

dx
pxq ` 4

p´hq3

3!

d3φ

dx3
pξ´

1 q ´
p´2hq3

3!

d3φ

dx3
pξ´

2 q

On en déduit
dφ

dx
pxq “

3φpxq ´ 4φpx ´ hq ` φpx ´ 2hq

2h
` Oph2q

˛

Exercice 3

Soit f P C3pra, bs;Rq. On note tn, n P v0, Nw, une discrétisation régulière de ra, bs de pas h. On note
FFF P RN`1 le vecteur défini par Fn`1 “ fptnq, @n P v0, Nw.

Q. 1 a. Déterminer en fonction de h et FFF , un vecteur VVV P RN`1 vérifiant

Vn`1 “ f 1ptnq ` Ophq, @n P v0, Nw.

b. Ecrire une fonction algorithmique, nommée Derive1Ordre1, permettant, à partir du vecteur FFF et de
la discrétisation régulière, de calculer le vecteur VVV précédent.

˝

Q. 2 a. Connaissant uniquement h et le vecteur FFF , déterminer un vecteur WWW P RN`1 vérifiant

WWWn “ f 1ptnq ` Oph2q, @n P v0, Nw

b. Ecrire une fonction algorithmique, nommée Derive1Ordre2, permettant, à partir du vecteur FFF et de
la discrétisation régulière, de calculer le vecteur WWW précédent.

˝

Correction

R. 1 a. On a h “ pb ´ aq{N et tn “ a ` nh, @n P v0, Nw. Par la formule de Taylor, on obtient
respectivement les formules progressives et régressives d’ordre 1 suivantes (voir Lemme ??)

fpt ` hq ´ fptq

h
“ f 1ptq ` Ophq et

fptq ´ fpt ´ hq

h
“ f 1ptq ` Ophq.

On va utiliser ces formules en t “ tn. On note que la formule progressive n’est pas utilisable en
t “ tN (car tN ` h “ b ` h R ra, bs!) et que la formule régressive n’est pas utilisable en t “ t0 (car
t0 ´ h “ a ´ h R ra, bs!). Plus précisement, on a

fptn`1q ´ fptnq

h
“ f 1ptnq ` Ophq, @n P v0, Nv, (3.12)

fptnq ´ fptn´1q

h
“ f 1ptnq ` Ophq, @n Pw0, Nw (3.13)
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On peut alors construire le vecteur VVV en prenant

V1
def
“

fpt1q ´ fpt0q

h
“ f 1pt0q ` Ophq, formule progressive (3.12) avec n “ 0

VN`1
def
“

fptN q ´ fptN´1q

h
“ f 1ptN q ` Ophq, formule régressive (3.13) avec n “ N

et pour les points strictement intérieurs les deux formules sont possible :

Vn
def
“

fptn`1q ´ fptnq

h
“ f 1ptnq ` Ophq, formule progressive (3.12) avec n Pw0, Nv

Vn
def
“

fptnq ´ fptn´1q

h
“ f 1ptnq ` Ophq, formule régressive (3.13) avec n Pw0, Nv

En choisissant par exemple la formule progressive pour les points intérieurs, on obtient en fonction
de FFF et h

V1
def
“

F2 ´ F1

h
“ f 1pt0q ` Ophq

@n Pw0, Nv, Vn
def
“

Fn`1 ´ Fn

h
“ f 1ptnq ` Ophq

VN`1
def
“

FN`1 ´ FN

h
“ f 1ptN q ` Ophq.

b. On représente tout d’abord les vecteurs F et V en Figure 1.

F fpt0q fpt1q . . . fptn´1q . . . fptN´1q fptN q

Fp1q Fp2q Fpnq FpNq FpN ` 1q

V
f 1pt0q

`

Ophq

f 1pt1q

`

Ophq

. . .
f 1ptn´1q

`

Ophq

. . .
f 1ptN´1q

`

Ophq

f 1ptN q

`

Ophq

Vp1q Vp2q Vpnq VpNq VpN ` 1q

Figure 1: Représentation mémoire du vecteur FFF P RN`1 et du vecteur VVV P RN`1.

