Exercices associés au cours d'Analyse Numérique I Résolution de systèmes non linéaires

EXERCICE 1

Q. 1 Montrer que les fonctions lipschitziennes sont uniformément continues.

Soient I un intervalle et $f \in C^1(I; R)$

Q. 2 On suppose que f' est bornée, i.e.

$$\exists L \in \mathbb{R}_+, \ tel \ que \ \forall x \in I, \ |f'(x)| \leq L.$$

Montrer que f est lipschitzienne de rapport L.

Q. 3 Soit $L \in \mathbb{R}_+$. On suppose f lipschitzienne de rapport L. Montrer que f' est bornée.

^^^^^

Correction

R. 1 Par hypothèse, on a

$$\exists K \in \mathbb{R}_+, \text{ tel que}, \forall (x,y) \in I^2, |f(x) - f(y)| \leq K|x - y|.$$

Si K = 0, la fonction f est alors constante et donc uniformément continue.

On suppose maintenant que K>0. Soit $\varepsilon>0$. Pour avoir $|f(x)-f(y)|<\varepsilon$, il suffit d'avoir $K|x-y|<\varepsilon$. En posant $\delta=\frac{\varepsilon}{K}$, on a $\delta>0$ et $\forall (x,y)\in I^2$,

$$|x - y| < \delta \implies |f(x) - f(y)| \le K|x - y| < K\delta < \varepsilon.$$

et donc f est uniformément continue sur I.

R. 2 Soit $(x,y) \in I^2$, $x \neq y$. D'après la formule de Taylor-Lagrange (ou théorème des accroissement finis), il existe $\xi \in]x,y[$ tel que

$$f(x) - f(y) = (x - y)f'(\xi)$$

et donc

$$|f(x) - f(y)| \le L|x - y|.$$

La fonction f est donc L-lipschitzienne.

R. 3 Soient $x \in I$ et $h \in \mathbb{R}^*$ tel que $x + h \in I$. D'après la formule de Taylor-Lagrange (ou théorème des accroissement finis), il existe $\xi_h \in]\min(x, x + h), \max(x, x + h)[$ tel que

$$f(x+h) - f(x) = hf'(\xi_h)$$

De plus, f étant L-lipschitzienne, on a

$$|f(x+h) - f(x)| \le L|h|.$$

Comme $h \neq 0$, on en déduit

$$|f'(\xi_h)| \leq L.$$

On a $\xi_h \xrightarrow[h \to 0]{} x$, et comme f' continue,

$$\lim_{h\to 0} f'(\xi_h) = f'\left(\lim_{h\to 0} \xi_h\right) = f'(x).$$

En passant à la limite dans l'inégalité précédente, on obtient alors

$$|f'(x)| \leq L.$$

 \Diamond

1 Recherche des zéros d'une fonction

EXERCICE 2 : Méthode de Dichotomie

On suppose que la fonction f est continue sur [a,b], vérifie f(a)f(b) < 0 et qu'il existe un unique $\alpha \in]a,b[$ tel que $f(\alpha) = 0$. On défini les trois suites $(a_k)_{k \in \mathbb{N}}$, $(b_k)_{k \in \mathbb{N}}$ et $(x_k)_{k \in \mathbb{N}}$ par

- $a_0 = a$, $b_0 = b$ et $x_0 = \frac{a+b}{2}$,
- $\forall k \in \mathbb{N}$,

$$\begin{cases} a_{k+1} = b_{k+1} = x_k & \text{si } f(x_k) = 0, \\ a_{k+1} = x_k, \ b_{k+1} = b_k & \text{si } f(b_k)f(x_k) < 0, \\ a_{k+1} = a_k, \ b_{k+1} = x_k & \text{si } f(a_k)f(x_k) < 0. \end{cases}$$

et

$$x_{k+1} = (a_{k+1} + b_{k+1})/2.$$

- **Q.** 1 a. Montrer que les suites (a_k) et (b_k) convergent vers α .
 - b. En déduire que la suite (x_k) converge vers α .

- **Q. 2** a. Montrer que pour tout $k \in \mathbb{N}$, $|x_k \alpha| \leq \frac{b-a}{2^{k+1}}$.
 - b. Soit $\epsilon > 0$. En déduire que si $k \ge \frac{\log(\frac{b-a}{\epsilon})}{\log(2)} 1$ alors $|x_k \alpha| \le \epsilon$.

Q. 3 [Algo] Ecrire une fonction algorithmique, nommée Dichotomie, retournant une approximation de α avec une précision de ϵ ainsi que le nombre d'itérations nécessaire.

Correction

R. 1 a. Supposons qu'il existe $k \in \mathbb{N}$ tel que $f(x_k) = 0$, (i.e. $x_k = \alpha$ car $x_k \in [a, b]$) alors par construction $a_{k+i} = b_{k+i} = x_{k+i} = \alpha$ pour tout $i \in \mathbb{N}^*$. Ceci assure la convergence des 3 suites vers α .

Supposons maintenant que $\forall k \in \mathbb{N}, \ f(x_k) \neq 0$. Par construction, nous avons $a_k \leqslant a_{k+1} \leqslant b$, $a \leqslant b_{k+1} \leqslant b_k$ et $a_k \leqslant b_k$. La suite (a_k) est convergente car elle est croissante et majorée. La suite (b_k) est décroissante et minorée : elle est donc convergente. De plus $0 \leqslant b_k - a_k \leqslant \frac{b_{k-1} - a_{k-1}}{2}$ et donc $0 \leqslant b_k - a_k \leqslant \frac{b-a}{2^k}$. On en déduit que les suites (a_k) et (b_k) ont même limite. Comme par construction, $\forall k \in \mathbb{N}, \ \alpha \in [a_k, b_k]$ ceci entraine que α est la limite de ces 2 suites.

- b. Par construction, $\forall k \in \mathbb{N}$, $a_k \leq x_k \leq b_k$. D'après le théorème des gendarmes, les suites (a_k) et (b_k) convergeant vers α , on obtient la convergence de la suite (x_k) vers α .
- **R. 2** a. On a $\forall k \in \mathbb{N}, x_k = \frac{a_k + b_k}{2}$ et $a_k \leq \alpha \leq b_k$ d'où $|x_k \alpha| \leq \frac{b_k a_k}{2}$. Ce qui donne

$$|x_k - \alpha| \leqslant \frac{b - a}{2^{k+1}}.$$

b. Pour avoir $|x_k - \alpha| \le \epsilon$, il suffit d'avoir $\frac{b-a}{2^{k+1}} \le \epsilon$, et la fonction log étant croissante on obtient

$$k \geqslant \frac{\log(\frac{b-a}{\epsilon})}{\log(2)} - 1.$$

R. 3 Voici un exemple d'une telle fonction (existence mais non unicité de racines)

Algorithme 1 Méthode de dichotomie pour la recherche d'une racine α de f

```
a, b: deux réels a < b,
                             f \in \mathcal{C}^0([a,b];\mathbb{R}) \text{ et } f(a)f(b) < 0
                 eps : un réel strictement positif.
                       : un réel tel que |x - \alpha| \leq \text{eps.}
Résultat:
                             nombre d'itérations nécessaire.
                 iter:
 1: Fonction [x, iter] \leftarrow Dichotomie(f, a, b, eps)
       A, B \in \mathbb{R}
       A \leftarrow a, \ B \leftarrow b, \ x \leftarrow (a+b)/2
 3:
       iter \leftarrow 0
 4:
       Tantque |x - A| > \text{eps faire}
          Si f(x) == 0 alors
 6:
             A \leftarrow x, B \leftarrow x
 7:
          Sinon Si f(B)f(x) < 0 alors
 8:
             A \leftarrow x
                                                                                                                    \rhd Binchangé
 9:
          Sinon
10:
             B \leftarrow x
                                                                                                                    \triangleright A inchangé
11:
12.
          Fin Si
13:
          x \leftarrow (A+B)/2
          iter \leftarrow iter + 1
14:
       Fin Tantque
15:
16: Fin Fonction
```

 \Diamond

EXERCICE 3

Soient
$$I = [0, \pi/2]$$
 et $\left\{ \begin{array}{ccc} \Phi & : & I & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \sin(x) \end{array} \right.$ Soit $x_0 \in I \setminus \{0\}$. Pour tout $k \in \mathbb{N}$, on pose $x_{k+1} = \Phi(x_k)$.

