Analyse Numérique l Sup'Galilée, Ingénieurs MACS, 1ère année

François Cuvelier

Laboratoire d'Analyse Géométrie et Applications Institut Galilée Université Paris XIII.

2017/11/27

Chapitre V

Interpolation

Plan

- Interpolation de Lagrange
 - Stabilité

- 2 Interpolation de Lagrange-Hermite
 - Exercice
 - Résultats

Historique

(a) Joseph-Louis Lagrange 1736-1813, mathématicien italien puis français

(c) Charles Hermite 1822-1901, mathématicien français

(b) Pafnouti Lvovitch Tchebychev 1821-1894, mathématicien russe

(d) Henri-Léon Lebesgue 1875-1941, mathématicien français

🔏 Exercice 1.1: 🔬

Soient $n \in \mathbb{N}^*$ et n+1 couples de \mathbb{R}^2 , $(x_i, y_i)_{i \in [0,n]}$, tels que les x_i sont distincts deux à deux. On note

Q. 1

• Soit $i \in [0, n]$. Montrer qu'il existe un unique polynôme L_i de degré n vérifiant

$$L_i(x_j) = \delta_{ij}, \ \forall j \in [0, n]. \tag{1}$$

3 Montrer que les $(L_i)_{i \in [\![0,n]\!]}$ forment une base de $\mathbb{R}_n[X]$ (espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n).

On défini le polynôme P_n par

$$P_n(x) = \sum_{i=0}^n y_i L_i(x). \tag{2}$$

Q. 2

Montrer que polynôme P_n est l'unique polynôme de degré au plus n vérifiant $P_n(x_i) = y_i, \forall i \in [1, n].$

V Definition 1.1

Soient $n \in \mathbb{N}^*$ et $(x_i, y_i)_{i \in [0,n]}$ avec $(x_i, y_i) \in \mathbb{R}^2$ et les x_i distincts deux à deux. Le **polynôme d'interpolation de Lagrange** associé aux n+1 points $(x_i, y_i)_{i \in [0,n]}$, noté P_n , est donné par

$$P_n(x) = \sum_{i=0}^n y_i L_i(x), \ \forall x \in \mathbb{R}$$
 (3)

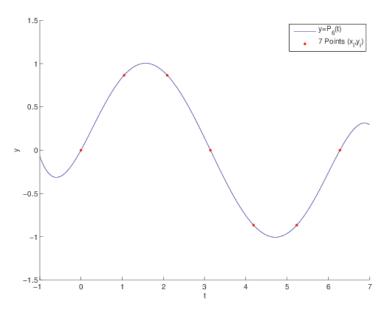
avec

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}, \ \forall i \in [0, n], \ \forall x \in \mathbb{R}.$$
 (4)



Le polynôme d'interpolation de Lagrange, \mathcal{P}_n , associé aux n+1 points $(x_i, y_i)_{i \in \llbracket 0, n \rrbracket}$, est l'unique polynôme de degré au plus n, vérifiant

$$\mathcal{P}_n(x_i) = y_i, \ \forall i \in [0, n]. \tag{5}$$



Polynôme d'interpolation de Lagrange avec 7 points donnés

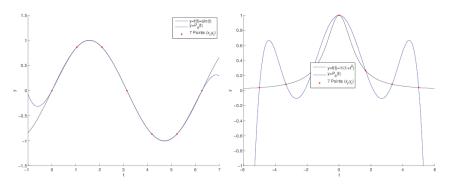
🔏 Exercice 1.2: 🚜

Ecrire la fonction LAGRANGE permettant de calculer \mathcal{P}_n (polynôme d'interpolation de Lagrange associé aux n+1 points $(x_i,y_i)_{i\in \llbracket 0,n\rrbracket})$ au point $t \in \mathbb{R}$.

Soit une fonction $f:[a,b]\longrightarrow \mathbb{R}$. On suppose que les y_i sont donnés par

$$y_i = f(x_i), \quad \forall i \in \llbracket 0, n \rrbracket. \tag{6}$$

On cherche à évaluer l'erreur $E_n(t) = f(x) - \mathcal{P}_n(t), \forall t \in [a, b].$

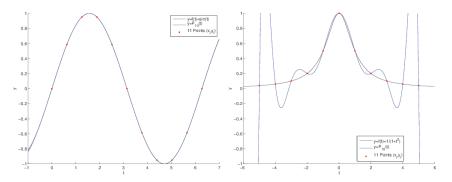


Polynômes d'interpolation de lagrange avec n=6 (7 points) uniformément répartis. A gauche pour la fonction $f:x\longrightarrow sin(x)$ avec $x_0=0, x_6=2\pi$ et à droite pour la fonction $f:x\longrightarrow 1/(1+25x^2)$ avec $x_0=-5, x_6=5$.

