Partiel du 6 novembre 2020 (présentiel) durée : 2h00.

Sans documents et sans appareils électroniques

Le barême est donné à titre indicatif

EXERCICE 1 (5.5 POINTS)

Dans cet exercice les notations suivantes seront utilisées. Si $\mathbb{A} \in \mathcal{M}_{m,n}(\mathbb{R})$ alors

- $\mathbb{A}_{:,j}$ correspond au j-ème vecteur colonne de \mathbb{A} et s'écrit algorithmiquement $\mathbb{A}(:,j)$. Si on écrit $\mathbb{v} \leftarrow \mathbb{A}(:,j)$ alors l'accès aux éléments de \mathbb{v} s'effectue avec la commande $\mathbb{v}(i)$. De plus, au niveau algorithmique, si \mathbb{w} est un vecteur colonne ou ligne de dimension m, alors $\mathbb{A}(:,j) \leftarrow \mathbb{w}$ est autorisé et correspond mathématiquement à $\mathbb{A}_{:,j} = \mathbf{w}$ ou $\mathbb{A}_{:,j} = \mathbf{w}^t$ c'est à dire $\mathbb{A}_{i,j} = \mathbf{w}_i$, $\forall i \in [1, m]$.
- $\mathbb{A}_{i,:}$ correspond au i-ème vecteur ligne de \mathbb{A} et s'écrit algorithmiquement $\mathbb{A}(\mathtt{i},:)$ et si on écrit $\mathtt{u} \leftarrow \mathbb{A}(\mathtt{i},:)$ alors l'accès aux éléments de \mathtt{u} s'effectue avec la commande $\mathtt{u}(\mathtt{j})$. De plus, au niveau algorithmique, si \mathtt{w} est un vecteur ligne ou colonne de dimension n, alors $\mathbb{A}(\mathtt{i},:) \leftarrow \mathtt{w}$ est autorisé et correspond mathématiquement à $\mathbb{A}_{i,:} = \mathbf{w}$ ou $\mathbb{A}_{i,:} = \mathbf{w}^t$ c'est à dire $\mathbb{A}_{i,j} = \mathbf{w}_j, \ \forall j \in [1,n]$.
- **Q.** 1 (Algo.) Soient u et v deux vecteurs de \mathbb{R}^n . Ecrire la fonction ProSca permettant de retourner le produit scalaire de ces deux vecteurs.
- **Q. 2** Soient $\mathbf{u} \in \mathbb{R}^p$ et $\mathbb{A} \in \mathcal{M}_{m,n}(\mathbb{R})$.
 - a. Rappeler précisement les hypothèses et les formules permettant le calcul de $v = \mathbb{A}u$.
 - **b.** Ecrire v_i comme un produit scalaire en utilisant les notations $\mathbb{A}_{:,k}$ ou $\mathbb{A}_{k,:}$.
 - c. (Algo.) Ecrire la fonction ProMatVec permettant de retourner $\mathbb{A} u$ en utilisant la fonction ProSca.
- **Q. 3** Soient $\mathbb{A} \in \mathcal{M}_{m,n}(\mathbb{R})$ et $\mathbb{B} \in \mathcal{M}_{p,q}(\mathbb{R})$.
 - a. Rappeler précisement les hypothèses et les formules permettant le calcul de $\mathbb{G}=\mathbb{AB}$.
 - b. Ecrire $\mathbb{G}_{:,j}$ (j-ème vecteur colonne de \mathbb{G}) comme un produit matrice vecteur
 - c. (Algo.) Ecrire la fonction ProMatMat permettant de retourner G en utilisant la fonction ProMatVec.

EXERCICE 2 (6.75 POINTS)

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^2 qui possède un zéro simple x^* , c'est à dire tel que

$$f(x^*) = 0, \quad f'(x^*) \neq 0.$$

On cherche à approcher x^* par l'algorithme suivant:

$$\begin{cases} x_0 \in \mathbb{R} \\ x_{n+1} = \Phi(x_n), \ \forall n \in \mathbb{N} \end{cases}$$

avec

$$\Phi(x) = x - \frac{f^{2}(x)}{f(x + f(x)) - f(x)}.$$

On admet que x_n est bien défini pour tout $n \ge 0$. L'objectif de cet exercice est de prouver que si $x_n \xrightarrow[n \to +\infty]{} x^*$, alors la convergence est au moins d'ordre 2.

