Exercice 1

Soit $(i,j) \in [1,n]^2$, $i \neq j$, on note $\mathbb{P}_n^{[i,j]} \in \mathcal{M}_n(\mathbb{R})$ la matrice identitée dont on a permuté les lignes i et j.

Q. 1 Représenter cette matrice et la définir proprement.

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. On note $A_{r,:}$ le r-ème vecteur ligne de \mathbb{A} et $A_{:,s}$ le s-ème vecteur colonne de \mathbb{A} .

- **Q. 2** a. Déterminer les lignes de la matrice $\mathbb{D} = \mathbb{P}_n^{[i,j]}\mathbb{A}$ en fonction des vecteurs lignes de \mathbb{A} .
- b. Déterminer les colonnes de la matrice $\mathbb{E} = \mathbb{AP}_n^{[i,j]}$ en fonction des vecteurs colonnes de \mathbb{A} .
- **Q.** 3 a. Calculer le déterminant de $\mathbb{P}_n^{[i,j]}$.
- b. Déterminer l'inverse de $\mathbb{P}_n^{[i,j]}$.

Correction

R. 1 On note, dans toute la correction, $\mathbb{P} = \mathbb{P}_n^{[i,j]}$. On peut définir cette matrice par ligne.

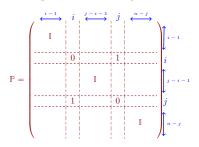
$$\left\{ \begin{array}{lll} \forall r \in \llbracket 1, n \rrbracket \backslash \{i, j\}, & P_{r,s} &=& \delta_{r,s}, & \forall s \in \llbracket 1, n \rrbracket, \\ P_{i,s} &=& \delta_{j,s}, & \forall s \in \llbracket 1, n \rrbracket, \\ P_{j,s} &=& \delta_{i,s}, & \forall s \in \llbracket 1, n \rrbracket. \end{array} \right.$$

ou par colonne

$$\left\{ \begin{array}{lcl} \forall s \in [\![1,n]\!] \backslash \{i,j\}, & P_{r,s} &=& \delta_{r,s}, & \forall r \in [\![1,n]\!], \\ P_{r,i} &=& \delta_{r,j}, & \forall r \in [\![1,n]\!], \\ P_{r,j} &=& \delta_{r,i}, & \forall r \in [\![1,n]\!]. \end{array} \right.$$

Attention 1. Ne pas utiliser les indices i et j qui sont déjà fixés dans la définition de la matrice $\mathbb{P} = \mathbb{P}_n^{[i,j]}$.

On peut noter que la matrice \mathbb{P} est symétrique. Pour la représentation, on suppose i < j. On effectue une représentation bloc 5×5 avec des blocs diagonaux carrés sachant que tous les blocs non décrits sont nuls:



R. 2 a. On note D = PA. Par définition du produit matriciel on a

$$D_{r,s} = \sum_{k=1}^{n} P_{r,k} A_{k,s}.$$

On obtient, $\forall s \in [1, n]$,

$$\left\{ \begin{array}{ll} D_{r,s} & = & \displaystyle \sum_{k=1}^{n} \delta_{r,k} A_{k,s} = A_{r,s}, \quad \forall r \in [\![1,n]\!] \backslash \{i,j\}, \\ \\ D_{i,s} & = & \displaystyle \sum_{k=1}^{n} \delta_{j,k} A_{k,s} = A_{j,s}, \\ \\ D_{j,s} & = & \displaystyle \sum_{k=1}^{n} \delta_{i,k} A_{k,s} = A_{i,s}. \end{array} \right.$$

1

ce qui donne

$$\left\{ \begin{array}{ll} \boldsymbol{D}_{r,:} &=& \boldsymbol{A}_{r,:}, & \forall r \in [\![1,n]\!] \backslash \{i,j\}, \\ \boldsymbol{D}_{i,:} &=& \boldsymbol{A}_{j,:}, \\ \boldsymbol{D}_{j,:} &=& \boldsymbol{A}_{i,:}. \end{array} \right.$$

Note 1. La notation $D_{i,:}$ correspond au vecteur ligne $(D_{i,1}, \ldots, D_{i,n})$ et $D_{:,j}$ correspond au vecteur colonne $\begin{pmatrix} D_{1,j} \\ \vdots \\ D_{n,j} \end{pmatrix}$

b. On note $\mathbb{E}=\mathbb{AP}$. Par définition du produit matriciel et par symétrie de \mathbb{P} on a

$$E_{r,s} = \sum_{k=1}^{n} A_{r,k} P_{k,s} = \sum_{k=1}^{n} A_{r,k} P_{s,k}.$$

Attention 2. Ne pas utiliser les indices i et j qui sont déjà fixés dans la définition de la matrice $\mathbb{P} = \mathbb{P}_n^{[i,j]}$.

On obtient en raisonnant par colonne, $\forall r \in [1, n]$,

$$\left\{ \begin{array}{ll} E_{r,s} & = & \displaystyle \sum_{k=1}^{n} A_{r,k} \delta_{s,k} = A_{r,s}, \quad \forall s \in [\![1,n]\!] \backslash \{i,j\}, \\ E_{r,i} & = & \displaystyle \sum_{k=1}^{n} A_{r,k} \delta_{j,k} = A_{r,j}, \\ E_{r,j} & = & \displaystyle \sum_{k=1}^{n} A_{r,k} \delta_{i,k} = A_{r,i}. \end{array} \right.$$

ce qui donne

$$\left\{ \begin{array}{lcl} \boldsymbol{E}_{:,s} &=& \boldsymbol{A}_{:,s}, & \forall s \in [\![1,n]\!] \backslash \{i,j\}, \\ \boldsymbol{E}_{:,i} &=& \boldsymbol{A}_{:,j}, \\ \boldsymbol{E}_{:,j} &=& \boldsymbol{A}_{:,i}. \end{array} \right.$$

R. 3 a. $\det(\mathbb{P}) = -1$, si $i \neq j$ et $\det(\mathbb{P}) = 1$ sinon.

b. Immédiat par calcul direct on a $\mathbb{PP} = \mathbb{I}$ et donc la matrice \mathbb{P} est inversible et $\mathbb{P}^{-1} = \mathbb{P}$.

Exercice 2

Soit $v \in \mathbb{C}^n$ avec $v_1 \neq 0$. On note $\mathbb{E}^{[v]} \in \mathcal{M}_n(\mathbb{C})$ la matrice triangulaire inférieure à diagonale unité définie par

$$\mathbb{E}^{[v]} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ -v_2/v_1 & 1 & 0 & \dots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ -v_n/v_1 & 0 & \dots & 0 & 1 \end{pmatrix}$$
(1)

Q. 1 a. Calculer le déterminant de $\mathbb{E}^{[v]}$

b. Déterminer l'inverse de E[v].

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ avec $A_{1,1} \neq 0$. On note $A_{:,j}$ le j-ème vecteur colonne de \mathbb{A} et $A_{i,:}$ son i-ème vecteur ligne. On pose $A_1 = A_{:,1}$.

Q. 2 a. Calculer $\tilde{\mathbb{A}} = \mathbb{E}^{[A_1]} \mathbb{A}$ en fonction des vecteurs lignes de \mathbb{A} .

b. Montrer que la première colonne de $\tilde{\mathbb{A}}$ est le vecteur $(A_{1,1},0,\ldots,0)^t$ i.e.

$$\mathbb{E}^{[\boldsymbol{A}_1]} \mathbb{A} \boldsymbol{e}_1 = A_{1,1} \boldsymbol{e}_1 \tag{2}$$

où \mathbf{e}_1 est le premier vecteur de la base canonique de \mathbb{C}^n .

Soit $m \in \mathbb{N}^*$. On note $\mathbb{E}^{[m,v]} \in \mathcal{M}_{m+n}(\mathbb{C})$ la matrice triangulaire inférieure à diagonale unité définie par

$$\mathbb{E}^{[m,\mathbf{v}]} = \begin{pmatrix} \mathbb{I}_m & 0 \\ 0 & \mathbb{E}^{[\mathbf{v}]} \end{pmatrix}$$
(3)

Q. 3 a. Calculer le déterminant de $\mathbb{E}^{[m,v]}$

b. Déterminer l'inverse de $\mathbb{E}^{[m,v]}$ en fonction de l'inverse de $\mathbb{E}^{[v]}$.

Soit $\mathbb C$ la matrice bloc définie par

$$\mathbb{C} = \left(\begin{array}{c|c} \mathbb{C}_{1,1} & \mathbb{C}_{1,2} \\ \hline \mathbb{O} & \mathbb{A} \end{array} \right)$$

où $\mathbb{C}_{1,1} \in \mathcal{M}_m(\mathbb{C})$ et $\mathbb{C}_{1,2} \in \mathcal{M}_{m,n}(\mathbb{C})$

Q. 4 Déterminer la matrice produit $\mathbb{E}^{[m,\mathbf{A}_1]}\mathbb{C}$ en fonction des matrices $\mathbb{C}_{1,1}$, $\mathbb{C}_{1,2}$ et $\tilde{\mathbb{A}}$.

Correction

- R. 1 a. La matrice $\mathbb{E}^{[v]}$ est triangulaire : son déterminant est donc le produit de ses éléments diagonaux (Proposition B.53 page 211) On a alors $\det(\mathbb{E}^{[v]}) = 1$.
- b. Pour calculer son inverse qui existe puisque $\det(\mathbb{E}^{[v]}) \neq 0$, on écrit $\mathbb{E}^{[v]}$ sous forme bloc:

$$\mathbb{E}^{[\boldsymbol{v}]} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ & & & \\ \boldsymbol{e} & & \\ & & \\ \end{bmatrix}$$

avec $\mathbf{e} = (-v_2/v_1, \dots, -v_n/v_1)^{\mathsf{t}} \in \mathbb{C}^{n-1}$ On note $\mathbb{X} \in \mathcal{M}_n(\mathbb{C})$ son inverse qui s'écrit avec la même structure bloc

$$\mathbb{X} = \begin{pmatrix} a & b^* \\ c & \mathbb{D} \end{pmatrix}$$

avec $a \in \mathbb{C}$, $\boldsymbol{b} \in \mathbb{C}^{n-1}$, $\boldsymbol{c} \in \mathbb{C}^{n-1}$ et $\mathbb{D} \in \mathcal{M}_{n-1}(\mathbb{C})$.

