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Exercice 1

Pour chacune des E.D.O. suivantes écrire le problème de Cauchy associé

paq

"

x2
ptq ` αx1

ptq ` β cospxptqq “ sinptq, t Ps0, 2πs

xp0q “ 0, x1
p0q “ 1.

pbq

$

&

%

LCv2
ptq `

ˆ

L

R2

` R1C

˙

v1
ptq `

ˆ

R1

R2

` 1

˙

vptq “ e, t Ps0, 100s

vp0q “ 0, v1
p0q “ 0.

pcq

"

x2
ptq “ µp1 ´ x2

ptqqx1
ptq ´ xptq, t Ps0, 10s

xp0q “ 1, x1
p0q “ ´1.

pdq

"

yp3q
ptq ´ cosptqyp2q

ptq ` 2 sinptqyp1q
ptq ´ yptq “ 0, t Ps0, T s

yp0q “ u0, yp1q
p0q “ v0, yp2q

p0q “ w0.

peq

$

&

%

@t Ps0, T s, x2
1ptq ´ 2x1

2ptq ` 3x1
1ptq ` 4x1ptqx2ptq “ sinptq,

x2
2ptq ` 3x1

1ptq ´ 2x1
2ptq ´ 3x1ptqx2ptq “ cosptq,

x1p0q “ 0, x1
1p0q “ ´1, x2p0q “ 1, x1

2p0q “ ´2.

Exercice 2

Déterminer le problème de Cauchy associé au modèle du Brusselator simplifié :

pBq

"

X 1ptq “ 1 ` αX2ptqY ptq ´ pβ ` 1qXptq
Y 1ptq “ ´αX2ptqY ptq ` βXptq

avec C.I. Xp0q “ X0 et Y p0q “ Y0.

Exercice 3

Déterminer le problème de Cauchy associé au modèle du pendule pesant simplifié :

pPq θp2q
ptq `

g

L
sinpθptqq “ 0.
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avec C.I. θp0q “ θ0 et θ1p0q “ θ1
0.

Exercice 4

On veut résoudre numériquement le problème pPq suivant : trouver y telle que

pPq

"

y1ptq “ cosptq ` 1, @t P r0, 4πs

yp0q “ 0.

dont la solution exacte est yptq “ sinptq ` t.
On rappelle le schéma d’Euler progressif pour la résolution d’un problème de Cauchy

pSq

"

yrn`1s “ yrns ` hfptn, yrnsq,
yr0s donné.

avec ptnqNn0 discrétisation régulière de l’intervalle r0, 4πs avec N pas de discrétisation.

Q. 1 Expliquer en détail comment utiliser le schéma d’Euler progressif pour résoudre le
problème pPq en précisant entre autres les données, les inconnues, les dimensions des
variables, lien entre yrn`1s et la fonction y, ... ˝

Q. 2 Soit a, b, a ă b deux réels. Ecrire une fonction DisReg retournant une discrétisation
régulière de l’intervalle ra; bs avec N pas de discrétisation. ˝

Q. 3 Ecrire une fonction redEUPsca retournant l’ensemble des couples ptn, yrn`1sqNn“0 cal-
culés par le schéma d’Euler progressif. ˝

Q. 4 Ecrire un algorithme complet de résolution de pPq par le schéma d’Euler progressif.
˝

Exercice 5

Soit le problème de Cauchy vectoriel
"

yyy1ptq “ fffpt, yyyptqq, @t P rt0, t0 ` T s,
yyypt0q “ yyy0 P Rm,

avec fff : rt0, t0 ` T s ˆRm ÝÑ Rm. On souhaite écrire une fonction algorithmique redE-
UPVec permettant de résoudre ce problème de Cauchy (vectoriel) par le schéma vectoriel
explicite d’Euler progressif

"

yyyrn`1s “ yyyrns ` hfffptn, yyyrnsq, @n P v0, N ´ 1w

yyyr0s “ yyy0

avec ptnqNn“0 la discrétisation régulière de rt0, t0 ` T s avec N pas de discrétisation et

yyyrns “

¨

˚

˝

y
rns

1
...

y
rns
m

˛

‹

‚

et yyyrnsq « yyyptnq. Cette fonction devra retourner l’ensemble des tn et des yyyrns

pour nv0, Nw.
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Q. 1 a. Rappeler précisement les données du problème de Cauchy vectoriel.

b. Quelles sont les données de la fonction algorithmique redEUPVec en précisant le type
et la dimension pour chacune?

c. Quelles sont les sorties/résultats de la fonction algorithmique redEUPVec en pré-
cisant le type et la dimension pour chacun?