On note $e_n \stackrel{\mathsf{def}}{=} x_n - x^*, \forall n \in \mathbb{N}.$

Q. 1 Par un développement de Taylor montrer qu'il existe $\xi_1^n \in]\min(x_n, x_n + f(x_n)), \max(x_n, x_n + f(x_n))[$ tel que

$$e_{n+1} = e_n - \frac{f(x_n)}{f'(x_n) + \frac{1}{2}f''(\xi_1^n)f(x_n)}.$$
(1)

Q. 2 a. Par un développement de Taylor montrer qu'il existe $\xi_2^n \in]\min(x_n, x^*), \max(x_n, x^*)[$ tel que

$$f(x_n) = f'(x_n)e_n - \frac{1}{2}f''(\xi_2^n)e_n^2.$$
(2)

b. En déduire que

$$e_{n+1} = \frac{1}{2} \frac{e_n f(x_n) f''(\xi_1^n) + f''(\xi_2^n) e_n^2}{f'(x_n) + \frac{1}{2} f''(\xi_1^n) f(x_n)}.$$
 (3)

Q. 3 a. Par un développement de Taylor montrer qu'il existe $\xi_3^n \in]\min(x_n, x^*), \max(x_n, x^*)[$ tel que

$$f(x_n) = f'(\xi_3^n)e_n. \tag{4}$$

b. En déduire que

$$e_{n+1} = \frac{1}{2} e_n^2 \frac{f''(\xi_1^n) f'(\xi_3^n) + f''(\xi_2^n)}{f'(x_n) + \frac{1}{2} f''(\xi_1^n) f(x_n)}.$$
 (5)

Q. 4 a. En déduire que si $x_n \xrightarrow[n \to +\infty]{} x^*$, alors

$$\lim_{n \to \infty} \frac{e_{n+1}}{e_n^2} = \alpha \in \mathbb{R} \tag{6}$$

avec une constante α que l'on explicitera.

- b. Que peut-on en conclure?
- Q. 5 Expliquer pourquoi cet algorithme peut-être considéré comme une variante de l'algorithme de Newton.

EXERCICE 3 (10.25 POINTS)

- Q. 1 a. Rappeler précisement la définition d'une matrice hermitienne définie positive.
 - **b**. Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne et (λ, \mathbf{u}) un élément propre de \mathbb{A} . Montrer que $\lambda \in \mathbb{R}$.
 - c. Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne définie positive et (λ, \mathbf{u}) un élément propre de A. Montrer que $\lambda \in \mathbb{R}^{+*}$.
 - d. En déduire qu'une matrice hermitienne définie positive est inversible.

Soient $k \in \mathbb{N}$, $k \ge 1$ et $\mathbb{A} \in \mathcal{M}_{k+1}(\mathbb{C})$ une matrice **hermitienne définie positive** que l'on décompose sous la forme bloc

$$\mathbb{A} = \begin{pmatrix} \mathbb{B} & | f \\ \hline e^{*} & \alpha \end{pmatrix}$$

οù

- \mathbb{B} est la matrice de $\mathcal{M}_k(\mathbb{C})$ telle que $B_{i,j} = A_{i,j}, \forall (i,j) \in [1,k]^2$,
- f est le vecteur de \mathbb{C}^k tel que $f_i = A_{i,k+1}, \forall i \in [1,k]$,
- \boldsymbol{e} est le vecteur de \mathbb{C}^k tel que $e_i = \overline{\mathbf{A}_{k+1,i}}, \forall i \in [1,k]$
- $\alpha \in \mathbb{C}$ est le scalaire $\alpha = A_{k+1,k+1}$.
- **Q. 2** *a.* Montrer que $\alpha \in \mathbb{R}^{+*}$.
 - **b**. Montrer que \mathbb{B} est inversible.
 - c. Que peut-on dire des éléments diagonaux de \mathbb{B} ?

Soit $\omega \in \mathbb{R}^*$. Nous allons maintenant démontrer par récurrence sur l'ordre $n \geq 2$ des matrices que si $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ est une matrice **hermitienne définie positive** alors il existe $\mathbb{W} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure telle que $W_{i,i} = \omega$, $\forall i \in [1, n]$, et $\mathbb{U} \in \mathcal{M}_n(\mathbb{C})$ triangulaire supérieure inversible telles que

$$\mathbb{A} = \mathbb{WU}. \tag{1}$$

- **Q.** 3 Démontrer l'unicité de la factorisation $\mathbb{A} = \mathbb{WU}$ en supposant son existence.
- **Q. 4** a. Ecrire proprement la proposition (\mathcal{P}_n) à démontrer par récurrence.
 - **b.** Initialisation: montrer que (\mathcal{P}_2) est vraie.
 - c. Hérédité: en supposant que (\mathcal{P}_n) est vraie montrer que (\mathcal{P}_{n+1}) est vérifiée (on pourra utiliser la décomposition bloc précédente). Conclure.