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Exercices associés au cours Méthodes Numériques I1

Chapitre 2: Dérivation numérique
version du 2026/02/10 a 06:22:36

EXERCICE 1

Soit ¢ : [a,b] — R une fonction.
Q. 1 Montrer que si ¢ € C*([a,b]; R) alors Y € [a,b], Vh > 0 tel que (x + h) € [a,b], on a
—¢(z)

~—

d_go(w): o(x+h

e 5 +O(h) (L.1)

R. 1 On rappelle le développement de Taylor & I'ordre r d’une fonction f e C"*1([a,b]; R)
Va € [a,b], V(I € R* vérifiant (z + ) € [a, b],

k
fa+D) = f@)+ Y 5 rPE) + o) (12)
k=1 """
. k
o fM(z) = LL(x).
On peut ici utiliser un développement de Taylor & I'ordre r = 1 de ¢ car ¢ € C*([a,b];R) avec [1= h
dans (1.2).
Soient z € [a,b] et h € R**, tels que (z + h) € [a,b] (donc nécessairement z € [a, b[) on a
o(z +h) = p(z) + heW(z) + O(h?)

ce qui donne

50(1)(11‘) _ QO(SC + h})L — 99(1‘) _ %0(/12)
p(z +h) — p(x)
= ; +O(h)

Q. 2 Montrer que si ¢ € C*>([a,b]; R) alors Yz €]a,b], YVh > 0 tel que (x — h) € [a,b], on a

dp, () —p(x—h)
(@) = —————+ 0(h) (1.3)

R. 2 On peut ici utiliser un développement de Taylor a I'ordre » = 1 de ¢ car ¢ € C%([a,b];R) avec
[1= —h dans dans (1.2).

On peut ici utiliser un développement de Taylor & I'ordre 2 car ¢ € C%([a,b]; R).

Soient x € [a,b] et h € R**, tels que (z — h) € [a,b] (donc nécessairement z €]a, b]) on a

pla —h) = p(x) = b () + O(h)

ce qui donne

_ plx) - i(w —h) oh).



Q. 3 Montrer que si p € C3([a,b];R) alors Vx €]a,b[, Yh > 0 tel que (x + h) € [a,b] et (x — h) € [a,b],
on a

dy ple+h)—plx—~h
oy _ pla+h) =l h)

dr 2h + o) (14)

o

R. 3 On peut ici utiliser un développement de Taylor a l'ordre 7 = 2 de ¢ car ¢ € C3([a, b]; R).
Dans la formule (1.4), les termes ¢(z + h), ¢(x — h) apparaissent. Ceci suggere d’utiliser deux développe-
ment de Taylor, I'un en x + h et 'autre en z — h.
Soient x € [a,b] et h € R*T, tels que (z + h) € [a,b] et (x — h) € [a,b] (donc nécessairement = €la, b|).
On a alors

2

olx+h) = o) +heM(z)+ o e (z) + O(h?),
olx—h) = o) —heM(z)+ %2 0@ (z) + O(h®).

Remarque. Attention ici, il faut bien voir que les @ dans les deux formules ne sont
mathématiquement pas forcément identiques! En effet, en revenant aux développe-
ments de Taylor sans O, pour la formule en x + h, il existe &, €]x,x + h[ tel que

3

h
o) = 5 ¢V (€1)

et pour la formule en x — h, il existe {_ €|x — h, x| tel que

oh?) = —Z—T 3.

On effectuant la différence entre ces deux équations on obtient:
oz + h) — o(z — h) = 2h D (z) + O(h?)

ce qui donne

90(1)(37) _ @(‘r + h)2_h<p(x — h’)

o(x +h) —p(x—h) 2
= 57 + O(h?)

1 3
+ﬁo(h)

Q. 4 Montrer que si p € C*([a,b]; R) alors Vx €]a,b[, Yh > 0 tel que (z + h) € [a,b] et (x — h) € [a,b],

on a

d? h)—2 —h
? () = p(x +h) siL(Qx) tol@—h) o(h?) (1.5)

o

R. 4 On peut ici utiliser un développement de Taylor & Uordre r = 3 de ¢ car ¢ € C*([a,b]; R).

Dans la formule (1.5), les termes @(z + h), @(x — h) apparaissent. Ceci suggére d’utiliser deux développe-
ment de Taylor, I'un en = + h et 'autre en x — h.

