Analyse Numérique I Sup'Galilée, Ingénieurs MACS 1ère année & L3 MIM

François Cuvelier

Laboratoire d'Analyse Géométrie et Applications Institut Galilée Université Paris XIII.

2021/10/10

Chapitre IV

Résolution de systèmes linéaires

Plan

- Méthodes directes
 - Matrices particulières

 - Exercices et résultats préliminaires
 - Méthode de Gauss-Jordan
 - Ecriture algébrique

- Factorisation LU
- Résultats théoriques
- Utilisation pratique
- Factorisation LDL*
- Factorisation de Cholesky

 - Algorithme : Factorisation
- ullet Factorisation \mathbb{QR}



Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ une matrice inversible et $\boldsymbol{b} \in \mathbb{K}^n$.

Résoudre

Ax = b

Le calcul de la matrice inverse \mathbb{A}^{-1} revient à résoudre n systèmes linéaires.

Pour résoudre un système linéaire, on ne calcule pas la matrice inverse associée.

• Méthodes directes : On cherche M inversible tel que MA facilement inversible

$$\mathbb{A}\mathbf{x} = \mathbf{b} \iff \mathbb{M}\mathbb{A}\mathbf{x} = \mathbb{M}\mathbf{b}.$$

• Méthodes itératives : On cherche B et c.

$$\mathbf{x}^{[k+1]} = \mathbb{B}\mathbf{x}^{[k]} + \mathbf{c}, \quad k \ge 0, \ \mathbf{x}^{[0]} \text{ donné}$$

en espérant $\lim_{k\to +\infty} \mathbf{x}^{[k]} = \mathbf{x}$.

Conditionnement

Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ inversible et $\boldsymbol{b} \in \mathbb{K}^n$.

$$Ax = b$$

De petites erreurs sur les données engendrent-elles de petites erreurs sur la solution?

Exemple de R.S. Wilson

Soient

$$\mathbb{A} = \left(\begin{array}{cccc} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{array} \right), \quad \Delta \mathbb{A} = \left(\begin{array}{cccc} 0 & 0 & \frac{1}{10} & \frac{1}{5} \\ \frac{2}{25} & \frac{1}{25} & 0 & 0 \\ 0 & -\frac{1}{50} & -\frac{11}{100} & 0 \\ -\frac{1}{100} & -\frac{1}{100} & 0 & -\frac{1}{50} \end{array} \right)$$

et $\boldsymbol{b}^{t} = (32, 23, 33, 31), (\Delta \boldsymbol{b})^{t} = (\frac{1}{100}, -\frac{1}{100}, \frac{1}{100}, -\frac{1}{100})$. Des calculs exacts donnent

Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ inversible et $\boldsymbol{b} \in \mathbb{K}^n$.

$$Ax = b$$

De petites erreurs sur les données engendrent-elles de petites erreurs sur la solution?

Non, pas forcément!

Le système linéaire prédédent est mal conditionné.

On dit qu'un système linéaire est bien conditionné ou qu'il a un bon conditionnement si de petites perturbations des données n'entrainent qu'une variation raisonnable de la solution.

Soit \mathbb{A} une matrice inversible. Soient \mathbf{x} et $\mathbf{x} + \Delta \mathbf{x}$ les solutions respec-

Ax = b et $A(x + \Delta x) = b + \Delta b$.

 $\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \leqslant \operatorname{cond}(\mathbb{A}) \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}$

est satisfaite, et c'est la meilleure possible : pour une matrice A donnée,

on peut trouver des vecteurs $b \neq 0$ et $\Delta b \neq 0$ tels qu'elle devienne une

Est-il possible de "mesurer" le conditionnement d'une matrice?

Openition 1.1

Soit ||. || une norme matricielle subordonnée, le conditionnement d'une matrice régulière A, associé à cette norme, est le nombre

$$\operatorname{cond}(\mathbb{A}) = \|\mathbb{A}\| \|\mathbb{A}^{-1}\|.$$

Nous noterons $\operatorname{cond}_{p}(\mathbb{A}) = \|\mathbb{A}\|_{p} \|\mathbb{A}^{-1}\|_{p}$.

Proposition: 🔥

Soit A une matrice régulière. On a les propriétés suivantes

- \circ cond₂(\mathbb{A}) = 1 si et seulement si $\mathbb{A} = \alpha \mathbb{Q}$ avec $\alpha \in \mathbb{K}^*$ et \mathbb{Q} matrice unitaire

tives de

égalité.

Théorème 2: 🚲

Supposons $b \neq 0$, alors l'inégalité

Théorème: 🚲

Soient \mathbb{A} et $\mathbb{A} + \Delta \mathbb{A}$ deux matrices inversibles. Soient \mathbf{x} et $\mathbf{x} + \Delta \mathbf{x}$ les solutions respectives de

$$\mathbb{A}\mathbf{x} = \mathbf{b}$$
 et $(\mathbb{A} + \Delta\mathbb{A})(\mathbf{x} + \Delta\mathbf{x}) = \mathbf{b}$.

Supposons $b \neq 0$, alors on a

$$\frac{\|\Delta x\|}{\|x + \Delta x\|} \leqslant \operatorname{cond}(\mathbb{A}) \frac{\|\Delta \mathbb{A}\|}{\|\mathbb{A}\|}.$$

Remarque 2.1

Une matrice est donc bien conditionnée si son conditionnement est proche de 1.

- Matrices particulières
- Matrices diagonales
- Matrices triangulaires inférieures
- Matrices triangulaires supérieures
- Exercices et résultats
- Méthode de Gauss-Jordan Ecriture algébrique

- Factorisation LU Résultats théoriques
- Utilisation pratique
- Factorisation LDL*
- Factorisation de Cholesky
- Algorithme : Factorisation
- Factorisation QR
 - La tranformation de Householder

4□ > 4₫ > 4Ē > 4Ē > Ē 90

Système diagonal

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ diagonale inversible et $\boldsymbol{b} \in \mathbb{K}^n$.

$$x_i = b_i/A_{i,i}, \quad \forall i \in [1, n]. \tag{1}$$

Algorithme 1 Fonction RSLMATDIAG permettant de résoudre le système linéaire à matrice diagonale inversible

$$Ax = b$$

Données : \mathbb{A} : matrice diagonale de $\mathcal{M}_{n}(\mathbb{R})$ inversible

 \boldsymbol{b} : vecteur de \mathbb{R}^n .

Résultat : \mathbf{x} : vecteur de \mathbb{R}^n .

