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EXERCICE 1

Pour chacune des E.D.O. suivantes écrire le probléme de Cauchy associé
)+ ax'(t) + B cos(z(t)) = sin(t), t €]0,27]
z(0) =0, 2’ ) =1
LCV"(t) + (— + Ry ) "(t) + <— + 1) v(t) = e, t €]0,100]
- 07 U/( )
) _

@ { 2
{ i o i— )m:(t)_)f'(t) —z(t), t€]0,10]
o]

Y@ (t) — cos(t)y P (t) + 2sin(t)yM (t) — y(t) = 0, t €]0,T]

(0) = ug, yV(0) = vy, y@(0) =w

=)

vt €]0,T7, xl(t) 225 (t) 4+ 32 (t) + 4a1(t)xo(t) = sin(t),
() + 3y (t) — 2x5(t) — 3z1(¢)xo(t) = cos(t),

1(0)

~

0, 27(0) = —1, z2(0) = 1, 4(0) = —2.
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Correction

(a) C’est une E.D.O. d’ordre 2. Pour écrire le probléme de Cauchy assosicé, on écrit
I'E.D.O. sous la forme d'un systéme de 2 E.D.O. d’ordre 1 (voir Proposition ?7) en

prenant m = 2 et en posant
w0 (24) - (1)
2'(t) 2'(t)

y(t) = (ac”(t)) N (—aaz’(t) — Beos(z(t)) —i—sin(t))
- (—ayQ(t) - 535581 (1) + Sin(t)> = f(ty(t))

Le probleme de Cauchy associé est donc

On a alors
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trouver la fonction y : [0, 27r] — R? vérifiant

y(t) = f(ty(t), vtelo,2n]
y(0) = ((1)) € R?
f [0,27] x R? — TR?
(t.2) 7 (—oz22 - 60082(21) + sin(t)>

(b) Pour cette E.D.O. on suppose les paramétres physiques L, C, Ry et Ry donnés. C’est

une E.D.O. d’ordre 2. Pour écrire le probleme de Cauchy assosicé, on écrit I’'E.D.O.
sous la forme d’un systéme de 2 E.D.O. d’ordre 1 (voir Proposition ?7) en prenant

m = 2 et en posant
mw£@£D2<§g>

On a alors
(YN v'(t)
v = (v”(t)) - (% (= (& + ROW(B) - (2 + 1)v(t)>>
2(t)
= (i ke + B0 - 38+ D) =160

Le probléme de Cauchy associé est donc

trouver la fonction y : [0,100] — R? vérifiant

y(t) = f(ty()), vte[0,100]
y(0) = (8)€R2
avec
f : [0,100] x R? — R?
09 = (s 1)

Pour cette E.D.O. on suppose le parameétre g donné. C’est une E.D.O. d’ordre 2.
Pour écrire le probléeme de Cauchy assosicé, on écrit 'E.D.O. sous la forme d’un
systéme de 2 E.D.O. d’ordre 1 (voir Proposition ??) en prenant m = 2 et en posant

0= () = (710

On a alors

Ya(t)

(u(l — i (1)y2(t) — (t)> = ft,y(1))
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Le probléme de Cauchy associé est donc

trouver la fonction y : [0, 10] — R? vérifiant
y'(t) = fty(t)), vielo,10]
y(0) = (_11) € R?

f : [0,10] x R? — R?
z
(t,2) o (M(l - 2’%2)22 - 2’1)

(d) Pour cette E.D.O. on suppose les paramétres T, ug, vy et wy donnés. C’est une
E.D.O. d’ordre 3. Pour écrire le probléme de Cauchy assosicé, on écrit I'E.D.O.
sous la forme d’'un systéme de 3 E.D.O. d’ordre 1 (voir Proposition ??) en prenant
m = 3 et en posant

avec

Yi(t) y(t)
Y(t)= [ Ya(t) | = [ v()
Y3(t) y"(t)
On a noté ici Y au lieu de y pour éviter les confusions! On a alors
y'(t) y'(t)
Yt = [y®@@)]= y(t)
y@ (1) cos(t)y? (t) — 2sin(t)yV (1) + y(t))
Ya(t)
= Y3(t) = f(tY (1))

cos(t)Y3 (t) — 2sin(t)Ya(t) + Yi (1))

Le probléme de Cauchy associé est donc

trouver la fonction y : [0,T] — R? vérifiant

y'(t) = flty@), vtel0,T]
y(0) = ZE eR?