- **Q.** 1 a. Montrer que la suite $(x_k)_{k\in\mathbb{N}}$ est bien définie.
 - b. Montrer que la suite converge vers $\alpha \in I$ que l'on déterminera.

Q. 2 a. Montrer que

$$\lim_{k \to +\infty} \frac{|x_{k+1} - \alpha|}{|x_k - \alpha|} = 1.$$

b. La convergence est-elle linéaire? Justifier.

Correction

- **R.** 1 a. Pour cela, il suffit de démontrer par récurrence sur k que $x_k \in I$.
 - Initialisation: $x_0 \in I$, par hypothèse.
 - Hérédité: Soit $k \in \mathbb{N}^*$. On suppose $x_k \in I$, et on peut donc calculer $f(x_k)$ et définir $x_{k+1} = \Phi(x_k)$.

Or, sur \mathbb{R}_+ , on a $\sin(x) \leq x$, (étudier $g(x) = x - \sin(x)$...). Comme $x_k \in I$ et que $\sin(x) \geq 0$, $\forall x \in I$, on obtient

$$0 \leqslant x_{k+1} = \sin(x_k) \leqslant x_k$$

et donc $x_{k+1} \in I$.

b. On a vu que la suite était décroissante $(x_{k+1} \leq x_k)$ et minorée par 0: elle est donc convergente. Notons $\alpha \in \mathbb{R}$ sa limite.

On a, $\forall k \in \mathbb{N}$, $x_k \in I$, un fermé borné de \mathbb{R} , donc $\alpha \in I$.

Comme Φ est continue sur I, on a

$$\lim_{k \to +\infty} \Phi(x_k) = \Phi\left(\lim_{k \to +\infty} x_k\right) = f(\alpha)$$

De plus, on a

$$\lim_{k \to +\infty} \Phi(x_k) = \lim_{k \to +\infty} x_{k+1} = \alpha$$

et donc $\alpha \in I$ est un point fixe de Φ .

En posant $g(x) = x - \Phi(x)$, on a g(0) = 0 et, $\forall x \in I \setminus 0$, $g'(x) = 1 - \cos(x) > 0$ c'est à dire g(x) > 0: la seule racine de g dans I est donc 0 et c'est alors l'unique point fixe de Φ , i.e. $\alpha = 0$.

R. 2 a. Comme $x_0 \in I \setminus \{0\}$, ar une simple récurrence, on peut montrer que

$$\forall k \in \mathbb{N}^*, \quad 0 < x_k < 1.$$

Soit $k \in \mathbb{N}$. Comme $\Phi \in \mathcal{C}^1$, on a, en utilisant la formule de Taylor-Lagrange,

$$\xi_k \in]\min(\alpha, x_k), \max(\alpha, x_k)[, \Phi(x_k) = \Phi(\alpha) + (x_k - \alpha)\Phi'(\xi_k).$$

On obtient donc

$$\Phi(x_k) - \Phi(\alpha) = x_{k+1} - \alpha = (x_k - \alpha)\Phi'(\xi_k)$$

Comme $x_k - \alpha \neq 0$, on en déduit

$$\frac{|x_{k+1} - \alpha|}{|x_k - \alpha|} = \Phi'(\xi_k).$$

Or x_k converge vers α et $\xi_k \in]\min(\alpha, x_k), \max(\alpha, x_k)[$ entraine $\xi_k \underset{k \to +\infty}{\to} \alpha$.

La fonction Φ' étant continue, un passage à limite donne

$$\lim_{k \to +\infty} \frac{|x_{k+1} - \alpha|}{|x_k - \alpha|} = \lim_{k \to +\infty} \Phi'(\xi_k) = \Phi'(\alpha) = \cos(0) = 1.$$

b. La convergence n'est pas linéaire car il aurait fallu démontrer l'existence de $\mu \in]0,1[$ telle que

$$\lim_{k \to +\infty} \frac{|x_{k+1} - \alpha|}{|x_k - \alpha|} = \mu.$$

La convergence est donc sous-linéaire.

EXERCICE 4

Soient [a,b] un intervalle non vide de \mathbb{R} et ϕ une fonction continue de [a,b] dans lui même $(\phi([a,b]) \subset [a,b])$. Soit $x_0 \in [a,b]$. On considère la suite $(x_k)_{k \in \mathbb{N}}$ donnée par

$$x_{k+1} = \phi(x_k) \ \forall k \in \mathbb{N}. \tag{4.1}$$

- **Q.** 1 Montrer que la suite (4.1) est bien définie $(x_k \text{ existe pour tout } k \in \mathbb{N}).$
- **Q. 2** Montrer que si la suite (4.1) converge, alors elle converge vers un point fixe de ϕ .
- **Q.** 3 Existence du point fixe : montrer qu'il existe $\alpha \in [a,b]$ tel que $\phi(\alpha) = \alpha$.

On suppose de plus que ϕ est contractante, c'est à dire que

$$\exists L \in [0, 1[, \text{tel que}, \forall (x, y) \in [a, b]^2, |\phi(x) - \phi(y)| \le L|x - y|.$$

- **Q.** 4 a. Montrer que ϕ admet un unique point fixe $\alpha \in [a, b]$.
 - b. Montrer que la suite $(x_k)_{k\in\mathbb{N}}$ converge vers α , pour toute donnée initiale x_0 dans [a,b].
- **Q.** 5 [Algo]Écrire l'algorithme du point fixe (fonction PointFixe) permettant de résoudre l'équation $\phi(x) = x$.

Correction

R. 1 La suite $(x_k)_{k \in \mathbb{N}}$, est bien définie si la relation (4.1) permet de définir complètement (et de manière unique) l'ensemble des termes de la suite $(x_k)_{k \in \mathbb{N}}$, connaissant x_0 .

Dans le cas présent, il faut s'assurer que $x_k \in [a, b]$ pour tout entier k car la fonction ϕ n'est par hypothèse définie que sur [a, b]. En effet, si x_k n'appartient pas à l'intervalle [a, b], alors on ne peut pas définir x_{k+1} puisque $\phi(x_k)$ n'existe pas.

Nous montrons ce résultat pas récurrence :

- Initialisation pour k = 0. Par hypothèse, $x_0 \in [a, b]$.
- Hérédité: nous supposons que $x_k \in [a,b]$ et nous allons montrer que $x_{k+1} \in [a,b]$. Par définition, $x_{k+1} = \phi(x_k)$. Puisque par hypothèse, $\phi([a,b]) \subset [a,b]$, on en déduit immédiatement que $x_{k+1} \in [a,b]$.