- 1: Fonction $x \leftarrow RSLMatDiag (A, b)$
- 2: Pour $i \leftarrow 1$ à n faire
- $x(i) \leftarrow b(i)/A(i,i)$
- Fin Pour
- 5: Fin Fonction

Système triangulaire inférieur

Soit $A \in \mathcal{M}_n(\mathbb{K})$ triangulaire inférieure inversible $(A_{i,j} = 0 \text{ si } i < j)$

$$\mathbb{A}\mathbf{x} = \mathbf{b} \iff \begin{pmatrix} A_{1,1} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ A_{n,1} & \dots & \dots & A_{n,n} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ \vdots \\ b_n \end{pmatrix}$$

 \mathbb{A} inversible \iff

Système triangulaire inférieur

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ triangulaire inférieure inversible $(A_{i,i} = 0 \text{ si } i < j)$

$$\mathbb{A}\mathbf{x} = \mathbf{b} \iff \begin{pmatrix} A_{1,1} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ A_{n,1} & \dots & \dots & A_{n,n} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

4	Þ	< ₫	>	4	8	Þ	4	8	Þ	8.	200	. C

Système triangulaire inférieur

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ triangulaire inférieure inversible $(A_{i,j} = 0 \text{ si } i < j)$

$$\mathbb{A}\mathbf{x} = \mathbf{b} \iff \begin{pmatrix} A_{1,1} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ A_{n,1} & \dots & \dots & A_{n,n} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

 \mathbb{A} inversible $\iff A_{i,i} \neq 0, \forall i \in [1, n]$

Soit
$$i \in [1, n]$$
, $(\mathbb{A}\mathbf{x})_i = b_i$, $\iff \sum_{j=1}^n A_{i,j}x_j = b_i$.

$$b_{i} = \sum_{j=1}^{i-1} A_{i,j} x_{j} + A_{i,i} x_{i} + \sum_{j=i+1}^{n} \underbrace{A_{i,j}}_{=0} x_{j} = \sum_{j=1}^{i-1} A_{i,j} x_{j} + A_{i,i} x_{i}$$

$$x_{i} = \frac{1}{A_{i,i}} \left(b_{i} - \sum_{j=1}^{i-1} A_{i,j} x_{j} \right), \ \forall i \in [[1, n]].$$
 (2)

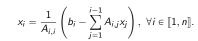
 $x_i = \frac{1}{A_{i,i}} \left(b_i - \sum_{i=1}^{i-1} A_{i,j} x_j \right), \ \forall i \in [1, n].$

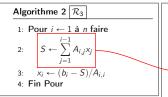
Résoudre Ax = b en calculant successivement x_1, x_2, \ldots, x_n .

 $x_i = \frac{1}{A_{i,i}} \left(b_i - \sum_{i=1}^{i-1} A_{i,j} x_j \right), \ \forall i \in [1, n].$

Algorithme 2 R_1 Algorithme 2 \mathbb{R}_2 1: Pour $i \leftarrow 1$ à n faire

4: Fin Pour





Algorithme 2 \mathbb{R}_4

1: Pour $i \leftarrow 1$ à n faire

- Pour $j \leftarrow 1$ à i 1 faire $S \leftarrow S + A(i,j) * x(j)$ Fin Pour
- 6: $x_i \leftarrow (b_i S)/A_{i,i}$

 $x_i = \frac{1}{A_{i,i}} \left(b_i - \sum_{i=1}^{i-1} A_{i,j} x_j \right), \ \forall i \in [[1, n]].$

Algorithme 2 Fonction RSLTRIINF permettant de résoudre le système linéaire triangulaire inférieur inversible

$$Ax = b$$

Données : \mathbb{A} : matrice triangulaire de $\mathcal{M}_n(\mathbb{K})$ inférieure inversible.

b : vecteur de Kⁿ. Résultat : x : vecteur de \mathbb{K}^n .

- 1: Fonction $x \leftarrow RSLTRIINF (A, b)$
- 2: Pour $i \leftarrow 1$ à n faire
- $S \leftarrow 0$
- Pour $j \leftarrow 1$ à i 1 faire
- $S \leftarrow S + A(i,j) * x(j)$
- Fin Pour
- $x(i) \leftarrow (b(i) S)/A(i, i)$
- Fin Pour
- 9: Fin Fonction

Système triangulaire supérieur

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ triangulaire supérieure inversible $(A_{i,j} = 0 \text{ si } i > j)$

$$\mathbb{A}\mathbf{x} = \mathbf{b} \iff \begin{pmatrix} A_{1,1} & \dots & \dots & A_{1,n} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & A_{n,n} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ \vdots \\ b_n \end{pmatrix}$$

Ecrire la fonction RSLTRISUP permettant de résoudre le système triangulaire supérieure $\mathbb{A}\mathbf{x} = \mathbf{b}$.

4 m + 4 m + 4 m + 4 m + 2 m + 9 q 0

Plan

Méthodes directes

- Matrices particulières
- Matrices diagonales
- Matrices triangulaires inférieures
- Matrices triangulaires supérieures
- Exercices et résultats préliminaires
- Méthode de Gauss-Jordan Ecriture algébrique

- Factorisation LU Résultats théoriques
- Utilisation pratique
- Factorisation LDL*
- Factorisation de Cholesky
- Algorithme : Factorisation
- Factorisation QR
 - La tranformation de Householder

R Lemme 3.1:

Soit $(i,j) \in [1,n]^2$. On note $\mathbb{P}_n^{[i,j]} \in \mathcal{M}_n(\mathbb{R})$ la matrice identitée dont on a permuté les lignes i et j. Alors la matrice $\mathbb{P}_n^{[i,j]}$ est symétrique et orthogonale. Pour toute matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$,

- la matrice $\mathbb{P}_{n}^{[i,j]}\mathbb{A}$ est matrice \mathbb{A} dont on a permuté les **lignes** i et i.
- **a** la matrice $\mathbb{AP}_{p}^{[i,j]}$ est matrice \mathbb{A} dont on a permuté les **colonnes** i et i.

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ avec $A_{1,1} \neq 0$. Il existe une matrice $\mathbb{E} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure à diagonale unité telle que

$$\mathbb{E} A \boldsymbol{e}_1 = A_{1,1} \boldsymbol{e}_1 \tag{3}$$

où \boldsymbol{e}_1 est le premier vecteur de la base canonique de \mathbb{C}^n .