Soit une fonction $f:[a,b] \longrightarrow \mathbb{R}$. On suppose que les y_i sont donnés par

$$y_i = f(x_i), \quad \forall i \in \llbracket 0, n \rrbracket. \tag{6}$$

On cherche à évaluer l'erreur $E_n(t) = f(x) - \mathcal{P}_n(t), \forall t \in [a, b].$

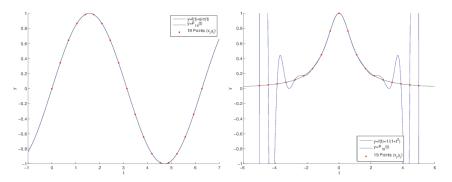


Polynômes d'interpolation de lagrange avec n=10 (11 points) uniformément répartis. A gauche pour la fonction $f:x\longrightarrow sin(x)$ avec $x_0=0, x_{10}=2\pi$ et à droite pour la fonction $f:x\longrightarrow 1/(1+25x^2)$ avec $x_0=-5, x_{10}=5$.

Soit une fonction $f:[a,b] \longrightarrow \mathbb{R}$. On suppose que les y_i sont donnés par

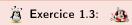
$$y_i = f(x_i), \quad \forall i \in \llbracket 0, n \rrbracket. \tag{6}$$

On cherche à évaluer l'erreur $E_n(t) = f(x) - \mathcal{P}_n(t), \forall t \in [a, b].$



Polynômes d'interpolation de lagrange avec n=18 (19 points) uniformément répartis. A gauche pour la fonction $f:x\longrightarrow sin(x)$ avec $x_0=0, x_{18}=2\pi$ et à droite pour la fonction $f:x\longrightarrow 1/(1+25x^2)$ avec $x_0=-5, x_{18}=5$.

Interpolation de Lagrange



Soit $f \in \mathcal{C}^{n+1}([a;b];\mathbb{R})$. Soient $n \in \mathbb{N}^*$ et n+1 couples de \mathbb{R}^2 , $(x_i,y_i)_{i\in [0,n]}$, tels que les x_i sont distincts deux à deux et $y_i = f(x_i)$.

On note par P_n le polynôme d'interpolation de Lagrange associé aux points $(x_i,y_i)_{i\in \llbracket 0,n\rrbracket}$ et π_n le polynôme de degré n+1 défini par

$$\pi_n(x) = \prod_{i=0}^n (x - x_i).$$
 (7)

Q. 1

Montrer que, $\forall x \in [a; b]$, il existe ξ_x appartenant au plus petit intervalle fermé contenant x, x_0, \dots, x_n tel que

$$f(x) - P_n(x) = \frac{\pi_n(x)}{(n+1)!} f^{(n+1)}(\xi_x).$$
 (8)

Indication : Etudier les zéros de la fonction

$$F(t) = f(t) - P_n(t) - \frac{f(x) - P_n(x)}{\pi_n(x)} \pi_n(t).$$

Théorème 1.3

Soient $n \in \mathbb{N}^*$ et x_0, \dots, x_n n+1 points distincts de l'intervalle [a,b]. Soient $f \in \mathcal{C}^{n+1}([a;b];\mathbb{R})$ et \mathcal{P}_n le polynôme d'interpolation de Lagrange de degré n passant par $(x_i, f(x_i)), \ \forall i \in [0,n]$. Alors, $\forall x \in [a,b], \ \exists \xi_x \in (min(x_i,x), max(x_i,x)),$

$$f(x) - \mathcal{P}_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$
 (9)

Comment "minimiser" $f(x) - P_n(x)$?

Théorème 1.4

Soient $n \in \mathbb{N}^*$ et x_0, \dots, x_n n+1 points distincts de l'intervalle [a,b]. Soient $f \in \mathcal{C}^{n+1}([a;b];\mathbb{R})$ et \mathcal{P}_n le polynôme d'interpolation de Lagrange de degré n passant par $(x_i, f(x_i)), \ \forall i \in [0,n]$. Alors, $\forall x \in [a,b], \ \exists \xi_x \in (min(x_i,x), max(x_i,x)),$

$$f(x) - \mathcal{P}_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$
 (9)

Comment "minimiser" $f(x) - P_n(x)$?