Remarque. hypothèse importante : $\phi([a,b]) \subset [a,b]$.

R. 2 Supposons que la suite $(x_k)_{k\in\mathbb{N}}$ converge vers une limite notée \bar{x} . $\bar{x} \in [a,b]$ car [a,b] est un intervalle fermé. Par ailleurs, en utilisant la continuité de ϕ , on a

$$\lim_{k \to +\infty} \phi(x_k) = \phi(\bar{x}).$$

Par les théorème de comparaison des limites et la relation (4.1), on a:

$$\bar{x} = \lim_{k \to +\infty} x_{k+1} \xrightarrow{(4.1)} \lim_{k \to +\infty} \phi(x_k) = \phi(\bar{x}).$$

Ainsi $\bar{x} = \phi(\bar{x})$ et donc \bar{x} est un point fixe de ϕ .

Remarque. hypothèses importantes : [a,b] est fermé et ϕ est continue sur [a,b].

R. 3 On considère la fonction g définie par $g(x) = \phi(x) - x$. Comme $\phi([a, b]) \subset [a, b]$,

$$g(a) = \phi(a) - a \geqslant a - a \geqslant 0.$$

De manière similaire.

$$g(b) = \phi(b) - b \leqslant b - b \leqslant 0.$$

Puisque ϕ est continue sur [a,b], le théorème des valeurs intermédiaires (ou Bolzano) (sur [a,b], ϕ prend toutes les valeurs entre $\phi(a)$ et $\phi(b)$) garantit l'existence d'un nombre $\alpha \in [a,b]$ tel que $g(\alpha) = 0$. Or

$$0 = g(\alpha) = \phi(\alpha) - \alpha,$$

donc α est un point fixe de ϕ .

Remarque. L'hypothèse de continuité de ϕ est cruciale. Le résultat est faux si ϕ n'est pas continue. On peut par exemple considérer la fonction $\phi_0: [-1,1] \to [-1,1]$ telle que $\phi_0(x) = \frac{1}{2}$ si $-1 \le x \le 0$, et $\phi_0(x) = -\frac{1}{2}$ si $0 < x \le 1$, qui n'admet pas de point fixe sur [-1,1].

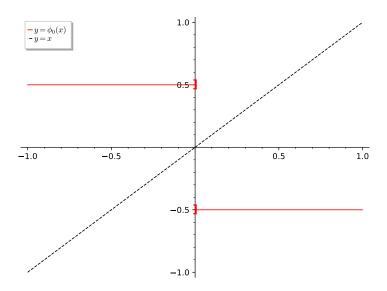


Figure 1: Graphe représentatif de la fonction ϕ_0 et de la droite y=x

On pourra aussi remarquer qu'il n'y a pas forcément unicité du point fixe. En effet, la fonction ϕ définie par $\phi(x) = x$, $\forall x \in [a,b]$ est continue de [a,b] dans [a,b] et admet une infinité de points fixes.

R. 4 a. Nous utilisons une démarche classique pour montrer l'unicité. Nous supposons que la fonction ϕ admet deux points fixes α_1 et α_2 ($\alpha_1 = \phi(\alpha_1)$ et $\alpha_2 = \phi(\alpha_2)$) et nous allons montrer que $\alpha_1 = \alpha_2$. En utilisant le fait que ϕ est contractante, on a

$$|\alpha_1 - \alpha_2| = |\phi(\alpha_1) - \phi(\alpha_2)| \le L|\alpha_1 - \alpha_2|.$$

ce qui peut être réécrit comme

$$(1-L)|\alpha_1 - \alpha_2| \le 0. \tag{4.2}$$

Comme (1-L) > 0, l'inégalité (4.2) implique $|\alpha_1 - \alpha_2| \le 0$ et donc $\alpha_1 = \alpha_2$. La fonction ϕ a donc au plus un point fixe.

b. On a montré, dans les questions précédentes, que la fonction ϕ admet un unique point fixe $\alpha \in [a, b]$. Alors, pour tout $k \in \mathbb{N}$,

$$|x_{k+1} - \alpha| = |\phi(x_k) - \phi(\alpha)| \le L|x_k - \alpha|,$$

si bien que, par récurrence, on peut montrer que

$$|x_k - \alpha| \le L^k |x_0 - \alpha|, \quad \forall k \in \mathbb{N}.$$

Comme L < 1, $\lim_{k \to +\infty} L^k = 0$ et donc le terme de droite de l'inégalité précédente tend vers 0. Par le théorème de comparaison des limites,

$$\lim_{k \to +\infty} |x_k - \alpha| = 0.$$

R. 5 On écrit ci-dessous l'algorithme du point fixe, en supposant que l'on recherche un point fixe non

Algorithme 2 Fonction PointFixe: résout $\phi(x) = x$ par la méthode du point fixe

Données : ϕ : fonction de \mathbb{R} dans \mathbb{R}

 x_0 : nombre réel, (donnée initiale)

tol: nombre réel strictement positif (tolérance)

 k_{max} : nombre entier supérieur ou égal à 1 (nombre maximal d'itérations)

Résultat : x : un réel tel que $\frac{|\phi(x)-x|}{|x|+1} \leqslant tol$

- 1: Fonction $x \leftarrow \text{PointFixe}(\phi, x_0, tol, k_{\text{max}})$
- $k \leftarrow 1$
- $x \leftarrow \phi(x_0)$ $r \leftarrow \frac{|x x_0|}{|x| + 1}$

⊳ résidu à l'itération 1

ightharpoonuprésidu à l'itération k+1

- Tantque r > tol et $k \leq k_{\max}$ faire
- $x_0 \leftarrow x$
- $x \leftarrow \phi(x_0)$ 7:
- $r \leftarrow \frac{|x x_0|}{|x| + 1}$ $k \leftarrow k + 1$ 8:
- 9:
- Fin Tantque
- 11: Fin Fonction

EXERCICE 5

Soient $I \subset \mathbb{R}$ un intervalle fermé, non vide, (par ex., avec a < b, [a,b], $[a,+\infty[$, $]-\infty,a]$ ou \mathbb{R}) et $\Phi: I \longrightarrow I$ une application contractante.

Soit $x_0 \in I$. On considère la suite $(x_k)_{k \in \mathbb{N}}$ donnée par

$$x_{k+1} = \Phi(x_k) \ \forall k \in \mathbb{N}. \tag{5.1}$$

Q. 1 Montrer que la suite (5.1) est bien définie $(x_k \text{ existe pour tout } k \in \mathbb{N}).$

On va démontrer que la suite (5.1) est une suite de Cauchy.

Q. 2 a. Montrer que

$$\forall k \in \mathbb{N}, |x_{k+1} - x_k| \le L^k |x_1 - x_0|.$$
 (5.2)

b. Montrer que

$$\forall k \in \mathbb{N}, \ \forall l \ge 0, \ |x_{k+l} - x_{k+l-1}| \le L^l |x_k - x_{k-1}|.$$
 (5.3)

c. En déduire que,

$$\forall k \in \mathbb{N}, \ \forall p \ge 2, \ |x_{k+p} - x_k| \le \frac{1 - L^p}{1 - L} L^k |x_1 - x_0|.$$
 (5.4)

- Q. 3 a. Déduire de la question précédente que la suite (5.1) est une suite de Cauchy.
 - b. Montrer que la suite (5.1) converge vers un point fixe de Φ à l'ordre 1 au moins.
 - c. Montrer l'unicité du point fixe.