La matrice \mathbb{X} est donc solution de $\mathbb{E}^{[v]}\mathbb{X} = \mathbb{I}$. Grace à l'écriture bloc des matrices on en déduit rapidement la matrice \mathbb{X} . En effet, en utilisant les produits blocs des matrices, on obtient

$$\mathbb{E}^{[\boldsymbol{v}]}\mathbb{X} = \begin{pmatrix} 1 & \mathbf{0}_{n-1}^{\mathsf{t}} \\ e & \mathbb{I}_{n-1} \end{pmatrix} \begin{pmatrix} a & \boldsymbol{b}^* \\ c & \mathbb{D} \end{pmatrix} = \begin{pmatrix} 1 \times a & 1 \times \boldsymbol{b}^* + \mathbf{0}_{n-1}^{\mathsf{t}} \times \mathbb{D} \\ e \times a + \mathbb{I}_{n-1} \times c & e \times \boldsymbol{b}^* + \mathbb{I}_{n-1} \times \mathbb{D} \end{pmatrix}$$

$$= \begin{pmatrix} a & \boldsymbol{b}^* \\ ae + c & e\boldsymbol{b}^* + \mathbb{D} \end{pmatrix}$$

Comme \mathbb{X} est l'inverse de $\mathbb{E}^{[v]}$, on a $\mathbb{E}^{[v]}\mathbb{X} = \mathbb{I}$ et donc en écriture bloc

$$\begin{pmatrix} a & \boldsymbol{b^*} \\ a\boldsymbol{e} + \boldsymbol{c} & \boldsymbol{e}\boldsymbol{b^*} + \mathbb{D} \end{pmatrix} = \begin{pmatrix} 1 & \mathbf{0_{n-1}^t} \\ \mathbf{0_{n-1}} & \mathbb{I}_{n-1} \end{pmatrix}.$$

3

Ceci revient à résoudre les 4 équations

$$a = 1, \ b^* = \mathbf{0}_{n-1}^t, \ ae + c = \mathbf{0}_{n-1} \ \text{et} \ eb^* + \mathbb{D} = \mathbb{I}_{n-1}$$

qui donnent immédiatement $a=1, \boldsymbol{b}=\boldsymbol{0}_{n-1}, \boldsymbol{c}=-\boldsymbol{e}$ et $\mathbb{D}=\mathbb{I}_{n-1}$. On obtient le résultat suivant

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ -e & & \mathbb{I}_{n-1} & \end{pmatrix} \begin{pmatrix} 1 & 0 & \dots & 0 \\ e & & \mathbb{I}_{n-1} & \end{pmatrix} = \mathbb{I}_n.$$

Note 2. Il aurait été plus rapide d'utiliser la Proposition B.54, page 211.

R. 2 a. Pour simplifier les notations, on note $\mathbb{E} = \mathbb{E}[A_1]$. Par définition du produit de deux matrices on a

$$\tilde{A}_{i,j} = \sum_{k=1}^{n} E_{i,k} A_{k,j}, \quad \forall (i,j) \in [1,n]^2.$$

Quand i = 1, on a par construction $E_{1,k} = \delta_{1,k}$ et donc

$$\tilde{A}_{1,j} = A_{1,j}, \ \forall j \in [1,n] \iff \tilde{A}_{1,:} = A_{1,:}.$$
 (4)

Pour $i \ge 2$, on a $E_{i,1} = -\frac{v_i}{n}$ et $E_{i,k} = \delta_{i,k}, \forall k \in [2,n]$. On obtient alors pour tout $j \in [1,n]$

$$\tilde{A}_{i,j} = E_{i,1}A_{1,j} + \sum_{k=2}^{n} E_{i,k}A_{k,j} = -\frac{v_i}{v_1}A_{1,j} + \sum_{k=2}^{n} \delta_{i,k}A_{k,j} = -\frac{v_i}{v_1}A_{1,j} + A_{i,j}$$

ce qui donne pour tout $i \in [\![2,n]\!]$

$$\tilde{A}_{i,j} = A_{i,j} - \frac{v_i}{v_1} A_{1,j}, \ \forall j \in [1, n] \iff \tilde{A}_{i,:} = -\frac{v_i}{v_1} A_{1,:} + A_{i,:}$$
 (5)

En conclusion, la matrice A s'écrit

$$\tilde{\mathbb{A}} = \begin{pmatrix} A_{1,:} & & \\ & A_{2,:} - (v_2/v_1)A_{1,:} & & \\ & \vdots & & \\ & A_{n,:} - (v_n/v_1)A_{1,:} & & \end{pmatrix}$$

- b. De (4), on tire $\tilde{A}_{1,1} = A_{1,1}$. A partir de (5) on obtient pour tout $i \in [\![2,n]\!]$, $\tilde{A}_{i,1} = A_{i,1} \frac{v_i}{v_1} A_{1,1}$. Par construction $v_j = A_{j,1}$ pour tout $j \in [\![1,n]\!]$, ce qui donne $\tilde{A}_{i,1} = 0$. La première colonne de $\tilde{\mathbb{A}}$ est $(1,0,\ldots,0)^{\mathfrak{k}}$.
- R. 3 a. La matrice $\mathbb{E}^{[m,v]}$ est triangulaire inférieure. Son déterminant est donc le produit de ses éléments diagonaux. Comme cette matrice est à diagonale unité (i.e. tous ses éléments diagonaux valent 1), on obtient det $\mathbb{E}^{[m,v]} = 1$.

Une autre manière de le démontrer. On peut voir que la matrice $\mathbb{E}^{[m,v]}$ est bloc-diagonale. D'après la Proposition B.54, page 211, son déterminant est le produit des déterminant des blocs diagonaux : $\det \mathbb{E}^{[m,v]} = \det \mathbb{I}_m \times \det \mathbb{E}^{[v]} = 1$.

b. On note \mathbb{X} l'inverse de la matrice $\mathbb{E}^{[m,v]}$. Cette matrice s'écrit avec la même structure bloc

$$\mathbb{X} = \left(\begin{array}{c|c} \mathbb{X}_{1,1} & \mathbb{X}_{1,2} \\ \hline \mathbb{X}_{2,1} & \mathbb{X}_{2,2} \end{array}\right) \text{ avec } \mathbb{X}_{1,1} \in \mathcal{M}_m(\mathbb{C}) \text{ et } \mathbb{X}_{2,2} \in \mathcal{M}_n(\mathbb{C})$$

On a donc $\mathbb{XE}^{[m,\pmb{v}]} = \mathbb{I}_{m+n}$ c'est à dire en écriture bloc

$$\left(\begin{array}{c|c} \mathbb{X}_{1,1} & \mathbb{X}_{1,2} \\ \hline \mathbb{X}_{2,1} & \mathbb{X}_{2,2} \end{array}\right) \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O} \\ \hline \mathbb{O} & \mathbb{E}^{[\mathbf{v}]} \end{array}\right) = \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O} \\ \hline \mathbb{O} & \mathbb{I}_n \end{array}\right) =$$

On doit donc résoudre les 4 équations suivantes :

$$\mathbb{X}_{1,1}\mathbb{I}_m = \mathbb{I}_m, \quad \mathbb{X}_{1,2}\mathbb{I}_n = \mathbb{O}, \quad \mathbb{X}_{2,1}\mathbb{I}_m = \mathbb{O} \quad \text{et} \quad \mathbb{X}_{2,2}\mathbb{E}^{[v]} = \mathbb{I}_n.$$

Comme la matrice $\mathbb{E}^{[v]}$ est inversible, on obtient

$$\mathbb{X} = \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O} \\ \hline \mathbb{O} & \left(\mathbb{E}^{[v]}\right)^{-1} \end{array}\right)$$

Note 3. Plus rapidement, comme la matrice $\mathbb{E}^{[m,v]}$ est bloc-diagonale, on en déduit (Proposition B.54, page 211) directement le résultat.

R. 4 Le produit $\mathbb{E}^{[m,v]}\mathbb{C}$ peut s'effectuer par bloc car les blocs sont de dimensions compatibles et on a

$$\begin{split} \mathbb{E}^{[m, \pmb{v}]} \mathbb{C} &= \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O}_{m, n} \\ \hline \mathbb{O}_{n, m} & \mathbb{E} \end{array} \right) \left(\begin{array}{c|c} \mathbb{C}_{1, 1} & \mathbb{C}_{1, 2} \\ \hline \mathbb{O}_{n, m} & \mathbb{A} \end{array} \right) = \left(\begin{array}{c|c} \mathbb{I}_m \mathbb{C}_{1, 1} + \mathbb{O}_{m, n} \mathbb{O}_{n, m} & \mathbb{I}_m \mathbb{C}_{1, 2} + \mathbb{O}_{m, n} \mathbb{A} \\ \hline \mathbb{O}_{n, m} \mathbb{C}_{1, 1} + \mathbb{E} \mathbb{O}_{n, m} & \mathbb{O}_{n, m} \mathbb{C}_{1, 2} + \mathbb{E} \mathbb{A} \end{array} \right) \\ &= \left(\begin{array}{c|c} \mathbb{C}_{1, 1} & \mathbb{C}_{1, 2} \\ \hline \mathbb{O}_{n, m} & \mathbb{E} \mathbb{A} \end{array} \right) = \left(\begin{array}{c|c} \mathbb{C}_{1, 1} & \mathbb{C}_{1, 2} \\ \hline \mathbb{O}_{n, m} & \mathbb{A} \end{array} \right) \end{split}$$

Exercice 3

Soit $A \in \mathcal{M}_n(\mathbb{C})$ inversible.

Q. 1 Montrer qu'il existe une matrice $\mathbb{G} \in \mathcal{M}_n(\mathbb{C})$ telle que $|\det(\mathbb{G})| = 1$ et $\mathbb{G} \mathbb{A} \mathbf{e}_1 = \alpha \mathbf{e}_1$ avec $\alpha \neq 0$ et \mathbf{e}_1 premier vecteur de la base canonique de C^n .

- **Q.** 2 a. Montrer par récurrence sur l'ordre des matrices que pour toute matrice $\mathbb{A}_n \in \mathcal{M}_n(\mathbb{C})$ inversible, il existe une matrice $\mathbb{S}_n \in \mathcal{M}_n(\mathbb{C})$ telle que $|\det \mathbb{S}_n| = 1$ et $\mathbb{S}_n \mathbb{A}_n = \mathbb{U}_n$ avec \mathbb{U}_n matrice triangulaire
- b. Soit $\mathbf{b} \in \mathbb{C}^n$. En supposant connue la décompostion précédente $\mathbb{S}_n \mathbb{A}_n = \mathbb{U}_n$, expliquer comment résoudre le système $A_n \mathbf{x} = \mathbf{b}$.

