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Exercice 1

Pour chacune des E.D.O. suivantes écrire le problème de Cauchy associé

paq

"

x2
ptq ` αx1

ptq ` β cospxptqq “ sinptq, t Ps0, 2πs

xp0q “ 0, x1
p0q “ 1.

pbq

$

&

%

LCv2
ptq `

ˆ

L

R2

` R1C

˙

v1
ptq `

ˆ

R1

R2

` 1

˙

vptq “ e, t Ps0, 100s

vp0q “ 0, v1
p0q “ 0.

pcq

"

x2
ptq “ µp1 ´ x2

ptqqx1
ptq ´ xptq, t Ps0, 10s

xp0q “ 1, x1
p0q “ ´1.

pdq

"

yp3q
ptq ´ cosptqyp2q

ptq ` 2 sinptqyp1q
ptq ´ yptq “ 0, t Ps0, T s

yp0q “ u0, yp1q
p0q “ v0, yp2q

p0q “ w0.

peq

$

&

%

@t Ps0, T s, x2
1ptq ´ 2x1

2ptq ` 3x1
1ptq ` 4x1ptqx2ptq “ sinptq,

x2
2ptq ` 3x1

1ptq ´ 2x1
2ptq ´ 3x1ptqx2ptq “ cosptq,

x1p0q “ 0, x1
1p0q “ ´1, x2p0q “ 1, x1

2p0q “ ´2.

Correction

paq C’est une E.D.O. d’ordre 2. Pour écrire le problème de Cauchy assosicé, on écrit
l’E.D.O. sous la forme d’un système de 2 E.D.O. d’ordre 1 (voir Proposition ??) en
prenant m “ 2 et en posant

yyyptq
def
“

ˆ

y1ptq
y2ptq

˙

“

ˆ

xptq
x1ptq

˙

.

On a alors

yyy1
ptq “

ˆ

x1ptq
x2ptq

˙

“

ˆ

x1ptq
´αx1ptq ´ β cospxptqq ` sinptq

˙

“

ˆ

y2ptq
´αy2ptq ´ β cospy1ptqq ` sinptq

˙

“ fffpt, yyyptqq

Le problème de Cauchy associé est donc
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trouver la fonction yyy : r0, 2πs ÝÑ R2 vérifiant

yyy1
ptq “ fffpt, yyyptqq, @t P r0, 2πs

yyyp0q “

ˆ

0
1

˙

P R2

avec

fff : r0, 2πs ˆR2 ÝÑ R2

pt, zzzq ÞÝÑ

ˆ

z2
´αz2 ´ β cospz1q ` sinptq

˙

pbq Pour cette E.D.O. on suppose les paramètres physiques L, C, R1 et R2 donnés. C’est
une E.D.O. d’ordre 2. Pour écrire le problème de Cauchy assosicé, on écrit l’E.D.O.
sous la forme d’un système de 2 E.D.O. d’ordre 1 (voir Proposition ??) en prenant
m “ 2 et en posant

yyyptq
def
“

ˆ

y1ptq
y2ptq

˙

“

ˆ

vptq
v1ptq

˙

.

On a alors

yyy1
ptq “

ˆ

v1ptq
v2ptq

˙

“

˜

v1ptq
1

LC

´

e ´ p L
R2

` R1Cqv1ptq ´ pR1

R2
` 1qvptq

¯

¸

“

ˆ

y2ptq
e

LC
´ p 1

CR2
` R1

L
qy2ptq ´ 1

LC
pR1

R2
` 1qy1ptq

˙

“ fffpt, yyyptqq

Le problème de Cauchy associé est donc

trouver la fonction yyy : r0, 100s ÝÑ R2 vérifiant

yyy1
ptq “ fffpt, yyyptqq, @t P r0, 100s

yyyp0q “

ˆ

0
0

˙

P R2

avec

fff : r0, 100s ˆR2 ÝÑ R2

pt, zzzq ÞÝÑ

ˆ

z2
e

LC
´ p 1

CR2
` R1

L
qz2 ´ 1

LC
pR1

R2
` 1qz1

˙

pcq Pour cette E.D.O. on suppose le paramètre µ donné. C’est une E.D.O. d’ordre 2.
Pour écrire le problème de Cauchy assosicé, on écrit l’E.D.O. sous la forme d’un
système de 2 E.D.O. d’ordre 1 (voir Proposition ??) en prenant m “ 2 et en posant

yyyptq
def
“

ˆ

y1ptq
y2ptq

˙

“

ˆ

xptq
x1ptq

˙

.

On a alors

yyy1
ptq “

ˆ

x1ptq
x2ptq

˙

“

ˆ

x1ptq
µp1 ´ x2ptqqx1ptq ´ xptq

˙

“

ˆ

y2ptq
µp1 ´ y21ptqqy2ptq ´ y1ptq

˙

“ fffpt, yyyptqq
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Le problème de Cauchy associé est donc

trouver la fonction yyy : r0, 10s ÝÑ R2 vérifiant

yyy1
ptq “ fffpt, yyyptqq, @t P r0, 10s

yyyp0q “

ˆ

1
´1

˙

P R2

avec
fff : r0, 10s ˆR2 ÝÑ R2

pt, zzzq ÞÝÑ

ˆ

z2
µp1 ´ z21qz2 ´ z1

˙

pdq Pour cette E.D.O. on suppose les paramètres T, u0, v0 et w0 donnés. C’est une
E.D.O. d’ordre 3. Pour écrire le problème de Cauchy assosicé, on écrit l’E.D.O.
sous la forme d’un système de 3 E.D.O. d’ordre 1 (voir Proposition ??) en prenant
m “ 3 et en posant

YYY ptq
def
“

¨

˝

Y1ptq
Y2ptq
Y3ptq

˛

‚“

¨

˝

yptq
y1ptq
y2ptq

˛

‚.