Correction

R. 1 La suite $(x_k)_{k \in \mathbb{N}}$, est bien définie si la relation (5.1) permet de définir complètement (et de manière unique) l'ensemble des termes de la suite $(x_k)_{k \in \mathbb{N}}$, connaissant x_0 .

Il faut donc vérifier que, $\forall k \in \mathbb{N}, x_k \in I$, car il faut pouvoir calculer $\Phi(x_k)$ et que Φ est définie sur I. C'est bien sur immédiat par récurrence car $\Phi(I) \subset I$. On propose toutefois une démonstration:

- Initialisation: pour k = 0. Par hypothèse, $x_0 \in I$.
- Hérédité: on suppose $x_k \in I$, montrons que $x_{k+1} \in I$. Par définition, $x_{k+1} = \Phi(x_k)$. Puisque par hypothèse, $\Phi(I) \subset I$, on a $x_{k+1} \in I$.
- **R. 2** a. La fonction Φ étant contractante sur I, on a, par définition:

$$\exists L \in [0,1[$$
 t.q $\forall (x,y) \in I^2, |\Phi(x) - \Phi(y)| \leq L|x-y|.$

On obtient alors

$$|x_{k+1} - x_k| = |\Phi(x_k) - \Phi(x_{k-1})| \le L|x_k - x_{k-1}|.$$

Par récurrence, on en déduit que la proposition suivante est vraie pour tout $k \in \mathbb{N}$:

$$(\mathcal{P}_k): |x_{k+1} - x_k| \le L^k |x_1 - x_0|.$$

On propose toutefois une démonstration:

- Initialisation: (\mathcal{P}_0) est trivialement vraie.
- Hérédité: soit $k \in \mathbb{N}$, on suppose que (\mathcal{P}_k) est vérifiée. Montrons que (\mathcal{P}_{k+1}) est vraie. On a, en utilisant (5.1) et l'hypothèse de contraction sur Φ ,

$$|x_{k+2} - x_{k+1}| = |\Phi(x_{k+1}) - \Phi(x_k)| \le L|x_{k+1} - x_k|.$$

Par hypothèse de récurrence, on en déduit

$$|x_{k+2} - x_{k+1}| \le LL^k |x_1 - x_0|$$

et donc (\mathcal{P}_{k+1}) est vraie.

b. Soient $k \in \mathbb{N}$ et $p \ge 2$. On a

$$|x_{k+p} - x_k| = |(x_{k+p} - x_{k+p-1}) + (x_{k+p-1} - x_{k+p-2}) + \dots + (x_{k+1} - x_k)| = |\sum_{l=0}^{p-1} (x_{k+l+1} - x_{k+l})|.$$

Par application répétée de l'inégalité triangulaire, on obtient

$$|x_{k+p} - x_k| \le \sum_{l=0}^{p-1} |x_{k+l+1} - x_{k+l}|$$

En utilisant (5.3), on obtient alors

$$|x_{k+p} - x_k| \le \sum_{l=0}^{p-1} L^l |x_{k+1} - x_k| = |x_{k+1} - x_k| \sum_{l=0}^{p-1} L^l.$$

La somme correspond alors à une somme partielle d'une série géométrique et donc

$$|x_{k+p} - x_k| \le \frac{1 - L^p}{1 - L} |x_{k+1} - x_k|.$$

En utilisant (5.2), on obtient alors (5.4).

R. 3 a. On a $0 \le L < 1$, et donc $L^k \to 0$ quand $k \to +\infty$. De (5.4), on déduit alors que (x_k) est une suite de Cauchy.

On propose toutefois une démonstration détaillée.

Pour que (x_k) soit une suite de Cauchy, il faut montrer que

 $\forall \epsilon > 0, \exists M \in \mathbb{N}, \text{ tel que } \forall k \in \mathbb{N}, k \geqslant M, \forall p \in \mathbb{N}, |x_{k+p} - x_k| < \epsilon.$

Comme 0 < L < 1, on a

$$|x_{k+p} - x_k| \le \frac{1}{1 - L} L^k |x_1 - x_0|$$

Soit $\epsilon > 0$, pour avoir $|x_{k+p} - x_k| < \epsilon$, il est suffisant d'avoir

$$\frac{1}{1-L}L^k|x_1-x_0|<\epsilon$$

c'est à dire, comme 1 - L > 0,

$$L^k < \frac{(1-L)\epsilon}{|x_1 - x_0|}.$$

La fonction ln étant croissante strictement on obtient

$$\ln(L^k) = k \ln(L) < \ln\left(\frac{(1-L)\epsilon}{|x_1 - x_0|}\right).$$

Or ln(L) < 0, ce qui donne

$$k > \frac{1}{\ln(L)} \ln\left(\frac{(1-L)\epsilon}{|x_1 - x_0|}\right).$$

En prenant $M \in \mathbb{N}$ tel que

$$M > \frac{1}{\ln(L)} \ln \left(\frac{(1-L)\epsilon}{|x_1 - x_0|} \right)$$

alors

$$\forall k \in \mathbb{N}, \ k \geqslant M, \ \forall p \in \mathbb{N}, \ |x_{k+p} - x_k| < \epsilon.$$

b. La suite (x_k) est une suite de Cauchy dans \mathbb{R} espace complet donc elle converge dans \mathbb{R} vers un point que l'on nomme β . De plus pour tout k, x_k appartient à I fermé, donc sa limite β appartient aussi à I.

La fonction Φ étant contractante sur I, elle est donc continue sur I. On a alors par continuité de Φ

$$\lim_{k \to +\infty} \Phi(x_k) = \Phi(\beta).$$

Comme $x_{k+1} = \Phi(x_k)$ on aussi

$$\lim_{k \to +\infty} \Phi(x_k) = \lim_{k \to +\infty} x_{k+1} = \beta$$

et donc β est un point fixe de Φ . L'existence d'un point fixe est donc établi.

On a donc

$$|x_{k+1} - \beta| = |\Phi(x_k) - \Phi(\beta)| \le L|x_k| - \beta|.$$

Comme $0 \le L < 1$, la convergence est au moins d'ordre 1.

c. On suppose qu'il existe β_1 et β_2 dans [a,b] tels que $\Phi(\beta_1) = \beta_1$ et $\Phi(\beta_2) = \beta_2$. Dans ce cas on a

$$|\beta_1 - \beta_2| = |\Phi(\beta_1) - \Phi(\beta_2)| \le L|\beta_1 - \beta_2|.$$

On en déduit

$$(1-L)|\beta_1 - \beta_2| \leqslant 0$$

Comme 1-L>0, on en déduit $\beta_1=\beta_2$, c'est à dire l'unicité du point fixe.

EXERCICE 6

Soit $\alpha \in \mathbb{R}$, $I =]\alpha_-, \alpha_+[$ un voisinage de α et $\phi \in \mathcal{C}^1(I)$. On suppose que α est un point fixe de ϕ tel que $|\phi'(\alpha)| < 1$.

