Analyse Numérique I Sup'Galilée, Ingénieurs MACS, 1ère année / L3 MIM

François Cuvelier

Laboratoire d'Analyse Géométrie et Applications Institut Galilée Université Paris XIII.

2024/09/23

Plan du cours

Chapitre 1: Erreurs: arrondis, bug and Co.

Chapitre 2: Langage algorithmique Chapitre 3: Rappels algèbre linéaire

Chapitre 4: Résolution de systèmes non-linéaires Chapitre 5: Résolution de systèmes linéaires Chapitre 6: Polynômes d'interpolation

Chapitre 7: Intégration numérique

<□ > <□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Résultats connus

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$. Les propriétés suivantes sont équivalentes

- A est inversible.
- rank(\mathbb{A}) = n,
- $\mathbf{a} \times \mathbb{K}^n$, $\mathbb{A} \mathbf{x} = 0 \Rightarrow \mathbf{x} = 0$, (i.e. $\ker \mathbb{A} = \{0\}$)
- \bullet det(\mathbb{A}) \neq 0,
- **⑤** toutes les valeurs propres de A sont non nulles,
- il existe $\mathbb{B} \in \mathcal{M}_n(\mathbb{K})$ tel que $\mathbb{AB} = \mathbb{I}$,
- \circ il existe $\mathbb{B} \in \mathcal{M}_n(\mathbb{K})$ tel que $\mathbb{B}\mathbb{A} = \mathbb{I}$.

Exercice

Soient $\mathbb{A} \in \mathcal{M}_{m,p}(\mathbb{K})$ et $\mathbb{B} \in \mathcal{M}_{p,n}(\mathbb{K})$, montrer que

$$(\mathbb{AB})^{t} = \mathbb{B}^{t}\mathbb{A}^{t}, \text{ si } \mathbb{K} = \mathbb{R},$$
 (1)

$$(\mathbb{AB})^* = \mathbb{B}^* \mathbb{A}^*, \quad \text{si } \mathbb{K} = \mathbb{C}$$
 (2)

Exercice

Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ et $\mathbb{B} \in \mathcal{M}_n(\mathbb{K})$ inversibles. Montrer que $\mathbb{A}\mathbb{B}$ inversible et

$$\left(\mathbb{A}^{\mathsf{t}}\right)^{-1} = \left(\mathbb{A}^{-1}\right)^{\mathsf{t}}, \text{ si } \mathbb{K} = \mathbb{R}, \tag{3}$$

$$(\mathbb{A}^*)^{-1} = (\mathbb{A}^{-1})^*, \text{ si } \mathbb{K} = \mathbb{C}.$$
 (4)

$$(\mathbb{A}\mathbb{B})^{-1} = \mathbb{B}^{-1}\mathbb{A}^{-1} \tag{5}$$

$$\left(\mathbb{A}^{-1}\right)^{-1} = \mathbb{A} \tag{6}$$

Matrices particulières

Definition 2.1

Une matrice carrée A est :

- \diamond symétrique si \mathbb{A} est réelle et $\mathbb{A} = \mathbb{A}^{t}$,
- ♦ hermitienne si $A = A^*$,
- \diamond normale si $\mathbb{A}\mathbb{A}^* = \mathbb{A}^*\mathbb{A}$,
- \diamond orthogonale si \mathbb{A} est réelle et $\mathbb{A}\mathbb{A}^{\mathsf{t}} = \mathbb{A}^{\mathsf{t}}\mathbb{A} = \mathbb{I}$,
- \diamond unitaire si $\mathbb{A}\mathbb{A}^* = \mathbb{A}^*\mathbb{A} = \mathbb{I}$.