Q. 3 Que peut-on dire si A est non inversible?

Correction

 \mathbf{R} . 1 D'après le Lemme 3.3, si $A_{1,1} \neq 0$ le résultat est immédiat. Dans l'énoncé rien ne vient corroborer cette hypothèse. Toutefois, comme la matrice \mathbb{A} est inversible, il existe au moins un $p \in [1, n]$ tel que $A_{n,1} \neq 0$. On peut même choisir le premier indice p tel que $|A_{p,1}| = \max_{i \in [1,n]} |A_{i,1}| > 0$ (pivot de l'algorithme de Gauss-Jordan). On note $\mathbb{P} = \mathbb{P}_n^{[1,p]}$ la matrice de permutation des lignes 1 et p (voir exercice 3.1.4, page 64). De plus

$$|\det \mathbb{P}| = 1$$
 et $\mathbb{P}^{-1} = \mathbb{P}$.

Par construction $(\mathbb{P}\mathbb{A})_{1,1} = A_{p,1} \neq 0$, et on peut alors appliquer le Lemme 3.3 à la matrice $(\mathbb{P}\mathbb{A})$ pour obtenir l'existence d'une matrice $\mathbb{E} \in \mathcal{M}_n(\mathbb{C})$ vérifiant det $\mathbb{E} = 1$ et telle que

$$\mathbb{E}(\mathbb{P}\mathbb{A})\boldsymbol{e}_1 = A_{p,1}\boldsymbol{e}_1.$$

En posant $\mathbb{G} = \mathbb{EP}$ et $\alpha = A_{p,1}$, on obtient bien $\mathbb{GA}e_1 = \alpha e_1$. De plus, on a

$$|\det \mathbb{G}| = |\det(\mathbb{EP})| = |\det \mathbb{E} \times \det \mathbb{P}| = 1.$$

Remarque 1. La matrice © étant inversible, on a

$$\mathbb{A}\boldsymbol{x} = \boldsymbol{b} \iff \mathbb{G}\mathbb{A}\boldsymbol{x} = \mathbb{G}\boldsymbol{b}$$

ce qui correspond à la première permutation/élimination de l'algorithme de Gauss-Jordan.

a. On veut démontrer par récurrence la propriété (\mathcal{P}_n) ,

$$(\mathcal{P}_n) \quad \left\{ \begin{array}{l} \forall \mathbb{A}_n \in \mathcal{M}_n(\mathbb{C}), \text{ inversible } \exists \mathbb{S}_n \in \mathcal{M}_n(\mathbb{C}), \ |\det \mathbb{S}_n| = 1, \text{ tel que} \\ \text{la matrice } \mathbb{U}_n = \mathbb{S}_n \mathbb{A} \text{ soit une triangulaire supérieure inversible} \end{array} \right.$$

Initialisation: Pour n=2. Soit $A_2 \in \mathcal{M}_2(\mathbb{C})$ inversible. En utilisant la question précédente il existe $\mathbb{G}_2 \in \mathcal{M}_2(\mathbb{C})$ telle que $|\det \mathbb{G}_2| = 1$ et $\mathbb{G}_2 \mathbb{A}_2 e_1 = \alpha e_1$ avec $\alpha \neq 0$ et e_1 premier vecteur de la base canonique de \mathbb{C}^2 . On note $\mathbb{U}_2 = \mathbb{G}_2\mathbb{A}_2$. Cette matrice s'écrit donc sous la forme

$$\mathbb{U}_2 = \begin{pmatrix} \alpha & \bullet \\ 0 & \bullet \end{pmatrix}$$

et elle est triangulaire supérieure. Les matrices \mathbb{G}_2 et \mathbb{A}_2 étant inversible, leur produit \mathbb{U}_2 l'est aussi. La proposition (\mathcal{P}_2) est donc vérifiée avec $\mathbb{S}_2 = \mathbb{G}_2$.

Hérédité: Soit $n \ge 3$. On suppose que (\mathcal{P}_{n-1}) est vraie. Montrons que (\mathcal{P}_n) est vérifiée.

Soit $\mathbb{A}_n \in \mathcal{M}_n(\mathbb{C})$ inversible. En utilisant la question précédente il existe $\mathbb{G}_n \in \mathcal{M}_n(\mathbb{C})$ telle que $|\det \mathbb{G}_n| = 1$ et $\mathbb{G}_n \mathbb{A}_n \mathbf{e}_1 = \alpha_n \mathbf{e}_1$ avec $\alpha_n \neq 0$ et \mathbf{e}_1 premier vecteur de la base canonique de \mathbb{C}^n . On note $V_n = \mathbb{G}_n \mathbb{A}_n$. Cette matrice s'écrit donc sous la forme

$$\mathbb{V}_n = \begin{pmatrix} \alpha_n & \bullet & \dots & \bullet \\ 0 & \bullet & \dots & \bullet \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \bullet & \dots & \bullet \end{pmatrix} \stackrel{\text{def}}{=} \begin{pmatrix} \alpha_n & \mathbf{C}_{n-1}^* \\ 0 & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ 0 & & \mathbb{B}_{n-1} \end{pmatrix}$$

où $\boldsymbol{c}_{n-1} \in \mathbb{C}^{n-1}$ et $\mathbb{B}_{n-1} \in \mathcal{M}_{n-1}(\mathbb{C})$. Comme \mathbb{G}_n et \mathbb{A}_n sont inversibles, \mathbb{V}_n l'est aussi. On en déduit donc que \mathbb{B}_{n-1} est inversible car $0 \neq \det \mathbb{V}_n = \alpha_n \times \det \mathbb{B}_{n-1}$ et $\alpha_n \neq 0$.

On peut donc utiliser la propriété (\mathcal{P}_{n-1}) (hyp. de récurrence) sur la matrice \mathbb{B}_{n-1} : il existe donc $\mathbb{S}_{n-1} \in \mathcal{M}_{n-1}(\mathbb{C})$, avec $|\det \mathbb{S}_{n-1}| = 1$, tel que la matrice $\mathbb{U}_{n-1} = \mathbb{S}_{n-1}\mathbb{B}_{n-1}$ soit une triangulaire supérieure inversible.

Soit $\mathbb{Q}_n \in \mathcal{M}_n(\mathbb{C})$ la matrice définie par

$$\mathbb{Q}_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & & \\ \vdots & & \mathbb{S}_{n-1} \\ 0 & & & \end{pmatrix}$$

On a alors

0

п

$$\begin{split} \mathbb{Q}_n\mathbb{G}_n\mathbb{A}_n &= \mathbb{Q}_n\mathbb{V}_n = \begin{pmatrix} \frac{1}{0} & 0 & \cdots & 0 \\ \vdots & & \mathbb{S}_{n-1} & 0 \\ 0 & & & \mathbb{S}_{n-1} \end{pmatrix} \begin{pmatrix} \frac{\alpha_n}{0} & \mathbf{c}_{n-1}^* \\ \vdots & & \mathbb{B}_{n-1} \\ 0 & & & \mathbb{S}_{n-1} \end{pmatrix} \\ &= \begin{pmatrix} \frac{\alpha_n}{0} & \mathbf{c}_{n-1}^* \\ \vdots & & \mathbb{S}_{n-1}\mathbb{B}_{n-1} \\ 0 & & & \mathbb{S}_{n-1} \end{bmatrix} = \begin{pmatrix} \frac{\alpha_n}{0} & \mathbf{c}_{n-1}^* \\ \vdots & & \mathbb{O}_{n-1} \\ \vdots & & \mathbb{O}_{n-1} \end{pmatrix} \stackrel{\text{def}}{=} \mathbb{U}_n \end{split}$$

La matrice \mathbb{U}_n est triangulaire supérieure inversible car \mathbb{U}_{n-1} l'est aussi et $\alpha_n \neq 0$.

On pose $\mathbb{S}_n = \mathbb{Q}_n \mathbb{G}_n$. On a donc

$$\mathbb{S}_n \mathbb{A}_n = \mathbb{U}_n$$
.

De plus, comme on a $\det \mathbb{S}_n = \det \mathbb{Q}_n \times \det \mathbb{G}_n$, et $\det \mathbb{Q}_n = \det \mathbb{S}_{n-1}$, on obtient, en utilisant $|\det \mathbb{G}_n| = 1$ et l'hypothèse de récurrence $|\det \mathbb{S}_{n-1}| = 1$, que

$$|\det \mathbb{S}_n| = 1.$$

Ceci prouve la véracité de la proposition (\mathcal{P}_n) .

b. Comme \mathbb{S}_n est inversible, on a en multipliant à gauche le système par \mathbb{S}_n

$$\mathbb{A}_n \boldsymbol{x} = \boldsymbol{b} \iff \mathbb{S}_n \mathbb{A}_n \boldsymbol{x} = \mathbb{S}_n \boldsymbol{b} \iff \mathbb{U}_n \boldsymbol{x} = \mathbb{S}_n \boldsymbol{b}$$

Pour déterminer le vecteur x, on peut alors résoudre le dernier système par l'algorithme de remontée.

R. 3 Si $\mathbb A$ est non inversible, alors dans la première question nous ne sommes pas assurés d'avoir $\alpha \neq 0$. Cependant l'existence de la matrice $\mathbb G$ reste avérée.

Pour la deuxième question, le seul changement vient du fait que la matrice \mathbb{U}_n n'est plus inversible.

0

Exercice 4

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice dont les sous-matrices principales d'ordre i, notées Δ_i , $i \in [1, n]$ (voir Definition B.48, page 209) sont inversibles.

Montrer qu'il existe des matrices $\mathbb{E}^{[k]} \in \mathcal{M}_n(\mathbb{C})$, $k \in [1, n-1]$, triangulaires inférieures à diagonale unité telles que la matrice \mathbb{U} définie par

$$\mathbb{U} = \mathbb{E}^{[n-1]} \cdots \mathbb{E}^{[1]} \mathbb{A}$$

soit triangulaire supérieure avec $U_{i,i} = \det \Delta_i / (U_{1,1} \times \cdots \times U_{i-1,i-1}), \forall i \in [1, n].$

Correction

On note $\mathbb{A}^{[0]} = \mathbb{A}$. On va démontrer par récurrence finie sur $k \in [1, n-1]$, qu'il existe une matrice $\mathbb{E}^{[k]} \in \mathcal{M}_n(\mathbb{C})$, triangulaire inférieure à diagonale unité, telle que la matrice $\mathbb{A}^{[k]}$ définie itérativement par

$$\mathbb{A}^{[k]} = \mathbb{E}^{[k]} \mathbb{A}^{[k-1]}$$

s'écrit sous la forme bloc

$$\mathbb{A}^{[k]} = \begin{pmatrix} \alpha_1 & \bullet & \cdots & \bullet & \bullet & \cdots & \bullet \\ 0 & \ddots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \bullet & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \alpha_k & \bullet & \cdots & \bullet \\ \vdots & \ddots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & \bullet & \cdots & \bullet \end{pmatrix}$$

$$(6)$$

avec $\alpha_1 = A_{1,1}$ et $\forall i \in [2, k], \ \alpha_i = \det \Delta_i / (\alpha_1 \times \cdots \times \alpha_{i-1})$

Initialisation (k=1): On a $A_{1,1} \neq 0$ car $\Delta_1 = A_{1,1}$ et $\det \Delta_1 \neq 0$. D'après le Lemme 3.3, il existe une matrice $\mathbb{E}^{[1]} \in \mathcal{M}_n(\mathbb{C})$, triangulaire inférieure à diagonale unité, telle que $\mathbb{E}^{[1]} \mathbb{A} \boldsymbol{e}_1 = A_{1,1} \boldsymbol{e}_1$ où \boldsymbol{e}_1 est le premier vecteur de la base canonique de \mathbb{C}^n . On a alors

$$\mathbb{A}^{[1]} = \mathbb{E}^{[1]} \mathbb{A} = \begin{pmatrix} \alpha_1 & \bullet & \cdots & \bullet \\ \hline 0 & \bullet & \cdots & \bullet \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \bullet & \cdots & \bullet \end{pmatrix}$$

avec $\alpha_1 = A_{1,1} = \det \Delta_1$.

