

Exercice 1

Soit $(i,j) \in [1,n]^2$, $i \neq j$, on note $\mathbb{P}_n^{[i,j]} \in \mathcal{M}_n(\mathbb{R})$ la matrice identitée dont on a permuté les lignes i et j.

Q. 1 Représenter cette matrice et la définir proprement.

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. On note $A_{r,:}$ le r-ème vecteur ligne de \mathbb{A} et $A_{:,s}$ le s-ème vecteur colonne de \mathbb{A} .

Q. 2 1. On note $\mathbb{D} = \mathbb{P}_n^{[i,j]} \mathbb{A}$. Montrer que

$$\left\{ \begin{array}{ll} \boldsymbol{D}_{r,:} &=& \boldsymbol{A}_{r,:}, & \forall r \in [\![1,n]\!] \backslash \{i,j\}, \\ \boldsymbol{D}_{i,:} &=& \boldsymbol{A}_{j,:}, \\ \boldsymbol{D}_{j,:} &=& \boldsymbol{A}_{i,:}. \end{array} \right.$$

2. On note $\mathbb{E} = \mathbb{AP}_n^{[i,j]}$.

$$\left\{ \begin{array}{lcl} \boldsymbol{E}_{:,s} & = & \boldsymbol{A}_{:,s}, & \forall s \in [\![1,n]\!] \backslash \{i,j\}, \\ \boldsymbol{E}_{:,i} & = & \boldsymbol{A}_{:,j}, \\ \boldsymbol{E}_{:,j} & = & \boldsymbol{A}_{:,i}. \end{array} \right.$$

- **Q. 3** 1. Calculer le déterminant de $\mathbb{P}_n^{[i,j]}$.
 - 2. Déterminer l'inverse de $\mathbb{P}_n^{[i,j]}$.

Correction Exercice On note $\mathbb{P} = \mathbb{P}_n^{[i,j]}$.

Q. 1 On peut définir cette matrice par ligne,

$$\left\{ \begin{array}{ll} \forall r \in [\![1,n]\!]\backslash \{i,j\}, & P_{r,s} = \delta_{r,s}, & \forall s \in [\![1,n]\!], \\ P_{i,s} = \delta_{j,s}, & \forall s \in [\![1,n]\!], \\ P_{j,s} = \delta_{i,s}, & \forall s \in [\![1,n]\!]. \end{array} \right.$$

ou par colonne

$$\left\{ \begin{array}{lll} \forall s \in \llbracket 1, n \rrbracket \backslash \{i, j\}, & P_{r,s} & = & \delta_{r,s}, & \forall r \in \llbracket 1, n \rrbracket, \\ & P_{r,i} & = & \delta_{r,j}, & \forall r \in \llbracket 1, n \rrbracket, \\ & P_{r,j} & = & \delta_{r,i}, & \forall r \in \llbracket 1, n \rrbracket. \end{array} \right.$$

 \bigwedge Ne pas utiliser les indices i et j qui sont déjà fixés dans la définition de la matrice $\mathbb{P} = \mathbb{P}_n^{[i,j]}$.

On peut noter que la matrice P est symétrique.

Q. 2 1. On note $\mathbb{D} = \mathbb{P}\mathbb{A}$. Par définition du produit matriciel on a

$$D_{r,s} = \sum_{k=1}^{n} P_{r,k} A_{k,s}.$$

On obtient, $\forall s \in [1, n]$,

$$\left\{ \begin{array}{ll} D_{r,s} & = & \displaystyle \sum_{k=1}^{n} \delta_{r,k} A_{k,s} = A_{r,s}, \ \, \forall r \in [\![1,n]\!] \backslash \{i,j\}, \\ \\ D_{i,s} & = & \displaystyle \sum_{k=1}^{n} \delta_{j,k} A_{k,s} = A_{j,s}, \\ \\ D_{j,s} & = & \displaystyle \sum_{k=1}^{n} \delta_{i,k} A_{k,s} = A_{i,s}. \end{array} \right.$$

ce qui donne

$$\left\{ \begin{array}{ll} \boldsymbol{D}_{r,:} &=& \boldsymbol{A}_{r,:}, \quad \forall r \in [\![1,n]\!] \backslash \{i,j\}, \\ \boldsymbol{D}_{i,:} &=& \boldsymbol{A}_{j,:}, \\ \boldsymbol{D}_{i,:} &=& \boldsymbol{A}_{i,:}. \end{array} \right.$$