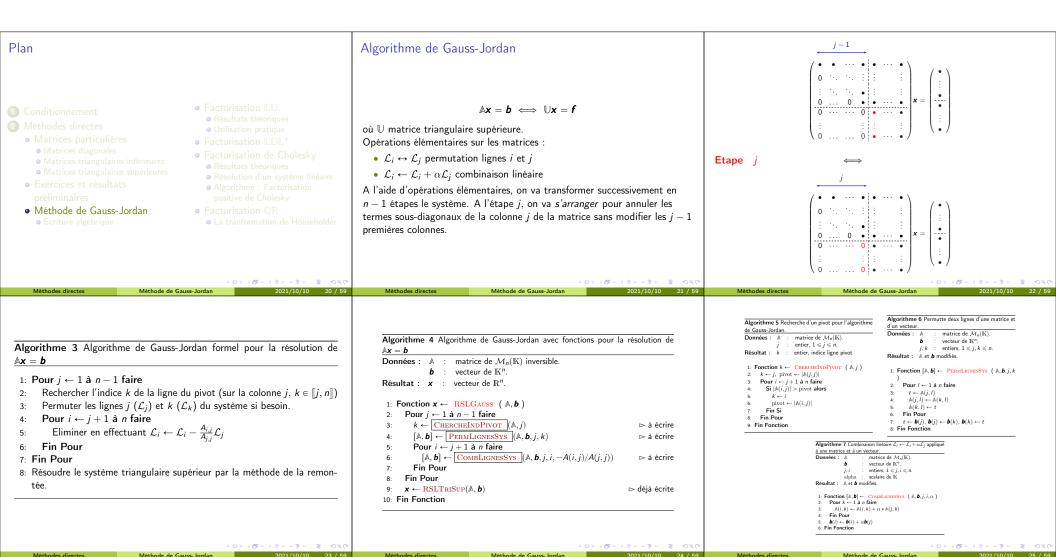
Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. Il existe une matrice unitaire \mathbb{U} et une matrice trian-

A = UTU*

Théorème 4: Décomposition de Schur 🚜

gulaire supérieure \mathbb{T} telles que

(4)



Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ inversible.

Montrer qu'il existe une matrice $\mathbb{G} \in \mathcal{M}_n(\mathbb{C})$ telle que $|\det(\mathbb{G})| = 1$ et $\mathbb{G} \mathbb{A} \mathbf{e}_1 = \alpha \mathbf{e}_1$ avec $\alpha \neq 0$ et \mathbf{e}_1 premier vecteur de la base canonique de C^n .

Q. 2

- Montrer par récurrence sur l'ordre des matrices que pour toute matrice $\mathbb{A}_n \in \mathcal{M}_n(\mathbb{C})$ inversible, il existe une matrice $\mathbb{S}_n \in \mathcal{M}_n(\mathbb{C})$ telle que $|\det \mathbb{S}_n| = 1$ et $\mathbb{S}_n \mathbb{A}_n = \mathbb{U}_n$ avec \mathbb{U}_n matrice triangulaire supérieure inversible.
- **2** Soit $\mathbf{b} \in \mathbb{C}^n$. En supposant connue la décompostion précédente $\mathbb{S}_n \mathbb{A}_n = \mathbb{U}_n$, expliquer comment résoudre le système $\mathbb{A}_n \mathbf{x} = \mathbf{b}$.

Q. 3

par

 $\forall i \in [1, n].$

Que peut-on dire si \mathbb{A} est non inversible?

Indication: utiliser les Lemmes 3.1 et 3.2.

🔏 Exercice: Factorisation LU 🚲

On a donc démontré le théorème suivant

Théorème 6: Factorisation LU

Théorème 5

Soit A une matrice carrée, inversible ou non. Il existe (au moins) une matrice inversible \mathbb{G} telle que $\mathbb{G}\mathbb{A}$ soit triangulaire supérieure.

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice dont les sous-matrices principales sont inversibles alors il existe une unique matrice $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure (lower triangular en anglais) à diagonale unité et une unique matrice $\mathbb{U} \in \mathcal{M}_n(\mathbb{C})$ triangulaire supérieure (upper triangular en anglais) inversible telles ques

$$A = LU$$
.

preuve :

• Existence : exercice précédant $\mathbb{U} = \mathbb{E}^{[n-1]} \cdots \mathbb{E}^{[1]} \mathbb{A}$

$$\mathbb{L} = \left(\mathbb{E}^{[n-1]}\cdots\mathbb{E}^{[1]}
ight)^{-1}$$

• Unicité : $\mathbb{A} = \mathbb{L}_1 \mathbb{U}_1 = \mathbb{L}_2 \mathbb{U}_2 \dots$

Plan

- - Matrices particulières
 - Matrices diagonales Matrices triangulaires inférieures
 - Matrices triangulaires supérieures
- Exercices et résultats
- Méthode de Gauss-Jordan Ecriture algébrique
- Factorisation LU Résultats théoriques Utilisation pratique
 - Factorisation LDL*
 - Factorisation de Cholesky
 - Résultats théoriques Résolution d'un système linéaire
 - Algorithme : Factorisation

 - Factorisation OR

Corollaire 6.1:

Si $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ est une matrice hermitienne définie positive alors elle admet une unique factorisation $\mathbb{L}\mathbb{U}$.

preuve : A hermitienne définie positive alors toutes ses sous-matrices principales sont définies positives et donc inversibles.

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice dont les sous-matrices principales d'ordre

i, notées Δ_i , $i \in [1, n]$ (voir Definition B.48, page 188) sont inversibles.

Montrer qu'il existe des matrices $\mathbb{E}^{[k]} \in \mathcal{M}_n(\mathbb{C}), k \in [1, n-1],$ trian-

gulaires inférieures à diagonale unité telles que la matrice U définie

 $\mathbb{U} = \mathbb{F}^{[n-1]} \cdots \mathbb{F}^{[1]} \mathbb{A}$

soit triangulaire supérieure avec $U_{i,i} = \det \Delta_i / (U_{1,1} \times \cdots \times U_{i-1,i-1}),$

Remarque 6.2

Si la matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ est inversible mais que ses sous-matrices principales ne sont pas toutes inversibles, il est possible par des permutations préalables de lignes de la matrice de se ramener à une matrice telle que ses sous-matrices principales soient inversibles.