Hérédité (k < n-1): Supposons construite la matrice $\mathbb{A}^{[k]}$. Il existe donc k matrices, $\mathbb{E}^{[1]}, \dots, \mathbb{E}^{[k]}$, triangulaires inférieures à diagonale unité telles que

$$\mathbb{A}^{[k]} = \mathbb{E}^{[k]} \cdots \mathbb{E}^{[1]} \mathbb{A}.$$

• On va montrer que $\alpha_{k+1} \stackrel{\text{def}}{=} A_{k+1,k+1}^{[k]} \neq 0$. Pour celà, on réécrit la matrice $\mathbb{A}^{[k]}$ sous forme bloc, avec comme premier bloc diagonale le bloc de dimension k+1:

0			k+1					
	α_1	•	• • •	•	•	•	• • •	•)
	0	$\gamma_{i,j}$	$\gamma_{i,j}$	÷	•	÷		
	:	γ_{i_2}	γ_{i_2}	•	•	:		
$\mathbb{A}^{[k]} =$	0		0	α_k	•	:		
	0			0	α_{k+1}	•		•
	0			0	•	•		•
	:			1	•	:		:
	0 /			0	•	•		• /

La matrice $\mathbb{G}^{[k]} \stackrel{\text{def}}{=} \mathbb{E}^{[k]} \cdots \mathbb{E}^{[1]}$ est triangulaire inférieure à diagonale unité car produit de matrices triangulaires inférieures à diagonale unité (voir Exercice ??, page ??). Le produit de $\mathbb{G}^{[k]}\mathbb{A}$ s'écrit alors sous forme bloc

$$\mathbb{G}^{[k]}\mathbb{A} = \begin{pmatrix} & k+1 & & & & & & & & & \\ 1 & 0 & \cdots & 0 & 0 & \cdots & \cdots & 0 \\ \bullet & \ddots & \ddots & \vdots & \vdots & & & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & & & \vdots \\ \bullet & \cdots & \bullet & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots & \bullet & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 0 \\ \bullet & \cdots & \cdots & \bullet & \bullet & \cdots & \bullet & 1 & 1 \end{pmatrix} \begin{pmatrix} & k+1 & & & & & & \\ & \lambda_{k+1} & & \vdots & & \vdots & & \\ & & \ddots & \ddots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 0 \\ \bullet & \cdots & \cdots & \bullet & \bullet & \cdots & \bullet & 1 & 1 \end{pmatrix}$$

Comme $\mathbb{A}^{[k]} = \mathbb{G}^{[k]}\mathbb{A}$, en utilisant les règles de multiplication par blocs des matrices on obtient

$$\begin{pmatrix} \alpha_1 & \bullet & \cdots & \bullet & \bullet \\ 0 & \ddots & \ddots & \vdots & \bullet \\ \vdots & \ddots & \ddots & \bullet & \bullet \\ 0 & \cdots & 0 & \alpha_k & \bullet \\ 0 & \cdots & \cdots & 0 & \alpha_{k+1} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \bullet & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \bullet & \cdots & \bullet & 1 \end{pmatrix} \begin{pmatrix} \Delta_{k+1} & \Delta_{k+1} & \Delta_{k+1} & \Delta_{k+1} \end{pmatrix}$$

En prenant le déterminant de cette dernière équation, et en utilisant le fait que le determinant d'une matrice triangulaire est le produit de ses coefficients diagonaux, on obtient

$$\prod_{i=1}^{k+1} \alpha_i = \det \Delta_{k+1}.$$

Par hypothèse Δ_{k+1} inversible , ce qui entraine $\det \Delta_{k+1} \neq 0$ et donc $\alpha_i \neq 0, \ \forall i \in [\![1,k+1]\!]$. On a donc

$$\alpha_{k+1} = \frac{\det \Delta_{k+1}}{\prod_{i=1}^{k} \alpha_i} \neq 0.$$

• Montrons l'existence d'une matrice triangulaire inférieure à diagonale unité permettant d'éliminer les termes sous diagonaux de la colonne k+1 de $\mathbb{A}^{[k]}$.

Revenons à l'écriture bloc de premier bloc diagonal de dimension k. On a

$$\mathbb{A}^{[k]} = \begin{pmatrix} \alpha_1 & \bullet & \cdots & \bullet & \bullet & \cdots & \bullet \\ 0 & \ddots & \ddots & \vdots & \vdots & & \vdots \\ \vdots & \ddots & \ddots & \bullet & \vdots & & \vdots \\ 0 & \cdots & 0 & \alpha_k & \bullet & \cdots & \bullet \\ \vdots & \ddots & \ddots & \vdots & \bullet & \cdots & \bullet \\ \vdots & \ddots & \ddots & \vdots & \bullet & \cdots & \bullet \\ \vdots & \ddots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & \bullet & \cdots & \bullet \end{pmatrix} \stackrel{\text{def}}{=} \begin{pmatrix} \mathbb{U}^{[k]} & \mathbb{F}^{[k]} \\ 0 & \mathbb{V}^{[k]} \end{pmatrix}$$

Nous sommes exactement dans le cas de figure étudié dans l'exercice 3.1.3, page 61. En effet, avec les notations de cet exercice et si l'on pose $\boldsymbol{v} = \mathbb{V}_{:,1}^{[k]} = (A_{k+1,k+1}^{[k]}, \dots, A_{n,k+1}^{[k]})^{^{\mathsf{L}}} \in \mathbb{C}^{n-(k+1)}$ (en bleu dans l'expression de $\mathbb{A}^{[k]}$ précédente) on a alors $v_1 = A_{k+1,k+1}^{[k]} = \alpha_{k+1} \neq 0$ et l'on peut définir la matrice $\mathbb{E}^{[k+1]} \in \mathcal{M}_n(\mathbb{C})$, triangulaire inférieure à diagonale unité, par

$$\mathbb{E}^{[k+1]} = \mathbb{E}^{[k,\boldsymbol{v}]} \stackrel{\text{\tiny def}}{=} \left(\begin{array}{c} \mathbb{I}_k & \mathbb{I} & \mathbb{O} \\ \mathbb{O} & \mathbb{I} & \mathbb{E}[\boldsymbol{v}] \end{array} \right)$$

avec $\mathbb{E}^{[v]} \in \mathcal{M}_{n-k}(\mathbb{C})$ triangulaire inférieure à diagonale unité (définie dans l'exercice 3.1.3) telle que

$$\mathbb{E}^{[\mathbf{v}]}\mathbb{V}^{[k]} = \begin{pmatrix} \alpha_{k+1} & \bullet & \cdots & \bullet \\ 0 & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ 0 & \bullet & \cdots & \bullet \end{pmatrix}$$

On a alors

$$\begin{split} \mathbb{A}^{[k+1]} &\stackrel{\text{\tiny def}}{=} \mathbb{E}^{[k+1]} \mathbb{A}^{[k]} = \begin{pmatrix} & \mathbb{I}_k & \mathbb{O} \\ & \mathbb{O} & \mathbb{E}^{[0]} \end{pmatrix} \begin{pmatrix} \mathbb{U}^{[k]} & \mathbb{F}^{[k]} \\ & \mathbb{O} & \mathbb{V}^{[k]} \end{pmatrix} \\ &= \begin{pmatrix} \mathbb{U}^{[k]} & \mathbb{F}^{[k]} \\ & \mathbb{E}^{[0]} \mathbb{V}^{[k]} \end{pmatrix} \end{split}$$

et donc $\mathbb{A}^{[k+1]}$ s'écrit bien sous la forme (6) au rang k+1.

Final (k = n - 1): On a donc

$$\mathbb{U} = \mathbb{A}^{[n-1]} \stackrel{\text{def}}{=} \mathbb{E}^{[n-1]} \times \dots \times \mathbb{E}^{[1]} \times \mathbb{A} = \begin{pmatrix} \alpha_1 & \bullet & \cdots & \bullet \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \alpha_{n-1} & \bullet \\ \hline 0 & \cdots & \cdots & 0 & \bullet \end{pmatrix}$$
 (7)

où pour tout $k \in [1, n-1]$ les matrices $\mathbb{E}^{[k]}$ sont triangulaires inférieures à diagonale unité.

Pour achever l'exercice, il reste à démontrer que

$$U_{n,n} = \det \Delta_n / (U_{1,1} \times \cdots \times U_{n-1,n-1}).$$

En effet, en prenant le déterminant dans (7) on obtient

$$\det\left(\mathbb{E}^{[n-1]}\times\cdots\times\mathbb{E}^{[1]}\times\mathbb{A}\right) = \det\begin{pmatrix} U_{1,1} & \bullet & \cdots & & & \bullet\\ 0 & \ddots & \ddots & & & \vdots\\ \vdots & \ddots & \ddots & \ddots & & \vdots\\ 0 & \cdots & 0 & U_{n-1,n-1} & \bullet\\ \hline 0 & \cdots & \cdots & 0 & U_{n,n} \end{pmatrix}$$

Comme le déterminant d'un produit de matrices est égale au produit des déterminants des matrices on a

$$\det \left(\mathbb{E}^{[n-1]} \times \dots \times \mathbb{E}^{[1]} \times \mathbb{A} \right) = \det \mathbb{E}^{[n-1]} \times \dots \times \det \mathbb{E}^{[1]} \times \det \mathbb{A}$$
$$= \det \mathbb{A}$$

car les matrices $\mathbb{E}^{[k]}$ sont triangulaires inférieures à diagonale unité et donc det $\mathbb{E}^{[k]}=1, \ \forall k \in [\![1,n-1]\!]$. De plus, le déterminant d'une matrice traingulaire supérieure est égale au produit de ses coefficients diagonaux et donc

$$\det \begin{pmatrix} U_{1,1} & \bullet & \cdots & \cdots & \bullet \\ 0 & \ddots & \ddots & & & \vdots \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ 0 & \cdots & 0 & U_{n-1,n-1} & \bullet \\ \hline 0 & \cdots & \cdots & 0 & U_{n,n} \end{pmatrix} = U_{n,n} \prod_{k=1}^{n-1} U_k, k.$$

On a alors

$$\det \mathbb{A} = \det \Delta_n = U_{n,n} \prod_{k=1}^{n-1} U_k, k \neq 0.$$

0

Exercice 5

Démontrer le résultat suivant:

Corollaire. Une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admet une factorisation \mathbb{LDL}^* avec $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$ matrice triangulaire inférieure à diagonale unité et $\mathbb{D} \in \mathcal{M}_n(\mathbb{R})$ matrice diagonale à coefficients diagonaux strictement positifs si et seulement si la matrice \mathbb{A} est hermitienne définie positive.

