Ing. MACS 1

2024-2025

Analyse Numérique I : Rappels 1

1 Analyse

1.1 En vrac

Théorème 1.1 (Théorème de Rolle). Soient a, b deux réels, a < b, et, $f : [a, b] \longrightarrow \mathbb{R}$. On suppose que

- f est continue sur[a,b],
- f est dérivable sur]a, b[,
- --f(a)=f(b).

Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

Théorème 1.2 (Théorème de Bolzano ou des valeurs intermédiaires). Soit $f:[a,b] \subset \mathbb{R} \longrightarrow \mathbb{R}$ une application continue. Si f(a) et f(b) ne sont pas de même signe (i.e. f(a)f(b) < 0) alors il existe au moins $c \in]a,b[$ tel que f(c) = 0.

Théorème 1.3 (Théorème des accroissements finis). Soient a et b deux réels, a < b et f une fonction continue sur l'intervalle fermé [a,b], dérivable sur l'intervalle ouvert [a,b]. Alors il existe $\xi \in]a,b[$ tel que

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Proposition 1.4 (Formule de Taylor-Lagrange d'ordre n). Soit $n \in \mathbb{N}$ et $f \in \mathcal{C}^n([a,b])$ dont la dérivée n-ième est dérivable sur [a,b[. Alors

• pour tout x, y dans $[a, b], x \neq y$, il existe $\xi \in \min(x, y), \max(x, y)$ tel que

$$f(x) = f(y) + \sum_{k=1}^{n} \frac{(x-y)^k}{k!} f^{(k)}(y) + \frac{(x-y)^{n+1}}{(n+1)!} f^{(n+1)}(\xi)$$
(1)

• $\forall t \in [a,b], \forall h \in \mathbb{R}^* \text{ v\'erifiant } (t+h) \in [a,b], \text{ il existe } \xi \in]\min(t,t+h), \max(t,t+h)[\text{ tel quel }$

$$f(t+h) = f(t) + \sum_{k=1}^{n} \frac{h^k}{k!} f^{(k)}(t) + \frac{h^{n+1}}{(n+1)!} f^{(n+1)}(\xi)$$
 (2)

Définition 1.5. Soient f et g deux fonctions définies au voisinage de $a \in \mathbb{R}$. On dit que f est **dominée** par g au voisinage de a, si, au voisinage de a, il existe une fonction θ bornée telle que $f = \theta g$. Dans ce cas, on dit aussi que f **se comporte comme un grand O de** g au voisinage de a et on note alors $f \stackrel{a}{=} \mathcal{O}(g)$.

Définition 1.6. Soit f une fonction définie au voisinage de 0. On dit que f(h) se comporte comme un grand O de h^p (au voisinage de 0) si f est dominée par $h \mapsto h^p$ au voisinage de 0 et on note alors $f(h) = \mathcal{O}(h^p)$.

Proposition 1.7 (Formule de Taylor-Landau d'ordre n). Soit $n \in \mathbb{N}$ et $f \in \mathcal{C}^{n+1}([a,b])$, alors $\forall t \in [a,b]$, $\forall h \in \mathbb{R}^*$ vérifiant $(t+h) \in [a,b]$, il existe $\xi \in]\min(t,t+h), \max(t,t+h)[$ tel quel

$$f(t+h) = f(t) + \sum_{k=1}^{n} \frac{h^{k}}{k!} f^{(k)}(t) + \mathcal{O}(h^{n+1})$$
 (3)

Corollaire 1.8 (Théorème de la bijection). Si f est une fonction continue et strictement monotone sur un intervalle [a,b] et à valeurs réelles, alors elle constitue une bijection entre [a,b] et l'intervalle fermé dont les bornes sont f(a) et f(b).