- **Q.** 1 a. Montrer qu'il existe $\delta > 0$ tel que pour tout $x \in \mathcal{V} = [\alpha \delta, \alpha + \delta], |\phi'(x)| < 1$.
 - b. Montrer que ϕ est contractante sur \mathcal{V} et que $\phi(\mathcal{V}) \subset \mathcal{V}$.
 - c. Citer précisemment le théorème du cours qui, à partir de Q. 1-a. et b, permet d'en déduire la convergence de l'algorithme du point fixe vers α au moins à l'ordre 1.

Soit $x_0 \in \mathcal{V}$ et la suite $(x_k)_{k \in \mathbb{N}}$ définie par l'algorithme du point fixe.

Q. 2 Montrer que, si $x_0 \in \mathcal{V} \setminus \{\alpha\}$, alors

$$\lim_{k \to +\infty} \frac{x_{k+1} - \alpha}{x_k - \alpha} = \phi'(\alpha). \tag{6.1}$$

Q. 3 Supposons maintenant que $\phi \in C^{\infty}(\mathcal{V})$ et que

$$\forall i \in [1, p], \quad \phi^{(i)}(\alpha) = 0.$$

- a. Montrer que la méthode du point fixe est d'ordre p+1 au moins.
- b. Montrer que, si $x_0 \in \mathcal{V} \setminus \{\alpha\}$, alors

$$\lim_{k \to +\infty} \frac{x_{k+1} - \alpha}{(x_k - \alpha)^{p+1}} = \frac{\phi^{(p+1)}(\alpha)}{(p+1)!}.$$
 (6.2)

c. Que peut-on dire si $\phi^{(p+1)}(\alpha) \neq 0$?

. . . .

Correction

- **R.** 1 a. Puisque ϕ' est continue et que $|\phi'(\alpha)| < 1$, il existe $\delta > 0$ et un intervalle fermé $\mathcal{V} = [\alpha \delta, \alpha + \delta] \subset]\alpha_-, \alpha_+[$ tels que pour tout $x \in \mathcal{V}, |\phi'(x)| < 1$. On propose ici une démonstration de ce résultat.
 - \Box Comme ϕ' est continue en α , on a

$$\forall \varepsilon > 0, \ \exists \beta > 0 \ \text{tel que} \ \forall x \in I, \ \left(|x - \alpha| < \beta \Rightarrow \ |\phi'(x) - \phi'(\alpha)| < \varepsilon \right).$$

On note $M = \phi'(\alpha)$ et on prend $\varepsilon = 1 - |M|$ qui est strictement positif car $0 \ge |M| = |\phi'(\alpha)| < 1$. Dans ce cas, il existe $\beta > 0$ tel que $]\alpha - \beta, \alpha + \beta[\subset I]$ et

$$\forall x \in I, \ \left(|x - \alpha| < \beta \Rightarrow |\phi'(x) - M| < 1 - |M| \right).$$

Soit $x \in I$ tel que $|x - \alpha| < \beta$, c'est à dire $x \in]\alpha - \beta, \alpha + \beta[$, alors on a

$$|\phi'(x) - M| < 1 - |M| \Leftrightarrow -1 + |M| < \phi'(x) - M < 1 - |M|$$

 $\Leftrightarrow -1 + M + |M| < \phi'(x) < 1 + M - |M|$

Comme $-|M| \leq M \leq |M|$, on a $M + |M| \geq 0$ et $M - |M| \leq 0$, ce qui entraine

$$|\phi'(x) - M| < 1 - |M| \Rightarrow -1 < \phi'(x) < 1.$$

On a donc,

$$\forall x \in]\alpha - \beta, \alpha + \beta[, |\phi'(x)| < 1.$$

En posant $\delta = \beta/2$ (par ex.), on obtient, en définissant $\mathcal{V} = [\alpha - \delta, \alpha + \delta]$,

$$\forall x \in \mathcal{V}, \quad |\Phi'(x)| < 1.$$

b. On pose

$$L = \sup_{x \in \mathcal{V}} |\phi'(x)| = \max_{x \in \mathcal{V}} |\phi'(x)|.$$

Comme \mathcal{V} est fermé, L < 1. Soient $(x, y) \in \mathcal{V}^2$. D'après le théorème des accroissements finis, il existe $\xi \in]x, y[\subset \mathcal{V}$ telle que

$$\phi(x) - \phi(y) = \phi'(\xi)(x - y).$$

Puisque $|\phi'(\xi)| \leq L$, on obtient

$$\forall (x,y) \in \mathcal{V}^2, |\phi(x) - \phi(y)| \leq L|x - y|,$$

ce qui signifie ϕ est contractante sur \mathcal{V} . De plus, si $x \in \mathcal{V}$, en utilisant la formule précédente avec $y = \alpha \in \mathcal{V}$, on obtient

$$|\phi(x) - \alpha| \le L|x - \alpha| < |x - \alpha| \le \delta,$$

et donc $\phi(x) \in \mathcal{V}$. Ainsi on a $\phi(\mathcal{V}) \subset \mathcal{V}$.

c. Voici le théorème du cours:

Théorème (Théorème du point fixe dans \mathbb{R} , application contractante). Soient $I \subset \mathbb{R}$ un intervalle fermé, non vide, et Φ une application contractante de I dans lui-même. Alors, il existe un unique point $\alpha \in I$ vérifiant $\Phi(\alpha) = \alpha$. Le point α est appelé **point fixe de la fonction** Φ . Pour tout $x_0 \in I$, la suite

$$x_{k+1} = \Phi(x_k), \ \forall k \in \mathbb{N}$$
 (6.3)

est bien définie et elle converge vers α avec un ordre 1 au moins.

R. 2 Avec $x_0 \in \mathcal{V} \setminus \{\alpha\}$, d'après Q. 1, la suite définie par $x_{k+1} = \phi(x_k)$, $\forall k \in \mathbb{N}$ converge vers α à l'ordre 1 au moins.

Comme α est un point fixe de ϕ , i.e. $\alpha = \phi(\alpha)$ et $x_{k+1} = \phi(x_k)$, $\forall k \in \mathbb{N}$, avec $x_0 \neq \alpha$, on a $\forall k \in \mathbb{N}$, $x_k \neq \alpha$. On a donc

$$\frac{x_{k+1} - \alpha}{x_k - \alpha} = \frac{\phi(x_k) - \phi(\alpha)}{x_k - \alpha}.$$

Comme la suite $(x_k)_{k\in\mathbb{N}}$ converge vers α avec $\forall k\in\mathbb{N}, x_k\neq\alpha$ et que ϕ est dérivable en α on obtient

$$\lim_{k \to +\infty} \frac{\phi(x_k) - \phi(\alpha)}{x_k - \alpha} = \phi'(\alpha).$$

R. 3 a. Comme $\phi'(\alpha) = 0$, alors (en particulier) $|\phi'(\alpha)| < 1$. D'après la question 1, cela signifie que pour tout $x_0 \in \mathcal{V}$, la suite $(x_k)_{k \in \mathbb{N}}$ définie par l'agorithme du point fixe (6.3) converge vers α . Soit $k \in \mathbb{N}$. En utilisant la formule de Taylor-Lagrange, il existe $\xi_k \in]\min(\alpha, x_k), \max(\alpha, x_k)[$ tel que

$$x_{k+1} - \alpha = \phi(x_k) - \phi(\alpha) = \sum_{i=1}^{p} \frac{(x_k - \alpha)^i}{i!} \underbrace{\phi^{(i)}(\alpha)}_{=0} + \frac{(x_k - \alpha)^{p+1}}{(p+1)!} \phi^{(p+1)}(\xi_k)$$

c'est à dire

$$x_{k+1} - \alpha = \frac{(x_k - \alpha)^{p+1}}{(p+1)!} \phi^{(p+1)}(\xi_k).$$
(6.4)

De plus, $\phi \in \mathcal{C}^{\infty}(\mathcal{V})$, $\phi^{(p+1)}$ est continue sur \mathcal{V} , un fermé borné et donc

$$\exists C > 0$$
, tel que $\forall x \in \mathcal{V}, |\phi^{(p+1)}(x)| \leq C$.