 \triangle La notation $D_{i,:}$ correspond au vecteur ligne $(D_{i,1}, \dots, D_{i,n})$ et $D_{:,j}$ correspond au vecteur colonne

2. On note $\mathbb{E} = \mathbb{AP}$. Par définition du produit matriciel et par symétrie de \mathbb{P} on a

$$E_{r,s} = \sum_{k=1}^{n} A_{r,k} P_{k,s} = \sum_{k=1}^{n} A_{r,k} P_{s,k}.$$

Ne pas utiliser les indices i et j qui sont déjà fixés dans la définition de la matrice $\mathbb{P} = \mathbb{P}_n^{[i,j]}$.

On obtient en raisonnant par colonne, $\forall r \in [1, n]$,

$$\left\{ \begin{array}{ll} E_{r,s} & = & \displaystyle \sum_{k=1}^{n} A_{r,k} \delta_{s,k} = A_{r,s}, \ \, \forall s \in [\![1,n]\!] \backslash \{i,j\}, \\ E_{r,i} & = & \displaystyle \sum_{k=1}^{n} A_{r,k} \delta_{j,k} = A_{r,j}, \\ E_{r,j} & = & \displaystyle \sum_{k=1}^{n} A_{r,k} \delta_{i,k} = A_{r,i}. \end{array} \right.$$

ce qui donne

$$\left\{ \begin{array}{lcl} \boldsymbol{E}_{:,s} &=& \boldsymbol{A}_{:,s}, & \forall s \in [\![1,n]\!] \backslash \{i,j\}, \\ \boldsymbol{E}_{:,i} &=& \boldsymbol{A}_{:,j}, \\ \boldsymbol{E}_{:,j} &=& \boldsymbol{A}_{:,i}. \end{array} \right.$$

- **Q. 3** 1. $\det(\mathbb{P}) = -1$, si $i \neq j$ et $\det(\mathbb{P}) = 1$ sinon.
- 2. Immédiat par calcul direct on a $\mathbb{PP} = \mathbb{I}$ et donc la matrice \mathbb{P} est inversible et $\mathbb{P}^{-1} = \mathbb{P}$.

Exercice 2

Soit $\mathbf{v} \in \mathbb{C}^n$ avec $v_1 \neq 0$. On note $\mathbb{E}^{[\mathbf{v}]} \in \mathcal{M}_n(\mathbb{C})$ la matrice triangulaire inférieure à diagonale unité définie

$$\mathbb{E}^{[\mathbf{v}]} = \begin{pmatrix} \frac{1}{-v_2/v_1} & 1 & 0 & \dots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ -v_n/v_1 & 0 & \dots & 0 & 1 \end{pmatrix}$$
(1)

- 0. 1 1. Calculer le déterminant de E[v]
 - 2. Déterminer l'inverse de $\mathbb{E}^{[v]}$.

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ avec $A_{1,1} \neq 0$. On note $A_{i,j}$ le j-ème vecteur colonne de \mathbb{A} et $A_{i,j}$ son i-ème vecteur ligne. On pose $A_1 = A_{:,1}$.

- **Q. 2** 1. Calculer $\tilde{\mathbb{A}} = \mathbb{E}^{[\mathbf{A}_1]} \mathbb{A}$ en fonction des vecteurs lignes de \mathbb{A} .
 - 2. Montrer que la première colonne de $\tilde{\mathbb{A}}$ est le vecteur $(A_{1,1},0,\ldots,0)^t$ i.e.

$$\mathbb{E}^{[\boldsymbol{A}_1]} \mathbb{A} \boldsymbol{e}_1 = A_{1,1} \boldsymbol{e}_1 \tag{2}$$

où e_1 est le premier vecteur de la base canonique de \mathbb{C}^n .