Proposition 1.9. Soit f est une fonction bijective continue d'un intervalle ouvert $I \subset \mathbb{R}$ sur un intervalle ouvert $J \subset \mathbb{R}$. Si f est dérivable en $\alpha \in I$ et que $f'(\alpha) \neq 0$ alors sa réciproque f^{-1} est dérivable en $\beta = f(\alpha) \in J$ et

$$(f^{-1})'(\beta) = \frac{1}{f'(\alpha)}$$
 ou encore $(f^{-1})'(\beta) = \frac{1}{f'(f^{-1}(\beta))}$

1.2 Espace métrique ²

Définition 1.10 (Distance sur un ensemble). On appelle **distance** sur un ensemble E, une application d de E^2 dans \mathbb{R}_+ telle que pour tout $(x,y,z) \in E^3$ on a

- $sym\acute{e}trie: d(\boldsymbol{x}, \boldsymbol{y}) = d(\boldsymbol{y}, \boldsymbol{x}),$
- $s\'{e}paration : d(\mathbf{x}, \mathbf{y}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{y},$
- inégalité triangulaire : $d(x, z) \leq d(x, y) + d(y, z)$

Voici quelques exemples de distances :

- $-\operatorname{d}(x,y) = |x-y| \operatorname{dans} \mathbb{R}, \mathbb{C}, \mathbb{Z} \text{ ou } \mathbb{Q}$
- $d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} \boldsymbol{y}\|$ dans \mathbb{R}^n , où $\|.\|$ est l'une quelconque des normes habituelles.

Définition 1.11 (Espace métrique). Un ensemble E muni d'une distance d est appelé espace métrique et on le note (E,d).

Soient (E, d) un espace métrique, $\boldsymbol{a} \in E$ et $r \in \mathbb{R}_+$. On appelle

• boule ouverte de centre \boldsymbol{a} et de rayon r l'ensemble

$$\mathcal{B}(\boldsymbol{a}, r) = \{ \boldsymbol{x} \in E; \ d(\boldsymbol{x}, \boldsymbol{a}) < r \},\$$

• boule fermée de centre \boldsymbol{a} et de rayon r l'ensemble

$$\overline{\mathcal{B}(\boldsymbol{a},r)} = \{ \boldsymbol{x} \in E; \ d(\boldsymbol{x},\boldsymbol{a}) \leqslant r \},\$$

 $\bullet\,$ sphere de centre \pmb{a} et de rayon r l'ensemble

$$S(\boldsymbol{a},r) = \{ \boldsymbol{x} \in E; \ d(\boldsymbol{x},\boldsymbol{a}) = r \},\$$

Une partie $A \subset E$ est dites **bornée** si

$$\exists x \in E, \exists R \in \mathbb{R}_{+}^{*}, A \subset \mathcal{B}(x, R).$$

^{1.} auteur : F. Cuvelier. Compilé le 8 octobre 2024 à 16 h 05

^{2.} En grande partie extrait du site bibmat

1.2.1 Suites

Définition 1.12 (Suite convergente). Soient (E, d) un espace métrique et $(\mathbf{u}^{[k]})_{k \in \mathbb{N}}$ une suite d'éléments de E. On dit que la suite $(\mathbf{u}^{[k]})_{k \in \mathbb{N}}$ converge si

$$\exists \boldsymbol{\alpha} \in E, \ \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall k > N, \ d(\boldsymbol{u}^{[k]}, \boldsymbol{\alpha}) < \epsilon.$$
 (4)

Dans ce cas on dit que la suite $(\mathbf{u}^{[k]})_{k\in\mathbb{N}}$ converge vers $\boldsymbol{\alpha} \in E$.

Une suite qui ne converge vers aucun $\alpha \in E$ est dites **divergente** et vérifie

$$\forall \boldsymbol{\alpha} \in E, \ \exists \epsilon > 0, \ \forall N \in \mathbb{N}, \ \exists k > N, \ d(\boldsymbol{u}^{[k]}, \boldsymbol{\alpha}) \geqslant \epsilon.$$

Si la suite $(\boldsymbol{u}^{[k]})$ de E converge vers α (nécessairement unique dans E) alors on dit que $\boldsymbol{\alpha}$ est la **limite** de $(\boldsymbol{u}^{[k]})$ et on note

$$\lim_{k \to +\infty} \boldsymbol{u}^{[k]} = \boldsymbol{\alpha} \text{ ou } \boldsymbol{u}^{[k]} = \underset{k \to +\infty}{=} \boldsymbol{\alpha}.$$

1.2.2 Ouverts et fermés

Soit (E, d) un espace métrique.