Wo
avec
f . [0T]|xR — R®
%)
(t, Z) — z3
cos(t)zg — 2sin(t)zg + 21)

(e) C’est un systéme de deux E.D.O couplées: elles dépendent 'une de l'autre. Les
deux E.D.O. oyant un terme en dérivée seconde, elles sont d’ordre 2. On va donc
pouvoir transformer chacune des E.D.O. en deux E.D.O. d’ordre 1, pour aboutir a
un systéme de 4 E.D.O. d’ordre 1.



On pose, par exemple,

(4
gt | y2t) | | walt
YOZ ) |~ )
ya(t) (1)
Il aurait aussi été possible de prendre
1(t) 4 (t)
oI G
y(t) (1)

Avec notre choix, on a

1711 (t)
Vo = | o
5(t)

y3(t)

ya(?)

2xh(t) — 324 (t) — a1 (t)zo(t) + sin(t)
=32 (t) + 225(t) + 3x1(t)z2(t) + cos(t)

y3gt§

_ Ya(t _

= | 20a(t) — 3us(t) — g (B)ult) + sin(e) | = FEVD):
—3ys(t) + 2y4(t) + 3y1(t)y2(t) + cos(t)

Le probléme de Cauchy associé est donc

trouver la fonction y : [0, 7] — R* vérifiant

y'(t) = f(ty(t), viel0,T]
0

y(0) = _11 e R’
2

f : [0,T]xR* — R
<3
Z4
224 — 323 — 42129 + sin(t)
—323 + 224 + 32129 + cos(t)

EXERCICE 2




Déterminer le probléme de Cauchy associé au modéle du Brusselator simplifié :

(B) {X'@) = 1+aX2M)Y (1)~ (B+1)X()
Y'(t) = —aX2(0)Y(t)+ 8X(¢t)

avec C.I. X(0) = Xy et Y/(0) = Y5,

ANNANANANNANNANNANNANANANNANNANNNNANNANNANNANNNNNANANNANNANNANNNNS

Correction On pose

On a alors

iy - (XN _ (14 aX2@Y () = (B+ DX() _ (14 ayi(t)ya(t) — (B+ Dyi(t)\ _
vi= <Y'(t)) - ( —aX*()Y (1) + 8X (1) > - ( —ayi(t)ya(t) + By (t) ) -

On note

folt,z) = (1 +azizm — (B + 1)21> |

—aziz + 2

Le probléme de Cauchy associé est donc

y(t) = fulty()), Vie[0,T]
(Cs) y(t%) = (ii(?)eRz.

[ EXERCICE 3

Déterminer le probléme de Cauchy associé au modeéle du pendule pesant simplifié :
(P) 6@t) + %Sm(e(t)) —0.

avec C.I. (0) = 6y et 6'(0) = 6.

ANNANANANNANNANNANNANANANNANNANNNNANNANNANNANNNNNANANNANNANNANNNNS

Correction C’est une E.D.O. d’ordre 2. On peut la réécrire sous la forme d’un systéme
de 2 E.D.O. d’ordre 1. Pour cela on pose

w* (50) - (510)

On a alors



Soit f, : [0,T] x R* — R? la fonction définie par f,(t,z) = ( = (z )) et ylol =
1

(6o, 0})" Le probleme de Cauchy associé s’écrit alors

(Cp) {y’@ - fp(ty(t)'), vte [0, 7]

EXERCICE 4

On veut résoudre numériquement le probléme (P) suivant : trouver y telle que

'(t) = cos(t)+ 1, Vt e [0,4r]
(P) { ) (0) - o

dont la solution exacte est y(t) = sin(t) + ¢.
On rappelle le schéma d’Euler progressif pour la résolution d’un probléme de Cauchy

() {ym+” =y + nfn, y),

yl0l donné.
avec (t")N) discrétisation réguliére de l'intervalle [0, 47| avec N pas de discrétisation.

Q. 1 Expliquer en détail comment utiliser le schéma d’Euler progressif pour résoudre le
probléme (P) en précisant entre autres les données, les inconnues, les dimensions des
variables, lien entre y"+t1 et la fonction vy, ... O

Q. 2 Soita,b, a <b deux réels. Ecrire une fonction DisReg retournant une discrétisation

réquliere de l'intervalle [a;b] avec N pas de discrétisation. o
Q. 3 Ecrire une fonction redEUPsca retournant l'ensemble des couples (t", y"*1N_, cal-
culés par le schéma d’Fuler progressif. O

Q. 4 Ecrire un algorithme complet de résolution de (P) par le schéma d’Euler progressif.
m]

ANNANANANNANNANNANNANANANNANNANNNNANNANNANNANNNNNNANNNNNNNNNNS

Correction

R. 1 On commence par écrire le probléme de cauchy associé a (P) :

y(t) = f(t,y@t)),Vte [t +T]
P {1 T ek

avec t° =0, T = 4w, yo = 0 et

[ [+ T xR — R
(t,2) — cos(t) +1°



Les données du probléme de Cauchy sont donc les réels t°, T', yq et la fonction f. L’inconnue
est la fonction y : [t°,t° + T — R.