Definition

Une matrice carrée $\mathbb{A} \in \mathcal{M}_n$ est :

- \diamond diagonale si $a_{ii} = 0$ pour $i \neq j$,
- ⋄ triangulaire supérieure si $a_{ij} = 0$ pour i > j,
- \diamond triangulaire inférieure si $a_{ii} = 0$ pour i < j,
- o triangulaire si elle est triangulaire supérieure ou triangulaire inférieure
- o à diagonale dominante si

$$|a_{ii}| \geqslant \sum_{j \neq i} |a_{ij}|, \ \forall i \in [1, n], \tag{7}$$

o à diagonale strictement dominante si

$$|a_{ii}| > \sum_{i \neq i} |a_{ij}|, \ \forall i \in \llbracket 1, n \rrbracket. \tag{8}$$

Proposition

Le déterminant d'une matrice triangulaire est le produit de ses éléments diagonaux

Proposition

Soient $\mathbb A$ et $\mathbb B$ deux matrices de $\mathcal M_n(\mathbb K)$ triangulaires inférieures (resp. triangulaires supérieures). Alors la matrice $\mathbb A\mathbb B$ est aussi triangulaire inférieure (resp. triangulaire supérieure). De plus on a

$$(\mathbb{AB})_{i,i} = A_{i,i}B_{i,i}, \ \forall i \in [1, n].$$

Exercice!

Proposition

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire inférieure (resp. triangulaire supérieure).

- A est inversible si et seulement si ses éléments diagonaux sont tous non nuls (i.e. $A_{i,i} \neq 0, \forall i \in [1, n]$).
- ② Si A est inversible alors son inverse est triangulaire inférieure (resp. triangulaire supérieure) et

$$(\mathbb{A}^{-1})_{i,i} = \frac{1}{(\mathbb{A})_{i,i}}$$

Matrices blocs

Definition

On appelle **matrice bloc** une matrice $\mathbb{A} \in \mathcal{M}_{N,M}$ écrite sous la forme

$$\mathbb{A} = \begin{pmatrix} & \mathbb{A}_{1,1} & & & \mathbb{A}_{1,q} \\ & \vdots & & \vdots \\ & \mathbb{A}_{p,1} & & & \mathbb{A}_{p,q} \end{pmatrix}$$

où $\forall i \in [\![1,p]\!], \ \forall j \in [\![1,q]\!], \ \mathbb{A}_{i,j}$ est une matrice de \mathcal{M}_{n_i,m_j} . On a $\mathcal{N} = \sum_{i=1}^p n_i$ et $\mathcal{M} = \sum_{i=1}^q m_i$.

On dit que \mathbb{A} et une matrice **bloc-carrée** si p=q et si tous les blocs diagonaux sont des matrices carrées.

Exercice

Proposer une écriture matrice bloc-carrée de chacune des matrices suivantes:

$$\mathbb{E} = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 9 & 8 & 7 \end{pmatrix}, \quad \mathbb{F} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 8 & 7 & 6 \\ 5 & 4 & 3 & 1 \end{pmatrix}, \quad \mathbb{G} = \begin{pmatrix} 1 & 2 & 3 & 4 & 0 \\ 5 & 6 & 7 & 8 & 9 \\ 0 & 9 & 8 & 7 & 6 \\ 5 & 4 & 3 & 1 & 0 \\ 9 & 1 & 8 & 2 & 7 \end{pmatrix}$$

Proposition: Multiplication de matrices blocs

Soient $\mathbb{A} \in \mathcal{M}_{N,M}$ et $\mathbb{B} \in \mathcal{M}_{M,S}$. Le produit $\mathbb{P} = \mathbb{A}\mathbb{B} \in \mathcal{M}_{N,S}$ peut s'écrire sous forme bloc si les matrices \mathbb{A} et \mathbb{B} sont compatibles par blocs : il faut que le nombre de blocs colonne de A soit égale au nombre de blocs ligne de B avec correspondance des dimensions, i.e.:

$$\mathbb{A} = \vdots \begin{pmatrix} \frac{m_1}{\mathbb{A}_{1,1}} & \dots & \frac{m_q}{\mathbb{A}_{1,q}} \\ \vdots & \ddots & \vdots \\ \mathbb{A}_{p,1} & \dots & \mathbb{A}_{p,q} \end{pmatrix} \text{ et } \mathbb{B} = \vdots \begin{pmatrix} \frac{s_1}{\mathbb{B}_{1,1}} & \dots & \frac{s_r}{\mathbb{B}_{1,r}} \\ \vdots & \ddots & \vdots \\ \mathbb{B}_{q,1} & \dots & \mathbb{B}_{q,r} \end{pmatrix}$$