On a noté ici YYY au lieu de yyy pour éviter les confusions! On a alors

YYY 1
ptq “

¨

˝

y1ptq
yp2qptq
yp3qptq

˛

‚“

¨

˝

y1ptq
yp2qptq

cosptqyp2qptq ´ 2 sinptqyp1qptq ` yptqq

˛

‚

“

¨

˝

Y2ptq
Y3ptq

cosptqY3ptq ´ 2 sinptqY2ptq ` Y1ptqq

˛

‚“ fffpt,YYY ptqq

Le problème de Cauchy associé est donc

trouver la fonction yyy : r0, T s ÝÑ R3 vérifiant

yyy1
ptq “ fffpt, yyyptqq, @t P r0, T s

yyyp0q “

¨

˝

u0

v0
w0

˛

‚P R3

avec

fff : r0, T s ˆR3 ÝÑ R3

pt, zzzq ÞÝÑ

¨

˝

z2
z3

cosptqz3 ´ 2 sinptqz2 ` z1q

˛

‚

peq C’est un système de deux E.D.O couplées: elles dépendent l’une de l’autre. Les
deux E.D.O. oyant un terme en dérivée seconde, elles sont d’ordre 2. On va donc
pouvoir transformer chacune des E.D.O. en deux E.D.O. d’ordre 1, pour aboutir à
un système de 4 E.D.O. d’ordre 1.
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On pose, par exemple,

yyyptq
def
“

¨

˚

˚

˝

y1ptq
y2ptq
y3ptq
y4ptq

˛

‹

‹

‚

“

¨

˚

˚

˝

x1ptq
x2ptq
x1
1ptq

x1
2ptq

˛

‹

‹

‚

.

Il aurait aussi été possible de prendre
¨

˚

˚

˝

x1ptq
x1
1ptq

x2ptq
x1
2ptq

˛

‹

‹

‚

ou

¨

˚

˚

˝

x1
1ptq

x1
2ptq

x1ptq
x2ptq

˛

‹

‹

‚

ou . . .

Avec notre choix, on a

yyy1
ptq “

¨

˚

˚

˝

x1
1ptq

x1
2ptq

x2
1ptq

x2
2ptq

˛

‹

‹

‚

“

¨

˚

˚

˝

y3ptq
y4ptq

2x1
2ptq ´ 3x1

1ptq ´ 4x1ptqx2ptq ` sinptq
´3x1

1ptq ` 2x1
2ptq ` 3x1ptqx2ptq ` cosptq

˛

‹

‹

‚

“

¨

˚

˚

˝

y3ptq
y4ptq

2y4ptq ´ 3y3ptq ´ 4y1ptqy2ptq ` sinptq
´3y3ptq ` 2y4ptq ` 3y1ptqy2ptq ` cosptq

˛

‹

‹

‚

“ fffpt, yyyptqq.

Le problème de Cauchy associé est donc

trouver la fonction yyy : r0, T s ÝÑ R4 vérifiant

yyy1
ptq “ fffpt, yyyptqq, @t P r0, T s

yyyp0q “

¨

˚

˚

˝

0
1

´1
´2

˛

‹

‹

‚

P R4

avec

fff : r0, T s ˆR4 ÝÑ R4

pt, zzzq ÞÝÑ

¨

˚

˚

˝

z3
z4

2z4 ´ 3z3 ´ 4z1z2 ` sinptq
´3z3 ` 2z4 ` 3z1z2 ` cosptq

˛

‹

‹

‚

˛

Exercice 2
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Déterminer le problème de Cauchy associé au modèle du Brusselator simplifié :

pBq

"

X 1ptq “ 1 ` αX2ptqY ptq ´ pβ ` 1qXptq
Y 1ptq “ ´αX2ptqY ptq ` βXptq

avec C.I. Xp0q “ X0 et Y p0q “ Y0.

Correction On pose

yyyptq
def
“

ˆ

y1ptq
y2ptq

˙

“

ˆ

Xptq
Y ptq

˙

.

On a alors

yyy1
ptq “

ˆ

X 1ptq
Y 1ptq

˙

“

ˆ

1 ` αX2ptqY ptq ´ pβ ` 1qXptq
´αX2ptqY ptq ` βXptq

˙

“

ˆ

1 ` αy21ptqy2ptq ´ pβ ` 1qy1ptq
´αy21ptqy2ptq ` βy1ptq

˙

“

On note
fff bpt, zzzq “

ˆ

1 ` αz21z2 ´ pβ ` 1qz1
´αz21z2 ` βz1

˙

.

Le problème de Cauchy associé est donc

pCBq

$

&

%

yyy1ptq “ fff bpt, yyyptqq, @t P r0, T s

yyypt0q “

ˆ

X0

Y0

˙

P R2.

˛

Exercice 3

Déterminer le problème de Cauchy associé au modèle du pendule pesant simplifié :

pPq θp2q
ptq `

g

L
sinpθptqq “ 0.

avec C.I. θp0q “ θ0 et θ1p0q “ θ1
0.

Correction C’est une E.D.O. d’ordre 2. On peut la réécrire sous la forme d’un système
de 2 E.D.O. d’ordre 1. Pour celà on pose

yyyptq
def
“

ˆ

y1ptq
y2ptq

˙

“

ˆ

θptq
θ1ptq

˙

.

On a alors

yyyp1q
ptq “

˜

y
p1q

1 ptq

y
p1q

2 ptq

¸

“

ˆ

θp1qptq
θp2qptq

˙

“

ˆ

θp1qptq
´

g
L
sinpθptqq

˙

“

ˆ

y2ptq
´

g
L
sinpy1ptqq

˙

.
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Soit fffp : r0, T s ˆR2 ÝÑ R2 la fonction définie par fffppt, zzzq “

ˆ

z2
´

g
L
sinpz1q

˙

et yyyr0s “

pθ0, θ
1
0qt Le problème de Cauchy associé s’écrit alors

pCPq

"

yyy1ptq “ fffppt, yyyptqq, @t P r0, T s

yyypt0q “ yyyr0s P R2.