Comme $\xi_k \in \mathcal{V}$, on déduit de (6.4) que

$$|x_{k+1} - \alpha| \le \frac{C}{(p+1)!} |x_k - \alpha|^{p+1}$$

et donc la convergence est d'ordre (p+1) au moins.

b. La fonction $\phi^{(p+1)}$ étant continue et $\lim_{k\to+\infty} \xi_k = \alpha$, on a

$$\lim_{k \to +\infty} \phi^{(p+1)}(\xi_k) = \phi^{(p+1)}(\alpha).$$

Comme $x_0 \in \mathcal{V} \setminus \{\alpha\}$, on a $\forall k \in \mathbb{N}$, $x_k \neq \alpha$ et donc (6.4) peut s'écrire

$$\frac{x_{k+1} - \alpha}{(x_k - \alpha)^{p+1}} = \frac{\phi^{(p+1)}(\xi_k)}{(p+1)!} \tag{6.5}$$

En prenant la limite, on obtient

$$\lim_{k \to +\infty} \frac{x_{k+1} - \alpha}{(x_k - \alpha)^{p+1}} = \frac{1}{(p+1)!} \phi^{(p+1)}(\alpha).$$

c. Soit $\varepsilon > 0$. En multipliant (6.5) par $(x_k - \alpha)^{-\varepsilon} > 0$, on obtient

$$\frac{x_{k+1} - \alpha}{(x_k - \alpha)^{p+1+\varepsilon}} = (x_k - \alpha)^{-\varepsilon} \frac{\phi^{(p+1)}(\xi_k)}{(p+1)!}$$

Or $(x-\alpha)^{-\varepsilon} \underset{x\to\alpha}{\longrightarrow} +\infty$, et $\phi^{(p+1)}(x) \underset{x\to\alpha}{\longrightarrow} \phi^{(p+1)}(\alpha) \neq 0$, ce qui entraine

$$\lim_{k \to +\infty} \frac{x_{k+1} - \alpha}{(x_k - \alpha)^{p+1+\varepsilon}} = \lim_{k \to +\infty} (x_k - \alpha)^{-\varepsilon} \frac{\phi^{(p+1)}(\xi_k)}{(p+1)!} = +\infty.$$

Donc, $\forall \varepsilon > 0$, la convergence n'est pas d'ordre $p + 1 + \varepsilon$. Elle est d'ordre (p + 1) (exactement).

 \Diamond

EXERCICE 7

Soit f une fonction de classe C^1 sur [a,b] vérifiant f(a)f(b) < 0. et $\lambda = \frac{f(b)-f(a)}{b-a}$. Soit $x_0 \in [a,b]$ donné. La suite obtenue par la méthode de la corde est donnée par

$$x_{k+1} = x_k - \frac{f(x_k)}{\lambda}, \ \forall k \in \mathbb{N}.$$

On note $\Phi(x) = x - \frac{f(x)}{\lambda}$.

Q. 1 Montrer que si pour tout $x \in [a, b]$ on a

$$\min(\lambda(x-a), \lambda(x-b)) \le f(x) \le \max(\lambda(x-a), \lambda(x-b)) \tag{7.1}$$

alors $\Phi([a,b]) \subset [a,b]$.

Q. 2 Montrer que si pour tout $x \in [a, b]$ on a

$$\min(0, 2\lambda) < f'(x) < \max(0, 2\lambda) \tag{7.2}$$

 $alors |\Phi'(x)| < 1.$

Q. 3 En déduire que sous les deux conditions précédentes la méthode de la corde converge vers l'unique solution $\alpha \in [a,b]$ de f(x)=0.

^

Correction

R. 1 Si $\lambda > 0$, l'inéquation (7.1) devient

$$\lambda(x-b) \le f(x) \le \lambda(x-a) \Leftrightarrow a \le x - \frac{f(x)}{\lambda} \le b$$

 $\Leftrightarrow a \le \Phi(x) \le b.$

Si $\lambda < 0$, l'inéquation (7.1) devient

$$\lambda(x-a) \leqslant f(x) \leqslant \lambda(x-b) \Leftrightarrow a \leqslant x - \frac{f(x)}{\lambda} \leqslant b$$

 $\Leftrightarrow a \leqslant \Phi(x) \leqslant b.$

R. 2 Si $\lambda > 0$, l'inéquation (7.2) devient

$$0 < f'(x) < 2\lambda \Leftrightarrow 0 < \frac{f'(x)}{\lambda} < 2$$
$$\Leftrightarrow -1 < 1 - \frac{f'(x)}{\lambda} < 1$$
$$\Leftrightarrow -1 < \Phi'(x) < 1.$$

Si $\lambda < 0$, l'inéquation (7.2) devient

$$2\lambda < f'(x) < 0 \Leftrightarrow 0 < \frac{f'(x)}{\lambda} < 2$$
$$\Leftrightarrow -1 < 1 - \frac{f'(x)}{\lambda} < 1$$
$$\Leftrightarrow -1 < \Phi'(x) < 1.$$

R. 3 Sous les hypothèses (7.1) et (7.2) on a $\Phi([a,b]) \subset [a,b]$ et $\forall x \in [a,b], |\Phi'(x)| < 1$. Comme f est de classe \mathcal{C}^1 sur [a,b], la fonction Φ l'est aussi. La suite (x_k) est définie par $x_{k+1} = \Phi(x_k)$. Ainsi les hypothèses du théorème ?? sont vérifiées ce qui assure l'unicité du point fixe ainsi que la convergence de la suite (x_k) vers ce point fixe.

 \Diamond

EXERCICE 8

En -1700 av. J.-C., les babyloniens ne connaissaient que les nombres rationnels (fractions) et ils utilisaient le système sexagésimal (base 60). Pour approcher la valeur $\sqrt{2}$, ils utilisaient comme approximation (voir tablette YBC 7289)

$$\alpha = 1 + \frac{24}{60} + \frac{51}{60^2} + \frac{10}{60^3} = \frac{30547}{21600}$$

L'erreur commise est $|\alpha - \sqrt{2}| \approx 5.994e - 7$.

- **Q.** 1 Comment feriez-vous pour trouver à la main une méthode permettant de trouver des nombres rationnels approchant $\sqrt{2}$.
- ${f Q.}$ 2 Généraliser la méthode pour trouver une approximation rationnelle de \sqrt{a} où a est un réel positif.
- **Q.** 3 Généraliser la méthode pour trouver une approximation rationnelle de $\sqrt[n]{a}$ où a est un réel positif et $n \in \mathbb{N}^*$.