 $\mathsf{avec} \ \mathbb{A}_{i,k} \in \mathcal{M}_{n_i,m_k} \ \mathsf{et} \ \mathbb{B}_{k,j} \in \mathcal{M}_{m_k,s_l} \ \mathsf{pour} \ \mathsf{tout} \ i \in \llbracket 1, p \rrbracket, \ k \in \llbracket 1, q \rrbracket \ \mathsf{et} \ j \in \llbracket 1, r \rrbracket. \ \mathsf{La} \ \mathsf{matrice} \ \mathsf{produit} \ \mathbb{P} \ \mathsf{s'\acute{e}crit} \ \mathsf{alors} \ \mathsf{sous} \ \mathsf{la} \ \mathsf{forme} \ \mathsf{bloc}$

$$\mathbb{P} = \begin{cases} \begin{matrix} s_1 & \cdots & s_r \\ \mathbb{P}_{1,1} & \cdots & \mathbb{P}_{1,r} \\ \vdots & \ddots & \vdots \\ \mathbb{P}_{p,1} & \cdots & \mathbb{P}_{p,r} \end{matrix} \end{cases}$$

avec $\forall i \in [1, p], \forall j \in [1, r] \mathbb{P}_{i,j} \in \mathcal{M}_{n_i, s_i}$ et

$$\mathbb{P}_{i,j} = \sum_{k=1}^{q} \mathbb{A}_{i,k} \mathbb{B}_{k,j}.$$

A Exercice

On considère les matrices blocs suivantes

$$\mathbb{A} = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} C & \| & \| \\ \| & \| & 0 \end{pmatrix} \quad \text{et} \quad \mathbb{B} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 2 & 1 & 2 \\ 3 & 4 & 3 & 4 \end{pmatrix} = \begin{pmatrix} \| & \| & 0 \\ C & \| & C \end{pmatrix}$$

avec par identification

$$\mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \mathbb{C} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \text{ et } \mathbb{O} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Q.1 Calculer les matrices AB et BA en utilisant l'écriture bloc

Q.2 Exprimer les matrices $\mathbb{A}(\mathbb{A}+\mathbb{B})$ et $(2\mathbb{B}-\mathbb{A})(\mathbb{B}+\mathbb{A})$ en fonction des matrices \mathbb{C} et \mathbb{I} .

Exercice

Soient

$$\mathbb{A} = \begin{pmatrix} 1 & 0 & 0 & 3 & 3 & 3 \\ \frac{1}{1} & 0 & 0 & 3 & 3 & 3 \\ 1 & 2 & 2 & 0 & 0 & 0 \end{pmatrix} \text{ et } \mathbb{B} = \begin{pmatrix} -1 & -1 \\ 0 & 0 \\ 0 & -1 & -2 \\ -1 & -2 \\ -1 & -2 \end{pmatrix}$$

Utiliser la multiplication par blocs pour calculer AB.

Openition

On dit qu'une matrice bloc-carrée A est triangulaire inférieure (resp. supérieure) par blocs si elle peut s'écrire sous la forme d'une matrice bloc avec les sous matrices $\mathbb{A}_{i,i} = \mathbb{O}$ pour i < j (resp. i > j). Elle s'écrit donc sous la forme

$$\mathbb{A} = \begin{pmatrix} \mathbb{A}_{1,1} & \mathbb{O} & \cdots & \mathbb{O} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbb{O} \\ \mathbb{A}_{n,1} & \cdots & \cdots & \mathbb{A}_{n,n} \end{pmatrix} \text{ (resp. } \mathbb{A} = \begin{pmatrix} \mathbb{A}_{1,1} & \cdots & \cdots & \mathbb{A}_{n,1} \\ \mathbb{O} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \mathbb{O} & \cdots & \mathbb{O} & \mathbb{A}_{n,n} \end{pmatrix}).$$