˛

Exercice 4

On veut résoudre numériquement le problème pPq suivant : trouver y telle que

pPq

"

y1ptq “ cosptq ` 1, @t P r0, 4πs

yp0q “ 0.

dont la solution exacte est yptq “ sinptq ` t.
On rappelle le schéma d’Euler progressif pour la résolution d’un problème de Cauchy

pSq

"

yrn`1s “ yrns ` hfptn, yrnsq,
yr0s donné.

avec ptnqNn0 discrétisation régulière de l’intervalle r0, 4πs avec N pas de discrétisation.

Q. 1 Expliquer en détail comment utiliser le schéma d’Euler progressif pour résoudre le
problème pPq en précisant entre autres les données, les inconnues, les dimensions des
variables, lien entre yrn`1s et la fonction y, ... ˝

R. 1 On commence par écrire le problème de cauchy associé à pPq :

pPCq

"

y1ptq “ fpt, yptqq, @t P rt0, t0 ` T s

ypt0q “ y0 P R.

avec t0 “ 0, T “ 4π, y0 “ 0 et

f : rt0, t0 ` T s ˆR ÝÑ R

pt, zq ÞÝÑ cosptq ` 1
.

Les données du problème de Cauchy sont donc les réels t0, T, y0 et la fonction f. L’inconnue
est la fonction y : rt0, t0 ` T s ÝÑ R.
Pour résoudre numériquement le problème de Cauchy, on utilise le schéma pSq où les
données sont celles du problème de Cauchy plus le nombre de discrétisations N P N˚ On
peux alors calculer

‚ tn, n P v0, Nw qui sont les points de la discrétisation régulière à N intervalles :

tn “ t0 ` nh, @n P v0, Nw, avec h “
T

N
.
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‚ yrns, n P v0, Nw déterminés par le schéma pSq. On a yr0s “ y0, puis on calcule

yrn`1s
“ yrns

` hfptn, yrns
q, pour n “ 0 à N ´ 1

Q. 2 Soit a, b, a ă b deux réels. Ecrire une fonction DisReg retournant une discrétisation
régulière de l’intervalle ra; bs avec N pas de discrétisation. ˝

R. 2 Une discrétisation régulière de l’intervalle ra, bs avec N pas (constant) de discréti-
sation est donnée par

tn “ a ` nh, @n P v0, Nw, avec h “
b ´ a

N
.

Algorithme 1: Fonction DisReg retournant une discrétisation régulière de l’intervalle
ra, bs

Données : a, b : deux réels, a ă b
N : un entier non nul (nombre de pas de discrétisation).

Résultat : ttt : vecteur de RN`1

1: Fonction ttt Ð DisReg( a, b,N )
2: h Ð pb ´ aq{N
3: Pour n Ð 0 à N faire
4: tttpn ` 1q Ð a ` n ˚ h
5: Fin Pour
6: Fin Fonction

Q. 3 Ecrire une fonction redEUPsca retournant l’ensemble des couples ptn, yrn`1sqNn“0 cal-
culés par le schéma d’Euler progressif. ˝

R. 3 Les données du problème de Cauchy sont

Données : f : f : rt0, t0 ` T s ˆR ÝÑ R fonction d’un
problème de Cauchy (scalaire)

t0 : réel, temps initial
T : réel ą 0
y0 : réel, donnée initiale

auxquels, il faut ajouter le paramètre de discrétisation N
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Données : N : un entier non nul (nombre de pas de discrétisation).

On choisit de retourner les couples ptn, yrnsq, n P v0, Nw sous la forme de deux vecteurs :

Résultat : ttt : vecteur de RN`1, tttpnq “ tn´1, @n P v1, N ` 1w

YYY : vecteur de RN`1, YYY pnq “ yrn´1s, @n P v1, N ` 1w

On représente en mémoire les vecteurs ttt et YYY en Figure 1.

ttt t0 t1 . . . tn´1 . . . tN´1 tN

tttp1q tttp2q tttpn ` 1q tttpNqtttpN ´ 1q

YYY yr0s yr1s . . . yrn´1s . . . yrN´1s yrNs

YYY p1q YYY p2q YYY pnq YYY pN ´ 1q YYY pNq

Figure 1: Représentation mémoire du vecteur ttt P RN`1 et du vecteur YYY P RN`1.

Le schéma théorique est donné par
#

yr0s “ y0

yrn`1s “ yrns ` hfptn, yrnsq, pour n “ 0 à N ´ 1.

Le schéma algorithmique s’écrit alors
"

YYY p1q “ y0 (4.1)
YYY pn ` 2q “ YYY pn ` 1q ` hfptttpn ` 1q,YYY pn ` 1qq, pour n “ 0 à N ´ 1. (4.2)

ou de manière équivalente
"

YYY p1q “ y0 (4.3)
YYY pn ` 1q “ YYY pnq ` hfptttpnq,YYY pnqq, pour n “ 1 à N. (4.4)

L’algorithme de la fonction redEUPsca est :
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Algorithme 2: Fonction redEUPsca : résolution d’un problème de Cauchy scalaire par
le schéma d’Euler progressif
Données : f : f : rt0, t0 ` T s ˆR ÝÑ R fonction d’un

problème de Cauchy (scalaire)
t0 : réel, temps initial
T : réel ą 0
y0 : réel, donnée initiale
N : un entier non nul (nombre de pas de discrétisation).