Pour résoudre numériquement le probléme de Cauchy, on utilise le schéma (S) ou les
données sont celles du probléme de Cauchy plus le nombre de discrétisations N € IN* On
peux alors calculer

e t" ne [0, N] qui sont les points de la discrétisation réguliére a N intervalles :

T
t" =t + nh, Yne[0,N], avec h = N

e 4"l ne [0, N] déterminés par le schéma (S). On a yl% = 4%, puis on calcule

ylr U — oyl Lp @y, pour n=0a N -1

R. 2 Une discrétisation réguliére de l'intervalle [a,b] avec N pas (constant) de discréti-
sation est donnée par

b—a

t" =a+nh, Yne[0,N], avec h = N

Algorithme 1: Fonction DisReg retournant une discrétisation réguliere de l'intervalle
[a, 0]
Données : a,b : deuxréels, a <b
N : un entier non nul (nombre de pas de discrétisation).
Résultat : ¢t : vecteur de RV*H!

1. Fonction t < DisReg( a,b, N )
2 h <~ (b—a)/N

3 Pour n < 0 a N faire

4: tin+1)«—a+n=h

5 Fin Pour

6: Fin Fonction

R. 3 Les données du probléme de Cauchy sont

Données : [ : [:[t't°+T] x R — R fonction d'un
probléme de Cauchy (scalaire)
t® ¢ réel, temps initial
T : réel >0
y? : réel, donnée initiale

auxquels, il faut ajouter le parameétre de discrétisation N
Données : N : un entier non nul (nombre de pas de discrétisation).

On choisit de retourner les couples (¢, y™), n e [0, N] sous la forme de deux vecteurs :
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Résultat : ¢t : vecteur de RVt t(n) ="', Vne[1,N +1]
Y : vecteur de RV Y (n) =y ¥ne 1, N +1]

On représente en mémoire les vecteurs t et Y en Figure 1.

t 0 t! et Nt tN
t(1) t(2) t(n+1) t(N—-1)  t(N)

Y y10] yl1] yln=1] yIN-1] YNl
Y (1) Y (2) Y (n) Y(N-1) Y(N)

Figure 1: Représentation mémoire du vecteur t € RV*! et du vecteur Y e RV *1,

Le schéma théorique est donné par

o =y°
ylttl = gl pf(em ")) pour n=0a N —1.
Le schéma algorithmique s’écrit alors

{Y(l) = (4.1)
Yn+2)=Y(n+1)+hfit(n+1),Y(n+1)), pour n=0a N — 1. (4.2)

ou de maniére équivalente

{Y(l) =y’
Y(n+1)=Y(n)+ hft(n),Y(n)), pour n=1aN. (4.4)

L’algorithme de la fonction redEUPsca est :



Algorithme 2: Fonction redEUPsca : résolution d'un probléme de Cauchy scalaire par
le schéma d’Euler progressif

Données : [ : f[:[t%t°+T] x R— R fonction d'un
probléme de Cauchy (scalaire)

tO . réel, temps initial

T réel > 0

y° réel, donnée initiale

N un entier non nul (nombre de pas de discrétisation).
Résultat : ¢ vecteur de RV ¢(n) =" Vne [1,N + 1]

Y vecteur de RN*1 Y (n) = yl"=U, vne 1, N + 1]

1: Fonction [t,Y] < redEUPsca( f,t°, T,y", N )
2.t « DisReg(t°,t° + T, N)
3 h<—(b—-a)/N

4 Y(1) <y’

5. Pour n < 1a N faire
6 Y(n+1)<Y(n)+hxf(tn),Y(n))
7. Fin Pour
8: Fin Fonction

R. 4 1l faut tout d’abord écrire la fonction fCauchy correspondant a la fonction f:

Algorithme 3: Fonction fCauchy : fonction f du probléme de Cauchy associé a (P)

Données : ¢ : un réel
z : un réel
Résultat : w : wun réel

1: Fonction w « fCauchy( ¢,y )
2:  w <« cos(t) + 1
3: Fin Fonction

L’algorithme de résolution est :

Algorithme 4: Résolution numérique du probléme (P)