Openition

On dit qu'une matrice bloc-carrée A est diagonale par blocs ou bloc-diagonale si elle peut s'écrire sous la forme d'une matrice bloc avec les sous matrices $\mathbb{A}_{i,i} = 0$ pour $i \neq j$. Elle s'écrit donc sous la forme

$$\mathbb{A} = \begin{pmatrix} \mathbb{A}_{1,1} & \mathbb{O} & \cdots & \mathbb{O} \\ \mathbb{O} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbb{O} \\ \mathbb{O} & \cdots & \mathbb{O} & \mathbb{A}_{n,n} \end{pmatrix}$$

 4 □ →

Proposition

Soit \mathbb{A} une matrice bloc-carré **inversible** décomposée en $n \times n$ blocs.

- Si $\mathbb A$ est bloc-diagonale alors son inverse (décomposée en $n \times n$ blocs) est aussi bloc-diagonale.
- Si $\mathbb A$ est triangulaire inférieure par blocs (resp. supérieure) alors son inverse (décomposée en $n \times n$ blocs) est aussi triangulaire inférieure par blocs (resp. supérieure).

Dans ces deux cas les blocs diagonaux de la matrice inverse sont les inverses des blocs diagonaux de A. On a donc

$$\mathbb{A} = \begin{pmatrix} & \mathbb{A}_{1,1} & \mathbb{O} & \cdots & \mathbb{O} \\ & & \ddots & \ddots & \vdots \\ & \vdots & \ddots & \ddots & \mathbb{O} \\ & \mathbb{O} & \cdots & \circ & \mathbb{A}_{n,n} \end{pmatrix} \text{ et } \mathbb{A}^{-1} = \begin{pmatrix} & \mathbb{A}_{1,1}^{-1} & \mathbb{O} & \cdots & \mathbb{O} \\ & \mathbb{O} & \ddots & \ddots & \vdots \\ & \vdots & \ddots & \ddots & \mathbb{O} \\ & \mathbb{O} & \cdots & \mathbb{O} & \mathbb{A}_{n,n}^{-1} \end{pmatrix}$$

$$\mathbb{A} = \begin{pmatrix} \mathbb{A}_{1,1} & \mathbb{O} & \cdots & \mathbb{O} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \mathbb{O} \\ \mathbb{A}_{n,1} & \cdots & \cdots & \mathbb{A}_{n,n} \end{pmatrix} \text{ et } \mathbb{A}^{-1} = \begin{pmatrix} \mathbb{A}_{1,1}^{-1} & \mathbb{O} & \cdots & \mathbb{O} \\ \bullet & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbb{O} \\ \bullet & \cdots & \bullet & \mathbb{A}^{-1} \end{pmatrix}$$

Exercice à faire!

4日 → 4周 → 4 差 → 4 差 → 9 Q G

Proposition

Soit $\mathbb A$ une matrice bloc-carrée décomposée en $n \times n$ blocs, $n \geqslant 2$. Si $\mathbb A$ est bloc-diagonale ou triangulaire par blocs alors son déterminant est le produit des déterminant des blocs diagonaux :

$$\det \mathbb{A} = \prod_{i=1}^{n} \det \mathbb{A}_{i,i}$$
(9)

Exercice!

Autres résultats

Soit $A \in \mathcal{M}_{n,n}(\mathbb{C})$ une matrice et (λ, \mathbf{u}) un élément propre de A avec $\|\mathbf{u}\|_2 = 1$.

Q.1 En s'aidant de la base canonique $\{e_1, \dots, e_n\}$, construire une base orthonormée $\{x_1, \dots, x_n\}$ telle que $x_1 = u$.