Correction

R. 1 Il suffit de voir que $\sqrt{2}$ est la racine positive de $f(x) = x^2 - 2$ et d'appliquer la méthode de Newton par exemple. La suite des itérés de Newton s'écrit alors

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^2 - 2}{2x_k} = \frac{x_k^2 + 2}{2x_k}$$

Avec $x_0 = 1$, on obtient

k	x_k	$ \sqrt{2}-x_k $
1	$\frac{3}{2}$	8.57864e-02
2	$\frac{17}{12}$	2.45310e-03
3	$\frac{577}{408}$	2.12390e-06

Avec $x_0 = \frac{5}{4}$, on obtient

k	x_k	$ \sqrt{2}-x_k $
1	$\frac{57}{40}$	1.07864e-02
2	6449 4560	4.08236e-05
3	83176801 58814880	5.89203e-10

R. 2 Il suffit de voir que \sqrt{a} est la racine positive de $f(x) = x^2 - a$ et d'appliquer la méthode de Newton par exemple. La suite des itérés de Newton s'écrit alors

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^2 - a}{2x_k} = \frac{x_k^2 + a}{2x_k}$$

Avec a = 3 et $x_0 = 1$, on obtient

k	x_k	$ \sqrt{3}-x_k $
1	2	2.67949e-01
2	$\frac{7}{4}$	1.79492e-02
3	$\frac{97}{56}$	9.20496e-05

R. 3 Il suffit de voir que $\sqrt[n]{a}$ est la racine positive de $f(x) = x^n - a$ et d'appliquer la méthode de Newton par exemple. La suite des itérés de Newton s'écrit alors

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^n - a}{nx_k^{n-1}} = \frac{(n-1)x_k^n - a}{nx_k^{n-1}}$$

14

Avec a = 3, n = 4 et $x_0 = 1$, on obtient

k	x_k	$ \sqrt[4]{3} - x_k $
1	$\frac{3}{2}$	1.83926e-01
2	$\frac{97}{72}$	3.11482e-02
3	<u>115403137</u> 87616608	1.06368e-03
4	$\begin{array}{c} 87616608 \\ \underline{236297297271008837816738085152257} \\ 179546943199700984864483416264832 \end{array}$	1.28780e-06

 \Diamond

2 Dans \mathbb{R}^n

EXERCICE 9

Soit \mathcal{B} un espace de Banach et $U \subset \mathcal{B}$ un sous-ensemble fermé. On suppose que $\Phi : U \longrightarrow U$ est une application contractante. Soit $\boldsymbol{x}^{[0]} \in U$. On note $(\boldsymbol{x}^{[k]})_{k \in \mathbb{N}}$, la suite récurrente donnée par

$$\forall k \in \mathbb{N}, \quad \boldsymbol{x}^{[k+1]} = \boldsymbol{\phi}(\boldsymbol{x}^{[k]}). \tag{9.1}$$

Q. 1 Montrer que la suite (9.1) est bien définie $(x_k \text{ existe pour tout } k \in \mathbb{N}).$

On va démontrer que la suite (9.1) est une suite de Cauchy.

Q. 2 a. Montrer que

$$\forall k \in \mathbb{N}, \quad \| \boldsymbol{x}^{[k+1]} - \boldsymbol{x}^{[k]} \| \leqslant L^k \| \boldsymbol{x}^{[1]} - \boldsymbol{x}^{[0]} \|.$$
 (9.2)

b. Montrer que

$$\forall k \in \mathbb{N}, \ \forall l \ge 0, \ \|x_{k+l} - x_{k+l-1}\| \le L^l \| \boldsymbol{x}^{[k]} - \boldsymbol{x}^{[k-1]} \|.$$
 (9.3)

c. En déduire que,

$$\forall k \in \mathbb{N}, \ \forall p \geqslant 2, \ \|\boldsymbol{x}^{[k+p]} - \boldsymbol{x}^{[k]}\| \leqslant \frac{1 - L^p}{1 - L} L^k \|\boldsymbol{x}^{[1]} - \boldsymbol{x}^{[0]}\|.$$
 (9.4)

- Q. 3 a. Déduire de la question précédente que la suite (9.1) est une suite de Cauchy.
 - b. Montrer que la suite (9.1) converge vers un point fixe de Φ à l'ordre 1 au moins.
 - c. Montrer l'unicité du point fixe.

Correction

- R. 1 La suite $(\boldsymbol{x}^{[k]})_{k\in\mathbb{N}}$, est bien définie si la relation (9.1) permet de définir complètement (et de manière unique) l'ensemble des termes de la suite $(\boldsymbol{x}^{[k]})_{k\in\mathbb{N}}$, connaissant $\boldsymbol{x}^{[0]}$.
- Il faut donc vérifier que, $\forall k \in \mathbb{N}, \boldsymbol{x}^{[k]} \in U$, car il faut pouvoir calculer $\boldsymbol{\Phi}(\boldsymbol{x}^{[k]})$ et que $\boldsymbol{\Phi}$ est définie sur U. C'est bien sur immédiat par récurrence car $\boldsymbol{\Phi}(U) \subset U$. On propose toutefois une démonstration:
 - Initialisation: pour k = 0. Par hypothèse, $\mathbf{x}^{[0]} \in U$.
 - Hérédité: on suppose $\boldsymbol{x}^{[k]} \in U$, montrons que $\boldsymbol{x}^{[k+1]} \in U$. Par définition, $\boldsymbol{x}^{[k+1]} = \boldsymbol{\Phi}(\boldsymbol{x}^{[k]})$. Puisque par hypothèse, $\boldsymbol{\Phi}(U) \subset U$, on a $\boldsymbol{x}^{[k+1]} \in U$.

R. 2 a. La fonction Φ étant contractante sur U, on a, par définition:

$$\exists L \in [0, 1[\text{ t.q } \forall (\boldsymbol{x}, \boldsymbol{y}) \in U^2, \| \boldsymbol{\Phi}(\boldsymbol{x}) - \boldsymbol{\Phi}(\boldsymbol{y}) \| \leqslant L \| \boldsymbol{x} - \boldsymbol{y} \|.$$

On obtient alors

$$\| \boldsymbol{x}^{[k+1]} - \boldsymbol{x}^{[k]} \| = \| \boldsymbol{\Phi}(\boldsymbol{x}^{[k]}) - \boldsymbol{\Phi}(\boldsymbol{x}^{[k-1]}) \| \leqslant L \| \boldsymbol{x}^{[k]} - \boldsymbol{x}^{[k-1]} \|$$

Par récurrence, on en déduit que la proposition suivante est vraie pour tout $k \in \mathbb{N}$:

$$(\mathcal{P}_k): \| \boldsymbol{x}^{[k+1]} - \boldsymbol{x}^{[k]} \| \leqslant L^k \| \boldsymbol{x}^{[1]} - \boldsymbol{x}^{[0]} \|.$$

On propose toutefois une démonstration:

- Initialisation: (\mathcal{P}_0) est trivialement vraie.
- Hérédité: soit $k \in \mathbb{N}$, on suppose que (\mathcal{P}_k) est vérifiée. Montrons que (\mathcal{P}_{k+1}) est vraie. On a, en utilisant (9.1) et l'hypothèse de contraction sur Φ ,

$$\| \boldsymbol{x}^{[k+2]} - \boldsymbol{x}^{[k+1]} \| = \| \boldsymbol{\Phi}(\boldsymbol{x}^{[k+1]}) - \boldsymbol{\Phi}(\boldsymbol{x}^{[k]}) \| \leqslant L \| \boldsymbol{x}^{[k+1]} - \boldsymbol{x}^{[k]} \|.$$