L tY<—0
2: T — 4m
3: 40«0
4: [t,Y] < redEUPsca(fCauchy, t°, T, 3%, 500)
O
[ EXERCICE 5




Soit le probléme de Cauchy vectoriel

{y’(t) = fty(t), Yte[t"t°+T],
y(t°) = yoeR™,

avec f : [t°t° + T] x R™ — R™. On souhaite écrire une fonction algorithmique redE-
UPVec permettant de résoudre ce probléme de Cauchy (vectoriel) par le schéma vectoriel
explicite d’Euler progressif

ylol = Yo

avec (t")N_, la discrétisation réguliere de [t°,t° + T] avec N pas de discrétisation et
[n]

Y1
y"l = ¢ et y") ~ y(t"). Cette fonction devra retourner ’'ensemble des ¢ et des y!™
(]
Ym
pour n[0, N].

Q.1 a. Rappeler précisement les données du probléme de Cauchy vectoriel.

b. Quelles sont les données de la fonction algorithmique redEUPVec en précisant le type
et la dimension pour chacune?

c. Quelles sont les sorties/résultats de la fonction algorithmique redEUPVec en pré-
cisant le type et la dimension pour chacun?

[m]

On rappelle 'écriture simplifiée d’acces aux colonnes d’une matrice décrit en section 77

Algorithmique
fonction ‘ version simplifiée Description mathématique ‘
u «— getMatCol(A, j) u —A(:, ) u € R™ est déterminé par u; = A, ;, Vi€ [1,n]
A — setMatCol(A,u, j) | A(:,J) < u la colonne j de A est remplacée par u € R™
etonah;; =u; Vie[l,n].

Table 1: Accés algorithmique aux colonnes d’une matrice A € M,, ,(R) décrit en sec-
tion 77?7

Q. 2 Ecrire la fonction algorithmique redEUPVec permettant de résoudre ce probleme
de Cauchy (vectoriel) par le schéma explicite d’Euler progressif. On utilisera [’écriture
algorithmique simplifiée d’accés aux éléments d’une matrice (voir Table 1). O

Q. 3 Ecrire la fonction algorithmique redEUPVecfun permettant de résoudre ce probléme
de Cauchy (vectoriel) par le schéma explicite d’Euler progressif. On utilisera l’écriture
algorithmique avec fonctions pour l’accés auzx éléments d’une matrice (voir Table 1). o

A VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVS

Correction
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R. 1  a. Les données du probléme de Cauchy vectoriel sont

e tY ¢ R, le temps initial,
e T e R™*, la periode de temps,
e yl% e R™, la donnée initiale,
o f:[t°%t°+T] x R™ — R™, la fonction de Cauchy.
b. Les données de la fonction algorithmique redEUPVec sont celles du probléeme de
Cauchy vectoriel auxquels, il faut ajouter le paramétre de discrétisation N
e N, un entier non nul (nombre de pas de discrétisation).
c. On choisit de retourner (#")Y_; sous la forme d'un vecteur t € RVN*! et (y")N

n € [0, N] sous la forme d’une matrice de Y € M,,, n41(R) (ou tableau a m lignes
et N + 1 colonnes). Plus précisement, on a

Résultat: ¢t : vecteur de RV*! ¢(n) = "1 Yne[l,N + 1]
Y : matrice de M,, y+1(R), Y(i,n) = g (i, n) e [1,m] x [1, N + 1].

On représente en mémoire le vecteur t et la matrice Y respectivement en Figure 2
et 3.

t tO tl e tn—l e tN_l tN

£(1) £(2) t(n + 1) tN) (N +1)

Figure 2: Représentation mémoire du vecteur ¢t € RV*!.
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1 2 n N N +1

Y1)~ |yl y g ' !
Y(1,1) Y(1,2) Y(1,n) Y(L,N) |Y(L,N+1)

Y Y@ -| g Y y ! v g™
v | vao) Y(i,n) Y6, N) Y6 N +1)

Y(m,:) — yy[g] yg] - y7[7711*1] .. y%V*l] y7[7]1V] m
Y(m, 1) Y(m, 2) Y(m,n) Y(m,N) Y(m,N +1)
1 1 1 1 1
Y(:, 1) Y(:,2) Y(:,n) Y(:,N)  Y(N+1)

Figure 3: Représentation mémoire de Y € M,,, v11(R).

Une autre fagon de représenter vectoriellement la matrice Y € M,, n41(R).

1 2 ce. n o N+1
Y : m lignes yl0l yl! . ylr—1l ylNl
1 1 1 1
iz, 1) Y(:,2) Y(:,n) Y(:, N +1)

Table 2: Représentation mémoire de Y € M, y4+1(R) a l'aide des vecteurs colonnes.