Notons $\mathbb P$ la matrice de changement de base canonique $\{\pmb{e}_1,\dots,\pmb{e}_n\}$ dans la base $\{\pmb{x}_1,\dots,\pmb{x}_n\}$

$$\mathbb{P} = \left(\begin{array}{c|c} \mathbf{x}_1 & \dots & \mathbf{x}_n \end{array} \right)$$

Soit \mathbb{B} la matrice définie par $\mathbb{B} = \mathbb{P}^* \mathbb{AP}$.

■ Exprimer les coefficients de la matrice B en fonction de la matrice A et des vecteurs x_i, i ∈ [1, n].

En déduire que la première colonne de B est (λ,0,...,0)^t.

Q.3 Montrer par récurrence sur l'ordre de la matrice que la matrice A s'écrit

où U est une matrice unitaire et T une matrice triangulaire supérieure.

Q.4 En supposant A inversible et la décomposition A = UTU* connue, expliquer comment résoudre "simplement" le système linéaire Ax = b.

4□▶ 4億▶ 4億▶ 4億▶ 億 900

4

Théorème 5: Décomposition de Schur

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. Il existe une matrice unitaire \mathbb{U} et une matrice triangulaire supérieure \mathbb{T} telles que

$$\mathbb{A} = \mathbb{U}\mathbb{T}\mathbb{U}^* \tag{10}$$

Décomposition de Schur avec matrice triangulaire inférieure?

Théorème 6: Réduction de matrices

- **3** Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. Il existe une matrice **unitaire** \mathbb{U} telle que $\mathbb{U}^{-1}\mathbb{A}\mathbb{U}$ soit **triangulaire**.
- ② Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice **normale**. Il existe une matrice **unitaire** \mathbb{U} telle que $\mathbb{U}^{-1}\mathbb{A}\mathbb{U}$ soit diagonale.
- ② Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique. Il existe une matrice orthogonale \mathbb{P} telle que $\mathbb{P}^{-1}\mathbb{A}\mathbb{P}$ soit diagonale.

Proposition 6.1

- une matrice symétrique ou hermitienne est nécessairement normale.
- une matrice orthogonale (resp. unitaire) est nécessairement normale et inversible d'inverse At (resp. A*).

Definition 6.2

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice **hermitienne**.

♦ Elle est définie positive si

$$\langle \mathbb{A}\boldsymbol{u}, \boldsymbol{u} \rangle > 0, \ \forall \boldsymbol{u} \in \mathbb{C}^n \setminus \{0\}$$
 (11)

♦ Elle est semi définie positive si

$$\langle \mathbb{A}\boldsymbol{u}, \boldsymbol{u} \rangle \geqslant 0, \ \forall \boldsymbol{u} \in \mathbb{C}^n \setminus \{0\}$$
 (12)

Exercice

Soit $A \in \mathcal{M}_n(\mathbb{C})$.

- Q.1 Que peut-on dire de la matrice AA*? Et si la matrice A est inversible?
- Q.2 Proposer une technique permettant de générer une matrice hermitienne semi-définie positive à partir d'une matrice aléatoire quelconque.
- Q.3 Proposer une technique permettant de générer une matrice hermitienne définie positive à partir d'une matrice triangulaire inférieure inversible

Normes vectorielles

L'application $\langle \bullet, \bullet \rangle : \mathbb{K}^n \times \mathbb{K}^n \to \mathbb{K}$ définie pour tout $(\mathbf{u}, \mathbf{v}) \in \mathbb{K}^n \times \mathbb{K}^n$ par

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u}^{\mathsf{t}}.\boldsymbol{v} = \boldsymbol{v}^{\mathsf{t}}.\boldsymbol{u} = \sum_{i=1}^{n} u_{i}v_{i}, \text{ si } \mathbb{K} = \mathbb{R}$$
 (13)

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u}^*.\boldsymbol{v} = \overline{\boldsymbol{v}^*.\boldsymbol{u}} = \overline{\langle \boldsymbol{v}, \boldsymbol{u} \rangle} = \sum_{i=1}^n \overline{u_i} v_i, \text{ si } \mathbb{K} = \mathbb{C}$$
 (14)

est appelée **produit scalaire** euclidien si $\mathbb{K}=\mathbb{R}$, hermitien a si $\mathbb{K}=\mathbb{C}$. Pour rappeler la dimension de l'espace, on écrit

$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle_n$$
.