En utilisant les formules trouvées précédemment, la fonction algorithmique peut s’écrire sous la
forme :
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Algorithme 1 Calcul numérique de dérivées premières d’ordre 1 d’une fonction f définie sur un inter-
valle en utilisant uniquemment les valeurs de f aux points ptnqNn“0 d’une discrétisation régulière de cet
intervalle. Les approximations sont calculées en tous les points de la discrétisation.
Données : FFF : vecteur de RN`1 tel que

Fn`1 “ fptnq, @n P v0, Nw.
h : nombre réel strictement positif.

Résultat : VVV : vecteur de RN`1 tel que
Vn`1 “ f 1ptnq ` Ophq, @n P v0, Nw.

1: Fonction VVV Ð Derive1Ordre1( h,FFF )
2: V p1q Ð pF p2q ´ F p1qq{h
3: Pour n Ð 2 à N faire
4: V pnq Ð pF pn ` 1q ´ F pnqq{h
5: Fin Pour
6: V pN ` 1q Ð pF pN ` 1q ´ F pNqq{h
7: Fin Fonction

D’autres façons de présenter le problème sont possibles mais les données peuvent diffèrer de celles
de l’énoncé. Par exemple une autre fonction algorithmique pourrait être

Algorithme 2 Approximations d’ordre 1 de dérivées premières d’une fonction f définie sur un intervalle
ra, bs en utilisant uniquemment les valeurs de f aux points ptnqNn“0 d’une discrétisation régulière de cet
intervalle. Les approximations sont calculées en tous les points de la discrétisation.
Données : f : f : ra, bs ÝÑ R

a, b : deux réels, a ă b,
N : nombre de pas de discrétisation

Résultat : VVV : vecteur de RN`1 tel que Vn`1 “ f 1ptnq ` Ophq

avec ptnqNn“0 discrétisation régulière de ra, bs.

1: Fonction VVV Ð DeriveOrdre1-v1( f, a, b,N )
2: t Ð DisRegpa, b,Nq Ź fonction retournant la discrétisation régulière...
3: h Ð pb ´ aq{N
4: V p1q Ð pfptp2qq ´ fptp1qq{h
5: Pour n Ð 2 à N faire
6: V pnq Ð pfptpn ` 1qq ´ fptpnqqq{h
7: Fin Pour
8: V pN ` 1q Ð pfptpN ` 1qq ´ fptpNqq{h
9: Fin Fonction

R. 2 a. Du lemme ??, on a la formule centrée d’ordre 2

fpt ` hq ´ fpt ´ hq

2h
“ f 1ptq ` Oph2q.

On va utiliser cette formule en t “ tn. On note que la formule n’est pas utilisable en t “ tN “ b et
t “ t0 “ a. On obtient

f 1ptnq “
fptn`1q ´ fptn´1q

2h
` Oph2q, @n Pw0, Nv. (3.14)

Il reste donc à établir une formule progressive en t0 d’ordre 2 (i.e. une formule utilisant les points
t0, t1, t2, ...) et une formule régressive en tN d’ordre 2 (i.e. une formule utilisant les points tN ,
tN´1, tN´2, ...).

De manière générique pour établir une formule progressive en t d’ordre 2 approchant f 1ptq, on écrit
les deux formules de Taylor aux points t ` h et t ` 2h.
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‚ En t ` h on a

fpt ` hq “ fptq ` hf 1ptq `
h2

2!
f p2q

ptq ` Oph3q. (3.15)

Plus précisément, on a l’existence d’un ξ1 Pst, t ` hr tel que l’on peut remplacer le Oph3q de

(3.15) par
h3

3!
f p3q

pξ1q.

‚ En t ` 2h on a,

fpt ` 2hq “ fptq ` p2hqf 1ptq `
p2hq2

2!
f p2q

ptq ` Oph3q. (3.16)

Plus précisément, on a l’existence d’un ξ2 Pst, t ` 2hr tel que l’on peut remplacer le Oph3q de

(3.15) par
p2hq3

3!
f p3q

pξ2q.