Résultat : ttt : vecteur de RN`1, tttpnq “ tn´1, @n P v1, N ` 1w

YYY : vecteur de RN`1, YYY pnq “ yrn´1s, @n P v1, N ` 1w

1: Fonction rttt,YYY s Ð redEUPsca( f, t0, T, y0, N )
2: ttt Ð DisRegpt0, t0 ` T,Nq

3: h Ð pb ´ aq{N
4: YYY p1q Ð y0

5: Pour n Ð 1 à N faire
6: YYY pn ` 1q Ð YYY pnq ` h ˚ fptttpnq,YYY pnqq

7: Fin Pour
8: Fin Fonction

Q. 4 Ecrire un algorithme complet de résolution de pPq par le schéma d’Euler progressif.
˝

R. 4 Il faut tout d’abord écrire la fonction fCauchy correspondant à la fonction f :

Algorithme 3: Fonction fCauchy : fonction f du problème de Cauchy associé à pPq

Données : t : un réel
z : un réel

Résultat : w : un réel

1: Fonction w Ð fCauchy( t, y )
2: w Ð cosptq ` 1
3: Fin Fonction

L’algorithme de résolution est :

Algorithme 4: Résolution numérique du problème pPq

1: t0 Ð 0
2: T Ð 4π
3: y0 Ð 0
4: rttt,YYY s Ð redEUPscapfCauchy, t0, T, y0, 500q
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Exercice 5

Soit le problème de Cauchy vectoriel
"

yyy1ptq “ fffpt, yyyptqq, @t P rt0, t0 ` T s,
yyypt0q “ yyy0 P Rm,

avec fff : rt0, t0 ` T s ˆRm ÝÑ Rm. On souhaite écrire une fonction algorithmique redE-
UPVec permettant de résoudre ce problème de Cauchy (vectoriel) par le schéma vectoriel
explicite d’Euler progressif

"

yyyrn`1s “ yyyrns ` hfffptn, yyyrnsq, @n P v0, N ´ 1w

yyyr0s “ yyy0

avec ptnqNn“0 la discrétisation régulière de rt0, t0 ` T s avec N pas de discrétisation et

yyyrns “

¨

˚

˝

y
rns

1
...

y
rns
m

˛

‹

‚

et yyyrnsq « yyyptnq. Cette fonction devra retourner l’ensemble des tn et des yyyrns

pour nv0, Nw.

Q. 1 a. Rappeler précisement les données du problème de Cauchy vectoriel.

b. Quelles sont les données de la fonction algorithmique redEUPVec en précisant le type
et la dimension pour chacune?

c. Quelles sont les sorties/résultats de la fonction algorithmique redEUPVec en pré-
cisant le type et la dimension pour chacun?

˝

R. 1 a. Les données du problème de Cauchy vectoriel sont

‚ t0 P R, le temps initial,

‚ T P R`˚, la periode de temps,

‚ yyyr0s P Rm, la donnée initiale,

‚ fff : rt0, t0 ` T s ˆRm ÝÑ Rm, la fonction de Cauchy.

b. Les données de la fonction algorithmique redEUPVec sont celles du problème de
Cauchy vectoriel auxquels, il faut ajouter le paramètre de discrétisation N

‚ N, un entier non nul (nombre de pas de discrétisation).

c. On choisit de retourner ptnqNn“0 sous la forme d’un vecteur ttt P RN`1 et pyyyrnsqNn“0

n P v0, Nw sous la forme d’une matrice de Y P Mm,N`1pRq (ou tableau à m lignes
et N ` 1 colonnes). Plus précisement, on a
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Résultat : ttt : vecteur de RN`1, tttpnq “ tn´1, @n P v1, N ` 1w

Y : matrice de Mm,N`1pRq, Ypi, nq “ y
rn´1s

i , @pi, nq P v1,mw ˆ v1, N ` 1w.

On représente en mémoire le vecteur ttt et la matrice Y respectivement en Figure 2
et 3.

ttt t0 t1 . . . tn´1 . . . tN´1 tN

tttp1q tttp2q tttpn ` 1q tttpNq tttpN ` 1q

Figure 2: Représentation mémoire du vecteur ttt P RN`1.

Y

y
r0s

1 y
r1s

1
. . . y

rn´1s

1
. . . y

rN´1s

1 y
rNs

1

...
...

...
...

...

y
r0s

i y
r1s

i
. . . y

rn´1s

i
. . . y

rN´1s

i y
rNs

i

...
...

...
...

...

y
r0s
m y

r1s
m

. . . y
rn´1s
m

. . . y
rN´1s
m y

rNs
m

1 2 . . . n . . . N N ` 1

1

...

i

...

m

Ò

Yp:, 1q

Ò

Yp:, 2q

Ò

Yp:, nq

Ò

Yp:, Nq

Ò

Yp:, N ` 1q

Yp1, :q Ñ

Ypi, :q Ñ

Ypm, :q Ñ

Yp1, 1q

Ypi, 1q

Ypm, 1q

Yp1, 2q

Ypi, 2q

Ypm, 2q

Yp1, nq

Ypi, nq

Ypm,nq

Yp1, Nq

Ypi,Nq

Ypm,Nq

Yp1, N ` 1q

Ypi,N ` 1q

Ypm,N ` 1q

Figure 3: Représentation mémoire de Y P Mm,N`1pRq.

Une autre façon de représenter vectoriellement la matrice Y P Mm,N`1pRq.

11



1 2 . . . n . . . N ` 1

Y : m lignes

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

yyyr0s

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

yyyr1s

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

yyyrn´1s

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

yyyrNs

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

Ò

Yp:, 1q

Ò

Yp:, 2q
. . .

Ò

Yp:, nq
. . .

Ò

Yp:, N ` 1q

Table 1: Représentation mémoire de Y P Mm,N`1pRq à l’aide des vecteurs colonnes.

On rappelle l’écriture simplifiée d’accès aux colonnes d’une matrice décrit en section ??

Algorithmique
fonction version simplifiée Description mathématique
uuu Ð getMatColpA, jq uuu Ð Ap:, jq uuu P Rm est déterminé par uuui “ Ai,j, @i P v1, nw

A Ð setMatColpA,uuu, jq Ap:, jq Ð uuu la colonne j de A est remplacée par uuu P Rm

et on a Ai,j “ uuui, @i P v1, nw.

Table 2: Accès algorithmique aux colonnes d’une matrice A P Mm,npRq décrit en sec-
tion ??

Q. 2 Ecrire la fonction algorithmique redEUPVec permettant de résoudre ce problème
de Cauchy (vectoriel) par le schéma explicite d’Euler progressif. On utilisera l’écriture
algorithmique simplifiée d’accès aux éléments d’une matrice (voir Table 2). ˝

R. 2 Voici la description de la fonction redEUPVec (sans son implémentation)

Algorithme 5: Fonction redEUPVec : résolution d’un problème de Cauchy vectoriel
par le schéma d’Euler progressif (entête de la fonction)
Données : fff : fff : rt0, t0 ` T s ˆRm ÝÑ Rm fonction d’un

problème de Cauchy (vectoriel)
t0 : réel, temps initial
T : réel ą 0
yyy0 : Rm, donnée initiale
N : un entier non nul (nombre de pas de discrétisation).