Soient $x \in E$ et $V \subset E$. On dit que V est un voisinage de x s'il existe $r \in \mathbb{R}_+^*$ tel que $\mathcal{B}(x,r) \subset V$.

On dit que $U \subset E$ est un **ouvert** de E si elle est voisinage de tous ses points :

$$\forall \boldsymbol{x} \in U, \ \exists r \in \mathbb{R}_{+}^{*}, \ \mathcal{B}(\boldsymbol{x}, r) \subset U$$
 (5)

Proposition 1.13. • E et \emptyset sont des ouverts,

- une réunion quelconque d'ouverts est un ouvert,
- une intersection finie d'ouverts est un ouvert.

On dit que $U \subset E$ est un **fermé** de E si son complémentaire est un ouvert de E.

Proposition 1.14. • E et ∅ sont des fermés,

- une réunion finie de fermés est un fermé,
- une intersection quelconque de fermés est un fermé.

Soit $A \subset E$.

• On dit que $x \in E$ est un point intérieur de A si

$$\exists r \in \mathbb{R}^*_+, \ \mathcal{B}(\boldsymbol{x}, r) \subset A.$$

On appelle intérieur de A et on note \mathring{A} l'ensemble des points intérieurs de A.

L'ensemble \mathring{A} est un ouvert : c'est le plus grand ouvert contenu dans A.

• On dit que $x \in E$ est un point adhérent à A si

$$\forall r \in \mathbb{R}_+^*, \ \mathcal{B}(\boldsymbol{x},t) \cap A \neq \emptyset.$$

On appelle **adhérence de** A et on note \overline{A} l'ensemble des points adhérents de A. L'ensemble \overline{A} est un fermé : c'est le plus petit fermé contenant A.

Théorème 1.15. Soient $A \subset E$ et $x \in E$.

- $x \in \overline{A}$ si et seulement s'il existe une suite $(u^{[k]})$ de A qui converge vers x.
- A est fermé si et seulement si, pour toute suite $(\mathbf{u}^{[k]})$ de A qui converge vers $\boldsymbol{\alpha} \in E$, alors $\boldsymbol{\alpha} \in A$.

Définition 1.16. Une partie $K \subset E$ est dites **compacte** si, de toute suite $(\mathbf{u}^{[k]})$ de K, on peut extraire une sous-suite convergente vers un élement de K.

- toute réunion finie de compacts est compacte,
- toute intersection quelconque de compacts est compacte,
- toute partie compacte de E est fermée et bornée.

1.2.3 Limites et continuité

Soient (E,d) et (F,d) deux espaces métriques, et $f:E\longrightarrow F$ une fonction. Soit $\pmb{\alpha}\in E$. on dit que f admet une limite en $\pmb{\alpha}$ si

$$\exists \boldsymbol{\beta} \in F, \ \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall \boldsymbol{x} \in E, \ \left(d(\boldsymbol{x}, \boldsymbol{\alpha}) < \delta \ \Rightarrow \ d(f(\boldsymbol{x}), \boldsymbol{\beta}) < \varepsilon \right)$$

$$\tag{6}$$

Cette limite, si elle existe, est nécessairement unique, égale à $\pmb{\beta}$, et on note alors

$$\lim_{x\to\alpha} f(x) = \beta \text{ ou } f(x) \longrightarrow_{x\to\alpha} \beta.$$

Proposition 1.17. f admet une limite $\boldsymbol{\beta}$ en $\boldsymbol{\alpha}$ si et seulement si pour toute suite $\boldsymbol{u}^{[k]}$ de E qui converge vers $\boldsymbol{\alpha}$, alors la suite $f(\boldsymbol{u}^{[k]})$ de F converge vers $\boldsymbol{\beta}$.