Théorème 7: Factorisation LU avec permutations

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice inversible. Il existe une matrice \mathbb{P} , produit de matrices de permutation, une matrice $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure à diagonale unité et une matrice $\mathbb{U}\in\mathcal{M}_n(\mathbb{C})$ triangulaire supérieure telles ques

$$\mathbb{P}\mathbb{A} = \mathbb{L}\mathbb{U}.\tag{5}$$

ightharpoonup Factorisation $\mathbb{L}\mathbb{U}$

Utilisation pratique de la factorisation LU

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ admettant une factorisation $\mathbb{L}\mathbb{U}$

Trouver
$$\mathbf{x} \in \mathbb{K}^n$$
 tel que
$$\mathbb{A}\mathbf{x} = \mathbf{b} \iff \mathbb{L}\mathbb{U}\mathbf{x} = \mathbf{b} \tag{6}$$

est équivalent à

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ admettant une factorisation $\mathbb{L}\mathbb{U}$.

$$\begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,n} \\ A_{2,1} & A_{2,2} & \dots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n,1} & A_{n,2} & \dots & A_{n,n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ L_{2,1} & 1 & 0 & \dots & 0 \\ L_{3,1} & L_{3,2} & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ L_{n,1} & L_{n,2} & \dots & L_{n,n-1} & 1 \end{pmatrix} \begin{pmatrix} U_{1,1} & U_{1,2} & \dots & \dots & U_{1,n} \\ 0 & U_{2,2} & \dots & \dots & U_{2,n} \\ 0 & 0 & U_{3,3} & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & U_{n,n} \end{pmatrix}$$

On connait A, on cherche L et U

est équivalent à Trouver $\mathbf{x} \in \mathbb{K}^n$ solution de

$$U\mathbf{x} = \mathbf{y} \tag{7}$$

avec $\mathbf{y} \in \mathbb{K}^n$ solution de

$$\mathbb{L} \mathbf{y} = \mathbf{b}$$
. (8)

Algorithme de résolution de systèmes linéaire par LU

Algorithme 8 Fonction RSLFactLU permettant de résoudre, par une factorisation LU. le système linéaire

$$Ax = b$$

où \mathbb{A} une matrice de $\mathcal{M}_n(\mathbb{R})$ définie positive et $\boldsymbol{b} \in \mathbb{R}^n$.

Données : \mathbb{A} : matrice de $\mathcal{M}_n(\mathbb{R})$ dont les sous-matrices

principales sont inversibles définie positive, \boldsymbol{b} : vecteur de \mathbb{R}^n .

Résultat : \mathbf{x} : vecteur de \mathbb{R}^n .

1: Fonction $\mathbf{x} \leftarrow \text{RSLFactLU} (A, \mathbf{b})$

2: $[\mathbb{L}, \mathbb{U}] \leftarrow \text{FactLU}(\mathbb{A})$

3: $\mathbf{y} \leftarrow \text{RSLTriInf}(\mathbb{L}, \mathbf{b})$ ightharpoonup Résolution du système $\mathbb{L} \mathbf{y} = \mathbf{b}$

4: $\mathbf{x} \leftarrow \text{RSLTriSup}(\mathbb{U}, \mathbf{y})$ ightharpoonup Résolution du système $\mathbb{U} \mathbf{x} = \mathbf{y}$

5: Fin Fonction

Il nous faut donc écrire la fonction FACTLU

Utilisation pratique de la factorisation LU

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ admettant une factorisation $\mathbb{L}\mathbb{U}$

Trouver
$$\mathbf{x} \in \mathbb{K}^n$$
 tel que
$$\mathbb{A}\mathbf{x} = \mathbf{b} \iff \mathbb{L}\mathbb{U}\mathbf{x} = \mathbf{b} \tag{6}$$

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ admettant une factorisation $\mathbb{L}\mathbb{U}$.

$$\begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,n} \\ A_{2,1} & A_{2,2} & \dots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n,1} & A_{n,2} & \dots & A_{n,n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ L_{2,1} & 1 & 0 & \dots & 0 \\ L_{3,1} & L_{3,2} & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ L_{n,1} & L_{n,2} & \dots & L_{n,n-1} & 1 \end{pmatrix} \begin{pmatrix} U_{1,1} & U_{1,2} & \dots & U_{1,n} \\ 0 & U_{2,2} & \dots & \dots & U_{2,n} \\ 0 & 0 & U_{3,3} & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & U_{n,n} \end{pmatrix}$$

- Etape 1 :
 - ▶ On connait la **première ligne** de L ⇒ on peut calculer la **première**

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ admettant une factorisation $\mathbb{L}\mathbb{U}$.

$$\begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,n} \\ A_{2,1} & A_{2,2} & \dots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n,1} & A_{n,2} & \dots & A_{n,n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ L_{2,1} & 1 & 0 & \dots & 0 \\ L_{3,1} & L_{3,2} & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ L_{n,1} & L_{n,2} & \dots & L_{n,n-1} & 1 \end{pmatrix} \begin{pmatrix} U_{1,1} & U_{1,2} & \dots & U_{1,n} \\ 0 & U_{2,2} & \dots & \dots & U_{2,n} \\ 0 & 0 & U_{3,3} & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & U_{n,n} \end{pmatrix}$$

- Etape 1 :
 - On connait la **première ligne** de $\mathbb{L} \Longrightarrow$ on peut calculer la **première ligne** de \mathbb{U}
 - ▶ On connait la **première colonne** de \mathbb{U} \Longrightarrow on peut calculer la **première colonne** de \mathbb{L}

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ admettant une factorisation $\mathbb{L}\mathbb{U}$.

$$\begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,n} \\ A_{2,1} & A_{2,2} & \dots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n,1} & A_{n,2} & \dots & A_{n,n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ L_{2,1} & 1 & 0 & \dots & 0 \\ L_{3,1} & L_{3,2} & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ L_{n,1} & L_{n,2} & \dots & L_{n,n-1} & 1 \end{pmatrix} \begin{pmatrix} U_{1,1} & U_{1,2} & \dots & \dots & U_{1,n} \\ 0 & U_{2,2} & \dots & \dots & U_{2,n} \\ 0 & 0 & U_{3,3} & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & U_{n,n} \end{pmatrix}$$

- Etape 1 :
 - On connait la **première ligne** de $\mathbb{L} \Longrightarrow$ on peut calculer la **première ligne** de \mathbb{U}
 - ▶ On connait la **première colonne** de \mathbb{U} \Longrightarrow on peut calculer la **première colonne** de \mathbb{L}
- Etape 2 :
 - ▶ On connait la **deuxième ligne** de \mathbb{L} \Longrightarrow on peut calculer la **deuxième ligne** de \mathbb{U} car on connait la première ligne de \mathbb{U}

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ admettant une factorisation $\mathbb{L}\mathbb{U}$.

$$\begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,n} \\ A_{2,1} & A_{2,2} & \dots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n,1} & A_{n,2} & \dots & A_{n,n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ L_{2,1} & 1 & 0 & \dots & 0 \\ L_{3,1} & L_{3,2} & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ L_{n,1} & L_{n,2} & \dots & L_{n,n-1} & 1 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & U_{n,n} \end{pmatrix}$$