Correction

Soit A ∈ M_n(C) admettant une factorisation LDL* avec L ∈ M_n(C) matrice triangulaire inférieure à diagonale unité et D ∈ M_n(R) matrice diagonale à coeffcients diagonaux strictement positifs.
La matrice A est alors hermitienne car

$$\mathbb{A}^* = (\mathbb{L}\mathbb{D}\mathbb{L}^*)^* = \mathbb{L}^{**}\mathbb{D}^*\mathbb{L}^* = \mathbb{L}\mathbb{D}\mathbb{L}^*.$$

De plus $\forall \boldsymbol{x} \in \mathbb{C}^n \backslash \{0\}$ on a

$$\langle \mathbb{A} x, x \rangle = \langle \mathbb{LDL}^* x, x \rangle = \langle \mathbb{DL}^* x, \mathbb{L}^* x \rangle$$

On pose $y = \mathbb{L}^* x \neq 0$ car $x \neq 0$ et \mathbb{L}^* inversible. On obtient alors

$$\langle \mathbb{A} \boldsymbol{x}, \boldsymbol{x} \rangle = \langle \mathbb{D} \boldsymbol{y}, \boldsymbol{y} \rangle = \sum_{i=1}^{n} D_{i,i} |y_i|^2 > 0$$

car \mathbb{D} diagonale, $D_{i,i} > 0$, $\forall i \in [1, n]$ et $\mathbf{y} \neq 0$.

La matrice hermitienne A est donc bien définie positive.

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne définie positive.

D'après le Corollaire 3.8, page 75, la matrice \mathbb{A} admet une unique factorisation $\mathbb{L}\mathbb{U}$ et donc d'après le Théorème 3.10, page 81, la matrice hermitienne \mathbb{A} peut s'écrire sous la forme $\mathbb{A} = \mathbb{L}\mathbb{D}\mathbb{L}^*$ où \mathbb{D} est diagonale à coefficients réels et \mathbb{L} triangulaire inférieure à diagonale unité. Il reste à démontrer que $D_{i,i} > 0$, $\forall i \in [1, n]$.

Comme \mathbb{A} est définie positive, on a $\forall \boldsymbol{x} \in \mathbb{C}^n \setminus \{0\}, \langle \mathbb{A}\boldsymbol{x}, \boldsymbol{x} \rangle > 0$. Or on a

$$\langle \mathbb{A}x, x \rangle = \langle \mathbb{LDL}^*x, x \rangle = \langle \mathbb{DL}^*x, \mathbb{L}^*x \rangle$$

On note $\{\boldsymbol{e}_1, \dots, \boldsymbol{e}_n\}$, la base canonique de \mathbb{C}^n et on rappelle que $\forall i \in [\![1,n]\!], \langle \mathbb{D}\boldsymbol{e}_i, \boldsymbol{e}_i \rangle = D_{i,i}$. Soit $i \in [\![1,n]\!]$. En choisissant $\boldsymbol{x} = (\mathbb{L}^*)^{-1}\boldsymbol{e}_i \neq 0$, on obtient alors

$$\langle \mathbb{DL}^* \boldsymbol{x}, \mathbb{L}^* \boldsymbol{x} \rangle = \langle \mathbb{D} \boldsymbol{e}_i, \boldsymbol{e}_i \rangle = D_{i,i} > 0.$$

Exercice 6

Démontrer le résultat suivant:

Théorème (Factorisation de Cholesky). La matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admet une factorisation régulière de Cholesky **si et seulement si** la matrice \mathbb{A} est hermitienne définie positive. Dans ce cas, elle admet une unique factorisation positive.

Correction

 \Longrightarrow Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admettant une factorisation régulière de Cholesky $\mathbb{A} = \mathbb{BB}^*$ avec \mathbb{B} est une matrice triangulaire inférieure inversible.

La matrice \mathbb{A} est hermitienne car

$$\mathbb{A}^* = (\mathbb{BB}^*)^* = (\mathbb{B}^*)^* \mathbb{B}^* = \mathbb{BB}^* = \mathbb{A}.$$

Soit $\mathbf{x} \in \mathbb{C}^n \setminus \{0\}$, on a

$$\langle \mathbb{A} \boldsymbol{x}, \boldsymbol{x} \rangle = \langle \mathbb{B} \mathbb{B}^* \boldsymbol{x}, \boldsymbol{x} \rangle = \langle \mathbb{B}^* \boldsymbol{x}, \mathbb{B}^* \boldsymbol{x} \rangle = \| \mathbb{B}^* \boldsymbol{x} \|^2 > 0$$

car $\mathbb{B}^* \boldsymbol{x} \neq 0$ (\mathbb{B}^* inversible et $\boldsymbol{x} \neq 0$). Donc la matrice \mathbb{A} est bien hermitienne définie positive.

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne définie positive. D'après le Corollaire 3.10, page 81, il existe alors une matrice $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure à diagonale unité et une matrice $\mathbb{D} \in \mathcal{M}_n(\mathbb{R})$ diagonale à coefficient strictement positifs telles que

$$A = \mathbb{IDI}*$$

On note $\mathbb{H} \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonale inversible vérifiant $\mathbb{H}^2 = \mathbb{D}$ (i.e. $H_{i,i} = \pm \sqrt{D_{i,i}} \neq 0$, $\forall i \in [1, n]$). On a alors

$$A = LHHL^* = (LH)(LH)^*$$

En posant $\mathbb{B} = \mathbb{LH}$, la matrice \mathbb{B} est bien triangulaire inférieure inversible car produit d'une matrice triangulaire inférieure inversible par une matrice diagonale inversible et on a $\mathbb{A} = \mathbb{BB}^*$.

Montrons qu'une factorisation positive de Cholesky est unique.

Soient \mathbb{B}_1 et \mathbb{B}_2 deux factorisations positives de la matrice \mathbb{A} , on a donc

$$\mathbb{A} = \mathbb{B}_1 \mathbb{B}_1^* = \mathbb{B}_2 \mathbb{B}_2^*.$$

En multipliant à gauche par \mathbb{B}_2^{-1} et à droite par $(\mathbb{B}_1^*)^{-1}$ cette équation on obtient

$$\mathbb{B}_{2}^{-1}\mathbb{B}_{1} = \mathbb{B}_{2}^{*}(\mathbb{B}_{1}^{*})^{-1} = \mathbb{B}_{2}^{*}(\mathbb{B}_{1}^{-1})^{*} = (\mathbb{B}_{1}^{-1}\mathbb{B}_{2})^{*}$$

En notant $\mathbb{G} = \mathbb{B}_2^{-1}\mathbb{B}_1$, on tire de l'équation précédente

$$\mathbb{G} = (\mathbb{G}^{-1})^*. \tag{8}$$

On déduit de la (voir Proposition B.46, page 209), que l'inverse d'une matrice triangulaire inférieure à coefficients diagonaux réels strictement positifs est aussi une matrice triangulaire inférieure à coefficients diagonaux réels strictement positifs. De la (voir Proposition B.45, page 209), on obtient que le produit de matrices triangulaires inférieures à coefficients diagonaux réels strictement positifs reste triangulaire inférieure à coefficients diagonaux réels strictement positifs est et la matrice $\mathbb{G}^{-1} = \mathbb{B}_1^{-1}\mathbb{B}_2$ sont triangulaires inférieures à coefficients diagonaux réels strictement positifs. Or l'équation (8) identifie la matrice triangulaire inférieure \mathbb{G} à la matrice triangulaire supérieure $(\mathbb{G}^{-1})^*$: ce sont donc des matrices diagonales à coefficients diagonaux réels strictement positifs et on a alors $(\mathbb{G}^{-1})^* = \mathbb{G}^{-1}$. De l'équation (8), on obtient alors $\mathbb{G} = \mathbb{G}^{-1}$, c'est à dire $\mathbb{G} = \mathbb{B}^-$ 1 \mathbb{B}_1 et donc $\mathbb{B}_1 = \mathbb{B}_2$ 2.

Exercice 7

Démontrer le résultat suivant:

Propriété. Toute matrice élémentaire de Householder est hermitienne et unitaire.