"jouer" sur le choix des points x;

4□ > 4□ > 4□ > 4□ > 4□ > 900

Trouver $(\bar{x}_i)_{i=0}^n$, $\bar{x}_i \in [a, b]$, distincts deux à deux, tels que $\forall (x_i)_{i=0}^n, x_i \in [a, b], \text{ distincts 2 à 2}$

$$\max_{t \in [a,b]} \prod_{i=0}^{n} |t - \bar{x}_i| \leq \max_{t \in [a,b]} \prod_{i=0}^{n} |t - x_i|, \tag{10}$$

On a alors le résultat suivant

Théorème 1.5: admis

Les points réalisant (10) sont les points de Chebyshev donnés par

$$\bar{x}_i = \frac{a+b}{2} + \frac{b-a}{2} \cos(\frac{(2i+1)\pi}{2n+2}), \ \forall i \in [0, n].$$
 (11)

Interpolation de Lagrange

2017/11/27

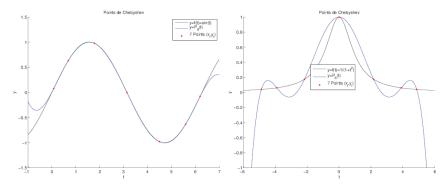


Figure : Erreurs d'interpolation avec n = 6

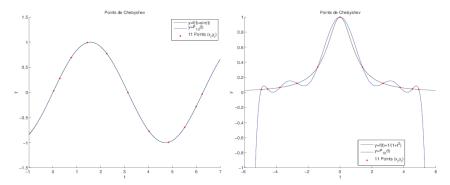


Figure : Erreurs d'interpolation avec n=10

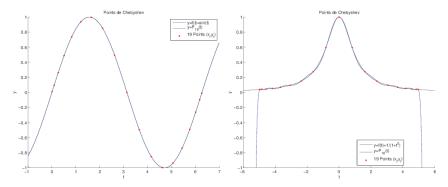


Figure : Erreurs d'interpolation avec n = 18

Plan

- 🕕 Interpolation de Lagrange
 - Stabilité

- Interpolation de Lagrange-Hermite
 - Exercice
 - Résultats

On commet des erreurs sur les données

$$f_i \approx f(x_i), \quad \forall i \in [0, n]$$

$$\begin{aligned} \mathbf{P}_n(x) &= \sum_{i=0}^n f(x_i) \mathbf{L}_i(x) \quad \text{et} \quad \widehat{\mathbf{P}}_n(x) = \sum_{i=0}^n f_i \mathbf{L}_i(x) \\ |\widehat{\mathbf{P}}_n(x) - \mathbf{P}_n(x)| &= |\sum_{i=0}^n (f_i - f(x_i)) \mathbf{L}_i(x)| \\ &\leq \sum_{i=0}^n |f_i - f(x_i)| |\mathbf{L}_i(x)| \\ &\leq \max_{i \in [0,n]} |f_i - f(x_i)| \sum_{i=0}^n |\mathbf{L}_i(x)|. \end{aligned}$$

Constante de Lebesgue :
$$\Lambda_n = \max_{x \in [a,b]} \sum_{i=0}^n |L_i(x)|$$
.

$$\|\widehat{\mathbf{P}}_n - \mathbf{P}_n\|_{\infty} \leq \Lambda_n \max_{i \in [0,n]} |f_i - f(x_i)|.$$

Proposition:

Soient $n \in \mathbb{N}^*$ et x_0, \dots, x_n des points distincts de [a, b]. L'application $\mathcal{L}_n : \mathcal{C}^0([a, b]; \mathbb{R}) \longrightarrow \mathbb{R}_n[X]$ qui a toute fonction $f \in \mathcal{C}^0([a, b]; \mathbb{R})$ donne le polynôme d'interpolation de Lagrange P_n associés aux couples de $(x_i, f(x_i))_{i \in [0, n]}$ est bien définie et linéaire. De plus on a

$$\|\mathcal{L}_n\| \stackrel{\text{def}}{=} \sup_{\substack{f \in \mathcal{C}^0([a,b];\mathbb{R})\\f \neq 0}} \frac{\|\mathcal{L}_n(f)\|_{\infty}}{\|f\|_{\infty}} = \Lambda_n.$$
 (12)

Théorème 1.6:

Pour toute fonction $f \in C^0([a, b]; \mathbb{R})$, on a

$$||f - \mathcal{L}_n(f)||_{\infty} \leqslant (1 + \Lambda_n) \inf_{Q \in \mathbb{R}_n[X]} ||f - Q||_{\infty}$$
 (13)

• Pour les points équidistants $x_i = a + ih$, $i \in [0, n]$ et h = (b - a)/n,

$$\Lambda_n \geqslant \frac{2^n}{4n^2} \tag{14}$$

et le comportement asymptotique

$$\Lambda_n \approx \frac{2^{n+1}}{e \cdot n \ln(n)} \text{ quand } n \to +\infty$$
(15)

Pour les points de Tchebychev,

$$\Lambda_n \leqslant C \ln(n), \text{ avec } C > 0$$
 (16)

et le comportement asymptotique

$$\Lambda_n \approx \frac{2}{\pi} \ln(n) \text{ quand } n \to +\infty$$
 (17)

Proposition: admis

Pour toute famille de points d'interpolation, il existe une fonction $f \in \mathcal{C}^0([a,b];\mathbb{R})$ telle que la suite des polynômes d'interpolation associés ne converge pas uniformément.

Proposition: admis

Soit f une fonction lipschitzienne sur [a,b] à valeurs réelles, i.e. il existe une constante $K\geqslant 0$ telle que $\forall (x,y)\in [a,b]^2$, on ait $|f(x)-f(y)|\leqslant K|x-y|$. Soient $n\in N^*$ et x_0,\cdots,x_n les points de Tchebychev [a,b]. On note $\mathcal{L}_n(f)$ le polynôme d'interpolation de Lagrange associés aux couples de $(x_i,f(x_i))_{i\in \llbracket 0,n\rrbracket}$.

Alors la suite $(\mathcal{L}_n(f))_{n\geq 1}$ des polynômes d'interpolation converge uniformémént vers f sur [a,b].

Conclusion

L'interpolation de Lagrange en des points équidistants n'est à utiliser qu'avec un nombre de points assez faible : des phénomènes d'instabilités pouvant apparaître.

Plan

- Interpolation de Lagrange
 - Stabilité

- Interpolation de Lagrange-Hermite
 - Exercice
 - Résultats

Exercice 2.1: Interpolation de Lagrange-Hermite

Soient $(x_i, y_i, z_i)_{i \in [\![0, n]\!]}$ n+1 triplets de \mathbb{R}^3 , où les x_i sont des points distincts deux à deux de l'intervalle $[\![a, b]\!]$. Le polynôme d'interpolation de **Lagrange-Hermite**, noté H_n , associé aux n+1 triplets $(x_i, y_i, z_i)_{i \in [\![0, n]\!]}$, est défini par

$$H_n(x_i) = y_i \text{ et } H'_n(x_i) = z_i, \ \forall i \in [0, n]$$
 (18)

Q. 1

Quel est a priori le degré de H_n?

On défini le polynôme P_n par

$$P_n(x) = \sum_{i=0}^n y_i A_i(x) + \sum_{i=0}^n z_i B_i(x)$$
 (19)

avec, pour $i \in [0, n]$, A_i et B_i polynômes de degré au plus 2n + 1 indépendants des valeurs y_i et z_i .

Q. 2

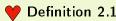
- ① Déterminer des conditions suffisantes sur A_i et B_i pour que $P_n \equiv H_n$.
- **2** En déduire les expressions de A_i et B_i en fonction de L_i et de $L'_i(x_i)$ où

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}.$$

Plan

- Interpolation de Lagrange
 - Stabilité

- Interpolation de Lagrange-Hermite
 - Exercice
 - Résultats



Soient $n \in \mathbb{N}^*$ et $(x_i, y_i, z_i)_{i \in \llbracket 0, n \rrbracket}$ n+1 triplets de \mathbb{R}^3 , où les x_i sont des points distincts deux à deux de l'intervalle [a, b]. Le **polynôme** d'interpolation de Lagrange-Hermite, noté H_n , associé aux n+1 triplets $(x_i, y_i, z_i)_{i \in \llbracket 0, n \rrbracket}$, est défini par

$$H_n(x) = \sum_{i=0}^n y_i A_i(x) + \sum_{i=0}^n z_i B_i(x)$$
 (20)

avec

$$A_i(x) = (1 - 2L_i'(x_i)(x - x_i))L_i^2(x)$$
 et $B_i(x) = (x - x_i)L_i^2(x)$ (21)