- Etape 1 :
 - On connait la première ligne de $\mathbb{L} \Longrightarrow$ on peut calculer la première ligne de \mathbb{U}
 - On connait la première colonne de U ⇒ on peut calculer la première colonne de L
- Etape 2 :
 - $\hbox{$\blacktriangleright$ On connaît la $deuxième ligne} \ de \ \mathbb{L} \Longrightarrow \hbox{on peut calculer la $deuxième}$ $\hbox{$ligne} \ de \ \mathbb{U} \ car \ on \ connaît \ la \ première \ ligne \ de \ \mathbb{U}$
 - On connait la deuxième colonne de U ⇒ on peut calculer la deuxième colonne de L car on connait la première colonne de L

	∢ □	< ♂ →	4 = 3	4.83	4	4) Q (4

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ admettant une factorisation $\mathbb{L}\mathbb{U}$.

$$\begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,n} \\ A_{2,1} & A_{2,2} & \dots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n,1} & A_{n,2} & \dots & A_{n,n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ L_{2,1} & 1 & 0 & \dots & 0 \\ L_{3,1} & L_{3,2} & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ L_{n,1} & L_{n,2} & \dots & L_{n,n-1} & 1 \end{pmatrix} \begin{pmatrix} U_{1,1} & U_{1,2} & \dots & \dots & U_{1,n} \\ 0 & U_{2,2} & \dots & \dots & U_{2,n} \\ 0 & 0 & U_{3,3} & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \dots & L_{n,n-1} & 1 \end{pmatrix}$$

- Etape 1 :
 - ▶ On connait la **première ligne** de $\mathbb{L} \Longrightarrow$ on peut calculer la **première ligne** de \mathbb{U}
 - \blacktriangleright On connait la **première colonne** de $\mathbb{U} \Longrightarrow$ on peut calculer la **première colonne** de \mathbb{L}
- **Etape** 2 :
 - On connait la deuxième ligne de L ⇒ on peut calculer la deuxième ligne de U car on connait la première ligne de U
 - On connait la deuxième colonne de U ⇒ on peut calculer la deuxième colonne de L car on connait la première colonne de L

ne colonne de ∟ car on connaît la première colonne de ∟

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ admettant une factorisation $\mathbb{L}\mathbb{U}$.

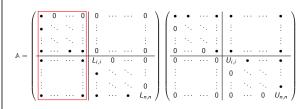
$$\begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,n} \\ A_{2,1} & A_{2,2} & \dots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n,1} & A_{n,2} & \dots & A_{n,n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ L_{2,1} & 1 & 0 & \dots & 0 \\ L_{3,1} & L_{3,2} & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ L_{n,1} & L_{n,2} & \dots & L_{n,n-1} & 1 \end{pmatrix} \begin{pmatrix} U_{1,1} & U_{1,2} & \dots & U_{1,n} \\ 0 & U_{2,2} & \dots & U_{2,n} \\ 0 & 0 & U_{3,3} & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & U_{n,n} \end{pmatrix}$$

• **Etape** *i* :

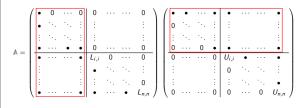
On connait les i-1 premières colonnes de $\mathbb L$ et les i-1 premières lignes de $\mathbb U.$

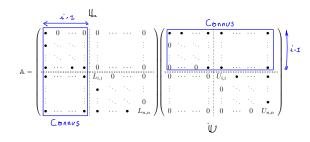
Peut-on calculer la colonne i de \mathbb{L} et la ligne i de \mathbb{U} ?

Par récurrence, en supposant les i-1 premières colonnes de $\mathbb L$ et les i-1 premières lignes de $\mathbb U.$



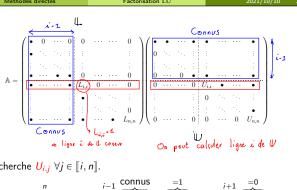
Par récurrence, en supposant les i-1 premières colonnes de $\mathbb L$ et les i-1premières lignes de U.





Par récurrence, on suppose connues les i-1 premières colonnes de $\mathbb L$ et les i-1 premières lignes de \mathbb{U} .

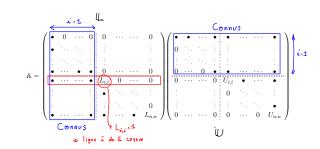
Peut-on calculer la colonne i de \mathbb{L} et la ligne i de \mathbb{U} ?

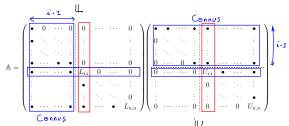


$$A_{i,j} \stackrel{\text{def}}{=} \sum_{k=1}^{n} L_{i,k} U_{k,j} = \sum_{k=1}^{i-1} \overbrace{L_{i,k} U_{k,j}}^{\text{connus}} + \overbrace{L_{i,i}}^{=1} \underbrace{U_{i,j}}_{U_{i,j}} + \sum_{k=1}^{i+1} \overbrace{L_{i,k}}^{=0} U_{k,j}$$

$$U_{i,j} = A_{i,j} - \sum_{k=1}^{i-1} L_{i,k} U_{k,j}, \quad \forall j \in [\![i,n]\!].$$

Connus On connaît la colonne i de U



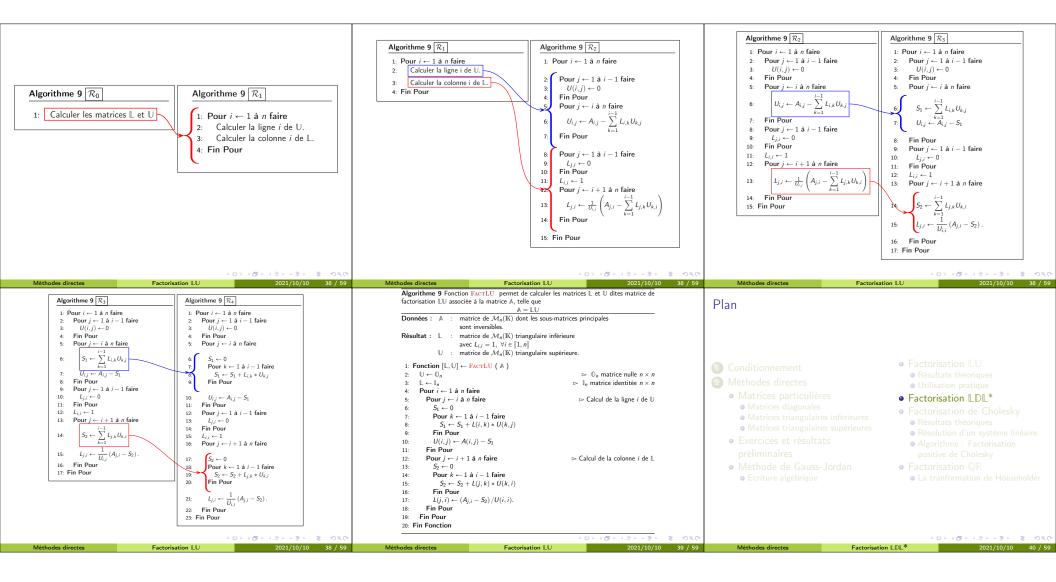


On peut calquer la colonne i de U 😝 On connaît la colonne i de U

On cherche $L_{j,i} \ \forall j \in [i+1, n], (L_{i,i} = 1)$

$$A_{j,i} \stackrel{\text{def}}{=} \sum_{k=1}^{n} L_{j,k} U_{k,i} = \sum_{k=1}^{i-1} \underbrace{L_{j,k} U_{k,i}}_{L_{j,k} U_{k,i}} + \underbrace{L_{j,i}}_{U_{i,i}} \underbrace{U_{i,i}}_{U_{i,i}} + \sum_{k=1}^{i+1} L_{j,k} \underbrace{U_{k,i}}_{U_{k,i}}$$