R. 2 Voici la description de la fonction redEUPVec (sans son implémentation)
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Algorithme 5: Fonction redEUPVec : résolution d’un probléme de Cauchy vectoriel
par le schéma d’Euler progressif (entéte de la fonction)

Données : f : f:[t°t°+T] x R™ — R™ fonction d'un
probléme de Cauchy (vectoriel)
t° . réel, temps initial
T : 1éel >0
y’ : R™, donnée initiale
N : un entier non nul (nombre de pas de discrétisation).

Résultat: ¢t : vecteur de RV*! ¢(n) = "1 Vne[1,N + 1]
Y & matrice de My i1 (R), Y(i,n) =y (i, n) e [1,m] x [1, N +1].
1: Fonction [t,Y] < redEUPVec( f,t°,T,y°, N )
2: ..
3: Fin Fonction

Nous allons maintenant utiliser une méthode de raffinement pour obtenir au final ’algorithme
permettant de remplir le vecteur t et la matrice Y en utilisant le langage algorithmique
simplifié.

Algorithme 5 | R, Algorithme 5 | R,

1. (Calculer ¢} { 1: t < DirReg(t°,t° + T, N)

5. | Calculer Y
2: Mettre y° en colonne 1 de Y

3: Pour n <— 0 a N — 1 faire

=1 Calculer y!"*1 par formule et
le mettre en colonne (n + 2) de Y.
5. Fin Pour
Algorithme 5 | R, Algorithme 5 | R,
1: t < DirReg(t°,t° + T, N) 1: t « DirReg(t°,t° + T, N)

). [Mettre y° en colonne 1 de Y}\

3: Pour n <— 0 a N — 1 faire

~~>{ 2: Y(:,1) < g°

Calculer yl»*1 par formule et 3: h<—T/N > Nécessaire dans
| le mettre en colonne (n + 2) de Y. formule
5. Fin Pour 4: Pour n — 0 a N — 1 faire

5 Ytmp — y" + hf(tn yl™)
6: Y(,n+2) <Ytmp

7. Fin Pour

Or t(n) est stocké en t(n + 1) et y™ est stocké en colonne n + 1 de la matrice Y, c’est a
dire en Y(:,m). On obtient alors
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Algorithme 5 | R» Algorithme 5 | R;

1: t < DirReg(t°,t° + T, N) 1: t < DirReg(t°,t° + T, N)
2: Y(:, 1) — yo 2: Y(:, 1) «— yO
33 h<~T/N > Nécessaire dans 33 h<T/N
formule 4: Pour n — 0 a N — 1 faire

4: Pourn«—OéN—lfaire
[thp <yl 4 hf(en yle )]_\__) 5 Yimp < Y(,n+1)+hx ft(n+1),Y(:

,n+1))
Y(:;,n+2) <« Ytmp
7. Fin Pour

6:  Y(,n+2) —Ytmp
7. Fin Pour

Dans ce dernier raffinement, purement algorithmique (les précédents raffinements con-
tenaient encore des notations mathématiques), on peut changer la boucle pour alléger
I’écriture:

Algorithme 5: Fonction redEUPVec : résolution d’un probléme de Cauchy vectoriel
par le schéma d’Euler progressif (langage algorithmique simplifié)

Données : f : f:[t°t°+T]x R™ — R™ fonction d'un
probléme de Cauchy (vectoriel)
t° ¢ réel, temps initial
T : réel >0
¥’ : R™, donnée initiale
N : un entier non nul (nombre de pas de discrétisation).

Résultat: t : vecteur de RV t(n) = "1 Vne[l,N + 1]
Y : matrice de M, n+1(R), Y(i,n) = yz[n_l], V(i,n) e [1,m] x [1, N + 1].

1: Fonction [t,Y] « redEUPVec( f,t° T ,y°, N )

2: 1~ Dereg(tO t°+T,N)

3 Y(,1) «—g°

4 h<T/N

5 Pour n < 1a N faire > Décalage d’indice
6 Yitmp — Y(:;,n) + h= f(t(n),Y(:,n))

7 Y(,n+1) <~ Ytmp

8  Fin Pour

9: Fin Fonction

Bien siir les lignes 6 et 7 de cet algorithme peuvent étre condensée en

Yi,n+1)<—Y(Gn)+h=f(tn),Y(:n)).