On va utiliser les formules de Taylor avec les restes explicites mais il est tout à fait possible d’utiliser
celles avec les restes sous forme de Oph3q.
L’objectif étant d’obtenir une formule d’ordre 2 en t pour approcher f 1ptq, on va éliminer les termes
en f p2q

ptq en effectuant la combinaison 4 ˆ (3.15) ´ (3.16).
On obtient alors

4fpt ` hq ´ fpt ` 2hq “ 3fptq ` 2hf 1ptq ` 4
h3

3!
f p3q

pξ1q ´
p2hq3

3!
f p3q

pξ2q

et donc

f 1ptq “
´3fptq ` 4fpt ` hq ´ fpt ` 2hq

2h
´ 4

h2

3!
f p3q

pξ1q `
23h2

3!
f p3q

pξ2q

“
´3fptq ` 4fpt ` hq ´ fpt ` 2hq

2h
` Oph2q

Cette dernière formule permet alors l’obtention d’une formule d’ordre 2 en t “ t0 “ a :

f 1pt0q “
´3fpt0q ` 4fpt1q ´ fpt2q

2h
` Oph2q (3.17)

De la même manière pour établir une formule régressive en t d’ordre 2 approchant f 1ptq, on écrit
les deux formules de Taylor aux points t ´ h et t ´ 2h :

‚ En t ´ h on a

fpt ´ hq “ fptq ` p´hqf 1ptq `
p´hq2

2!
f p2q

ptq ` Oph3q, (3.18)

‚ En t ´ 2h on a

fpt ´ 2hq “ fptq ` p´2hqf 1ptq `
p´2hq2

2!
f p2q

ptq ` Oph3q, (3.19)

L’objectif étant d’obtenir une formule d’ordre 2 en t pour approcher f 1ptq, on va éliminer les
termes en f p2q

ptq en effectuant la combinaison 4 ˆ (3.18) ´ (3.19). On obtient alors

4fpt ´ hq ´ fpt ´ 2hq “ 3fptq ´ 2hf 1ptq ` Oph3q

car toute combinaison de Oph3q reste en Oph3q. On obtient donc

f 1ptq “
3fptq ´ 4fpt ´ hq ` fpt ´ 2hq

2h
` Oph2q.

Cette dernière formule permet alors l’obtention d’une formule d’ordre 2 en t “ tN “ b :

f 1ptN q “
3fptN q ´ 4fptN´1q ` fptN´2q

2h
` Oph2q (3.20)

On peut alors construire le vecteur WWW en utilisant les formules (3.14), (3.17) et (3.20) :

W1
def
“

´3fpt0q ` 4fpt1q ´ fpt2q

2h
“ f 1pt0q ` Oph2q, formule progressive (3.17)

WN`1
def
“

3fptN q ´ 4fptN´1q ` fptN´2q

2h
“ f 1ptN q ` Oph2q, formule régressive (3.20)
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et pour les points strictement intérieurs

Wn
def
“

fptn`1q ´ fptn´1q

2h
“ f 1ptnq ` Oph2q, formule centrée (3.14) avec n Pw0, Nv

On obtient alors en fonction de FFF et h

W1
def
“

´3F1 ` 4F2 ´ F3

2h
“ f 1pt0q ` Oph2q

@n Pw0, Nv, Wn
def
“

Fn`1 ´ Fn´1

2h
“ f 1ptnq ` Oph2q

WN`1
def
“

3FN`1 ´ 4FN ` FN´1

2h
“ f 1ptN q ` Ophq.

b. On représente tout d’abord les vecteurs F et W en Figure 2.

F fpt0q fpt1q . . . fptn´1q . . . fptN´1q fptN q

Fp1q Fp2q Fpnq FpNq FpN ` 1q

W
f 1pt0q

`

Oph2q

f 1pt1q

`

Oph2q

. . .
f 1ptn´1q

`

Oph2q

. . .
f 1ptN´1q

`

Oph2q

f 1ptN q

`

Oph2q

Wp1q Wp2q Wpnq WpNq WpN ` 1q

Figure 2: Représentation mémoire du vecteur FFF P RN`1 et du vecteur WWW P RN`1.

En utilisant les formules trouvées précédemment, la fonction algorithmique peut s’écrire sous la
forme :

Algorithme 3 Approximations d’ordre 2 de dérivées premières d’une fonction f définie sur un inter-
valle en utilisant uniquemment les valeurs de f aux points ptnqNn“0 d’une discrétisation régulière de cet
intervalle. Les approximations sont calculées en tous les points de la discrétisation.
Données : FFF : vecteur de RN`1 tel que

Fn`1 “ fptnq, @n P v0, Nw.
h : nombre réel strictement positif.