$$\underbrace{L_{j,i}}_{L_{j,i}} = \left(A_{j,i} - \sum_{k=1}^{i-1} L_{j,k} U_{k,i}\right) / U_{i,i}, \quad \forall j \in [i+1, n].$$



Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ hermitienne inversible admettant une factorisation $\mathbb{L}\mathbb{U}$. On pose

$$\mathbb{D}=\operatorname{diag}\mathbb{U}\text{ et }\mathbb{R}=\mathbb{D}^{-1}\mathbb{U}.$$

 \mathbb{R} est alors triangulaire supérieure à diagonale unité. On a alors

$$\mathbb{A} = \mathbb{L} \mathbb{U} = \mathbb{L} \mathbb{D} \mathbb{D}^{-1} \mathbb{U} = \mathbb{L} \mathbb{D} \mathbb{R}.$$

 \mathbb{A} hermitienne $\mathbb{A}^* = \mathbb{A} \implies \mathbb{A} = \mathbb{R}^*(\mathbb{D}^*\mathbb{L}^*) = \mathbb{L}(\mathbb{D}\mathbb{R})$

Par unicité de la factorisation $\mathbb{L}\mathbb{U}$:

$$\mathbb{R}^* = \mathbb{I} \text{ et} \mathbb{D}^* \mathbb{I}^* = \mathbb{D} \mathbb{R} \implies \mathbb{R}^* = \mathbb{I} \text{ et } \mathbb{D}^* = \mathbb{D}$$

Théorème 8: Factorisation LDL*

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne inversible admettant une factorisation LU. Alors A s'écrit sous la forme

$$\mathbb{A} = \mathbb{LDL}^* \tag{9}$$

où $\mathbb{D} = \operatorname{diag} \mathbb{U}$ est une matrice à coefficients réels.

Corollaire 8.1:

Une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admet une factorisation \mathbb{LDL}^* avec $\mathbb{L} \in$ $\mathcal{M}_n(\mathbb{C})$ matrice triangulaire inférieure à diagonale unité et $\mathbb{D} \in \mathcal{M}_n(\mathbb{R})$ matrice diagonale à coeffcients diagonaux strictement positifs si et seulement si la matrice A est hermitienne définie positive.

Plan

Factorisation LU

Résultats théoriques

Utilisation pratique

• Factorisation LDL*

• Factorisation de Cholesky

Résultats théoriques

Résolution d'un système

Algorithme : Factorisation

• Factorisation OR

4 D F 4 B F 4 E F 4 E F 900

Matrices triangulaires inférieures

Matrices triangulaires supérieures

Matrices particulières

Matrices diagonales

Exercices et résultats

Ecriture algébrique

Méthode de Gauss-Jordan

Definition

Une factorisation régulière de Cholesky d'une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ est une factorisation $\mathbb{A}=\mathbb{BB}^*$ où \mathbb{B} est une matrice triangulaire inférieure inversible.

Si les coefficients diagonaux de B sont positifs, on parle alors d'une factorisation positive de Cholesky.

Théorème: Factorisation de Cholesky 🚲

La matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admet une factorisation régulière de Cholesky si et seulement si la matrice A est hermitienne définie positive. Dans ce cas, elle admet une unique factorisation positive.

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ hermitienne définie positive et $\boldsymbol{b} \in \mathbb{C}^n$. On note \mathbb{B} la matrice de factorisation positive de Cholesky de A.

Trouver
$$\mathbf{x} \in \mathbb{C}^n$$
 tel que

$$\mathbb{A}\mathbf{x} = \mathbf{b} \ (\iff \mathbb{B}\mathbb{B}^*\mathbf{x} = \mathbf{b}) \tag{10}$$

est équivalent à

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ hermitienne définie positive et $\boldsymbol{b} \in \mathbb{C}^n$. On note \mathbb{B} la matrice de factorisation positive de Cholesky de A.

Trouver
$$\mathbf{x} \in \mathbb{C}^n$$
 tel que

$$\mathbb{A}\mathbf{x} = \mathbf{b} \ (\iff \mathbb{B}\mathbb{B}^*\mathbf{x} = \mathbf{b}) \tag{10}$$

est équivalent à

Trouver $\mathbf{x} \in \mathbb{C}^n$ solution de

 $\mathbb{B}^* \mathbf{x} = \mathbf{v}$ (11)

avec $\mathbf{y} \in \mathbb{C}^n$ solution de

 $\mathbb{B}\mathbf{y}=\mathbf{b}.$

Algorithme de résolution de systèmes linéaire par Cholesky

Algorithme 10 Fonction RSLCHOLESKY permettant de résoudre, par une factorisation de Cholesky positive. le système linéaire

$$Ax = b$$

où \mathbb{A} une matrice hermitienne de $\mathcal{M}_n(\mathbb{C})$ définie positive et $\boldsymbol{b} \in \mathbb{C}^n$.

Données : \mathbb{A} : matrice de $\mathcal{M}_n(\mathbb{C})$ hermitienne définie positive,

b : vecteur de \mathbb{C}^n .

Résultat : x : vecteur de \mathbb{C}^n .