Résultat : ttt : vecteur de RN`1, tttpnq “ tn´1, @n P v1, N ` 1w

Y : matrice de Mm,N`1pRq, Ypi, nq “ y
rn´1s

i , @pi, nq P v1,mw ˆ v1, N ` 1w.

1: Fonction rttt,Ys Ð redEUPVec( f, t0, T,yyy0, N )
2: . . .
3: Fin Fonction
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Nous allons maintenant utiliser une méthode de raffinement pour obtenir au final l’algorithme
permettant de remplir le vecteur ttt et la matrice Y en utilisant le langage algorithmique
simplifié.

Algorithme 5 R0

1: Calculer ttt

2: Calculer Y

Algorithme 5 R1

1: ttt Ð DirRegpt0, t0 ` T,Nq

2: Mettre yyy0 en colonne 1 de Y
3: Pour n Ð 0 à N ´ 1 faire

4:
Calculer yyyrn`1s par formule et
le mettre en colonne pn ` 2q de Y.

5: Fin Pour

Algorithme 5 R1

1: ttt Ð DirRegpt0, t0 ` T,Nq

2:
Mettre yyy0 en colonne 1 de Y

3: Pour n Ð 0 à N ´ 1 faire

4:

Calculer yyyrn`1s par formule et
le mettre en colonne pn ` 2q de Y.

5: Fin Pour

Algorithme 5 R2

1: ttt Ð DirRegpt0, t0 ` T,Nq

2: Yp:, 1q Ð yyy0

3: h Ð T {N Ź Nécessaire dans
formule

4: Pour n Ð 0 à N ´ 1 faire

5: Y tmpY tmpY tmp Ð yyyrns ` hfptn, yyyrnsq

6: Yp:, n ` 2q Ð Y tmpY tmpY tmp

7: Fin Pour

Or tttpnq est stocké en tttpn ` 1q et yyyrns est stocké en colonne n ` 1 de la matrice Y, c’est à
dire en Yp:, nq. On obtient alors

Algorithme 5 R2

1: ttt Ð DirRegpt0, t0 ` T,Nq

2: Yp:, 1q Ð yyy0

3: h Ð T {N Ź Nécessaire dans
formule

4: Pour n Ð 0 à N ´ 1 faire

5:
Y tmpY tmpY tmp Ð yyyrns ` hfptn, yyyrnsq

6: Yp:, n ` 2q Ð Y tmpY tmpY tmp
7: Fin Pour

Algorithme 5 R3

1: ttt Ð DirRegpt0, t0 ` T,Nq

2: Yp:, 1q Ð yyy0

3: h Ð T {N
4: Pour n Ð 0 à N ´ 1 faire

5: Y tmpY tmpY tmp Ð Yp:, n ` 1q ` h ˚ fptttpn ` 1q,Yp:

, n ` 1qq

6: Yp:, n ` 2q Ð Y tmpY tmpY tmp
7: Fin Pour

Dans ce dernier raffinement, purement algorithmique (les précédents raffinements con-
tenaient encore des notations mathématiques), on peut changer la boucle pour alléger
l’écriture:
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Algorithme 5: Fonction redEUPVec : résolution d’un problème de Cauchy vectoriel
par le schéma d’Euler progressif (langage algorithmique simplifié)
Données : fff : fff : rt0, t0 ` T s ˆRm ÝÑ Rm fonction d’un

problème de Cauchy (vectoriel)
t0 : réel, temps initial
T : réel ą 0
yyy0 : Rm, donnée initiale
N : un entier non nul (nombre de pas de discrétisation).

Résultat : ttt : vecteur de RN`1, tttpnq “ tn´1, @n P v1, N ` 1w

Y : matrice de Mm,N`1pRq, Ypi, nq “ y
rn´1s

i , @pi, nq P v1,mw ˆ v1, N ` 1w.

1: Fonction rttt,Ys Ð redEUPVec( f, t0, T,yyy0, N )
2: ttt Ð DirRegpt0, t0 ` T,Nq

3: Yp:, 1q Ð yyy0

4: h Ð T {N
5: Pour n Ð 1 à N faire Ź Décalage d’indice
6: Y tmpY tmpY tmp Ð Yp:, nq ` h ˚ fptttpnq,Yp:, nqq

7: Yp:, n ` 1q Ð Y tmpY tmpY tmp
8: Fin Pour
9: Fin Fonction

Bien sûr les lignes 6 et 7 de cet algorithme peuvent être condensée en

Yp:, n ` 1q Ð Yp:, nq ` h ˚ fptttpnq,Yp:, nqq.

Q. 3 Ecrire la fonction algorithmique redEUPVecfun permettant de résoudre ce problème
de Cauchy (vectoriel) par le schéma explicite d’Euler progressif. On utilisera l’écriture
algorithmique avec fonctions pour l’accès aux éléments d’une matrice (voir Table 2). ˝

R. 3 Dans l’Algorithme 5: , seules les lignes 3, 6 et 7 sont à remplacer par des fonctions
effectuant les mêmes opérations. Pour les lignes 3 et 7, on utilisera la fonction setMatCol.
La ligne 6 correspond en fait à une combinaison linéaire entre les deux vecteurs de Rm,
Yp:, nq et fptttpnq,Yp:, nqq