Définition 1.18. Soient (E,d) et (F,d) deux espaces métriques, et $f:E\longrightarrow F$ une fonction.

• f est continue en $\alpha \in E$ si f admet une limite en α (nécessairement égale à $f(\alpha)$) ou encore

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall \boldsymbol{x} \in E, \ \left(d(\boldsymbol{x}, \boldsymbol{\alpha}) < \delta \ \Rightarrow \ d(f(\boldsymbol{x}), f(\boldsymbol{\alpha})) < \varepsilon \right).$$
 (7)

• f est continue sur $A \subset E$ si elle est continue en chaque point de A.

Théorème 1.19. Soient (E,d) et (F,d) deux espaces métriques, et $f:E\longrightarrow F$ une fonction. f est continue en $\alpha\in E$ si et seulement si, pour toute suite $\boldsymbol{u}^{[k]}$ de E qui converge vers α , alors la suite $f(\boldsymbol{u}^{[k]})$ de F converge vers $f(\alpha)$.

Théorème 1.20. Soient (E,d) et (F,d) deux espaces métriques, et $f:E\longrightarrow F$ une fonction. Les assertions suivantes sont équivalentes :

- f est continue sur E,
- L'image réciproque d'un ouvert de F par f est un ouvert de E.
- L'image réciproque d'un fermé de F par f est un fermé de E.

Définition 1.21. Soient (E, d) et (F, d) deux espaces métriques, et $f : E \longrightarrow F$ une fonction. On dit que f est **Uniformément continue** sur $A \subset E$ si

$$\forall \varepsilon > 0, \ \exists \delta > 0 \ tel \ que \ \forall (\boldsymbol{x}, \boldsymbol{y}) \in A^2, \ \left(\ \mathrm{d}(\boldsymbol{x}, \boldsymbol{y}) < \delta \ \Rightarrow \ \mathrm{d}(f(\boldsymbol{x}), f(\boldsymbol{y})) < \varepsilon \right)$$

Définition 1.22. Soient (E,d) et (F,d) deux espaces métriques, et $f:E\longrightarrow F$ une fonction.

• On dit que f est Lipschitzienne de rapport $K \in \mathbb{R}_+$ ou K-lipschitzienne sur $A \subset E$ si

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in A^2$$
, $d(f(\boldsymbol{x}), f(\boldsymbol{y})) \leq K d(\boldsymbol{x}, \boldsymbol{y})$.

- On dit que f est contractante sur $A \subset E$ si elle est lipschitzienne de rapport $K \in [0,1[$ sur $A \subset E$.
- Toute application lipschitzienne est uniformément continue.
- Toute application uniformément continue est continue.

Les réciproques sont fausses.

Théorème 1.23. Soient (E,d) et (F,d) deux espaces métriques, K un compact de E, et $f:K\longrightarrow F$. Si f est continue sur K alors f(K) est un compact de F.

Théorème 1.24 (Théorème de Heine). Toute fonction continue sur un compact est uniformément continue.

1.2.4 Suites de Cauchy

Définition 1.25 (Suite de Cauchy). Soit (E, d) un espace métrique. Une suite $(\mathbf{z}^{[k]})_{k \in \mathbb{N}}$ d'éléments de E est dites de Cauchy si

$$\forall \epsilon > 0, \exists M \in \mathbb{N}, \text{ tel que } \forall (p,q) \in \mathbb{N}^2, p,q \geqslant M, d(\boldsymbol{x}^{[p]},\boldsymbol{x}^{[q]}) < \epsilon.$$

ce qui correspond à

$$\lim_{m \to +\infty} \sup_{p,q \ge m} d(\boldsymbol{x}^{[p]}, \boldsymbol{x}^{[q]}) = 0.$$