˝

On rappelle l’écriture simplifiée d’accès aux colonnes d’une matrice décrit en section ??

Algorithmique
fonction version simplifiée Description mathématique
uuu Ð getMatColpA, jq uuu Ð Ap:, jq uuu P Rm est déterminé par uuui “ Ai,j, @i P v1, nw

A Ð setMatColpA,uuu, jq Ap:, jq Ð uuu la colonne j de A est remplacée par uuu P Rm

et on a Ai,j “ uuui, @i P v1, nw.

Table 1: Accès algorithmique aux colonnes d’une matrice A P Mm,npRq décrit en sec-
tion ??

Q. 2 Ecrire la fonction algorithmique redEUPVec permettant de résoudre ce problème
de Cauchy (vectoriel) par le schéma explicite d’Euler progressif. On utilisera l’écriture
algorithmique simplifiée d’accès aux éléments d’une matrice (voir Table 1). ˝

Q. 3 Ecrire la fonction algorithmique redEUPVecfun permettant de résoudre ce problème
de Cauchy (vectoriel) par le schéma explicite d’Euler progressif. On utilisera l’écriture
algorithmique avec fonctions pour l’accès aux éléments d’une matrice (voir Table 1). ˝

Exercice 6

Soit l’équation différentielle ordinaire linéaire du troisième ordre avec conditions initiales
données par

p1 ` t ` t2q yp3qptq ` p3 ` 6tq yp2qptq ` 6 yp1qptq “ 6t, @t P r0, T s,
yp0q “ α, yp1qp0q “ β, yp2qp0q “ γ.

Ici ypkq note la dérivée k-ième de y.
Pour cette EDO, il existe une unique solution donnée par

yptq “
t4 ` 2At2 ` 4Bt ` 4C

4 pt2 ` t ` 1q

avec pA,B,Cq P R3 vérifiant

C “ α, B ´ C “ β et A ´ 2B “ γ.

On a aussi

yp1q
ptq “

t3 ` At ` B

t2 ` t ` 1
´

pt4 ` 2At2 ` 4Bt ` 4Cqp2 t ` 1q

4 pt2 ` t ` 1q
2

yp2q
ptq “

3 t2 ` A

t2 ` t ` 1
´

2 pt3 ` At ` Bqp2 t ` 1q

pt2 ` t ` 1q
2 `

pt4 ` 2At2 ` 4Bt ` 4Cqp2 t ` 1q
2

2 pt2 ` t ` 1q
3 ´

t4 ` 2At2 ` 4Bt ` 4C

2 pt2 ` t ` 1q
2 .
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Q. 1 Déterminer le problème de Cauchy vectoriel associé à cette EDO ˝

Dans la suite, on prendra T “ 10, α “ 6, β “ ´5 et γ “ ´2.

Q. 2 Ecrire un programme permettant de résoudre numériquement le problème de Cauchy
associé à cette EDO à l’aide de la fonction algorithmique rttt,Ys Ð redEUPvecpf, t0, T, Y 0, Nq

(voir Exercice précédent). ˝

On suppose que notre language algorithmique dispose d’une fonction graphique plotpX, Y q

reliant par des segments les points successifs
`

Xp1q, Y p1q
˘

,
`

Xp2q, Y p2q
˘

, . . . ,
`

Xpendq, Y pendq
˘

les tableaux X et Y ayant même longeurs et correspondent respectivement aux tableaux
des abscisses et des ordonnées.
On pourra utiliser la version simplifiée du langage algorithmique.

Q. 3 Donner les commandes permettant, après avoir utilisé le programme algorithmique
précédent, de représenter graphiquement les approximations obtenues par le schéma, de

`

yptnq
˘N

n“0
,

`

yp1q
ptnq

˘N

n“0
et

`

yp2q
ptnq

˘N

n“0

˝

Q. 4 Ecrire un programme algorithmique permettant de représenter graphiquement les
solutions exactes aux points de discrétisation, c’est à dire

`

yptnq
˘N

n“0
,

`

yp1q
ptnq

˘N

n“0
et

`

yp2q
ptnq

˘N

n“0

˝

Q. 5 Ecrire un programme algorithmique permettant de représenter graphiquement les
erreurs numériques commises en valeurs absolues par le schéma pour les approximations
de

`

yptnq
˘N

n“0
,

`

yp1q
ptnq

˘N

n“0
et

`

yp2q
ptnq

˘N

n“0

˝
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