Soit $m \in \mathbb{N}^*$. On note $\mathbb{E}^{[m,v]} \in \mathcal{M}_{m+n}(\mathbb{C})$ la matrice triangulaire inférieure à diagonale unité définie par

$$\mathbb{E}^{[m,v]} = \begin{pmatrix} \mathbb{I}_m & \mathbb{O} \\ \mathbb{O} & \mathbb{E}^{[v]} \end{pmatrix}$$
 (3)

Q. 3 1. Calculer le déterminant de $\mathbb{E}^{[m,v]}$

2. Déterminer l'inverse de $\mathbb{E}^{[m,v]}$ en fonction de l'inverse de $\mathbb{E}^{[v]}$.

Soit C la matrice bloc définie par

$$\mathbb{C} = \left(\begin{array}{c|c} \mathbb{C}_{1,1} & \mathbb{C}_{1,2} \\ \hline \mathbb{A} & \mathbb{A} \end{array}\right)$$

où $\mathbb{C}_{1,1} \in \mathcal{M}_m(\mathbb{C})$ et $\mathbb{C}_{1,2} \in \mathcal{M}_{m,n}(\mathbb{C})$.

Q. 4 Déterminer la matrice produit $\mathbb{E}^{[m,\mathbf{A}_1]}\mathbb{C}$ en fonction des matrices $\mathbb{C}_{1,1}$, $\mathbb{C}_{1,2}$ et $\tilde{\mathbb{A}}$.

Correction Exercice

- Q. 1 1. La matrice $\mathbb{E}^{[v]}$ est triangulaire : son déterminant est donc le produit de ses éléments diagonaux (Proposition B.53 page 211) On a alors $\det(\mathbb{E}^{[v]}) = 1$.
- 2. Pour calculer son inverse qui existe puisque $\det(\mathbb{E}^{[v]}) \neq 0$, on écrit $\mathbb{E}^{[v]}$ sous forme bloc :

$$\mathbb{E}^{[\boldsymbol{v}]} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ e & & \mathbb{I}_{n-1} \end{pmatrix}$$

avec $\mathbf{e} = (-v_2/v_1, \dots, -v_n/v_1)^{\mathbf{t}} \in \mathbb{C}^{n-1}$ On note $\mathbb{X} \in \mathcal{M}_n(\mathbb{C})$ son inverse qui s'écrit avec la même structure bloc

$$\mathbb{X} = \begin{pmatrix} a & b^* \\ c & \mathbb{D} \end{pmatrix}$$

avec $a \in \mathbb{K}$, $\boldsymbol{b} \in \mathbb{K}^{n-1}$, $\boldsymbol{c} \in \mathbb{K}^{n-1}$ et $\mathbb{D} \in \mathcal{M}_{n-1}(\mathbb{C})$.

La matrice X est donc solution de $\mathbb{E}^{[v]}X = \mathbb{I}$. Grace à l'écriture bloc des matrices on en déduit rapidement la matrice X. En effet, en utilisant les produits blocs des matrices, on obtient

$$\mathbb{E}^{[\boldsymbol{v}]}\mathbb{X} = \begin{pmatrix} 1 & \boldsymbol{0}_{n-1}^{\mathsf{t}} \\ e & \mathbb{I}_{n-1} \end{pmatrix} \begin{pmatrix} a & \boldsymbol{b}^* \\ c & \mathbb{D} \end{pmatrix} = \begin{pmatrix} 1 \times a & 1 \times \boldsymbol{b}^* + \boldsymbol{0}_{n-1}^{\mathsf{t}} \times \mathbb{D} \\ e \times a + \mathbb{I}_{n-1} \times c & e \times \boldsymbol{b}^* + \mathbb{I}_{n-1} \times \mathbb{D} \end{pmatrix}$$