Une autre manière de l'écrire est

$$\forall \epsilon > 0, \ \exists M \in \mathbb{N}, \ tel \ que \ \forall k \in \mathbb{N}, \ k \geqslant M, \ \forall l \in \mathbb{N}, \ \mathrm{d}(\boldsymbol{x}^{[k+l]}, \boldsymbol{x}^{[k]}) < \epsilon.$$

ce qui correspond à

$$\lim_{m \to +\infty} \sup_{k \geqslant m, l \geqslant 0} \mathrm{d}(\boldsymbol{x}^{[k+l]}, \boldsymbol{x}^{[k]}) = 0.$$

Définition 1.26 (Espace métrique complet). Un espace metrique est dit complet si toute suite de Cauchy converge.

Proposition 1.27. Si E est un espace vectoriel normé de norme $\|.\|$ alors E est un espace métrique pour la distance d issue de sa norme et définie par $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$, $\forall (\mathbf{x}, \mathbf{y}) \in E^2$.

Définition 1.28 (Espace de Banach). On appelle espace de Banach un espace vectoriel normé complet pour la distance issue de sa norme.

Par exemple, les espaces vectoriels normés $(\mathbb{R}, |\bullet|), (\mathbb{C}, |\bullet|), (\mathbb{R}^n, |\bullet|), (\mathbb{C}^n, |\bullet|)$ sont des espaces de Banach. Plus généralement, un espace vectoriel normé de dimension finie est un espace de Banach.

1.2.5 Ordre de convergence

Définition 1.29 (Ordre de convergence). Soient (E, d) un espace métrique et $(\boldsymbol{u}^{[k]})_{k \in \mathbb{N}}$ une suite d'éléments de E convergeant vers $\boldsymbol{\alpha} \in E$ avec, $\forall k \in \mathbb{N}, \boldsymbol{u}^{[k]} \neq \alpha$.

Soit $p \in [1, +\infty[$. On dit que cette suite converge vers α avec un ordre p au moins si

$$\exists C > 0, \ \exists k_0 \in \mathbb{N}, \ tels \ que \ \forall k \geqslant k_0, \ d(\boldsymbol{u}^{[k+1]}, \boldsymbol{\alpha}) \leqslant C d(\boldsymbol{u}^{[k]}, \boldsymbol{\alpha})^p.$$
 (8)

 $où C < 1 \ si \ p = 1.$

On dit que cette suite $converge\ vers\ \alpha\ avec\ un\ ordre\ p\ (exactement)$ si elle converge à l'ordre p au moins et si

$$\forall \varepsilon > 0, \quad \lim_{k \to +\infty} \frac{\mathrm{d}(\boldsymbol{u}^{[k+1]}, \boldsymbol{\alpha})}{\mathrm{d}(\boldsymbol{u}^{[k]}, \boldsymbol{\alpha})^{p+\varepsilon}} = +\infty.$$
 (9)

Soient (E, d) un espace métrique et $(\boldsymbol{u}^{[k]})_{k \in \mathbb{N}}$ une suite d'éléments de E convergeant vers $\boldsymbol{\alpha} \in E$ avec, $\forall k \in \mathbb{N}$, $\boldsymbol{u}^{[k]} \neq \alpha$.

Soit $p \in [1, +\infty[$.

La suite converge vers α à l'ordre 1 (exactement) si

$$\exists \mu \in]0, 1[$$
, tel que $\lim_{k \to +\infty} \frac{\mathrm{d}(\boldsymbol{u}^{[k+1]}, \boldsymbol{\alpha})}{\mathrm{d}(\boldsymbol{u}^{[k]}, \boldsymbol{\alpha})} = \mu.$ (10)

Dans ce cas la convergence est dite linéaire.

- Si (10) est vérifiée pour $\mu = 0$, alors la convergence est dites super-linéaire .
- Si (10) n'est vérifiée pour aucun μ ∈]0, 1 [, alors la convergence est dites sous-linéaire.