Soient x € [a,b] et h € R*", tels que (z + h) € [a,b] et (x — h) € [a,b] (donc nécessairement x €]a, b[).
On a alors

px+h) = @) +heW(z)+ h; @) (@) + %Bw@ (z) + O(h"),
px—h) = @(@)—heW(z)+ h; @) () - %3@(3) () + O(h").



On effectuant la somme entre ces deux équations on obtient:
(@ +h) + p(a — h) = 2p(x) + h? 9@ () + O(h*)
ce qui donne

(@ +h)—2p(@) +p(z—h) 1

0@ () 5 + o3 o(hh)
_ oz +h) — 24,2(23:) +@(x —h) +o0?)

EXERCICE 2

Soit ¢ : R — R une fonction suffisament réguliére, x € R et h € RT*.

Q. 1 Montrer que

d_gp(m) _ —3p(x) +4p(x + h) — o(z + 2h)

I 5 + O(h?) (2.6)

R. 1 Soit ¢ une fonction suffisament réguliére et h > 0
Pour cela, on écrit les deux développements de Taylor en x + h et = + 2h.
I existe & €]z, z + h[ tel que

2 72 3 73
pla+h) = pla) + R () + 5 T2 ) + B T e (27)

et Il existe & €]z, x + 2h[ tel que

9 (@) + GO ) 4 I L e 25)

plz +2h) = p(z) + (2h) (2 51 dp?

L’objectif est d’obtenir, par une combinaison linéaire entre ces deux formules, une nouvelle équation ne
comportant plus de termes en ¢ En effectuant 4 x (2.7) — (2.8) on obtient

dz? -
d h3 d3p 2h)3 d?
do(z + h) — p(z + 2h) = 3p(z) + 2h£(x) +4 3 g (51 ) — ( ) Eﬁ(ﬁ;)

On en déduit p 30(2) + i h) (@ + 2h)

@) —3p(x plr + — plx 2

dx( x) = o + O(h?)
Q. 2 Montrer que

d_so(x) _ 3e(@) —dp(@ —h) + oz —2h) o) (2.9)

2h




R. 2 Soit ¢ une fonction suffisament réguliére et h > 0.
Pour cela, on écrit les deux développements de Taylor en x — h et © — 2h.
1l existe & €]z — h, z[ tel que

_h)2 42 _1)\3 g3
ole—h) = pla) ~n % ) + Ly COEDe o (210)
et Il existe & €]z — 2h, x| tel que
_ 2 72 _ 3 73
ple—2m) = () + (~20) 2 (a) ¢ L2 ) CHVE0 e (2.11)

L’objectif est d’obtenir, par une combinaison linéaire entre ces deux formules, une nouvelle équation ne

comportant plus de termes en ‘;27“2”. En effectuant 4 x (2.10) — (2.11) on obtient

(=h)* d*¢ (=2h)° d*p

do(x — h) — oz — 2h) = 3p(x) — th—(p(:c) +4 3 ﬁ(ff) ~ @(52_)

dx

On en déduit
dj(x) _ 3o(x) —4p(x — h) + p(x — 2h)

2
dx oh + o)




EXERCICE 3

Soit f € C3([a,b];R). On note t*, n € [0, N], une discrétisation réguliére de [a,b] de pas h. On note
F e RN+ le vecteur défini par F, 41 = f(t"), Vn € [0, N].

Q.1 a. Déterminer en fonction de h et F, un vecteur V.e RN+ vérifiant

Vosr = f'(t") + O(h), VYne[0,N].

b. Ecrire une fonction algorithmique, nommée Derivel Ordrel, permettant, a partir du vecteur F' et de
la discrétisation réguliére, de calculer le vecteur V' précédent.

R.1 a Onah=(b—a)/N ett" = a+nh, Vn € [0,N]. Par la formule de Taylor, on obtient
respectivement les formules progressives et régressives d’ordre 1 suivantes (voir Lemme ?7)

ft+h) = f(t) f(t) = ft=h)

/ S )+ o).