^aLa convention choisie pour le produit scalaire hermitien étant ici : linéarité à droite et semi-linéarité à gauche. Il est aussi possible de définir le produit scalaire hermitien par le complexe conjugué de (14) :

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{v}^*.\boldsymbol{u} = \sum_{i=1}^n u_i \overline{v_i}.$$

Dans ce cas le produit scalaire est une forme sesquilinéaire à droite.

Une **norme** sur un espace vectoriel V est une application $\| \bullet \| : V \to \mathbb{R}^+$ qui vérifie les propriétés suivantes

- $\diamond \|\mathbf{v}\| = 0 \Longleftrightarrow \mathbf{v} = 0.$
- $\diamond \|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|, \ \forall \alpha \in \mathbb{K}, \ \forall \mathbf{v} \in V,$
- $||u + v|| \le ||u|| + ||v||, \ \forall (u, v) \in V^2$ (inégalité triangulaire).

Une norme sur V est également appelée norme vectorielle . On appelle espace vectoriel normé un espace vectoriel muni d'une norme.

Proposition

Soit $\mathbf{v} \in \mathbb{K}^n$. Pour tout nombre réel $p \ge 1$, l'application $\| \bullet \|_p$ définie par

$$\|\boldsymbol{v}\|_p = \left(\sum_{i=1}^n |v_i|^p\right)^{1/p}$$

est une norme sur \mathbb{K}^n .

Normes usitées :

$$\|\mathbf{v}\|_{1} = \sum_{i=1}^{n} |v_{i}|, \quad \|\mathbf{v}\|_{2} = \left(\sum_{i=1}^{n} |v_{i}|^{2}\right)^{1/2}, \quad \|\mathbf{v}\|_{\infty} = \max_{i \in [1, n]} |v_{i}|.$$

 4 □ →

Lemme 7.1: Inégalité de Cauchy-Schwarz

$$\forall \boldsymbol{x},\boldsymbol{y} \in \mathbb{K}^n$$

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leqslant \|\mathbf{x}\|_2 \|\mathbf{y}\|_2. \tag{15}$$

Cette inégalité s'appelle l'inégalité de Cauchy-Schwarz. On a égalité si et seulement si x et y sont colinéaires.

Exercice:

Soient \boldsymbol{x} et \boldsymbol{y} deux vecteurs de \mathbb{C}^n .

- **Q.1** Trouver $\alpha \in \mathbb{C}$ tel que $\langle \alpha \mathbf{x} \mathbf{y}, \mathbf{x} \rangle = 0$.
- **Q.2** En calculant $\|\alpha \mathbf{x} \mathbf{y}\|_2^2$, montrer que

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}||_2 ||\mathbf{y}||_2$$
.

(16)

Q.3 Soit $\mathbf{x} \neq 0$. Montrer alors que l'inégalité (16) est une égalité si et seulement si $\mathbf{y} = \alpha \mathbf{x}$.

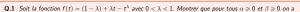
Lemme 7.2: Inégalité de Hölder

Pour p > 1 et $\frac{1}{p} + \frac{1}{q} = 1$, on a $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{K}^n$

$$\sum_{i=1}^{n} |x_{i}y_{i}| \leq \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} \left(\sum_{i=1}^{n} |y_{i}|^{q}\right)^{1/q} = \|\mathbf{x}\|_{p} \|\mathbf{y}\|_{q}. \tag{17}$$

Cette inégalité s'appelle l'inégalité de Hölder

Exercice:



 $\alpha^{\lambda}\beta^{1-\lambda} \leq \lambda\alpha + (1-\lambda)\beta$.