La suite converge vers α à l'ordre p > 1 (exactement) si

$$\exists \mu > 0$$
, tel que $\lim_{k \to +\infty} \frac{\mathrm{d}(\boldsymbol{u}^{[k+1]}, \boldsymbol{\alpha})}{\mathrm{d}(\boldsymbol{u}^{[k]}, \boldsymbol{\alpha})^p} = \mu$. (11)

et dans ce cas la convergence est super-linéaire.

La convergence d'ordre 2 (resp. 3) est dite quadratique (resp. cubique).

2 Algèbre linéaire

Soit V un espace vectoriel de dimension finie n, sur le corps $\mathbb R$ des nombres réels, ou sur le corps $\mathbb C$ des nombres complexes. Notons plus généralement $\mathbb K$ le corps $\mathbb R$ ou $\mathbb C$.

2.1 Vecteurs

Une base de V est un ensemble $\{e_1,e_2,\ldots,e_n\}$ de n vecteurs linéairement indépendants. Le vecteur $v=\sum_{i=1}^n v_i e_i$ sera représenté par le vecteur colonne

$$\boldsymbol{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

et on désignera par $\boldsymbol{v}^{\mathtt{t}}$ et \boldsymbol{v}^{*} les vecteurs lignes suivants

$$\boldsymbol{v}^{\mathsf{t}} = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}, \ \boldsymbol{v}^{*} = \begin{pmatrix} \overline{v_1} & \overline{v_2} & \cdots & \overline{v_n} \end{pmatrix}$$

où $\overline{\alpha}$ est le nombre **complexe conjugué** du nombre α .

Définition 2.1. — Le vecteur ligne v^t est le vecteur transposé du vecteur colonne v.
 — Le vecteur ligne v^{*} est le vecteur adjoint du vecteur colonne v.

Définition 2.2. L'application $\langle \bullet, \bullet \rangle : \mathbb{K}^n \times \mathbb{K}^n \to \mathbb{K}$ définie pour tout $(u, v) \in \mathbb{K}^n \times \mathbb{K}^n$ par

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u}^{t}.\boldsymbol{v} = \boldsymbol{v}^{t}.\boldsymbol{u} = \sum_{i=1}^{n} u_{i}v_{i}, \quad si \quad \mathbb{K} = \mathbb{R}$$
 (12)

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u}^*.\boldsymbol{v} = \overline{\boldsymbol{v}^*.\boldsymbol{u}} = \overline{\langle \boldsymbol{v}, \boldsymbol{u} \rangle} = \sum_{i=1}^{n} \overline{u_i} v_i, \quad si \quad \mathbb{K} = \mathbb{C}$$
 (13)

est appelée **produit scalaire** euclidien si $\mathbb{K}=\mathbb{R}$, hermitien a si $\mathbb{K}=\mathbb{C}$. Pour rappeler la dimension de l'espace, on écrit

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \langle \boldsymbol{u}, \boldsymbol{v} \rangle_{n}$$
.

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{v}^*.\boldsymbol{u} = \sum_{i=1}^n u_i \overline{v_i}.$$

Dans ce cas le produit scalaire est une forme sesquilinéaire à droite.

a. La convention choisie pour le produit scalaire hermitien étant ici : linéarité à droite et semi-linéarité à gauche. Il est aussi possible de définir le produit scalaire hermitien par le complexe conjugué de (13) :

Définition 2.3. Soit V est un espace vectoriel muni d'un produit scalaire.

- \diamond Deux vecteurs **u** et **v** sont Orthogonaux si $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.
- ♦ Un vecteur v est orthogonal à une partie U de V si

$$\forall \boldsymbol{u} \in U, \langle \boldsymbol{u}, \boldsymbol{v} \rangle = 0.$$

On note $\boldsymbol{v} \perp U$.