$$= \begin{pmatrix} a & b^* \\ ae + c & eb^* + \mathbb{D} \end{pmatrix}$$

Comme \mathbb{X} est l'inverse de $\mathbb{E}^{[v]}$, on a $\mathbb{E}^{[v]}\mathbb{X} = \mathbb{I}$ et donc en écriture bloc

$$\begin{pmatrix} a & \boldsymbol{b}^* \\ a\boldsymbol{e} + \boldsymbol{c} & \boldsymbol{e}\boldsymbol{b}^* + \mathbb{D} \end{pmatrix} = \begin{pmatrix} 1 & \mathbf{0}_{n-1}^* \\ \mathbf{0}_{n-1} & \mathbb{I}_{n-1} \end{pmatrix}.$$

Ceci revient à résoudre les 4 équations

$$a = 1, \ b^* = \mathbf{0}_{n-1}^t, \ ae + c = \mathbf{0}_{n-1} \ \text{et} \ eb^* + \mathbb{D} = \mathbb{I}_{n-1}$$

qui donnent immédiatement $a=1, \boldsymbol{b}=\boldsymbol{0}_{n-1}, \boldsymbol{c}=-\boldsymbol{e}$ et $\mathbb{D}=\mathbb{I}_{n-1}$. On obtient le résultat suivant

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ -\boldsymbol{e} & & \mathbb{I}_{n-1} & \end{pmatrix} \begin{pmatrix} 1 & 0 & \dots & 0 \\ \boldsymbol{e} & & \mathbb{I}_{n-1} & \end{pmatrix} = \mathbb{I}_n.$$

Il aurait été plus rapide d'utiliser la Proposition B.54, page 211.

Q. 2 1. Pour simplifier les notations, on note $\mathbb{E} = \mathbb{E}^{[A_1]}$. Par définition du produit de deux matrices on a

$$\tilde{A}_{i,j} = \sum_{k=1}^{n} E_{i,k} A_{k,j}, \quad \forall (i,j) \in [1,n]^2$$

Quand i = 1, on a par construction $E_{1,k} = \delta_{1,k}$ et donc

$$\tilde{A}_{1,j} = A_{1,j}, \ \forall j \in \llbracket 1, n \rrbracket \iff \tilde{A}_{1,i} = A_{1,i}.$$
 (4)

Pour $i \ge 2$, on a $E_{i,1} = -\frac{v_i}{v_i}$ et $E_{i,k} = \delta_{i,k}, \forall k \in [2,n]$. On obtient alors pour tout $j \in [1,n]$

$$\tilde{A}_{i,j} = E_{i,1}A_{1,j} + \sum_{k=2}^n E_{i,k}A_{k,j} = -\frac{v_i}{v_1}A_{1,j} + \sum_{k=2}^n \delta_{i,k}A_{k,j} = -\frac{v_i}{v_1}A_{1,j} + A_{i,j}$$

ce qui donne pour tout $i \in [2, n]$

$$\tilde{A}_{i,j} = A_{i,j} - \frac{v_i}{v_1} A_{1,j}, \ \forall j \in [1, n] \iff \tilde{A}_{i,:} = -\frac{v_i}{v_1} A_{1,:} + A_{i,:}$$
 (5)

En conclusion, la matrice A s'écrit

- 2. De (4), on tire $\tilde{A}_{1,1}=A_{1,1}$. A partir de (5) on obtient pour tout $i\in [\![2,n]\!]$, $\tilde{A}_{i,1}=A_{i,1}-\frac{v_i}{v_1}A_{1,1}$. Par construction $v_j=A_{j,1}$ pour tout $j\in [\![1,n]\!]$, ce qui donne $\tilde{A}_{i,1}=0$. La première colonne de $\tilde{\mathbb{A}}$ est $(1,0,\ldots,0)^{\mathfrak{t}}$.
- Q. 3 1. La matrice $\mathbb{E}^{[m,\mathbf{v}]}$ est triangulaire inférieure. Son déterminant est donc le produit de ses éléments diagonaux. Comme cette matrice est à diagonale unité (i.e. tous ses éléments diagonaux valent 1), on obtient det $\mathbb{E}^{[m,\mathbf{v}]} = 1$.