Correction

Pour simplifier, on note $\mathbb{H} = \mathbb{H}(\boldsymbol{u})$. Cette matrice est hermitienne car

$$\mathbb{H}^* = (\mathbb{I} - 2\boldsymbol{u}\boldsymbol{u}^*)^* = \mathbb{I} - 2(\boldsymbol{u}\boldsymbol{u}^*)^* = \mathbb{I} - 2\boldsymbol{u}\boldsymbol{u}^* = \mathbb{H}.$$

Montrons qu'elle est unitaire (i.e. $\mathbb{H}^*\mathbb{H} = \mathbb{I}$). On a

$$\mathbb{H}^*\mathbb{H} = \mathbb{H}\mathbb{H} = (\mathbb{I} - 2uu^*)(\mathbb{I} - 2uu^*)$$
$$= \mathbb{I} - 4uu^* + 4uu^*uu^*.$$

Or on a $\mathbf{u}^*\mathbf{u} = \|\mathbf{u}\|_2 = 1$ par hypothèse et donc

$$\mathbb{H}^*\mathbb{H} = \mathbb{I} - 4\boldsymbol{u}\boldsymbol{u}^* + 4\boldsymbol{u}(\boldsymbol{u}^*\boldsymbol{u})\boldsymbol{u}^* = \mathbb{I}.$$

•

Exercice 8

Démontrer le résultat suivant:

Théorème. Soient \mathbf{a} , \mathbf{b} deux vecteurs non colinéaires de \mathbb{C}^n avec $\|\mathbf{b}\|_2 = 1$. Soit $\alpha \in \mathbb{C}$ tel que $|\alpha| = \|\mathbf{a}\|_2$ et $\arg \alpha = -\arg \langle \mathbf{a}, \mathbf{b} \rangle$ $[\pi]$. On a alors

$$\mathbb{H}\left(\frac{\boldsymbol{a} - \alpha \boldsymbol{b}}{\|\boldsymbol{a} - \alpha \boldsymbol{b}\|_{2}}\right) \boldsymbol{a} = \alpha \boldsymbol{b}. \tag{9}$$

Correction

Pour simplifier, on note $\mathbb{H} = \mathbb{H}(\boldsymbol{u})$. Cette matrice est hermitienne car

$$\mathbb{H}^* = \left(\mathbb{I} - 2\frac{uu^*}{\|u\|_2^2}\right)^* = \mathbb{I} - 2\frac{(uu^*)^*}{\|u\|_2^2} = \mathbb{I} - 2\frac{uu^*}{\|u\|_2^2} = \mathbb{H}.$$

Montrons qu'elle est unitaire (i.e. $\mathbb{H}^*\mathbb{H} = \mathbb{I}$). On a

$$\begin{split} \mathbb{H}^*\mathbb{H} &= \mathbb{H}\mathbb{H} = \left(\mathbb{I} - 2\frac{\mathbf{u}\mathbf{u}^*}{\|\mathbf{u}\|_2^2}\right) \left(\mathbb{I} - 2\frac{\mathbf{u}\mathbf{u}^*}{\|\mathbf{u}\|_2^2}\right) \\ &= \mathbb{I} - 4\frac{\mathbf{u}\mathbf{u}^*}{\|\mathbf{u}\|_2^2} + 4\frac{\mathbf{u}\mathbf{u}^*\mathbf{u}\mathbf{u}^*}{\|\mathbf{u}\|_2^2}. \end{split}$$

Or $\boldsymbol{u}^*\boldsymbol{u} = \|\boldsymbol{u}\|_2^2$, ce qui donne

$$\mathbb{H}^*\mathbb{H} = \mathbb{I} - 4 \frac{uu^*}{\|u\|_2^2} + 4 \frac{u(u^*u)u^*}{\|u\|_2^2} = \mathbb{I}.$$

Exercice 9

Démontrer le résultat suivant:

Propriété. Soient $\mathbf{x} \in \mathbb{K}^n$ et $\mathbf{u} \in \mathbb{K}^n$, $\|\mathbf{u}\|_2 = 1$. On note $\mathbf{x}_{\parallel} = \operatorname{proj}_{\mathbf{u}}(\mathbf{x}) \stackrel{\text{def}}{=} \langle \mathbf{u}, \mathbf{x} \rangle \mathbf{u}$ et $\mathbf{x}_{\perp} = \mathbf{x} - \mathbf{x}_{\parallel}$. On a alors

$$\mathbb{H}(\boldsymbol{u})(\boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel}) = \boldsymbol{x}_{\perp} - \boldsymbol{x}_{\parallel}. \tag{10}$$

|e|

$$\mathbb{H}(\boldsymbol{u})\boldsymbol{x} = \boldsymbol{x}, \quad si \langle \boldsymbol{x}, \boldsymbol{u} \rangle = 0. \tag{11}$$

Correction

On note que par construction $\langle \boldsymbol{u}, \boldsymbol{x}_{\perp} \rangle = 0$. On a

$$\begin{split} \mathbb{H}(\boldsymbol{u})(\boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel}) &= (\mathbb{I} - 2\boldsymbol{u}\boldsymbol{u}^{*})\left(\boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel}\right) = \boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel} - 2\boldsymbol{u}\underbrace{\boldsymbol{u}^{*}\boldsymbol{x}_{\perp}}_{=0} - 2\boldsymbol{u}\boldsymbol{u}^{*}\boldsymbol{x}_{\parallel} \\ &= \boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel} - 2\boldsymbol{u}\boldsymbol{u}^{*}\boldsymbol{u}\left\langle\boldsymbol{u},\boldsymbol{x}\right\rangle = \boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel} - 2\boldsymbol{u}\underbrace{\boldsymbol{u}^{*}\boldsymbol{u}}_{=1}\boldsymbol{u}^{*}\boldsymbol{x} \\ &= \boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel} - 2\boldsymbol{u}\boldsymbol{u}^{*}\boldsymbol{x} = \boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel} - 2\boldsymbol{x}_{\parallel} \\ &= \boldsymbol{x}_{\perp} - \boldsymbol{x}_{\parallel}. \end{split}$$

Si $\langle \boldsymbol{x}, \boldsymbol{u} \rangle = 0$ alors $\boldsymbol{x}_{\parallel} = 0$ et $\boldsymbol{x} = \boldsymbol{x}_{\perp}$.

Exercice 10

Soient \boldsymbol{a} et \boldsymbol{b} deux vecteurs non nuls et non colinéaires de \mathbb{C}^n avec $\|\boldsymbol{b}\|_2 = 1$.

Q. 1 Ecrire la fonction algorithmique Householder permettant de retourner une matrice de Householder \mathbb{H} et $\alpha \in \mathbb{C}$ tels que $\mathbb{H}(\boldsymbol{u})\boldsymbol{a} = \alpha \boldsymbol{b}$. Le choix du α est fait par le paramètre δ (0 ou 1) de telle sorte que $\arg \alpha = -\arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle) + \delta \pi$ avec $|\alpha| = \|\boldsymbol{a}\|_2$.

Des fonctions comme $\operatorname{DOT}(\mathbf{a},\mathbf{b})$ (produit scalaire de deux vecteurs), $\operatorname{NORM}(\mathbf{a})$ (norme 2 d'un vecteur), $\operatorname{ARG}(z)$ (argument d'un nombre complexe), $\operatorname{MATPROD}(\mathbb{A},\mathbb{B})$ (produit de deux matrices), $\operatorname{CTRANSPOSE}(\mathbb{A})$ (adjoint d'une matrice), ... pourront être utilisées

- Q. 2 Proposer un programme permettant de tester cette fonction. On pourra utiliser la fonction $\operatorname{vecrand}(n)$ retournant un vecteur aléatoire de \mathbb{C}^n , les parties réelles et imaginaires de chacune de ses composantes étant dans]0,1[(loi uniforme).
- **Q.** 3 Proposer un programme permettant de vérifier que $\delta = 1$ est le "meilleur" choix.

Correction

R. 1 Soient \boldsymbol{a} et \boldsymbol{b} deux vecteurs non nuls et non colinéaires de \mathbb{C}^n .

Les données du problème sont \boldsymbol{a} , \boldsymbol{b} et δ . On veut calculer α et la matrice $\mathbb{H}(\boldsymbol{u})$.

Algorithm 1 Calcul du α et de la matrice de Householder $\mathbb{H}(\boldsymbol{u})$ telle que $\mathbb{H}(\boldsymbol{u})\boldsymbol{a} = \alpha \boldsymbol{b}$.

Données : a, b : deux vecteurs de \mathbb{C}^n non nuls et non colinéaires.

 δ : 0 ou 1, permet de déterminer α .

Résultat : \mathbb{H} : matrice de Householder dans $\mathcal{M}_n(\mathbb{C})$,

 α : nombre complexe, de module $\|\boldsymbol{a}\|_2$ et d'argument $-\arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle) + \delta \pi$.

⊳ рот produit scalaire dans С.

- 1: Function $[\mathbb{H}, \alpha] \leftarrow \text{Householder} (\mathbf{a}, \mathbf{b}, \delta)$
- 2: $ab \leftarrow DOT(\boldsymbol{a}, \boldsymbol{b})$
- 3: $\alpha \leftarrow \text{NORM}(\boldsymbol{a}) * exp(i * (\delta * \pi \text{Arg}(ab)))$
- 4: $\boldsymbol{u} \leftarrow \boldsymbol{a} \alpha * \boldsymbol{b}$
- 5: $\boldsymbol{u} \leftarrow \boldsymbol{u}/\text{norm}(\boldsymbol{u})$
- 6: $\mathbb{H} \leftarrow \text{Eye}(n) 2 * \text{MATPROD}(\boldsymbol{u}, \text{CTRANSPOSE}(\boldsymbol{u}))$
- 7: end Function

```
R. 2 1: n \leftarrow 100

2: a \leftarrow \text{VECRAND}(n)

3: b \leftarrow \text{VECRAND}(n)

4: b \leftarrow b/\text{NORM}(b, 2)

5: [\mathbb{H}, \alpha] \leftarrow \text{HOUSEHOLDER}(a, b, 0)
```

```
6: error \leftarrow NORM(\mathbb{H} * \boldsymbol{a} - \alpha * \boldsymbol{b}, 2)
```

R. 3 1:
$$n \leftarrow 100$$

2: $\boldsymbol{a} \leftarrow \text{VECRAND}(n)$
3: $\boldsymbol{b} \leftarrow \boldsymbol{a} + 1e - 6 * \text{VECRAND}(n)$
4: $\boldsymbol{b} \leftarrow \boldsymbol{b}/\text{NORM}(\boldsymbol{b}, 2)$
5: $[\mathbb{H}_1, \alpha_1] \leftarrow \text{HOUSEHOLDER}(\boldsymbol{a}, \boldsymbol{b}, 1)$
6: $[\mathbb{H}_0, \alpha_0] \leftarrow \text{HOUSEHOLDER}(\boldsymbol{a}, \boldsymbol{b}, 0)$
7: ettor0 $\leftarrow \text{NORM}(\mathbb{H}_0 * \boldsymbol{a} - \alpha_0 * \boldsymbol{b}, 2)/(1 + \text{ABS}(\alpha_1))$
8: ettor1 $\leftarrow \text{NORM}(\mathbb{H}_1 * \boldsymbol{a} - \alpha_1 * \boldsymbol{b}, 2)/(1 + \text{ABS}(\alpha_1))$

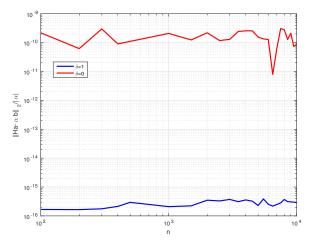


Figure 1: Choix de α dans Householder : erreur relative en norme L_2

Exercice 11

Démontrer le résultat suivant:

Corollaire. Soit
$$\mathbf{a} \in \mathbb{C}^n$$
 avec $a_1 \neq 0$ et $\exists j \in [2, n]$ tel que $a_j \neq 0$. Soient $\theta = \arg a_1$ et
$$\mathbf{u}_{\pm} = \frac{\mathbf{a} \pm \|\mathbf{a}\|_2 e^{i\theta} \mathbf{e}_1}{\|\mathbf{a} \pm \|\mathbf{a}\|_2 e^{i\theta} \mathbf{e}_1\|}$$
Alors
$$\mathbb{H}(\mathbf{u}_{\pm})\mathbf{a} = \mp \|\mathbf{a}\|_2 e^{i\theta} \mathbf{e}_1 \qquad (12)$$
où \mathbf{e}_1 désigne le premier vecteur de la base canonique de \mathbb{C}^n .