Par hypothèse de récurrence, on en déduit

$$\left\| \boldsymbol{x}^{[k+2]} - \boldsymbol{x}^{[k+1]} \right\| \leqslant LL^{k} \left\| \boldsymbol{x}^{[1]} - \boldsymbol{x}^{[0]} \right\|$$

et donc (\mathcal{P}_{k+1}) est vraie.

b. Soient $k \in \mathbb{N}$ et $p \ge 2$. On a

$$\begin{aligned} \left\| \boldsymbol{x}^{[k+p]} - \boldsymbol{x}^{[k]} \right\| &= \left\| (\boldsymbol{x}^{[k+p]} - \boldsymbol{x}^{[k+p-1]}) + (\boldsymbol{x}^{[k+p-1]} - \boldsymbol{x}^{[k+p-2]}) + \dots + (\boldsymbol{x}^{[k+1]} - \boldsymbol{x}^{[k]}) \right\| \\ &= \left\| \sum_{l=0}^{p-1} (\boldsymbol{x}^{[k+l+1]} - \boldsymbol{x}^{[k+l]}) \right\|. \end{aligned}$$

Par application répétée de l'inégalité triangulaire pour la norme ||•||, on obtient

$$\left\| m{x}^{[k+p]} - m{x}^{[k]} \right\| \leqslant \sum_{l=0}^{p-1} \left\| m{x}^{[k+l+1]} - m{x}^{[k+l]} \right\|$$

En utilisant (9.3), on obtient alors

$$\|\boldsymbol{x}^{[k+p]} - \boldsymbol{x}^{[k]}\| \le \sum_{l=0}^{p-1} L^l \|\boldsymbol{x}^{[k+1]} - \boldsymbol{x}^{[k]}\| = \|\boldsymbol{x}^{[k+1]} - \boldsymbol{x}^{[k]}\| \sum_{l=0}^{p-1} L^l.$$

La somme correspond alors à une somme partielle d'une série géométrique et donc

$$\| \boldsymbol{x}^{[k+p]} - \boldsymbol{x}^{[k]} \| \le \frac{1 - L^p}{1 - L} \| \boldsymbol{x}^{[k+1]} - \boldsymbol{x}^{[k]} \|$$

En utilisant (9.2), on obtient alors (9.4).

R. 3 a. On a $0 \le L < 1$, et donc $L^k \to 0$ quand $k \to +\infty$. De (9.4), on déduit alors que $(\boldsymbol{x}^{[k]})$ est une suite de Cauchy.

On propose toutefois une démonstration détaillée.

Pour que $(\mathbf{x}^{[k]})$ soit une suite de Cauchy, il faut montrer que

$$\forall \epsilon > 0, \ \exists M \in \mathbb{N}, \ \text{tel que} \ \forall k \in \mathbb{N}, \ k \geqslant M, \ \forall p \in \mathbb{N}, \ \left\| \boldsymbol{x}^{[k+p]} - \boldsymbol{x}^{[k]} \right\| < \epsilon.$$

Comme 0 < L < 1, on a

$$\left\| \boldsymbol{x}^{[k+p]} - \boldsymbol{x}^{[k]} \right\| \leqslant \frac{1}{1-L} L^k \left\| \boldsymbol{x}^{[1]} - \boldsymbol{x}^{[0]} \right\|$$

Soit $\epsilon > 0$, pour avoir $\|\boldsymbol{x}^{[k+p]} - \boldsymbol{x}^{[k]}\| < \epsilon$, il est suffisant d'avoir

$$\frac{1}{1-L}L^k \left\| \boldsymbol{x}^{[1]} - \boldsymbol{x}^{[0]} \right\| < \epsilon$$

c'est à dire, comme 1 - L > 0,

$$L^k < \frac{(1-L)\epsilon}{\|\boldsymbol{x}^{[1]} - \boldsymbol{x}^{[0]}\|}.$$

La fonction ln étant croissante strictement on obtient

$$\ln(L^k) = k \ln(L) < \ln\left(\frac{(1-L)\epsilon}{\|\boldsymbol{x}^{[1]} - \boldsymbol{x}^{[0]}\|}\right).$$

Or ln(L) < 0, ce qui donne

$$k > \frac{1}{\ln(L)} \ln \left(\frac{(1-L)\epsilon}{\|\mathbf{x}^{[1]} - \mathbf{x}^{[0]}\|} \right).$$

En prenant $M \in \mathbb{N}$ tel que

$$M > \frac{1}{\ln(L)} \ln \big(\frac{(1-L)\epsilon}{\|\boldsymbol{x}^{[1]} - \boldsymbol{x}^{[0]}\|} \big)$$

alors

$$\forall k \in \mathbb{N}, \ k \geqslant M, \ \forall p \in \mathbb{N}, \ \left\| \boldsymbol{x}^{[k+p]} - \boldsymbol{x}^{[k]} \right\| < \epsilon.$$

b. La suite $(\boldsymbol{x}^{[k]})$ est une suite de Cauchy dans \mathcal{B} un espace de Banach (espace normé complet) donc elle converge dans \mathcal{B} vers un point que l'on nomme $\boldsymbol{\beta}$. De plus pour tout k, $\boldsymbol{x}^{[k]}$ appartient à U fermé, donc sa limite $\boldsymbol{\beta}$ appartient aussi à U.

La fonction $\pmb{\Phi}$ étant contractante sur U, elle est donc continue sur U. On a alors par continuité de $\pmb{\Phi}$

$$\lim_{k\to+\infty} \mathbf{\Phi}(\mathbf{x}^{[k]}) = \mathbf{\Phi}(\boldsymbol{\beta}).$$

Comme $\boldsymbol{x}^{[k+1]} = \boldsymbol{\Phi}(\boldsymbol{x}^{[k]})$ on aussi

$$\lim_{k\to+\infty} \mathbf{\Phi}(\mathbf{x}^{[k]}) = \lim_{k\to+\infty} \mathbf{x}^{[k+1]} = \boldsymbol{\beta}$$

et donc β est un point fixe de Φ . L'existence d'un point fixe est donc établi.

On a donc

$$\left\| oldsymbol{x}^{[k+1]} - oldsymbol{eta}
ight\| = \left\| oldsymbol{\Phi}(oldsymbol{x}^{[k]}) - oldsymbol{\Phi}(oldsymbol{eta})
ight\| \leqslant L \left\| oldsymbol{x}^{[k]}) - oldsymbol{eta}
ight\|.$$

Comme $0 \le L < 1$, la convergence est au moins d'ordre 1.

c. On suppose qu'il existe β_1 et β_2 dans [a,b] tels que $\Phi(\beta_1) = \beta_1$ et $\Phi(\beta_2) = \beta_2$. Dans ce cas on a

$$\|\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2\| = \|\boldsymbol{\Phi}(\boldsymbol{\beta}_1) - \boldsymbol{\Phi}(\boldsymbol{\beta}_2)\| \leqslant L \|\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2\|.$$

On en déduit

$$(1-L)\|\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2\| \leqslant 0$$

Comme 1-L>0, on en déduit $\pmb{\beta}_1=\pmb{\beta}_2,$ c'est à dire l'unicité du point fixe.