14



Algorithme 6 R3

1: ttt Ð DirRegpt0, t0 ` T,Nq

2:
Yp:, 1q Ð yyy0

3: h Ð T {N
4: Pour n Ð 1 à N faire

5:
Y tmpY tmpY tmp Ð Yp:, nq ` h ˚ fptttpnq,Yp:, nqq

6:
Yp:, n ` 1q Ð Y tmpY tmpY tmp

7: Fin Pour

Algorithme 6 R4

1: ttt Ð DirRegpt0, t0 ` T,Nq

2: Y Ð MatZerospm,N ` 1q Ź ou implicite
3: Y Ð setMatColpY, yyy0, 1q

4: h Ð T {N
5: Pour n Ð 0 à N ´ 1 faire

6: Y tmpY tmpY tmp Ð getMatColpY, nq

7: Y tmpY tmpY tmp Ð

aUpbV
`

1,Y tmpY tmpY tmp, h, fptttpnq,Y tmpY tmpY tmpq
˘

8: Y Ð setMatColpY,Y tmpY tmpY tmp, n ` 1q

9: Fin Pour

Algorithme 6: Fonction redEUPVecfun : résolution d’un problème de Cauchy vectoriel
par le schéma d’Euler progressif (langage algorithmique non simplifié)
Données : fff : fff : rt0, t0 ` T s ˆRm ÝÑ Rm fonction d’un

problème de Cauchy (vectoriel)
t0 : réel, temps initial
T : réel ą 0
yyy0 : Rm, donnée initiale
N : un entier non nul (nombre de pas de discrétisation).

Résultat : ttt : vecteur de RN`1, tttpnq “ tn´1, @n P v1, N ` 1w

Y : matrice de Mm,N`1pRq, Ypi, nq “ y
rn´1s

i , @pi, nq P v1,mw ˆ v1, N ` 1w.

1: Fonction rttt,Ys Ð redEUPVecfun( f, t0, T,yyy0, N )
2: ttt Ð DirRegpt0, t0 ` T,Nq

3: Y Ð MatZerospm,N ` 1q

4: Y Ð setMatColpY, yyy0, 1q

5: h Ð T {N
6: Pour n Ð 1 à N faire
7: Y tmpY tmpY tmp Ð getMatColpY, nq

8: Y tmpY tmpY tmp Ð aUpbV
`

1,Y tmpY tmpY tmp, h, fptttpnq,Y tmpY tmpY tmpq
˘

9: Y Ð setMatColpY,Y tmpY tmpY tmp, n ` 1q

10: Fin Pour
11: Fin Fonction

Une autre possibilité d’écriture est:

1: Fonction rttt,Ys Ð redEUPVecfunv1( f, t0, T,yyy0, N )
2: ttt Ð DirRegpt0, t0 ` T,Nq

3: Y Ð MatZerospm,N ` 1q

4: Y Ð setMatColpY, yyy0, 1q

5: h Ð T {N
6: Y tmpY tmpY tmp Ð yyy0

7: Pour n Ð 1 à N faire
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8: Y tmpY tmpY tmp Ð aUpbV
`

1,Y tmpY tmpY tmp, h, fptttpnq,Y tmpY tmpY tmpq
˘

9: Y Ð setMatColpY,Y tmpY tmpY tmp, n ` 1q

10: Fin Pour
11: Fin Fonction

Exercice 6

Soit l’équation différentielle ordinaire linéaire du troisième ordre avec conditions initiales
données par

p1 ` t ` t2q yp3qptq ` p3 ` 6tq yp2qptq ` 6 yp1qptq “ 6t, @t P r0, T s,
yp0q “ α, yp1qp0q “ β, yp2qp0q “ γ.

Ici ypkq note la dérivée k-ième de y.
Pour cette EDO, il existe une unique solution donnée par

yptq “
t4 ` 2At2 ` 4Bt ` 4C

4 pt2 ` t ` 1q

avec pA,B,Cq P R3 vérifiant

C “ α, B ´ C “ β et A ´ 2B “ γ.

On a aussi

yp1q
ptq “

t3 ` At ` B

t2 ` t ` 1
´

pt4 ` 2At2 ` 4Bt ` 4Cqp2 t ` 1q

4 pt2 ` t ` 1q
2

yp2q
ptq “

3 t2 ` A

t2 ` t ` 1
´

2 pt3 ` At ` Bqp2 t ` 1q

pt2 ` t ` 1q
2 `

pt4 ` 2At2 ` 4Bt ` 4Cqp2 t ` 1q
2

2 pt2 ` t ` 1q
3 ´

t4 ` 2At2 ` 4Bt ` 4C

2 pt2 ` t ` 1q
2 .

Q. 1 Déterminer le problème de Cauchy vectoriel associé à cette EDO ˝

R. 1 C’est une EDO d’ordre 3, nous allons donc les transformer en 3 EDO d’ordre 1 en
posant

YYY : r0, T s ÝÑ R3

t ÞÝÑ YYY ptq “

¨

˝

YYY 1ptq
YYY 2ptq
YYY 3ptq

˛

‚

def
“

¨

˝

yptq
yp1qptq
yp2qptq

˛

‚.

On cherche tout d’abord à établir la fonction de Cauchy fff : r0, T s ˆR3 ÝÑ R3 associée
à l’EDO et vérifiant

@t P r0, T s, YYY 1
ptq “ fffpt,YYY ptqq.
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Soit t P r0, T s, on a

YYY 1
ptq “

¨

˝

YYY 1
1ptq

YYY 1
2ptq

YYY 1
3ptq

˛

‚“

¨

˝

yp1qptq
yp2qptq
yp3qptq

˛

‚“

¨

˝

YYY 2ptq
YYY 3ptq
yp3qptq.

˛

‚

De plus, comme 1 ` t ` t2 ‰ 0, on a

yp3q
ptq “

6t ´ p3 ` 6tq yp2qptq ´ 6 yp1qptq

1 ` t ` t2
.