 \diamond Un ensemble de vecteurs $\{v_1, v_2, \dots, v_k\}$ de l'espace V est dit orthonormal si

$$\langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle = \delta_{i,j}, \ \forall (i,j) \in [1,k]^2$$

où δ_{ij} est le **symbole de Kronecker** : $\delta_{i,j} = \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{si } i \neq j. \end{cases}$

Définition 2.4. Le vecteur nul de \mathbb{K}^n est représenté par $\mathbf{0}_n$ ou $\mathbf{0}$ lorsqu'il n'y a pas d'ambiquité.

Définition 2.5. Soit $\mathbf{u} \in \mathbb{K}^n$ non nul. On définit l'opérateur de projection sur \mathbf{u} par

$$\operatorname{proj}_{\boldsymbol{u}}(\boldsymbol{v}) = \frac{\langle \boldsymbol{u}, \boldsymbol{v} \rangle}{\langle \boldsymbol{u}, \boldsymbol{u} \rangle} \boldsymbol{u} = \frac{1}{\langle \boldsymbol{u}, \boldsymbol{u} \rangle} \boldsymbol{u} \boldsymbol{u}^* \boldsymbol{v}, \quad \forall \boldsymbol{v} \in \mathbb{K}^n.$$
 (14)

La matrice $\mathbb{P}_{\mathbf{u}} = \mathbf{u}\mathbf{u}^*$ s'appelle la matrice de la projection orthogonale suivant le vecteur \mathbf{u} .

Proposition 2.6. Le procédé d'orthonormalisation de Gram-Schmidt est un algorithme permettant de construire une famille orthonormée à partir d'une famille libre $\{v_i\}_{i\in [1,n]}$ de \mathbb{K}^n . On construit successivement les vecteurs \mathbf{u}_i

$$\forall i \in [\![1,p]\!], \quad \boldsymbol{u}_i = \boldsymbol{v}_i - \sum_{k=1}^{i-1} \operatorname{proj}_{\boldsymbol{u}_k} \left(\boldsymbol{v}_i\right) = \boldsymbol{v}_i - \sum_{k=1}^{i-1} \frac{\langle \boldsymbol{u}_k, \boldsymbol{v}_i \rangle}{\langle \boldsymbol{u}_k, \boldsymbol{u}_k \rangle} \boldsymbol{u}_k.$$

La famille $\{ \pmb{u}_i \}_{i \in [\![1,p]\!]}$ est alors une famille orthogonale de \mathbb{K}^n et

$$\forall i \in [1, p], \quad \text{Vect}(\boldsymbol{u}_1, \dots, \boldsymbol{u}_i) = \text{Vect}(\boldsymbol{v}_1, \dots, \boldsymbol{v}_i).$$

Pour construire une famille orthonormée $\{z_i\}_{i\in[1,p]}$, il suffit de normaliser les vecteurs de la famille orthonormée qonale:

$$\forall i \in [1, p], \quad \boldsymbol{z}_i = \frac{\boldsymbol{u}_i}{\left< \boldsymbol{u}_i, \boldsymbol{u}_i \right>^{1/2}}.$$

2.2 Matrices

2.2.1 Généralités

Une matrice à m lignes et n colonnes est appelée matrice de type (m,n), et on note $\mathcal{M}_{m,n}(\mathbb{K})$, ou simplement $\mathcal{M}_{m,n}$, l'espace vectoriel sur le corps \mathbb{K} formé par les matrices de type (m,n) à éléments dans \mathbb{K} .

Une matrice $\mathbb{A} \in \mathcal{M}_{m,n}(\mathbb{K})$ d'éléments $A_{ij} \in \mathbb{K}$ est notée

$$\mathbb{A} = (\mathbf{A}_{ij})_{1 \leqslant i \leqslant m, \ 1 \leqslant j \leqslant n} \,,$$

le premier indice i correspond aux lignes et le second j aux colonnes. On désigne par $(\mathbb{A})_{ij}$ l'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ème}}$ colonne. On peut aussi le noter $A_{i,j}$.