1: Fonction $\mathbf{x} \leftarrow \text{RSLCholesky} (A, \mathbf{b})$

 $\mathbb{B} \leftarrow \text{Cholesky}(\mathbb{A})$ $\mathbf{y} \leftarrow \text{RSLTriInf}(\mathbb{B}, \mathbf{b})$ ightharpoonup Résolution du système $\mathbb{B}\mathbf{v} = \mathbf{b}$

 $\mathbb{U} \leftarrow \text{MatAdjointe}(\mathbb{B})$

 $\mathbf{x} \leftarrow \text{RSLTriSup}(\mathbb{U}, \mathbf{y})$

ightharpoonup Résolution du système $\mathbb{B}^* \mathbf{x} = \mathbf{y}$

6: Fin Fonction

Il nous faut donc écrire la fonction CHOLESKY

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ hermitienne définie positive. il existe une unique matrice $\mathbb{B} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure avec $B_{i,i} \in \mathbb{R}^{+*}, \forall i \in [1, n]$, telle que

$$A = \mathbb{RR}^*$$

c'est à dire

$$\begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \dots \\ A_{n,1} & \dots & A_{n,n} \end{pmatrix} = \begin{pmatrix} B_{1,1} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ B_{n,1} & \dots & \dots & B_{n,n} \end{pmatrix} \begin{pmatrix} \overline{B_{1,1}} & \dots & \dots & \overline{B_{n,1}} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \overline{B_{n,n}} \end{pmatrix}.$$

- Calcul de B_{1.1} (la 1ère ligne de B est donc déterminée) \implies calcul 1ère colonne de \mathbb{B} .
- Puis calcul de B_{2,2} (la 2ème ligne de B est donc déterminée) \implies calcul 2ème colonne de \mathbb{B} .
- Etc...

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ hermitienne définie positive. il existe une unique matrice $\mathbb{B} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure avec $B_{i,i} \in \mathbb{R}^{+*}, \forall i \in [1, n]$, telle que

$$A = BB^*$$

c'est à dire

$$\begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \dots \\ A_{n,1} & \dots & A_{n,n} \end{pmatrix} = \begin{pmatrix} B_{1,1} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ B_{n,1} & \dots & \dots & B_{n,n} \end{pmatrix} \begin{pmatrix} \overline{B_{1,1}} & \dots & \dots & \overline{B_{n,1}} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \overline{B_{n,n}} \end{pmatrix}.$$

$$\begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \dots \\ A_{n,1} & \dots & A_{n,n} \end{pmatrix} = \begin{pmatrix} B_{1,1} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ B_{n,1} & \dots & \dots & B_{n,n} \end{pmatrix} \begin{pmatrix} \overline{B_{1,1}} & \dots & \dots & \overline{B_{n,1}} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \overline{B_{n,n}} \end{pmatrix}.$$

Soit $i \in [1, n]$. On suppose connues les i - 1 premières colonnes de \mathbb{B} .

$$\mathbb{A} = \mathbb{BB}^* \implies A_{i,i} = \sum_{k=1}^{n} B_{i,k}(\mathbb{B}^*)_{k,i} = \sum_{k=1}^{n} B_{i,k}\overline{B_{i,k}}$$

Or \mathbb{B} triangulaire inférieure (i.e. $B_{i,j} = 0$ si j > i)

Peut-on calculer la colonne i de \mathbb{B} ?

$$A_{i,i} = \sum_{k=1}^{i-1} |B_{i,k}|^2 + |B_{i,i}|^2$$

et donc

$$\mathbf{B}_{i,i} = \left(\mathbf{A}_{i,i} - \sum_{i=1}^{i-1} |\mathbf{B}_{i,j}|^2\right)^{1/2}.$$

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ hermitienne définie positive. il existe une unique matrice $\mathbb{B} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure avec $B_{i,i} \in \mathbb{R}^{+*}, \forall i \in [1, n]$, telle que

$$\mathbb{A}=\mathbb{BB}^*$$

c'est à dire

$$\begin{pmatrix} \mathbf{A}_{1,1} & \dots & \mathbf{A}_{1,n} \\ \vdots & \ddots & \ddots \\ \mathbf{A}_{n,1} & \dots & \mathbf{A}_{n,n} \end{pmatrix} = \begin{pmatrix} \mathbf{B}_{1,1} & \mathbf{0} & \dots & \mathbf{0} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \mathbf{0} \\ \mathbf{B}_{n,1} & \dots & \dots & \mathbf{B}_{n,n} \end{pmatrix} \begin{pmatrix} \overline{\mathbf{B}_{1,1}} & \dots & \dots & \overline{\mathbf{B}_{n,1}} \\ \mathbf{0} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \mathbf{0} & \dots & \mathbf{0} & \overline{\mathbf{B}_{n,n}} \end{pmatrix}.$$

• Calcul de B_{1.1} (la 1ère ligne de B est donc déterminée) \implies calcul 1ère colonne de \mathbb{B} .

Il reste à déterminer $B_{i,i}, \forall j \in [i+1, n]$.

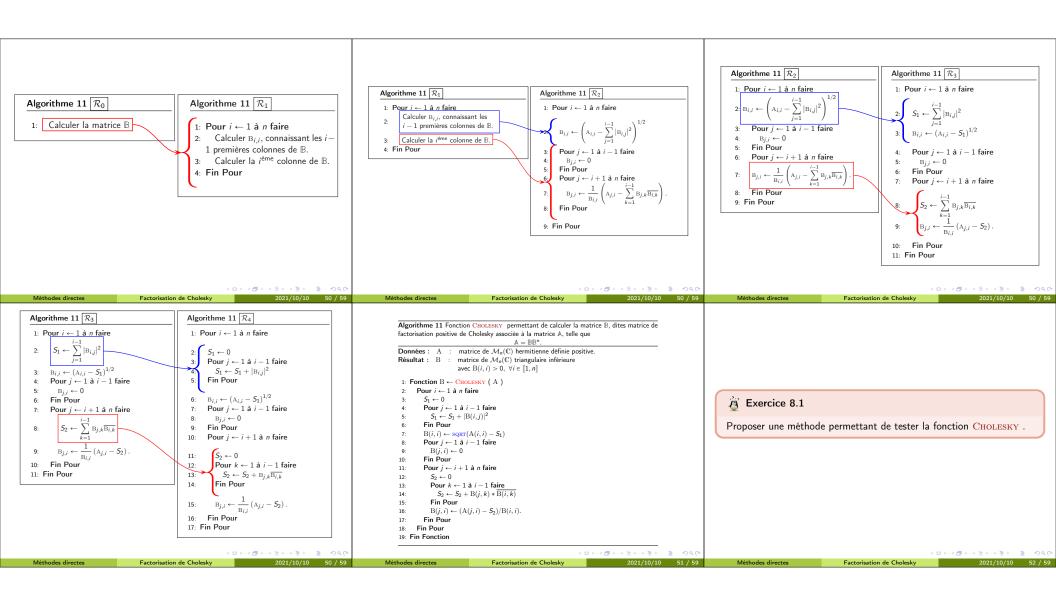
$$\mathbf{A}_{j,i} = \sum_{k=1}^{n} \mathbf{B}_{j,k} (\mathbb{B}^*)_{k,i} = \sum_{k=1}^{n} \mathbf{B}_{j,k} \overline{\mathbf{B}_{i,k}}, \ \forall j \in [i+1,n]$$