On en déduit donc

YYY ptq “

¨

˚

˚

˝

YYY 2ptq
YYY 3ptq

6t ´ p3 ` 6tq yp2qptq ´ 6 yp1qptq

1 ` t ` t2

˛

‹

‹

‚

“

¨

˚

˝

YYY 2ptq
YYY 3ptq

6t ´ p3 ` 6tqYYY 3ptq ´ 6YYY 2ptq

1 ` t ` t2

˛

‹

‚

La fonction de Cauchy s’écrit alors

fff : r0, T s ˆR3 ÝÑ R3

pt,ZZZq ÞÝÑ

¨

˚

˝

ZZZ2

ZZZ3

6t ´ p3 ` 6tqZZZ3 ´ 6ZZZ2

1 ` t ` t2

˛

‹

‚

Le problème de Cauchy associé à l’EDO s’écrit alors:

Trouver YYY : r0, T s ÝÑ R3 telle que
$

’

’

&

’

’

%

YYY 1ptq “ fffpt,YYY ptqq, @t P r0, T s,

YYY p0q “

¨

˝

α
β
γ

˛

‚P R3.

(P3)

Dans la suite, on prendra T “ 10, α “ 6, β “ ´5 et γ “ ´2.

Q. 2 Ecrire un programme permettant de résoudre numériquement le problème de Cauchy
associé à cette EDO à l’aide de la fonction algorithmique rttt,Ys Ð redEUPvecpf, t0, T, Y 0, Nq

(voir Exercice précédent). ˝

R. 2 On écrit tout d’abord la fonction algorithmique, nommée fC3 par exemple, corre-
spondant à la fonction de Cauchy fff
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Algorithme 7: Fonction fC3 : fonction fff du problème de Cauchy
Données : t : réel positif

ZZZ : un vecteur de R3

Résultat : WWW : un vecteur de R3

1: Fonction WWW Ð fC3( t,ZZZ )

2: WWW Ð

¨

˝

ZZZp2q

ZZZp3q
`

6 ˚ t ´ p3 ` 6 ˚ tq ˚ZZZp3q ´ 6 ˚ZZZp2q
˘

{p1 ` t ` t^2q

˛

‚

3: Fin Fonction

Algorithme 8: Programme permettant de résoudre numérique-
ment le problème de Cauchy avec T “ 10, α “ 6, β “ ´5 et γ “ ´2.

1: Y 0Y 0Y 0 Ð

¨

˝

6
´5
´2

˛

‚ Ź Données initiales

2: rttt,Ys Ð redEUPvecpfC3, 0, 10,Y 0Y 0Y 0, 1000q

On suppose que notre language algorithmique dispose d’une fonction graphique plotpX, Y q

reliant par des segments les points successifs
`

Xp1q, Y p1q
˘

,
`

Xp2q, Y p2q
˘

, . . . ,
`

Xpendq, Y pendq
˘

les tableaux X et Y ayant même longeurs et correspondent respectivement aux tableaux
des abscisses et des ordonnées.
On pourra utiliser la version simplifiée du langage algorithmique.

Q. 3 Donner les commandes permettant, après avoir utilisé le programme algorithmique
précédent, de représenter graphiquement les approximations obtenues par le schéma, de

`

yptnq
˘N

n“0
,

`

yp1q
ptnq

˘N

n“0
et

`

yp2q
ptnq

˘N

n“0

˝

R. 3 Dans le programme algorithmique précédent, on a utilisé

rttt,Ys Ð redEUPvecpfC3, 0, 10,Y 0Y 0Y 0, 1000q

pour résoudre le problème de Cauchy vectoriel (P3) obtenu en Q.1.
La fonction redEUPvec permet de résoudre numériquement ce problème de Cauchy en
utilisant le schéma vectoriel explicite d’Euler progressif générique suivant:

"

yyyrn`1s “ yyyrns ` hfffptn, yyyrnsq, @n P v0, N ´ 1w

yyyr0s “ yyy0
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avec ptnqNn“0 la discrétisation régulière de rt0, t0 ` T s avec N pas de discrétisation et

yyyrns “

¨

˚

˝

y
rns

1
...

y
rns
m

˛

‹

‚

et yyyrns « YYY ptnq, où YYY est la solution exacte du problème de Cauchy (P3).

Dans le programme algorithmique, on a m “ 3 et on a choisi N “ 1000. On a donc pour
tout n dans v0, Nw :

yyyrns
“

¨

˚

˝

yyy
rns

1

yyy
rns

2

yyy
rns

3

˛

‹

‚

« YYY ptnq “

¨

˝

YYY 1ptnq

YYY 2ptnq

YYY 3ptnq

˛

‚.

De plus, par définition de YYY (voir Q.1), on a
¨

˝

YYY 1ptnq

YYY 2ptnq

YYY 3ptnq

˛

‚

def
“

¨

˝

yptnq

yp1qptnq

yp2qptnq

˛

‚.

où y est la solution de l’EDO initiale du 3ème ordre. On obtient donc

yyyrns
“

¨

˚

˝

yyy
rns

1

yyy
rns

2

yyy
rns

3

˛

‹

‚

«

¨

˝

yptnq

yp1qptnq

yp2qptnq

˛

‚.

La fonction redEUPvec retourne donc

‚ ttt P RN`1 contenant l’ensemble de la discrétisation régulière de l’intervalle r0, 10s:

ttt t0 t1 . . . tn´1 . . . tN´1 tN

tttp1q tttp2q tttpn ` 1q tttpNq tttpN ` 1q

‚ Y P M3,N`1pRq contenant l’ensemble des yyyrns, n P v0, Nw:

1 2 . . . n . . . N ` 1

Y : 3 lignes

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

yyyr0s

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

yyyr1s

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

yyyrn´1s

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

yyyrNs

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

Ò

Yp:, 1q

Ò

Yp:, 2q
. . .

Ò

Yp:, nq
. . .