Une autre manière de le démontrer. On peut voir que la matrice $\mathbb{E}^{[m,v]}$ est bloc-diagonale. D'après la Proposition B.54, page 211,son déterminant est le produit des déterminant des blocs diagonaux : $\det \mathbb{E}^{[m,v]} = \det \mathbb{E}_m \times \det \mathbb{E}^{[v]} = 1$.

2. On note \mathbb{X} l'inverse de la matrice $\mathbb{E}^{[m,v]}$. Cette matrice s'écrit avec la même structure bloc

$$\mathbb{X} = \left(\begin{array}{c} \mathbb{X}_{1,1} & \mathbb{X}_{1,2} \\ \mathbb{X}_{2,1} & \mathbb{X}_{2,2} \end{array} \right) \text{ avec } \mathbb{X}_{1,1} \in \mathcal{M}_m(\mathbb{C}) \text{ et } \mathbb{X}_{2,2} \in \mathcal{M}_n(\mathbb{C})$$

On a donc $\mathbb{XE}^{[m,v]} = \mathbb{I}_{m+n}$ c'est à dire en écriture bloc

$$\left(\begin{array}{c|c} \mathbb{X}_{1,1} & \mathbb{X}_{1,2} \\ \hline \mathbb{X}_{2,1} & \mathbb{X}_{2,2} \end{array}\right) \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O} \\ \hline \mathbb{D} & \mathbb{E}^{[v]} \end{array}\right) = \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O} \\ \hline \mathbb{O} & \mathbb{I}_n \end{array}\right) =$$

On doit donc résoudre les 4 équations suivantes :

$$X_1 \mathbb{I}_m = \mathbb{I}_m, \quad X_1 \mathbb{I}_n = \mathbb{O}, \quad X_2 \mathbb{I}_m = \mathbb{O} \quad \text{et} \quad X_2 \mathbb{E}^{[v]} = \mathbb{I}_m$$

Comme la matrice $\mathbb{E}^{[v]}$ est inversible, on obtient

$$\mathbb{X} = \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O} \\ \hline \mathbb{O} & \left(\mathbb{E}^{[\boldsymbol{v}]}\right)^{-1} \end{array}\right)$$

 $\stackrel{\triangle}{\mathbb{A}}$ Plus rapidement, comme la matrice $\mathbb{E}^{[m,v]}$ est bloc-diagonale, on en déduit (Proposition B.54, page 211) directement le résultat.

Q. 4 Le produit $\mathbb{E}^{[>,v]}\mathbb{C}$ peut s'effectuer par bloc car les blocs sont de dimensions compatibles et on a

$$\begin{split} \mathbb{E}^{[>,\boldsymbol{v}]}\mathbb{C} &= \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O}_{m,n} \\ \mathbb{O}_{n,m} & \mathbb{E} \end{array} \right) \left(\begin{array}{c|c} \mathbb{C}_{1,1} & \mathbb{C}_{1,2} \\ \mathbb{O}_{n,m} & \mathbb{A} \end{array} \right) = \left(\begin{array}{c|c} \mathbb{I}_m \mathbb{C}_{1,1} + \mathbb{O}_{m,n} \mathbb{O}_{n,m} \\ \mathbb{O}_{n,m} \mathbb{C}_{1,1} + \mathbb{E} \mathbb{O}_{n,m} & \mathbb{O}_{n,m} \mathbb{C}_{1,2} + \mathbb{E} \mathbb{A} \end{array} \right) \\ &= \left(\begin{array}{c|c} \mathbb{C}_{1,1} & \mathbb{C}_{1,2} \\ \mathbb{O}_{n,m} & \mathbb{E} \mathbb{A} \end{array} \right) = \left(\begin{array}{c|c} \mathbb{C}_{1,1} & \mathbb{C}_{1,2} \\ \mathbb{O}_{n,m} & \mathbb{A} \end{array} \right) \end{split}$$