R. 3 Dans I’Algorithme 5: | seules les lignes 3, 6 et 7 sont & remplacer par des fonctions
effectuant les mémes opérations. Pour les lignes 3 et 7, on utilisera la fonction setMatCol.
La ligne 6 correspond en fait & une combinaison linéaire entre les deux vecteurs de R™,

Y(:,n) et f(t(n),Y(:,n))

14



Algorithme 6 |R;

Algorithme 6 | R,

1: t < DirReg(t°,t° + T, N)

[thp —Y(,n)+ h= f(t(n),Y(:,n))]—
(Y(:,n +1) < Ytmp

7

Fin Pour

1

Y(:, 1) g’
2 INERSS MatZeros(m, N + 1) = ou implicite
3 h < T/N 3 Y «— Setl\latCol(Y, yo, 1)
4: Pour n < 1 & N faire

1: t < DirReg(t°,t° + T, N)

4: h<—T/N
5 Pour n <— 0 a N — 1 faire

. Ytmp — getMatCol(Y,n)
7. Yimp —
aUpbV (1, Yitmp, h, f(t(n), thp))
8 Y « setMatCol(Y,Ytmp,n + 1)

9: Fin Pour

Algorithme 6: Fonction redEUPVecfun : résolution d’un probléme de Cauchy vectoriel
par le schéma d’Euler progressif (langage algorithmique non simplifié)

Données : f : f:[t°t°+T] x R™ — R™ fonction d’'un
probléme de Cauchy (vectoriel)

t® ¢ réel, temps initial

T : réel >0

¥’ : R™, donnée initiale

N : un entier non nul (nombre de pas de discrétisation).
Résultat: ¢t : vecteur de RV™! ¢(n) = "1 Yne[1,N + 1]

Y : matrice de M,, n+1(R), Y(7,

n) =y V(i n) e [1,m] x [1,N +1].

Fonction [t,Y] < redEUPVecfun( f,t°,T,y° N )

t < DirReg(t°,t° + T, N)
Y «— MatZeros(m, N + 1)
Y « setMatCol(Y,y% 1)

Pour n < 1 & N faire
Ytmp < getMatCol(Y,n)

Ytmp — aUpbV (1, Ytmp, h, f(t(n),Yimp))

1:
2:
3
4:
o: h « T/N
6
7
8
9

: Y « setMatCol(Y,Ytmp,n + 1)
10:  Fin Pour
11: Fin Fonction

Une autre possibilité d’écriture est:

Fonction [t,Y] < redEUPVecfunvi( f,t%, T,y N )

1:
2.t <« DirReg(t%,t° + T, N)
3: Y < MatZeros(m, N + 1)
4: Y < setMatCol(Y,y° 1)
5. h<—T/N

6: Ytmp —y°

7. Pour n < 1a N faire
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8 Ytmp «— aUpbV (1, Ytmp, h, f(t(n),Yimp))
9: Y «— setMatCol(Y,Ytmp,n + 1)

10:  Fin Pour

11: Fin Fonction

EXERCICE 6

Soit I’équation différentielle ordinaire linéaire du troisiéme ordre avec conditions initiales
données par

(T+t+2)yYD@t) + B3 +61)y@(t) + 6y () =6t, Vtel0,T],
y(0) =a, yW(0) =45, y2(0)=1.

Ici ¥®) note la dérivée k-iéme de y.
Pour cette EDO, il existe une unique solution donnée par

t*+2A2+ 4Bt +4C
42 +t+1)

y(t) =
avec (A4, B,C) € R? vérifiant
C=a B-C=p0e A—2B=~.

On a aussi

B+ At+ B (' +2A2 +4Bt+4C0)(2t+1)

yD(t) =

2+t+1 A +t+1)
YO () = 3P+ A 28+ At+ B)2t+1) (' +2AP +4Bt+4C)(2t + 1)° '+ 2AP +4Bt+4C
t2rt+1 (2 4+t +1)° 202+t +1)° 22+t +1)°
Q. 1 Déterminer le probleme de Cauchy vectoriel associé a cette EDO =

Dans la suite, on prendra 7'= 10, « = 6, f = =5 et v = —2.