(18)

(19)

(20)

Soient x et y deux vecteurs non nuls de \mathbb{C}^n . Soient p>1 et q>1 vérifiant $\frac{1}{p}+\frac{1}{q}=1$.

Q.2 On pose $\mathbf{u} = \frac{\mathbf{x}}{\|\mathbf{x}\|_{\alpha}}$ et $\mathbf{v} = \frac{\mathbf{y}}{\|\mathbf{y}\|_{\alpha}}$. En utilisant l'inégalité (18), montrer que l'on a l'inégalité

$$\sum_{i=1}^{n} |u_i v_i| \leq \frac{1}{\rho} \sum_{i=1}^{n} |u_i|^{\rho} + \frac{1}{q} \sum_{i=1}^{n} |v_i|^{q} = 1.$$

$$|\langle \boldsymbol{x}, \boldsymbol{y} \rangle| \leq \sum_{i=1}^{n} |x_i y_i| \leq ||\boldsymbol{x}||_p ||\boldsymbol{y}||_q$$
.

Quel est le lien entre l'inégalité de Hölder et l'inégalité de Cauchy-Schwarz?

Definition 7.3

Deux normes $\| \bullet \|$ et $\| \bullet \|'$, définies sur un même espace vectoriel V, sont **équivalentes** s'il exite deux constantes C et C' telles que

$$\|\mathbf{x}\|' \leqslant C \|\mathbf{x}\| \quad \text{et} \quad \|\mathbf{x}\| \leqslant C' \|\mathbf{x}\|' \quad \text{pour tout } \mathbf{x} \in V.$$
 (21)

Proposition

Sur un espace vectoriel de dimension finie toutes les normes sont équivalentes.

Normes matricielles

Definition 8.1

Une **norme matricielle** sur $\mathcal{M}_n(\mathbb{K})$ est une application $\|\bullet\| : \mathcal{M}_n(\mathbb{K}) \to \mathbb{R}^+$ vérifiant

- $\|\alpha \mathbb{A}\| = |\alpha| \|\mathbb{A}\|, \ \forall \alpha \in \mathbb{K}, \ \forall \mathbb{A} \in \mathcal{M}_n(\mathbb{K}),$
- \bullet $\|\mathbb{A}\mathbb{B}\| \leq \|\mathbb{A}\| \|\mathbb{B}\|, \ \forall (\mathbb{A}, \mathbb{B}) \in \mathcal{M}_n(\mathbb{K})^2$

Peut-on étendre cette définition sur $\mathcal{M}_{m,n}(\mathbb{K})$?

Proposition: exercice

Etant donné une norme vectorielle $\|\bullet\|$ sur \mathbb{K}^n , l'application $\|\bullet\|_s : \mathcal{M}_n(\mathbb{K}) \to \mathbb{R}^+$ définie par

$$\|\mathbb{A}\|_{s} \stackrel{\text{def}}{=} \sup_{\mathbf{v} \in \mathbb{K}_{0}^{n}} \frac{\|\mathbb{A}\mathbf{v}\|}{\|\mathbf{v}\|} \tag{22}$$

est une norme matricielle, appelée norme matricielle subordonnée (à la norme vectorielle donnée). Elle vérifie

$$\|\mathbb{A}\|_{s} = \sup_{\substack{\mathbf{v} \in \mathbb{K}^{n} \\ \|\mathbf{v}\| \leqslant 1}} \|\mathbb{A}\mathbf{v}\| = \sup_{\substack{\mathbf{v} \in \mathbb{K}^{n} \\ \|\mathbf{v}\| = 1}} \|\mathbb{A}\mathbf{v}\| = \inf \left\{ \alpha \in \mathbb{R} : \|\mathbb{A}\mathbf{v}\| \leqslant \alpha \|\mathbf{v}\| , \ \forall \mathbf{v} \in \mathbb{K}^{n} \right\}. \tag{23}$$