 \Diamond

Soit $\mathbb{B} \in \mathcal{M}_{m+n}(\mathbb{K})$ la matrice bloc

$$\mathbb{B} = \left(\begin{array}{c|c} \mathbb{B}_{1,1} & \mathbb{B}_{1,2} \\ \hline \mathbb{S} & \mathbb{S} \end{array} \right)$$

où $\mathbb{B}_{1,1} \in \mathcal{M}_m(\mathbb{K})$ et $\mathbb{S} \in \mathcal{M}_n(\mathbb{K})$. On note $\boldsymbol{s} \in \mathbb{K}^n$ le premier vecteur colonne de \mathbb{S} et on suppose que $\boldsymbol{s} \neq 0$ et \boldsymbol{s} non colinéaire à \boldsymbol{e}_1^n premier vecteur de la base canonique de \mathbb{K}^n .

Q. 1 1. Montrer qu'il existe une matrice de Householder $\mathbb{H} = \mathbb{H}(\underline{u}) \in \mathcal{M}_n(\mathbb{K})$ et $\alpha \in \mathbb{K}^*$ tel que

$$\mathbb{HS} = \begin{pmatrix} \frac{\pm \alpha}{0} & \bullet & \cdots & \bullet \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \bullet & \cdots & \bullet \end{pmatrix}.$$

2. On note $\mathbf{u} \in \mathbb{K}^{m+n}$, le vecteur défini par $u_i = 0$, $\forall i \in [1, m]$ et $u_{m+i} = u_i$, $\forall i \in [1, n]$. Montrer que

$$\mathbb{H}(\boldsymbol{u})\mathbb{B} = \left(\begin{array}{c|c} \mathbb{B}_{1,1} & \mathbb{B}_{1,2} \\ \hline \mathbb{D} & \mathbb{HS} \end{array}\right).$$

Soient $k \in [0, n-1]$ et $\mathbb{A}^{[k]} \in \mathcal{M}_n(\mathbb{K})$ la matrice bloc définie par

$$\mathbb{A}^{[k]} = \left(\begin{array}{c|c} \mathbb{R}^{[k]} & \mathbb{F}^{[k]} \\ \mathbb{O} & \mathbb{A}^{[k]} \end{array} \right)$$

où $\mathbb{R}^{[k]}$ est une matrice triangulaire supérieure d'ordre k et $\mathbb{A}^{[k]}$ une matrice d'ordre n-k.

- **Q. 2** 1. Sous certaines hypothèses, montrer qu'il existe une matrice de Householder $\mathbb{H}^{[k+1]}$ telle que $\mathbb{H}^{[k+1]}$ $\mathbb{H}^{[k]} = \mathbb{A}^{[k+1]}$
- Soit A ∈ M_n(K). Montrer qu'il existe une matrice unitaire Q ∈ M_n(K), produit d'au plus n − 1
 matrices de Housholder, et une matrice triangulaire supérieure R telles que A = QR.
- 3. Montrer que si A est réelle alors les coefficient diagonaux de R peuvent être choisis positifs ou nuls.
- Montrer que si A est réelle inversible alors la factorisation QR, avec R à coefficient diagonaux strictement positifs, est unique.

Correction Exercice

Q. 1 1. D'après le Corollaire 3.21, page 93, avec $\boldsymbol{a} = \boldsymbol{s}$, en posant $\alpha = \pm \|\boldsymbol{s}\|_2 e^{i \arg s_1}$ et

$$\underline{\boldsymbol{u}} = \frac{\boldsymbol{s} - \alpha \boldsymbol{e}_1^n}{\|\boldsymbol{s} - \alpha \boldsymbol{e}_1^n\|}$$

on obtient $\mathbb{H}(\underline{\boldsymbol{u}}) = \alpha \boldsymbol{e}_1^n$.