= f'(t) + O(h) et
On va utiliser ces formules en ¢ = ¢t". On note que la formule progressive n’est pas utilisable en
t =tV (car tN + h =b+ h ¢ [a,b]!) et que la formule régressive n’est pas utilisable en t = % (car
t —h=a—h¢[a,b]!). Plus précisement, on a

w = f'(t")+0O(h), Vne[0,N[, (3.12)
w — F(t") +0(h), Yne]o,N] (3.13)

On peut alors construire le vecteur V' en prenant

1y _ £(40
Ve w = f'(t° + o(h), formule progressive (3.12) avec n =0

def f(tN) - f(tNil)

VNi1 = " = f'(t") + o(h), formule régressive (3.13) avec n = N

et pour les points strictement intérieurs les deux formules sont possible :

a fEFY) — F()

Vi, = . = f'(t") + O(h), formule progressive (3.12) avec n €]0, N[
ny __ n—1
v, “ % = f'(t") + O(h), formule régressive (3.13) avec n €])0, N|

En choisissant par exemple la formule progressive pour les points intérieurs, on obtient en fonction

de F et h
e i = 1) + o)
Vne]o, N[, V, & @ = f'(t") + o(h)
Vivsr 2 TN = /() + O(h).

b. On représente tout d’abord les vecteurs F et 'V en Figure 1.



F(1) F(2) F(n) F(N) F(N +1)
F1(t°) F1(th) frenh F1EN F1(EY)
A% - + + +
O(h) O(h) O(h) O(h) O(h)
V(1) V(2) V(n) V(N) V(N +1)

Figure 1: Représentation mémoire du vecteur F € RV*! et du vecteur V e RV +1,

En utilisant les formules trouvées précédemment, la fonction algorithmique peut s’écrire sous la
forme :

Algorithme 1 Calcul numérique de dérivées premiéres d’ordre 1 d’une fonction f définie sur un inter-
valle en utilisant uniquemment les valeurs de f aux points (¢"))_, d’une discrétisation réguliére de cet
intervalle. Les approximations sont calculées en tous les points de la discrétisation.

Données : F : vecteur de RV*! tel que
Foi1 = f(t"), Vne [0, N].
h : nombre réel strictement positif.
Résultat : V :  vecteur de RV*! tel que

Vier = f/(t") + O(h), ¥n € [0, NT].

: Fonction V <« DerivelOrdrel( h,F )
V(1) < (F(2) - FQ1))/h
Pour n < 2 & N faire

Vin) < (F(n+1)— F(n))/h
Fin Pour
V(N+1)— (F(N+1)—F(N))/h
: Fin Fonction

NP g w

D’autres fagons de présenter le probléme sont possibles mais les données peuvent différer de celles
de I’énoncé. Par exemple une autre fonction algorithmique pourrait étre

Algorithme 2 Approximations d’ordre 1 de dérivées premiéres d’'une fonction f définie sur un intervalle
[a,b] en utilisant uniquemment les valeurs de f aux points (t")Y_, d’une discrétisation réguliere de cet
intervalle. Les approximations sont calculées en tous les points de la discrétisation.

Données : f filab] — R
a,b . deux réels, a < b,
N nombre de pas de discrétisation
Résultat : V vecteur de RN+ tel que Vi, 41 = f/(t") + O(h)

avec (t")N_, discrétisation réguliére de [a, b].

1: Fonction V « DeriveOrdrel-vl( f,a,b, N )
2:  t < DisReg(a,b, N) = fonction retournant la discrétisation réguliére...
33 h<«(b—a)/N

4 V() < (f(2) - f(tQ))/h
5. Pour n < 2 a N faire
6 Vi(n) < (f(t(n+1)) = f(t(n)))/h

7. Fin Pour

8 V(N+1)<— (fE(N+1))—= ft(N))/h
9:

Fin Fonction




Q. 2 a. Connaissant uniquement h et le vecteur F, déterminer un vecteur W € RN+ vérifiant
W, =ft")+0((h*, VYnel0,N]

b. Ecrire une fonction algorithmique, nommée Derivel Ordre2, permettant, a partir du vecteur F' et de
la discrétisation réguliere, de calculer le vecteur W précédent.

R. 2 a. Du lemme 77, on a la formule centrée d’ordre 2
ft+h)—f{t—h)
2h

On va utiliser cette formule en ¢ = ¢™. On note que la formule n’est pas utilisable en t = tV = b et
t =t = a. On obtient

= f'(t) + O(h?).