Ò

Yp:, N ` 1q

Voici une autre façon de représenter Y sous la forme d’un tableau de 3 lignes et
pN ` 1q colonnes:
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Y

y
r0s

1 y
r1s

1
. . . y

rn´1s

1
. . . y

rN´1s

1 y
rNs

1

y
r0s

2 y
r1s

2
. . . y

rn´1s

2
. . . y

rN´1s

2 y
rNs

2

y
r0s

3 y
r1s

3
. . . y

rn´1s

3
. . . y

rN´1s

3 y
rNs

3

1 2 . . . n . . . N N ` 1

1

2

3

Ò

Yp:, 1q

Ò

Yp:, 2q

Ò

Yp:, nq

Ò

Yp:, Nq

Ò

Yp:, N ` 1q

Yp1, :q Ñ

Yp2, :q Ñ

Yp3, :q Ñ

Yp1, 1q

Yp2, 1q

Yp3, 1q

Yp1, 2q

Yp2, 2q

Yp3, 2q

Yp1, nq

Yp2, nq

Yp3, nq

Yp1, Nq

Yp2, Nq

Yp3, Nq

Yp1, N ` 1q

Yp2, N ` 1q

Yp3, N ` 1q

Tout le blabla précédent a été rédigé pour aider à la compréhension, mais, avec un peu
d’habitude, on a immédiatement

• les approximations de
`

yptnq
˘N

n“0
correspondent à la première ligne de Y avec

Yp1, n ` 1q « yptnq, @n P v0, nw

et la commande (utilisant le langage algorithmique simplifié) qui permet de représen-
ter ces approximations est:

plotpttt,Yp1, :qq

• les approximations de
`

yp1qptnq
˘N

n“0
correspondent à la deuxième ligne de Y avec

Yp2, n ` 1q « yp1q
ptnq, @n P v0, nw

et la commande (utilisant le langage algorithmique simplifié) qui permet de représen-
ter ces approximations est:

plotpttt,Yp2, :qq

• les approximations de
`

yp2qptnq
˘N

n“0
correspondent à la troisième ligne de Y avec

Yp3, n ` 1q « yp2q
ptnq, @n P v0, nw

et la commande (utilisant le langage algorithmique simplifié) qui permet de représen-
ter ces approximations est:

plotpttt,Yp3, :qq

Q. 4 Ecrire un programme algorithmique permettant de représenter graphiquement les
solutions exactes aux points de discrétisation, c’est à dire

`

yptnq
˘N

n“0
,

`

yp1q
ptnq

˘N

n“0
et

`

yp2q
ptnq

˘N

n“0

˝
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R. 4 Il faut tout d’abord écrire les fonctions algoritmiques correspondant à la solution
exacte yptq, sa dérivée y1ptq et sa dérivée seconde y1ptq que l’on nommera respectivement
yex, dyex, et d2yex.

Algorithme 9: Fonction yex : retourne la solution exacte en
t
Données : t : un réel,

A,B,C : trois réels
Résultat : w : un réel tel que w “ yptq

1: Fonction w Ð yex( t, A,B,C )
2: w Ð p2˚A˚ tp2`4˚B ˚ t`4˚C ` tp4q{p4˚ptp2` t`1qq

3: Fin Fonction

Algorithme 10: Fonction dyex : re-
tourne la dérivée de la solution exacte en
t
Données : t : un réel,

A,B,C : trois réels
Résultat : w : un réel tel que w “ y1ptq

1: Fonction w Ð dyex( t, A,B,C )
2: w Ð . . . Ź à faire
3: Fin Fonction

Algorithme 11: Fonction d2yex : re-
tourne la dérivée seconde de la solution
exacte en t
Données : t : un réel,

A,B,C : trois réels
Résultat : w : un réel tel que w “ y2ptq

1: Fonction w Ð d2yex( t, A,B,C )
2: w Ð . . . Ź à faire
3: Fin Fonction

Algorithme 12: Programme permettant de représenter graphique-
ment la solution exacte, sa dérivée première et sa dérivée seconde à
partir des données N, α, β et γ.

1: N Ð 1000, α Ð 6, β Ð ´5, γ Ð ´2
2: C Ð α, B Ð β ` C, A Ð γ ` 2 ˚ B
3: ttt Ð DisRegp0, 10, Nq

4: Pour n Ð 1 à N ` 1 faire
5: Y exY exY expnq Ð yexptttpnq, A,B,Cq

6: dY exdY exdY expnq Ð dyexptttpnq, A,B,Cq

7: d2Y exd2Y exd2Y expnq Ð d2yexptttpnq, A,B,Cq

8: Fin Pour
9: plotpttt,Y exY exY exq Ź Représentation de la solution exacte

10: plotpttt,dY exdY exdY exq Ź Représentation de sa dérivée
11: plotpttt,d2Y exd2Y exd2Y exq Ź Représentation de sa dérivée seconde

Q. 5 Ecrire un programme algorithmique permettant de représenter graphiquement les
erreurs numériques commises en valeurs absolues par le schéma pour les approximations
de

`

yptnq
˘N

n“0
,

`

yp1q
ptnq

˘N

n“0
et

`

yp2q
ptnq

˘N

n“0

˝
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R. 5 L’erreur est la différence entre la solution exacte et la solution numérique au même
point de discrétisation.
Par exemple les erreurs numériques commises en valeurs absolues par le schéma pour les
approximations de

`

yptnq
˘N

n“0
, sont les pN ` 1q réels

|yptnq ´ Yp1, n ` 1q|, @n P v0, Nw.

On en déduit alors le programme suivant:

Algorithme 13: Programme permettant de représenter graphique-
ment les erreurs numériques commises par le schéma d’Euler progressif

1: N Ð 1000, α Ð 6, β Ð ´5, γ Ð ´2

2: Y 0Y 0Y 0 Ð

¨

˝

6
´5
´2

˛

‚ Ź Données initiales

3: rttt,Ys Ð redEUPvecpfC3, 0, 10,Y 0Y 0Y 0, 1000q

4: C Ð α, B Ð β ` C, A Ð γ ` 2 ˚ B
5: Pour n Ð 1 à N ` 1 faire

6: EEEpnq Ð abs
ˆ

yex
`

tttpnq, A,B,C
˘

´ Yp1, nq

˙

7: dEdEdEpnq Ð abs
ˆ

dyex
`

tttpnq, A,B,C
˘

´ Yp2, nq

˙

8: d2Ed2Ed2Epnq Ð abs
ˆ

d2yex
`

tttpnq, A,B,C
˘

´ Yp3, nq

˙

9: Fin Pour
10: plotpttt,EEEq

11: plotpttt,dEdEdEq

12: plotpttt,d2Ed2Ed2Eq
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