Partiel du 22 novembre 2019 durée : 1h30.

Sans documents et sans appareils électroniques

Le barême est donné à titre indicatif

EXERCICE 1 (7 POINTS)

Soit $(E, \|.\|)$ un espace de Banach (espace vectoriel normé complet, de norme notée $\|.\|$). On considère une application $\Phi : E \longrightarrow E$ contractante, i.e.

$$\exists L \in [0, 1[, \|\boldsymbol{\Phi}(\boldsymbol{x}) - \boldsymbol{\Phi}(\boldsymbol{y})\| \leqslant L \|\boldsymbol{x} - \boldsymbol{y}\|, \forall (\boldsymbol{x}, \boldsymbol{y}) \in E \times E.$$
(1)

Soit $\boldsymbol{x}_0 \in E$, on souhaite utiliser la suite récurrente $(\boldsymbol{x}_k)_{k \in \mathbb{N}}$ vérifiant

$$\boldsymbol{x}_{k+1} = \boldsymbol{\Phi}(\boldsymbol{x}_k), \quad \forall k \in \mathbb{N}$$
 (2)

- **Q. 1** Montrer que la suite $(\boldsymbol{x}_k)_{k\in\mathbb{N}}$ est bien définie.
 - **Q. 2** 1. Montrer que la fonction Φ est continue.
 - 2. En déduire que si la suite x_k converge, alors elle converge vers un point fixe de Φ .
- **Q. 3** Montrer que si Φ admet un point fixe alors ce point fixe est unique.
- Q. 4 1. Rappeler la définition d'une suite de Cauchy.
 - 2. Soit $n \in \mathbb{N}$, montrer que pour tout $k \in \mathbb{N}$ on a

$$\|\boldsymbol{x}_{n+k} - \boldsymbol{x}_n\| \le \|\boldsymbol{x}_1 - \boldsymbol{x}_0\| \frac{L^n}{1 - L}$$
 (3)

- 3. En déduire que la suite $(\boldsymbol{x}_k)_{k\in\mathbb{N}}$ est une suite de Cauchy.
- 4. Conclure.

On suppose maintenant que $E = \mathbb{R}$.

Q. 5 Ecrire un algorithme du point fixe (fonction PointFixe) permettant de résoudre l'équation $\Phi(x) = x$.

EXERCICE 2 (3 POINTS)

En -1700 av. J.-C., les babyloniens ne connaissaient que les nombres rationnels (fractions) et ils utilisaient le système sexagésimal (base 60). Pour approcher la valeur $\sqrt{2}$, ils utilisaient comme approximation (voir tablette YBC 7289)

$$\alpha = 1 + \frac{24}{60} + \frac{51}{60^2} + \frac{10}{60^3} = \frac{30547}{21600}$$

L'erreur commise est $|\alpha - \sqrt{2}| \approx 5.994e - 7$.

- **Q.** 1 Comment feriez-vous pour trouver à la main une méthode permettant de trouver des nombres rationnels approchant $\sqrt{2}$.
- **Q. 2** Généraliser la méthode pour trouver une approximation rationnelle de \sqrt{a} où a est un réel positif.

EXERCICE 3 (7 POINTS)

- Q. 1 1. Rappeler la définition d'une norme matricielle.
 - 2. Rappeler la définition d'une norme matricielle subordonnée.
 - 3. Rappeler la définition du rayon spectral d'une matrice.

Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ et $\|\bullet\|_S$ une norme matricielle subordonnée à une norme vectorielle $\|\bullet\|_{v}$.

Q. 2 Montrer que

$$\rho(\mathbb{A}) \leqslant \|\mathbb{A}\|_{S}. \tag{1}$$

Soit $\|\bullet\|$ une norme matricielle **quelconque**. Soit $\lambda \in \mathbb{C}$ une valeur propre de \mathbb{A} et \boldsymbol{u} un vecteur propre associé à λ . On note $\mathbb{B} = \boldsymbol{u}\boldsymbol{u}^*$.

- **Q. 3** 1. Rappeler la formule liant \mathbb{A} , λ et \boldsymbol{u} .
 - 2. Expliciter les composantes de \mathbb{B} en fonction de celles de \mathbf{u} .
 - 3. Montrer que \mathbb{B} est non nulle.
 - 4. Montrer que

$$AB = \lambda B. \tag{2}$$

5. En déduire que

$$\rho(\mathbb{A}) \leqslant \|\mathbb{A}\| \,. \tag{3}$$

EXERCICE 4 (9 POINTS)

Soient \mathbb{A} et \mathbb{B} deux matrices triangulaires supérieures de $\mathcal{M}_n(\mathbb{K})$.

- Q. 1 a. Donner la définition mathématique d'une matrice triangulaire supérieure.
 - b. Montrer que $\mathbb{C} = \mathbb{AB}$ est triangulaire supérieure et que $C_{i,i} = A_{i,i}B_{i,i}, \forall i \in [1,n]$.
 - c. A quelles conditions, sur ses coefficients, la matrice \mathbb{A} est-elle inversible?
 - d. Montrer que si la matrice \mathbb{A} est inversible alors son inverse est triangulaire supérieure et les éléments diagonaux de la matrice inverse sont les inverses des éléments diagonaux de la matrice \mathbb{A} .
- **Q.** 2 Soit $\boldsymbol{b} \in \mathbb{K}^n$.
 - a. Expliquer en détail la manière de résoudre le système

$$Ax = b$$
.

- b. Ecrire une fonction algorithmique permettant de résoudre le système précédent.
- **Q. 3** Soient $\mathbb{L} \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire inférieure inversible et $\mathbf{b} \in \mathbb{K}^n$.
 - a. Expliquer en détail la manière de résoudre le système

$$\mathbb{L}\boldsymbol{x} = \boldsymbol{b}$$
.

b. Ecrire une fonction algorithmique permettant de résoudre le système précédent.