£ = f(tnﬂ);hf(tn*l) +0h?), ¥nelo, N[ (3.14)

Il reste donc & établir une formule progressive en t° d’ordre 2 (i.e. une formule utilisant les points

0, t1, #2, ...) et une formule régressive en t" d’ordre 2 (i.e. une formule utilisant les points %,
V=L N=2 0 ).

De maniére générique pour établir une formule progressive en t d’ordre 2 approchant f/(t), on écrit
les deux formules de Taylor aux points t + h et ¢t + 2h.

e Ent+hona )
h

Ft+h) = f#&) + hf' () + o f20) + ). (3.15)

Plus précisément, on a Pexistence d'un &; €]t,t + h[ tel que Pon peut remplacer le @(h3) de

h3
(3.15) par o FO&).
e Ent+ 2h on a,
/ (2h)* (2 3
ft+2h) = f(t) + (2h)f'(t) + N ) + o). (3.16)

Plus précisément, on a I'existence d’un &, €]t,t + 2h[ tel que 1'on peut remplacer le O(h3) de
2h)3
(3.15) par 2 19 ().

On va utiliser les formules de Taylor avec les restes explicites mais il est tout & fait possible d’utiliser
celles avec les restes sous forme de O(h?).

L’objectif étant d’obtenir une formule d’ordre 2 en ¢ pour approcher f/(t), on va éliminer les termes
en fP(t) en effectuant la combinaison 4 x (3.15) — (3.16).

On obtient alors

, W) (2h)* (3
A5+ h) = F(E+2h) = 31(0) + 20 (1) + 457 1D (€) - S5 1P (@)
et donc
_ _ 2 31,2
iy = SBLOPACLNZTC) _\F o)+ 2 19
=3f(t) +4f(t+h)— f(t+2h)

_ 2
N 2h +0()

Cette derniére formule permet alors I'obtention d’une formule d’ordre 2 en t =t = a :

—3f(t°) +4f(t") — f(£)
2h

(%) = + O0(h?) (3.17)

De la méme maniére pour établir une formule régressive en t d’ordre 2 approchant f’(t), on écrit
les deux formules de Taylor aux points t — h et t — 2h :



e Ent—hona

RV
£l h) = £0) + (h 70 + S 1)+ o), (3.18)
e Ent—2hona
B / (=2h)% o) 3
Flt—20) = 1) + (=20 (1) + o fA )+ O(h), (3.19)

L’objectif étant d’obtenir une formule d’ordre 2 en ¢ pour approcher f'(t), on va éliminer les
termes en f(?(t) en effectuant la combinaison 4 x (3.18) — (3.19). On obtient alors

Af(t —h) — f(t —2h) = 3f(t) — 2hf'(t) + O(h®)
car toute combinaison de @(h?) reste en @(h*). On obtient donc

Py = HOYODLI=2) oo

Cette derniére formule permet alors obtention d’une formule d’ordre 2 en ¢t =tV = b :

Ny _ 4 f(4N-1 N—2
£y = 3f(tY) 4f(t2h )+ f(ET) +0h?) (3.20)

On peut alors construire le vecteur W en utilisant les formules (3.14), (3.17) et (3.20) :

W, = 3 42{1(#) A = f'(t° + ©(h?), formule progressive (3.17)
Wiy & Bf(N) —4f(tV 1) + f(EV?) = f'(t") + 0o(h?), formule régressive (3.20)

2h

et pour les points strictement intérieurs

t’n+1 o tnfl
w, o 1 )%f( ) _ @m0, formule centrée (3.14) avee n €]0, N

On obtient alors en fonction de F' et h

—3F, +4F, — F;

L= o = f'(t°) + O(h?)
P S
Vn €]o, N[, W, & % = F/(t") + O(h?)
d:ef 3FN+1 - 4FN + FN_l

WN+1 = f/(tN) + O(h)

2h

b. On représente tout d’abord les vecteurs F et W en Figure 2.

F G fth) - fanh a N f@Y)
F(1) F(2) F(n) F(N) F(N +1)
£1t°) frth) ) N f1N)

w + + + + +
O(h?) O(h?) O(h?) O(h?) O(h?)
w(1) W(2) W (n) W(N)  W(N+1)

Figure 2: Représentation mémoire du vecteur F € RV*! et du vecteur W e RV+1.