οù

$$L_i(x) = \prod_{\substack{j=0\\i\neq j}}^n \frac{x - x_j}{x_i - x_j}.$$

Théorème 2.2

Le polynôme d'interpolation de Lagrange-Hermite, H_n , associé aux n+1 triplets $(x_i,y_i,z_i)_{i\in \llbracket 0,n\rrbracket}$, est l'unique polynôme de degré au plus 2n+1, vérifiant

$$H_n(x_i) = y_i \text{ et } H'_n(x_i) = z_i, \ \forall i \in [0, n]$$
 (22)

Soit $f \in \mathcal{C}^{2n+2}([a,b];\mathbb{R})$. On suppose de plus que, $\forall i \in [0,n], x_i \in [a,b], y_i = f(x_i)$ et $z_i = f'(x_i)$. On note

$$\pi_n^2(x) = \prod_{i=0}^n (x - x_i)^2$$

et H_n le polynôme d'interpolation de Lagrange-Hermite associé aux triplets $(x_i, f(x_i), f'(x_i))_{i \in \llbracket 0, n \rrbracket}$.

Q. 1

Montrer que

$$|f(x) - H_n(x)| \le \frac{\|f^{(2n+2)}\|_{\infty}}{(2n+2)!} \pi_n^2(x).$$
 (23)

Indications: Etudier les zéros de la fonction $F(y) = f(y) - H_n(y) - \frac{f(x) - H_n(x)}{\pi_n^2(x)} \pi_n^2(y)$ et appliquer le théorème de Rolle.

Théorème 2.3

Soient $n \in \mathbb{N}^*$ et $x_0, \dots, x_n, n+1$ points distincts de l'intervalle [a,b]. Soient $f \in \mathcal{C}^{2n+2}([a;b];\mathbb{R})$ et H_n le polynôme d'interpolation de Lagrange-Hermite associé aux n+1 triplets $(x_i, f(x_i), f'(x_i))_{i \in \llbracket 0, n \rrbracket}$. On a alors $\forall x \in [a,b], \exists \xi_x \in (\min(x_i,x), \max(x_i,x))$, tels que

$$f(x) - H_n(x) = \frac{f^{(2n+2)}(\xi_x)}{(2n+2)!} \prod_{i=0}^n (x - x_i)^2$$
 (24)

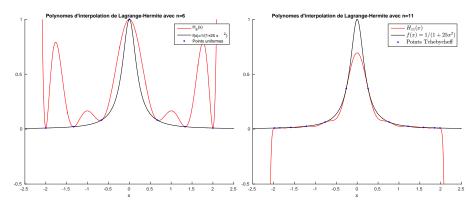


Figure : Polynôme d'interpolation de lagrange-Hermite avec n=6 (7 points) pour la fonction $f:x\longrightarrow 1/(1+25x^2)$. A gauche avec des points uniforméments répartis et à droite avec des points de Tchebychev

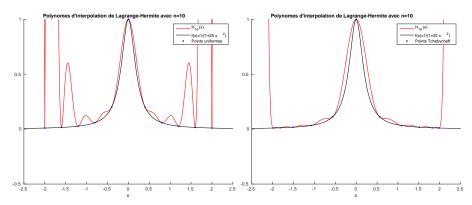


Figure : Polynôme d'interpolation de lagrange-Hermite avec n=10 (11 points) pour la fonction $f:x\longrightarrow 1/(1+25x^2)$. A gauche avec des points uniforméments répartis et à droite avec des points de Tchebychev

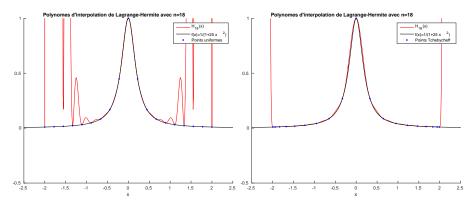


Figure : Polynôme d'interpolation de lagrange-Hermite avec n=18 (19 points) pour la fonction $f:x\longrightarrow 1/(1+25x^2)$. A gauche avec des points uniforméments répartis et à droite avec des points de Tchebychev

Ecrire une fonction algorithmique Hermite permettant de calculer H_n (polynôme d'interpolation de Lagrange-Hermite associé aux n+1 triplets $(x_i,y_i,z_i)_{i\in \llbracket 0,n\rrbracket})$ en $t\in \mathbb{R}$.