On pose $\underline{\mathbb{H}} = \mathbb{H}(\underline{\boldsymbol{u}}).$ On a alors sous forme bloc

$$\underline{\mathbb{H}}\mathbb{S} = \underline{\mathbb{H}} \left(\begin{array}{cccc} \bullet & \cdots & \bullet \\ \bullet & \vdots & & \vdots \\ \bullet & \cdots & \bullet \end{array} \right) = \left(\begin{array}{cccc} \pm \alpha & \bullet & \cdots & \bullet \\ \vdots & \vdots & & \vdots \\ 0 & \bullet & \cdots & \bullet \end{array} \right)$$

2. On a $\mathbf{u} = \begin{pmatrix} \mathbf{0}_m \\ \mathbf{u} \end{pmatrix}$ et

$$\mathbb{H}(\boldsymbol{u}) = \mathbb{I} - 2\boldsymbol{u}\boldsymbol{u}^* = \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O}_{m,n} \\ \hline \mathbb{O}_{n,m} & \mathbb{I}_n \end{array}\right) - 2\left(\begin{array}{c|c} \boldsymbol{0}_m \\ \hline \boldsymbol{u} \end{array}\right) \left(\begin{array}{c|c} \boldsymbol{0}_m^* & \underline{\boldsymbol{u}}^* \end{array}\right)$$

$$= \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O}_{m,n} \\ \hline \mathbb{O}_{n,m} & \mathbb{I}_n \end{array}\right) - 2\left(\begin{array}{c|c} \mathbb{O}_m & \mathbb{O}_{m,n} \\ \hline \mathbb{O}_{n,m} & \underline{\boldsymbol{u}}\boldsymbol{u}^* \end{array}\right)$$

$$= \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O}_{m,n} \\ \hline \mathbb{O}_{n,m} & \mathbb{I}_n - 2\underline{\boldsymbol{u}}\boldsymbol{u}^* \end{array}\right) = \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O}_{m,n} \\ \hline \mathbb{O}_{n,m} & \mathbb{H} \end{array}\right)$$

Ce qui donne

$$\mathbb{H}(\boldsymbol{u})\mathbb{B} = \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O}_{m,n} \\ \hline{\mathbb{O}}_{n,m} & \underline{\mathbb{H}} \end{array}\right) \left(\begin{array}{c|c} \mathbb{B}_{1,1} & \mathbb{B}_{1,2} \\ \hline{\mathbb{O}} & \mathbb{S} \end{array}\right) = \left(\begin{array}{c|c} \mathbb{B}_{1,1} & \mathbb{B}_{1,2} \\ \hline{\mathbb{O}} & \underline{\mathbb{H}} \mathbb{S} \end{array}\right).$$

Q. 2 1. On note $\underline{s} \in \mathbb{K}^{n-k}$ le premier vecteur colonne de $\underline{\mathbb{A}^{[k]}}$. et $\underline{u} = \begin{pmatrix} \underline{0}_k \\ \underline{s} \end{pmatrix}$. D'après la question précédente si $\underline{s} \neq 0$ et \underline{s} non colinéaire à \underline{e}_1^{n-k} premier vecteur de la base canonique de \mathbb{K}^{n-k} alors il existe une matrice de Householder $\mathbb{H}^{[k+1]} = \mathbb{H}(\underline{u})$ et $\alpha \in \mathbb{K}^*$ tels que

On peut remarquer que si $\boldsymbol{s}=0$ ou \boldsymbol{s} colinéaire à \boldsymbol{e}_1^{n-k} alors $\mathbb{A}^{[k]}$ est déjà sous la forme $\mathbb{A}^{[k+1]}$ et donc $\mathbb{H}^{[k+1]}=\mathbb{T}$