Correction

On va utiliser le Théorème 3.16.

On pose $\alpha = \pm \|\boldsymbol{a}\|_2 e^{i\theta}$ et $\boldsymbol{b} = \boldsymbol{e}_1$. Comme $\arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle) = \arg \overline{a_1} = -\arg a_1 = -\theta$, on a $\arg \alpha = \theta$ $[\pi] = -\arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle) [\pi]$.

Les autres hypothèses du Théorème 3.16 sont vérifiées puisque le vecteur \boldsymbol{a} n'est pas colinéaire à \boldsymbol{e}_1 et que $\|\boldsymbol{e}_1\|_2=1$. On a donc

$$\mathbb{H}\left(\frac{\boldsymbol{a} \pm \|\boldsymbol{a}\|_2 e^{\imath \theta} \boldsymbol{e}_1}{\|\boldsymbol{a} \pm \|\boldsymbol{a}\|_2 e^{\imath \theta} \boldsymbol{e}_1\|}\right) \boldsymbol{a} = \mp \|\boldsymbol{a}\|_2 e^{\imath \theta} \boldsymbol{e}_1.$$

\Q

п

Exercice 12

Soit $\mathbb{B} \in \mathcal{M}_{m+n}(\mathbb{K})$ la matrice bloc

$$\mathbb{B} = \left(\begin{array}{c|c} \mathbb{B}_{1,1} & \mathbb{B}_{1,2} \\ \hline \mathbb{S} & \mathbb{S} \end{array} \right)$$

où $\mathbb{B}_{1,1} \in \mathcal{M}_m(\mathbb{K})$ et $\mathbb{S} \in \mathcal{M}_n(\mathbb{K})$. On note $s \in \mathbb{K}^n$ le premier vecteur colonne de \mathbb{S} et on suppose que $s \neq 0$ et s non colinéaire à e_1^n premier vecteur de la base canonique de \mathbb{K}^n .

Q. 1 a. Montrer qu'il existe une matrice de Householder $\underline{\mathbb{H}} = \mathbb{H}(\underline{u}) \in \mathcal{M}_n(\mathbb{K})$ et $\alpha \in \mathbb{K}^*$ tel que

$$\underline{\mathbb{H}}\mathbb{S} = \begin{pmatrix} \underline{\pm}\alpha & \bullet & \cdots & \bullet \\ 0 & \bullet & \cdots & \bullet \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \bullet & \cdots & \bullet \end{pmatrix}.$$

b. On note $\mathbf{u} \in \mathbb{K}^{m+n}$, le vecteur défini par $u_i = 0$, $\forall i \in [1, m]$ et $u_{m+i} = \underline{u}_i$, $\forall i \in [1, n]$. Montrer que

$$\mathbb{H}(\boldsymbol{u})\mathbb{B} = \left(\begin{array}{c|c} \mathbb{B}_{1,1} & \mathbb{B}_{1,2} \\ \hline \mathbb{O} & \underline{\mathbb{H}}\mathbb{S} \end{array}\right).$$

Soient $k \in [0, n-1]$ et $\mathbb{A}^{[k]} \in \mathcal{M}_n(\mathbb{K})$ la matrice bloc définie par

$$\mathbb{A}^{[k]} = \begin{pmatrix} \mathbb{R}^{[k]} & \mathbb{F}^{[k]} \\ \mathbb{O} & \mathbb{A}^{[k]} \end{pmatrix}$$

où $\mathbb{R}^{[k]}$ est une matrice triangulaire supérieure d'ordre k et $\mathbb{A}^{[k]}$ une matrice d'ordre n-k.

- **Q.** 2 a. Sous certaines hypothèses, montrer qu'il existe une matrice de Householder $\mathbb{H}^{[k+1]}$ telle que $\mathbb{H}^{[k+1]}\mathbb{A}^{[k]} = \mathbb{H}^{[k+1]}$
- b. Soit A ∈ M_n(K). Montrer qu'il existe une matrice unitaire Q ∈ M_n(K), produit d'au plus n − 1 matrices de Housholder, et une matrice triangulaire supérieure R telles que A = QR.
- c. Montrer que si $\mathbb A$ est réelle alors les coefficient diagonaux de $\mathbb R$ peuvent être choisis positifs ou nuls.
- d. Montrer que si A est réelle inversible alors la factorisation QR, avec R à coefficient diagonaux strictement positifs, est unique.

Correction

R. 1 a. D'après le Corollaire 3.21, page 93, avec $\boldsymbol{a} = \boldsymbol{s}$, en posant $\alpha = \pm \|\boldsymbol{s}\|_2 e^{i \arg s_1}$ et

$$\underline{\boldsymbol{u}} = \frac{\boldsymbol{s} - \alpha \boldsymbol{e}_1^n}{\|\boldsymbol{s} - \alpha \boldsymbol{e}_1^n\|}$$

on obtient $\mathbb{H}(\boldsymbol{u}) = \alpha \boldsymbol{e}_1^n$.

On pose $\underline{\mathbb{H}} = \mathbb{H}(\underline{\boldsymbol{u}})$. On a alors sous forme bloc

15

b. On a $\boldsymbol{u} = \begin{pmatrix} \boldsymbol{0}_m \\ \underline{\boldsymbol{u}} \end{pmatrix}$ et

$$\mathbb{H}(\boldsymbol{u}) = \mathbb{I} - 2\boldsymbol{u}\boldsymbol{u}^* = \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O}_{m,n} \\ \hline \mathbb{O}_{n,m} & \mathbb{I}_n \end{array}\right) - 2\left(\begin{array}{c|c} \mathbf{0}_m \\ \underline{\boldsymbol{u}} \end{array}\right) \left(\begin{array}{c|c} \mathbf{0}_m^* & \underline{\boldsymbol{u}}^* \end{array}\right)$$

$$= \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O}_{m,n} \\ \hline \mathbb{O}_{n,m} & \mathbb{I}_n \end{array}\right) - 2\left(\begin{array}{c|c} \mathbb{O}_m & \mathbb{O}_{m,n} \\ \underline{\boldsymbol{u}}^* \end{array}\right)$$

$$= \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O}_{m,n} \\ \hline \mathbb{O}_{n,m} & \mathbb{I}_n - 2\underline{\boldsymbol{u}}^* \end{array}\right) = \left(\begin{array}{c|c} \mathbb{I}_m & \mathbb{O}_{m,n} \\ \hline \mathbb{O}_{n,m} & \mathbb{I}_n \end{array}\right)$$

Ce qui donne

$$\mathbb{H}(\boldsymbol{u})\mathbb{B} = \begin{pmatrix} \mathbb{I}_m & \mathbb{O}_{m,n} \\ \mathbb{O}_{n,m} & \mathbb{H} \end{pmatrix} \begin{pmatrix} \mathbb{B}_{1,1} & \mathbb{B}_{1,2} \\ \mathbb{O} & \mathbb{S} \end{pmatrix} = \begin{pmatrix} \mathbb{B}_{1,1} & \mathbb{B}_{1,2} \\ \mathbb{O} & \mathbb{H} \mathbb{S} \end{pmatrix}.$$

R. 2 a. On note $\underline{s} \in \mathbb{K}^{n-k}$ le premier vecteur colonne de $\underline{\mathbb{A}^{[k]}}$ et $\underline{u} = \begin{pmatrix} \underline{0}_k \\ \underline{s} \end{pmatrix}$. D'après la question précédente si $\underline{s} \neq 0$ et \underline{s} non colinéaire à \underline{e}_1^{n-k} premier vecteur de la base canonique de \mathbb{K}^{n-k} alors il existe une matrice de Householder $\mathbb{H}^{[k+1]} = \mathbb{H}(\underline{u})$ et $\alpha \in \mathbb{K}^*$ tels que

$$\mathbb{A}^{[k+1]} \stackrel{\text{\tiny def}}{=} \mathbb{H}^{[k+1]} \mathbb{A}^{[k]} = \begin{pmatrix} & & & & & & \\ & \mathbb{E}^{[k]} & & & & & \\ & & & \mathbb{E}^{[k]} & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

On peut remarquer que si $\boldsymbol{s}=0$ ou \boldsymbol{s} colinéaire à \boldsymbol{e}_1^{n-k} alors $\mathbb{A}^{[k]}$ est déjà sous la forme $\mathbb{A}^{[k+1]}$ et donc $\mathbb{A}^{[k+1]}=\mathbb{A}$

b. il suffit d'appliquer itérativement le résultat précédent n-1 fois en posant $\mathbb{A}^{[0]} = \mathbb{A}$ et $\mathbb{A}^{[k+1]} = \mathbb{H}^{[k+1]} \mathbb{A}^{[k]}$ où $\mathbb{H}^{[k+1]}$ est soit une matrice de Householder soit la matrice identité. Par construction la matrice $\mathbb{A}^{[n-1]}$ est triangulaire supérieure et l'on a

$$\mathbb{A}^{[n-1]} = \mathbb{H}^{[n-1]} \vee \ldots \vee \mathbb{H}^{[1]} \mathbb{A}$$

On pose $\mathbb{H} = \mathbb{H}^{[n-1]} \times \cdots \times \mathbb{H}^{[1]}$ et $\mathbb{R} = \mathbb{A}^{[n-1]}$. La matrice \mathbb{H} est unitaire car produit de matrices unitaires. On note $\mathbb{Q} = \mathbb{H}^*$ On a

$$\mathbb{O} = \mathbb{H}^{[1]} \times \cdots \times \mathbb{H}^{[n-1]}$$

car les matrices de Householder et matrice identité sont unitaires et hermitiennes.

- c. Si A est réelle alors par construction Q et R sont réelles. Les coefficients diagonaux peuvent alors être choisi positif lors de la construction de chaque matrice de Householder.
- d. Pour montrer l'unicité d'une telle factorisation, on note \mathbb{Q}_1 , \mathbb{Q}_2 , deux matrices orthogonales et \mathbb{R}_1 , \mathbb{R}_2 , deux matrices triangulaires à coefficients diagonaux positifs telles que

$$A = \mathbb{Q}_1 \mathbb{R}_1 = \mathbb{Q}_2 \mathbb{R}_2$$
.