De plus, pour tout $\mathbf{v} \in \mathbb{K}^n$ on a

$$\|\mathbb{A}\mathbf{v}\| \leqslant \|\mathbb{A}\|_{s} \|\mathbf{v}\| \tag{24}$$

et il existe au moins un vecteur $\mathbf{u} \in \mathbb{K}^n \setminus \{0\}$ tel que

$$\|\mathbb{A}\boldsymbol{u}\| = \|\mathbb{A}\|_{c} \|\boldsymbol{u}\|. \tag{25}$$

Soit \mathbb{I} la matrice identité d'ordre n, on a

$$\|\mathbb{I}\|_{s} = 1. \tag{26}$$

Théorème 9: $\|\bullet\|_1$: \mathbb{A}_{0} , $\|\bullet\|_{0}$: \mathbb{A}_{0} , $\|\bullet\|_{2}$:

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$. On a

$$\|\mathbb{A}\|_{1} \stackrel{\mathsf{def}}{=} \sup_{\boldsymbol{v} \in \mathbb{K}_{0}^{n}} \frac{\|\mathbb{A}\boldsymbol{v}\|_{1}}{\|\mathbf{v}\|_{1}} = \max_{j \in [1,n]} \sum_{i=1}^{n} |a_{ij}|$$
 (27)

$$\|\mathbb{A}\|_{2} \stackrel{\mathsf{def}}{=} \sup_{\substack{\mathbf{v} \in \mathbb{K}^{n} \\ \mathbf{v} \neq \mathbf{0}}} \frac{\|\mathbb{A}\mathbf{v}\|_{2}}{\|\mathbf{v}\|_{2}} = \sqrt{\rho\left(\mathbb{A}^{*}\mathbb{A}\right)}$$
 (28)

$$\|\mathbb{A}\|_{\infty} \stackrel{\text{def}}{=} \sup_{\substack{\mathbf{v} \in \mathbb{K}^n \\ \mathbf{v} \neq 0}} \frac{\|\mathbb{A}\mathbf{v}\|_{\infty}}{\|\mathbf{v}\|_{\infty}} = \max_{i \in [1,n]} \sum_{j=1}^{n} |a_{ij}|$$
(29)

La norme $\| \bullet \|_2$ est invariante par transformation unitaire :

$$\mathbb{U}\mathbb{U}^* = \mathbb{I} \Longrightarrow \|\mathbb{A}\|_2 = \|\mathbb{A}\mathbb{U}\|_2 = \|\mathbb{U}\mathbb{A}\|_2 = \|\mathbb{U}^*\mathbb{A}\mathbb{U}\|_2. \tag{30}$$

Corollaire 9.1

- Si une matrice \mathbb{A} est hermitienne, on a $\|\mathbb{A}\|_2 = \rho(\mathbb{A})$.
- **3** Si une matrice \mathbb{A} est unitaire, on a $\|\mathbb{A}\|_2 = 1$.

Suites de vecteurs et de matrices

Definition 10.1

Soit V un espace vectoriel muni d'une norme $\|\bullet\|$, on dit qu'une suite (\mathbf{v}_k) d'éléments de V converge vers un élément $v \in V$, si

$$\lim_{k\to\infty}\|\boldsymbol{v}_k-\boldsymbol{v}\|=0$$

et on écrit

$$\mathbf{v} = \lim_{k \to \infty} \mathbf{v}_k.$$

←□ → ←□ → ← = → ← = → ● ← ○ ○

Théorème 11: admis

Soit ${\mathbb B}$ une matrice carrée. Les conditions suivantes sont équivalentes :

- $\rho(\mathbb{B}) < 1$,

Théorème 12: admis

Soit $\mathbb B$ une matrice carrée, et $\| ullet \|$ une norme matricielle quelconque. Alors

$$\lim_{k\to\infty}\left\|\mathbb{B}^k\right\|^{1/k}=\rho(\mathbb{B}).$$