2. il suffit d'appliquer itérativement le résultat précédent n-1 fois en posant $\mathbb{A}^{[0]} = \mathbb{A}$ et $\mathbb{A}^{[k+1]} = \mathbb{H}^{[k+1]} \mathbb{A}^{[k]}$ où $\mathbb{H}^{[k+1]}$ est soit une matrice de Householder soit la matrice identité. Par construction la matrice $\mathbb{A}^{[n-1]}$ est triangulaire supérieure et l'on a

$$\mathbb{A}^{[n-1]} = \mathbb{H}^{[n-1]} \times \cdots \times \mathbb{H}^{[1]} \mathbb{A}$$

On pose $\mathbb{H} = \mathbb{H}^{[n-1]} \times \cdots \times \mathbb{H}^{[1]}$ et $\mathbb{R} = \mathbb{A}^{[n-1]}$. La matrice \mathbb{H} est unitaire car produit de matrices unitaires On note $\mathbb{O} = \mathbb{H}^*$ On a

$$\mathbb{O} = \mathbb{H}^{[1]} \times \cdots \times \mathbb{H}^{[n-1]}$$

car les matrices de Householder et matrice identité sont unitaires et hermitiennes.

- 3. Si A est réelle alors par construction ℚ et ℝ sont réelles. Les coefficients diagonaux peuvent alors être choisi positif lors de la construction de chaque matrice de Householder.
- Pour montrer l'unicité d'une telle factorisation, on note Q₁, Q₂, deux matrices orthogonales et R₁, R₂, deux matrices triangulaires à coefficients diagonaux positifs telles que

$$A = \mathbb{Q}_1 \mathbb{R}_1 = \mathbb{Q}_2 \mathbb{R}_2$$

Comme $\mathbb A$ est inversible les coefficients diagonaux de $\mathbb R_1$ et $\mathbb R_2$ sont strictement positifs. On a alors

$$\mathbb{I}=\mathbb{A}\mathbb{A}^{\text{-1}}=\mathbb{Q}_1\mathbb{R}_1\mathbb{R}_2^{\text{-1}}\mathbb{Q}_2^{\text{-1}}$$

et donc

$$\mathbb{Q}_1^{-1}\mathbb{Q}_2 = \mathbb{R}_1\mathbb{R}_2^{-1} \stackrel{\text{def}}{=} \mathbb{T}.$$

Comme \mathbb{Q}_1 est orthogonale on a $\mathbb{T} = \mathbb{Q}_1^t \mathbb{Q}_2$ et

$$\mathbb{T}^{\mathsf{t}}\mathbb{T} = \left(\mathbb{Q}_1^{\mathsf{t}}\mathbb{Q}_2\right)^{\mathsf{t}}\mathbb{Q}_1^{\mathsf{t}}\mathbb{Q}_2 = \mathbb{Q}_2^{\mathsf{t}}\mathbb{Q}_1\mathbb{Q}_1^{\mathsf{t}}\mathbb{Q}_2 = \mathbb{I}.$$

La matrice $\mathbb T$ est donc orthogonal. De plus $\mathbb T=\mathbb R_1\mathbb R_2^{-1}$ est une matrice triangulaire supérieure à coefficients diagonaux strictement positifs puisque produit de triangulaire supérieure à coefficients diagonaux strictement positifs. La matrice $\mathbb I$ étant symétrique définie positive, d'après le Théorème 3.15(factorisation positive de Cholesky) il existe une unique matrice $\mathbb L$ triangulaire inférieure à coefficients diagonaux strictement positifs telle que $\mathbb L \mathbb L^{\mathfrak t}=\mathbb L$ Cette matrice $\mathbb L$ est évidemment la matrice identité. On en déduit que $\mathbb T=\mathbb L^{\mathfrak t}=\mathbb I$ et donc $\mathbb Q_1=\mathbb Q_2$ et $\mathbb R_1=\mathbb R_2$.

\Q

7