Résultat : WWW : vecteur de RN`1tel que
Wn`1 “ f 1ptnq ` Oph2q, @n P v0, Nw.

1: Fonction WWW Ð Derive1Ordre2( h,FFF )
2: W p1q Ð p´3 ˚ F p1q ` 4 ˚ F p2q ´ F p3qq{p2 ˚ hq

3: Pour i Ð 2 à N faire
4: W piq Ð pF pi ` 1q ´ F pi ´ 1qq{p2 ˚ hq

5: Fin Pour
6: W pN ` 1q Ð p3 ˚ F pN ` 1q ´ 4 ˚ F pNq ` F pN ´ 1qq{p2 ˚ hq

7: Fin Fonction

D’autres façons de présenter le problème sont possibles mais les données peuvent différer de celles
de l’énoncé. Par exemple une autre fonction algorithmique pourrait être
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Algorithme 4 Approximations d’ordre 2 de dérivées premières d’une fonction f définie sur un intervalle
ra, bs calculées aux points de de la discrétisation régulière de ra, bs avec N pas de discrétisation. Les
approximations sont calculées en tous les points de la discrétisation
Données : f : f : ra, bs ÝÑ R

a, b : deux réels, a ă b,
N : nombre de pas de discrétisation

Résultat : WWW : vecteur de RN`1 tel que Wn`1 “ f 1ptnq ` Oph2q

avec ptnqNn“0 discrétisation régulière de ra, bs.

1: Fonction WWW Ð Derive1Ordre2-v1( f, a, b,N )
2: t Ð DisRegpa, b,Nq Ź fonction retournant la discrétisation régulière...
3: h Ð pb ´ aq{N
4: W p1q Ð p´3 ˚ fptp1qq ` 4 ˚ fptp2qq ´ fptp3qqq{p2 ˚ hq

5: Pour i Ð 2 à N faire
6: W piq Ð pfptpi ` 1qq ´ fptpi ´ 1qqq{p2 ˚ hq

7: Fin Pour
8: W pN ` 1q Ð p3 ˚ fptpN ` 1qq ´ 4 ˚ fptpNqq ` fptpN ´ 1qqq{p2 ˚ hq

9: Fin Fonction

˛

Exercice 4

On suppose écrites les fonctions Matlab/Octave Derive1Order1 et Derive1Order2 correspondant aux
fonctions algorithmiques de l’exercice 3. Leurs syntaxes sont les suivantes:

V=Derive1Ordre1(h,F) et W=Derive1Ordre2(h,F)

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7
0

0.01

0.02

0.03

0 1 2 3 4 5 6 7
0

0.5

1

1.5
10 -3

Figure 3: Avec fpxq “ sinpxq, a “ 0, b “ 2π, N “ 100, à gauche, les différentes dérivées, à droite les
erreurs commises par les deux fonctions.

Q. 1 Ecrire un programme Matlab/Octave permettant de reproduire ces deux graphiques. ˝

Exercice 5
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Voici une figure mettant en évidence l’ordre des méthodes utilisées dans les fonctions Derive1Order1 et
Derive1Order2 de l’exercice 3.

10 -2 10 -1
10 -5

10 -4

10 -3

10 -2

10 -1

On suppose écrites les fonctions Matlab/Octave Derive1Order1 et Derive1Order2 correspondant aux
fonctions algorithmiques de l’exercice 3. Leurs syntaxes sont les suivantes:

V=Derive1Ordre1(h,F) et W=Derive1Ordre2(h,F)

Q. 1 a. Ecrire un programme Matlab/Octave permettant de calculer l’ensemble des données néces-
saires à la représentation graphique de l’ordre des deux méthodes (voir figure).

b. A l’aide de ces données, calculer numériquement l’ordre des deux méthodes.
˝

Les commandes Matlab/Octave permettant de représenter des données en échelles logarithmique sont
loglog, semilogx et semilogy. Elles s’utilisent globalement comme la fonction plot.

Q. 2 Ajouter au programme précédent le code permettant de reproduire la figure. ˝
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