Comme L est triangulaire inférieure on obtient

$$\mathbf{A}_{j,i} = \sum_{k=1}^{i} \mathbf{B}_{j,k} \overline{\mathbf{B}_{i,k}} = \sum_{k=1}^{i-1} \mathbf{B}_{j,k} \overline{\mathbf{B}_{i,k}} + \mathbf{B}_{j,i} \overline{\mathbf{B}_{i,i}}, \ \forall j \in \llbracket i+1, n \rrbracket$$

Or $B_{i,i} > 0$ connu et les i-1 premières colonnes de \mathbb{B} aussi.

$$\begin{array}{rcl} \mathbf{B}_{j,i} & = & \frac{1}{\mathbf{B}_{i,i}} \left(\mathbf{A}_{j,i} - \sum_{k=1}^{i-1} \mathbf{B}_{j,k} \overline{\mathbf{B}_{i,k}} \right), \ \forall j \in \llbracket i+1,n \rrbracket \\ \\ \mathbf{B}_{i,i} & = & \mathbf{0}, \ \forall j \in \llbracket 1,i-1 \rrbracket. \end{array}$$



- - Matrices particulières
 - Matrices diagonales
 - Matrices triangulaires inférieures
 - Matrices triangulaires supérieures
 - Exercices et résultats
 - Méthode de Gauss-Jordan Ecriture algébrique

- Factorisation LU
- Résultats théoriques
- Utilisation pratique • Factorisation LDL*
- Factorisation de Cholesky
- Résultats théoriques
- Résolution d'un système linéaire
- Algorithme : Factorisation
- ullet Factorisation \mathbb{QR}
- La tranformation de Householder

Pofinition: Matrice élémentaire de Householder

Soit $\mathbf{u} \in \mathbb{C}^n$ tel que $\|\mathbf{u}\|_2 = 1$. On appelle matrice élémentaire de **Householder** la matrice $\mathbb{H}(u) \in \mathcal{M}_n(\mathbb{C})$ définie par

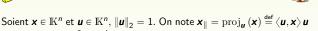
$$\mathbb{H}(\mathbf{u}) = \mathbb{I} - 2\mathbf{u}\mathbf{u}^*. \tag{13}$$

Propriété:

Toute matrice élémentaire de Householder est hermitienne et unitaire.

Propriété:

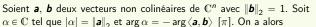
et $\mathbf{x}_{\perp} = \mathbf{x} - \mathbf{x}_{\parallel}$. On a alors



$$\mathbb{H}(\mathbf{u})(\mathbf{x}_{\perp} + \mathbf{x}_{\parallel}) = \mathbf{x}_{\perp} - \mathbf{x}_{\parallel}. \tag{14}$$

$$\mathbb{H}(\boldsymbol{u})\boldsymbol{x} = \boldsymbol{x}, \text{ si } \langle \boldsymbol{x}, \boldsymbol{u} \rangle = 0.$$
 (15)

Théorème:



$$\mathbb{H}\left(\frac{\mathbf{a} - \alpha \mathbf{b}}{\|\mathbf{a} - \alpha \mathbf{b}\|_{2}}\right) \mathbf{a} = \alpha \mathbf{b}.$$
 (16)

A A

A SA

Exercice:

Soient **a** et **b** deux vecteurs non nuls et non colinéaires de \mathbb{C}^n avec $\|\mathbf{b}\|_2 = 1$.

Ecrire la fonction algorithmique HOUSEHOLDER permettant de retourner une matrice de Householder \mathbb{H} et $\alpha \in \mathbb{C}$ tels que $\mathbb{H}(\mathbf{u})\mathbf{a} = \alpha \mathbf{b}$. Le choix du α est fait par le paramètre δ (0 ou 1) de telle sorte que arg $\alpha = -\arg(\langle \mathbf{a}, \mathbf{b} \rangle) + \delta \pi$ avec $|\alpha| = \|\mathbf{a}\|_2$ Des fonctions comme DOT(a, b) (produit scalaire de deux vecteurs), NORM(a) (norme $d'un\ vecteur)$, ARG(z) (argument $d'un\ nombre\ complexe$), MATPROD(A, B) (produit de deux matrices), CTRANSPOSE(A) (adjoint d'une matrice), ... pourront être utilisées

Q. 2

Proposer un programme permettant de tester cette fonction. On pourra utiliser la fonction VECRAND(n) retournant un vecteur aléatoire de \mathbb{C}^n , les parties réelles et imaginaires de chacune de ses composantes étant dans [0,1] (loi uniforme).

Q. 3

Proposer un programme permettant de vérifier que $\delta=1$ est le "meilleur" choix.

Corollaire 8.2:

Soit $\mathbf{a} \in \mathbb{C}^n$ avec $a_1 \neq 0$ et $\exists i \in [2, n]$ tel que $a_i \neq 0$. Soient $\theta = \arg a_1$

$$oldsymbol{u}_{\pm} = rac{oldsymbol{a} \pm \|oldsymbol{a}\|_2 \, e^{\imath heta} oldsymbol{e}_1}{\|oldsymbol{a} \pm \|oldsymbol{a}\|_2 \, e^{\imath heta} oldsymbol{e}_1\|}$$

Alors

$$\mathbb{H}(\boldsymbol{u}_{+})\boldsymbol{a} = \mp \|\boldsymbol{a}\|_{2} e^{i\theta} \boldsymbol{e}_{1} \tag{17}$$

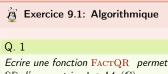
où e_1 désigne le premier vecteur de la base canonique de \mathbb{C}^n .

Théorème 9: 🔥

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice. Il existe une matrice unitaire $\mathbb{Q} \in \mathcal{M}_n(\mathbb{C})$ produit d'au plus n-1 matrices de Householder et une matrice triangulaire supérieure $\mathbb{R} \in \mathcal{M}_n(\mathbb{C})$ telles que

$$\mathbb{A} = \mathbb{QR}. \tag{18}$$

Si $\mathbb A$ est réelle alors $\mathbb Q$ et $\mathbb R$ sont aussi réelles et l'on peut choisir $\mathbb Q$ de telle sorte que les coefficients diagonaux de $\mathbb R$ soient positifs. De plus, si \mathbb{A} est inversible alors la factorisation est unique.



Ecrire une fonction FACTQR permettant de calculer la factorisation \mathbb{QR} d'une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$.

On pourra utiliser la fonction Householder (voir Exercice 56, page 82).

Q. 2

Ecrire un programme permettant de tester cette fonction.