En utilisant les formules trouvées précédemment, la fonction algorithmique peut s’écrire sous la
forme :

Algorithme 3 Approximations d’ordre 2 de dérivées premiéres d’une fonction f définie sur un inter-
valle en utilisant uniquemment les valeurs de f aux points (¢"))_, d'une discrétisation réguliére de cet
intervalle. Les approximations sont calculées en tous les points de la discrétisation.

Données : F : vecteur de RV*! tel que
F,i1 = f(t"), Vn e [0, N].
h : nombre réel strictement positif.
Résultat : W :  vecteur de RV 1tel que

Wai1 = f'(t") + O(h?), ¥n € [0, N]J.

1: Fonction W « DerivelOrdre2( h, F')
W(1) — (=3 % F(1) + 4% F(2) — F(3))/(2 x h)
Pour i < 2 a N faire
W) «— (Fi+1)—=F(i—1))/(2h)
Fin Pour
W(IN+1)«— B«F(N+1)—4«F(N)+ F(N —1))/(2*h)
: Fin Fonction

D’autres fagons de présenter le probléme sont possibles mais les données peuvent différer de celles
de I’énoncé. Par exemple une autre fonction algorithmique pourrait étre

Algorithme 4 Approximations d’ordre 2 de dérivées premiéres d’une fonction f définie sur un intervalle
[a,b] calculées aux points de de la discrétisation réguliere de [a,b] avec N pas de discrétisation. Les
approximations sont calculées en tous les points de la discrétisation

Données : f o filab] — R
a,b : deux réels, a < b,
N : nombre de pas de discrétisation
Résultat : W : vecteur de RV tel que W, 11 = f/(t") + O(h?)

avec (t")N_, discrétisation réguliére de [a, b].

1: Fonction W « DerivelOrdre2-v1( f,a,b, N )
2:  t < DisReg(a, b, N) = fonction retournant la discrétisation réguliére...
3 h—(b-a)/N

4 W(L) < (=3= f(t(1) + 4= f(t(2)) = f((3)))/(2 % h)
5. Pour i« 2 a N faire
6 W(i) < (f(t(+ 1)) = f(t( —1)))/(2 % h)

7 Fin Pour

8 W(N+1)—B=f(t(N+1))—4=ft(N))+ f(t(N—=1)))/(2=h)
9: Fin Fonction

EXERCICE 4

On suppose écrites les fonctions Matlab/Octave DerivelOrderl et DerivelOrder2 correspondant aux
fonctions algorithmiques de l’exercice 3. Leurs syntaxes sont les suivantes:

V=DerivelOrdrel(h,F) et W=DerivelOrdre2(h,F)



h=2m/100 Erreur DerivelOrdrel : b = 2r/100
T T T T T

15 T 0.03 |
0.02 b
1 1k
0.01 1
05 1
0
0 1 2 3 4 5 6 7
. x
10 Erreur Derivel Ordre2 : h = 27/100
ob 1 1s T T T T
i 1
0.5 - 4 é
05F 1
. . . . . . o . . . . . .
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
x x

Figure 3: Avec f(x) = sin(z), a = 0, b = 2w, N = 100, & gauche, les différentes dérivées, a droite les
erreurs commises par les deux fonctions.

Q. 1 Ecrire un programme Matlab/Octave permettant de reproduire ces deux graphiques. o
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EXERCICE 5

Voici une figure mettant en évidence l'ordre des méthodes utilisées dans les fonctions DerivelOrderl et
DerivelOrder2 de ’exercice 3.

Ordres des méthodes de dérivation

10t - . |

=—— DerivelOrdrel (0.99986)
=—©— DerivelOrdre2 (1.99941) | |

107!

On suppose écrites les fonctions Matlab/Octave DerivelOrderl et DerivelOrder2 correspondant aux
fonctions algorithmiques de l’exercice 3. Leurs syntaxes sont les suivantes:

V=DerivelOrdrel(h,F) et W=DerivelOrdre2(h,F)

Q.1 a. Ecrire un programme Matlab/Octave permettant de calculer 'ensemble des données néces-
saires a la représentation graphique de l'ordre des deux méthodes (voir figure).

b. A laide de ces données, calculer numériquement [’ordre des deux méthodes.
]

Les commandes Matlab/Octave permettant de représenter des données en échelles logarithmique sont
loglog, semilogx et semilogy. Elles s’utilisent globalement comme la fonction plot.

Q. 2 Ajouter au programme précédent le code permettant de reproduire la figure. o
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