Q. 2 Ecrire un programme permettant de résoudre numériquement le probleme de Cauchy
associé a cette EDO a l’aide de la fonction algorithmique [t, Y] < redEUPvec(f,t0,T,Y0, N)
(voir Ezercice précédent). o

On suppose que notre language algorithmique dispose d’une fonction graphique plot(X,Y)
reliant par des segments les points successifs

(X(1),Y(1),(X(2),Y(2)),...,(X(end),Y (end))

les tableaux X et Y ayant méme longeurs et correspondent respectivement aux tableaux
des abscisses et des ordonnées.
On pourra utiliser la version simplifiée du langage algorithmique.
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Q. 3 Donner les commandes permettant, aprés avoir utilisé le programme algorithmique
précédent, de représenter graphiquement les approximations obtenues par le schéma, de

(W) (V) et (¥O),

[m]

Q. 4 Ecrire un programme algorithmique permettant de représenter graphiquement les
solutions exactes aux points de discrétisation, c’est a dire

(W) (V) et (¥O),

[m]

Q. 5 Ecrire un programme algorithmique permettant de représenter graphiquement les
erreurs numeériques commises en valeurs absolues par le schéma pour les approximations

de
W)y (), et (V2E)0,

A VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVS

Correction

R. 1 C’est une EDO d’ordre 3, nous allons donc les transformer en 3 EDO d’ordre 1 en

posant
Y : [0,T] — R3

Y1) y(t)
t — Y(t)= [Yaot) | = [ v (1)
Y(t) y2(t)

On cherche tout d’abord & établir la fonction de Cauchy f : [0,7] x R® — R? associée
a 'EDO et vérifiant
vte[0,T], Y'(t) = f(t,Y(t)).

Soit t € [0,T], on a

Y'(t) y () Y.(?)
Y'(t)= [Y5(t) | = [ v@@) | = | Ys(t)
Y4 (t) Y3 (1) Yy (¢).

De plus, comme 1+t +t? # 0, on a

_ 6t —(3+6t)y° (1) —6y(1)

(3)
oo 1+t+12
On en déduit donc
Y(?) Yo(t)
Y(t) = Ys(t) _ Y5(t)
6t — (3+6t) Yy () — 6y (t) 6t — (3 4 6t)Y 3(t) — 6Y5(1)
1+t +1¢2 1+1t+1¢2
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La fonction de Cauchy s’écrit alors
f : [0,T] xR} — R3
Zy

> Z3
(t.2) 6t — (34 6t)Z3 — 6Z5

1+¢+1¢2

Le probléme de Cauchy associé¢ a 'EDO s’écrit alors:

Trouver Y : [0, 7] — R? telle que
Y’ = Y Vte|0,T
0 = 1Y), e .
Y0) = |8]eR.
Y

R. 2 On écrit tout d’abord la fonction algorithmique, nommeée fC3 par exemple, corre-
spondant & la fonction de Cauchy f

Algorithme 7: Fonction fC3 : fonction f du probléme de Cauchy

Données : ¢t : réel positif
Z . un vecteur de R3
Résultat : W : un vecteur de R?

1: Fonction W « {C3(t,Z )
Z(2)
2: W — Z(S)
(6xt—(3+6+%t)«Z(3)—6xZ(2))/(1+t+1"2)
3: Fin Fonction

Algorithme 8: Programme permettant de résoudre numérique-
ment le probléme de Cauchy avecT'= 10, =6, = —bet vy = —2.

6

1: YO~ | =5 > Données initiales
-2

2: [t, Y] < redEUPvec(fC3,0,10,Y0, 1000)

R. 3 Dans le programme algorithmique précédent, on a utilisé
[t, Y] < redEUPvec(fC3,0,10,Y0, 1000)

pour résoudre le probléme de Cauchy vectoriel (Ps) obtenu en Q.1.
La fonction redEUPvec permet de résoudre numériquement ce probléme de Cauchy en
utilisant le schéma vectoriel explicite d’Euler progressif générique suivant:
{ yr =yt nf (e, yt), voe [0, N —1]
yl = Y
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avec (t")N_, la discrétisation réguliere de [t°,t° + T| avec N pas de discrétisation et
w"
y"l = | fety™ xY(#"), o Y est la solution exacte du probléme de Cauchy (P3).

yb!

Dans le programme algorithmique, on a m = 3 et on a choisi N = 1000. On a donc pour
tout n dans [0, N] :

yl" Y. (1)
"= b | 2 Y () = | Ya(t)
yy Y(t")

De plus, par définition de Y (voir Q.1), on a

Yl(tn> y(tn)
Yo(t") | € |y ()
Y(t") y@ ()

Y y(t")

La fonction redEUPvec retourne donc

e t € RV*! contenant 'ensemble de la discrétisation réguliere de l'intervalle [0, 10]:

t tO tl e tn—l . tN_l tN

t(1) £(2) t(n+1) t(N) (N +1)

1 2 . n . N+1
Y : 3 lignes yl0l yltl o yln=1] Y]
1 1 1 7
MG (CE Y(:,n) YN )