Comme \mathbb{A} est inversible les coefficients diagonaux de \mathbb{R}_1 et \mathbb{R}_2 sont strictement positifs. On a alors

$$\mathbb{I} = \mathbb{A}\mathbb{A}^{-1} = \mathbb{Q}_1\mathbb{R}_1\mathbb{R}_2^{-1}\mathbb{Q}_2^{-1}$$

et donc

$$\mathbb{Q}_1^{-1}\mathbb{Q}_2 = \mathbb{R}_1\mathbb{R}_2^{-1} \stackrel{\text{def}}{=} \mathbb{T}.$$

Comme \mathbb{Q}_1 est orthogonale on a $\mathbb{T} = \mathbb{Q}_1^t \mathbb{Q}_2$ et

$$\mathbb{T}^{\mathsf{t}}\mathbb{T} = (\mathbb{Q}_{1}^{\mathsf{t}}\mathbb{Q}_{2})^{\mathsf{t}}\mathbb{Q}_{1}^{\mathsf{t}}\mathbb{Q}_{2} = \mathbb{Q}_{2}^{\mathsf{t}}\mathbb{Q}_{1}\mathbb{Q}_{1}^{\mathsf{t}}\mathbb{Q}_{2} = \mathbb{I}.$$

La matrice \mathbb{T} est donc orthogonal. De plus $\mathbb{T}=\mathbb{R}_1\mathbb{R}_2^{-1}$ est une matrice triangulaire supérieure à coefficients diagonaux strictement positifs puisque produit de triangulaire supérieure à coefficients diagonaux strictement positifs. La matrice \mathbb{I} étant symétrique définie positive, d'après le Théorème 3.15(factorisation positive de Cholesky) il existe une unique matrice \mathbb{L} triangulaire inférieure à coefficients diagonaux strictement positifs telle que $\mathbb{LL}^{\mathfrak{L}}=\mathbb{L}$. Cette matrice \mathbb{L} est évidemment la matrice identité. On en déduit que $\mathbb{T}=\mathbb{L}^{\mathfrak{L}}=\mathbb{L}$ et donc $\mathbb{Q}_1=\mathbb{Q}_2$ et $\mathbb{R}_1=\mathbb{R}_2$.

Algorithme 2 \mathbb{R}_1

Exercice 13

Q. 1 Ecrire une fonction FACTQR permettant de calculer la factorisation \mathbb{QR} d'une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. On pourra utiliser la fonction HOUSEHOLDER (voir Exercice 3.1.9, page 90).

Q. 2 Ecrire un programme permettant de tester cette fonction.

Correction

R. 1 L'objectif est de déterminer les matrices \mathbb{Q} , matrice unitaire, et \mathbb{R} matrice triangulaire supérieure telle que $\mathbb{A} = \mathbb{Q}\mathbb{R}$.

Données : \mathbb{A} : matrice de $\mathcal{M}_n(\mathbb{K})$.

Résultat: \mathbb{Q} : matrice unitaire de $\mathcal{M}_n(\mathbb{K})$.

 \mathbb{R} : matrice triangulaire supérieure de $\mathcal{M}_n(\mathbb{K})$.

On rappelle la technique utilisée dans la correction de l'exercice 3.1.10 pour déterminer l'ensemble des matrices de Householder permettant de transformer la matrice $\mathbb A$ en une matrice triangulaire supérieure. On pose

$$\mathbb{A}^{[0]} = \mathbb{A}, \quad \mathbb{A}^{[k+1]} = \mathbb{H}^{[k+1]} \mathbb{A}^{[k]}, \ \forall k \in [0, n-2]$$

où $\mathbb{H}^{[k+1]}$ est soit une matrice de Householder soit la matrice identité. Plus précisement, on note $\underline{s} \in \mathbb{K}^{n-k}$ le vecteur composé des n-k dernières composantes de la k+1-ème colonne de $\mathbb{A}^{[k]}$ et $\mathbf{a} = \begin{pmatrix} \mathbf{0}_k \\ \mathbf{s} \end{pmatrix}$.

• Si $\underline{s}_1 = 0$ ou \underline{s} colinéaire à \boldsymbol{e}_1^{n-k} premier vecteur de la base canonique de \mathbb{K}^{n-k} alors

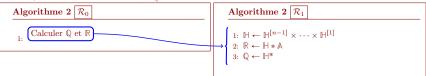
$$\mathbb{H}^{[k+1]} = \mathbb{I}.$$

En notant e_{k+1}^n le k+1-ème vecteur de la base canonique de \mathbb{K}^n , cette matrice peut-être calculée avec la fonction HOUSEHOLDER par

$$[\mathbb{H}^{[k+1]}, \alpha] \leftarrow \text{Householder}(\boldsymbol{a}, \boldsymbol{e}_{k+1}^n, 1)$$

• sinon $\mathbb{H}^{[k+1]} = \mathbb{I}$.

On a vu que dans ce cas $\mathbb{A}^{[n-1]}$ est triangulaire supérieure. On pose $\mathbb{H} = \mathbb{H}^{[n-1]} \times \cdots \times \mathbb{H}^{[1]}$ qui est une matrice unitaire. On a alors $\mathbb{R} = \mathbb{A}^{[n-1]} = \mathbb{H}\mathbb{A}$ et $\mathbb{C} = \mathbb{H}^*$.



```
\mathbb{H} \leftarrow \mathbb{H}^{[n-1]} \times \cdots \times \mathbb{H}^{[1]}
                                                                                                             1: ℍ ← 🎚
                                                                                                             2: A<sup>[0]</sup> ← A
         2: ℝ ← ℍ ∗ Å
                                                                                                             3: for k \leftarrow 0 to n-2 do
         3: ℚ ← ℍ*
                                                                                                             4: Calculer \mathbb{H}^{[k+1]} à partir de \mathbb{A}^{[k]}
5: \mathbb{A}^{[k+1]} \leftarrow \mathbb{H}^{[k+1]} * \mathbb{A}^{[k]}
                                                                                                             6: \mathbb{H} \leftarrow \mathbb{H}^{[k+1]} * \mathbb{H}
                                                                                                             7: end for

ightharpoonup ou \mathbb{R} \leftarrow \mathbb{A}^{[n-1]}
                                                                                                             8: ℝ ← ℍ ∗ Å
                                                                                                             9: Q ← H*
I<u>l est inutile de stocker les matrices</u> \mathbb{A}^{[k]} et \mathbb{H}^{[k+1]}:
        Algorithme 2 \mathbb{R}_2
                                                                                                            Algorithme 2 \mathbb{R}_3
                                                                                                             1: H ← I, R ← A
          1: \mathbb{H} \leftarrow \mathbb{I}, \mathbb{A}^{[0]} \leftarrow \mathbb{A}
                                                                                                             2: for k \leftarrow 0 to n-2 do
         2: for k \leftarrow 0 to n-2 do
                                                                                                             3: Calculer \mathbb{S}(=\mathbb{H}^{[k+1]}) à partir de \mathbb{R}(=\mathbb{A}^{[k]})
         3: Calculer \mathbb{H}^{[k+1]} à partir de \mathbb{A}^{[k]}
          4: \mathbb{A}^{[k+1]} \leftarrow \mathbb{H}^{[k+1]} * \mathbb{A}^{[k]}
                                                                                                             4: R ← S * R

ightharpoonup compute \mathbb{A}^{[k+1]}
         5: \mathbb{H} \leftarrow \mathbb{H}^{[k+1]} * \mathbb{H}
                                                                                                             5: H ← S * H
         6: end for
                                                                                                             6: end for
         7: \mathbb{R} \leftarrow \mathbb{A}^{[n-1]}
                                                                                                             7: Q ← H*
          8: \mathbb{Q} \leftarrow \mathbb{H}^*
        Algorithme 2 \mathbb{R}_3
                                                                                                            Algorithme 2 \mathbb{R}_4
         1: \mathbb{H} \leftarrow \mathbb{I}, \mathbb{R} \leftarrow \mathbb{A}
                                                                                                             1: \mathbb{H} \leftarrow \mathbb{I}, \mathbb{R} \leftarrow \mathbb{A}
          2: for k \leftarrow 0 to n-2 do
                                                                                                             2: for k \leftarrow 0 to n-2 do
                    Calculer \mathbb{S}(=\mathbb{H}^{[k+1]}) à partir de \mathbb{R}
                                                                                                             3: a \leftarrow [\mathbf{0}_k; \mathbb{R}(k+1:n,k+1)]
                  \mathbb{R} \leftarrow \mathbb{S} * \mathbb{R}
         4:
                                                                                                             4: \boldsymbol{e}_{k+1}^n \in \mathbb{C}^n, e_{k+1}^n(i) = \delta_{k+1,i}, \forall i \in [1, n].
         5: H ← S * H
                                                                                                             5: [\mathbb{R}, \alpha] \leftarrow \text{Householder}(\boldsymbol{a}, \boldsymbol{e}_{k+1}^n, 1)
          6: end for
          7: Q ← H*
                                                                                                             7: H ← SH
                                                                                                             8: end for
                                                                                                             9: Q ← H*
```

Algorithme 2 R_2

Algorithm 2 Fonction FACTQR

```
Données : \mathbb{A} : matrice de \mathcal{M}_n(\mathbb{K}).
Résultat: \mathbb{Q} : matrice unitaire de \mathcal{M}_n(\mathbb{K}). \mathbb{R} : matrice triangulaire supérieure de \mathcal{M}_n(\mathbb{K}).
   1: Function [\mathbb{Q}, \mathbb{R}] \leftarrow \text{FACTQR} (\mathbb{A})
   2: \mathbb{H} \leftarrow \mathbb{I}
   3: \mathbb{R} \leftarrow \mathbb{A}
   4: for k \leftarrow 0 to n-2 do
   5: \boldsymbol{a} \leftarrow \mathbf{0}_n
   6: for i \leftarrow k+1 to n do
                 a(i) \leftarrow \mathbb{R}(i, k+1)
                end for
                e \leftarrow \mathbf{0}_n, \ e(k+1) \leftarrow 1

[\mathbb{S}, \alpha] \leftarrow \text{Householder}(\mathbf{a}, \mathbf{e}, 1)
            \mathbb{R} \leftarrow \mathbb{S} * \mathbb{R}
 11:
              \mathbb{H} \leftarrow \mathbb{S} * \mathbb{H}
 12:
            end for
  13:
 14: \mathbb{Q} \leftarrow \mathbb{H}^*
 15: end Function
```

R. 2 A faire!

19