Voici une autre facon de représenter Y sous la forme d’un tableau de 3 lignes et
(N + 1) colonnes:
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1 2 n N N+1

Y~ | yi! ! v e
Y(1,1) Y(1,2) Y(1,7) Y(L,N) |Y(L,N+1)
Y Y@)-| o yL! o gy |2
ven | ve2 Y(2,n) YN YR N+1)
YG) |yl vy yy A B A
va ) | veo) Y(3,n) YGN) Y@ N+ 1)
1 1 1 1 1
YG1) o Y(G2) Y(n) YG,N)  YGN+1)

Tout le blabla précédent a été rédigé pour aider a la compréhension, mais, avec un peu
d’habitude, on a immédiatement

e les approximations de (y(t”))nNzo correspondent a la premiére ligne de Y avec
Y(1,n+1) ~y(t"), ¥Yne[0,n]

et la commande (utilisant le langage algorithmique simplifié) qui permet de représen-
ter ces approximations est:
plot(t, Y(1,:))
e les approximations de (y(l)(t”))fj:o correspondent a la deuxiéme ligne de Y avec

Y(2,n+ 1) ~ yD ("), VYne[0,n]

et la commande (utilisant le langage algorithmique simplifié) qui permet de représen-
ter ces approximations est:
plot(t, Y(2,:))

e les approximations de (y(2) (t”))nN:O correspondent a la troisieme ligne de Y avec
Y(3,n+ 1) ~y& ("), Vne[0,n]

et la commande (utilisant le langage algorithmique simplifié) qui permet de représen-
ter ces approximations est:
plot(t, Y(3,:))

R. 4 1l faut tout d’abord écrire les fonctions algoritmiques correspondant a la solution
exacte y(t), sa dérivée y/(t) et sa dérivée seconde /(t) que I'on nommera respectivement
yex, dyex, et d2yex.
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Algorithme 9: Fonction yex : retourne la solution exacte en

t
Données : t ©un réel,

A, B,C'" : trois réels
Résultat : w : un réel tel que w = y(t)

1: Fonction w « yex( t,A, B,C")

20w (25 Axt724+4xBxt+4xC+1t"4)/(4=(t"24+t+1))

3: Fin Fonction

Algorithme 10:  Fonction dyex : re- Algorithme 11:

Fonction d2yex : re-

tourne la dérivée de la solution exacte en tourne la dérivée seconde de la solution
t exacte en t
Données : t :un réel, Données : t un réel,
A, B,C : trois réels A, B,C : trois réels
Résultat : w : wun réel tel que w =3/(t) Résultat : w un réel tel que w = y"(t)
1: Fonction w « dyex( t, A, B,C") 1: Fonction w « d2yex( t, A, B,C )
20 W ... o> & faire 20 W ... > & faire
3: Fin Fonction 3: Fin Fonction

Algorithme 12: Programme permettant de représenter graphique-
ment la solution exacte, sa dérivée premiére et sa dérivée seconde a

partir des données N, «, [ et 7.

N «— 1000, o <=6, f «— =5, v« —2
C—a B—p+C, A—y+2+B
t < DisReg(0, 10, N)
Pour n — 1 a N + 1 faire
Yex(n) < yex(t(n), A, B,C)
dYex(n) «— dyex(t(n), A, B,C)
d2Y ex(n) <« d2yex(t(n), A, B,C)
Fin Pour

—_ =
= O

plot(t,Yex) > Représentation de la solution exacte
plot(t,dYex) > Représentation de sa dérivée
: plot(t,d2Yex) > Représentation de sa dérivée seconde

R. 5 L’erreur est la différence entre la solution exacte et la solution numérique au méme

point de discrétisation.

Par exemple les erreurs numériques commises en valeurs absolues par le schéma pour les

approximations de (y(t”))ijzo, sont les (N + 1) réels

On en déduit alors le programme suivant:
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Algorithme 13: Programme permettant de représenter graphique-
ment les erreurs numériques commises par le schéma d’Euler progressif

1:

10:
11:
12:

N «— 1000, a <6, B« =5, v« —2
6

YO~ [ -5 > Données initiales
—2

[t, Y] < redEUPvec(fC3,0,10,Y0, 1000)

C—a B—p+C, A—~+2+B

Pour n < 1a N + 1 faire

E(n) « abs (yex(t(n), A,B,C) —Y(1,n)
dE(n) < abs (dyex(t(n), A, B, C’) -Y(2, n))

d2E(n) < abs <d2ycx(t(n), A,B,C) —Y(3, n))

Fin Pour
plot(t, E)
plot(t,dE)
plot(t,d2F)
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