Définition 2.7. La matrice nulle de $\mathcal{M}_{m,n}(\mathbb{K})$ est représentée par $\mathbb{O}_{m,n}$ ou \mathbb{O} lorsqu'il n'y a pas d'ambiguité. Si m = n on peut aussi noter \mathbb{O}_n cette matrice.

Définition 2.8. \diamond Soit une matrice $\mathbb{A} \in \mathcal{M}_{m,n}(\mathbb{C})$, on note $\mathbb{A}^* \in \mathcal{M}_{n,m}(\mathbb{C})$ la matrice adjointe de la matrice A, définie de façon unique par

$$\langle \mathbb{A}\boldsymbol{u}, \boldsymbol{v} \rangle_m = \langle \boldsymbol{u}, \mathbb{A}^* \boldsymbol{v} \rangle_n, \ \forall \boldsymbol{u} \in \mathbb{C}^n, \ \forall \boldsymbol{v} \in \mathbb{C}^m$$

qui entraine $(\mathbb{A}^*)_{ij} = \overline{A_{ji}}$.

 \diamond Soit une matrice $\mathbb{A} \in \mathcal{M}_{m,n}(\mathbb{R})$, on note $\mathbb{A}^t \in \mathcal{M}_{n,m}(\mathbb{R})$ la matrice transposée de la matrice \mathbb{A} , définie de façon unique par

$$\langle \mathbb{A}\boldsymbol{u}, \boldsymbol{v} \rangle_m = \langle \boldsymbol{u}, \mathbb{A}^t \boldsymbol{v} \rangle_m$$
, $\forall \boldsymbol{u} \in \mathbb{R}^n$, $\forall \boldsymbol{v} \in \mathbb{R}^m$

qui entraine $(\mathbb{A}^t)_{ij} = A_{ji}$.

Définition 2.9. Si $\mathbb{A} \in \mathcal{M}_{m,p}(\mathbb{K})$ et $\mathbb{B} \in \mathcal{M}_{p,n}(\mathbb{K})$, le **produit** $\mathbb{A}\mathbb{B} \in \mathcal{M}_{m,n}(\mathbb{K})$ est défini par

$$\forall (i, j) \in [1, m] \times [1, n], \quad (AB)_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj}.$$
 (15)

Proposition 2.10. Soient $\mathbb{A} \in \mathcal{M}_{m,p}(\mathbb{K})$ et $\mathbb{B} \in \mathcal{M}_{p,n}(\mathbb{K})$, alors

$$(AB)^t = B^tA^t$$
, $si K = R$, (16)

$$(\mathbb{AB})^* = \mathbb{B}^* \mathbb{A}^*, \quad si \ \mathbb{K} = \mathbb{C}$$
 (17)

Note. Les matrices considérées jusqu'à la fin de ce paragraphe sont carrées.

Définition 2.11. $Si \ A \in \mathcal{M}_n(\mathbb{K})$ alors les éléments $A_{ii} = (A)_{ii}$ sont appelés éléments diagonaux et les éléments $A_{ii} = (A)_{ij}, i \neq j$ sont appelés éléments hors-diagonaux.

Définition 2.12. On appelle matrice identitée de $\mathcal{M}_n(\mathbb{K})$ la matrice dont les éléments diagonaux sont tous égals à 1 et les éléments hors-diagonaux nulles. On la note \mathbb{I} ou encore \mathbb{I}_n et on a

$$(\mathbb{I})_{i,j} = \delta_{ij}, \ \forall (i,j) \in [1,n]^2.$$

Définition 2.13. Une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ est inversible ou régulière s'il existe une matrice $\mathbb{B} \in \mathcal{M}_n(\mathbb{K})$ vérifiant

$$AB = BA = I$$
 (18)

Dans le cas contraire, on dit que la matrice A est singulière ou non inversible.

Définition 2.14. Soit $A \in \mathcal{M}_n(K)$ une matrice inversible. On note $A^{-1} \in \mathcal{M}_n(K)$ l'unique matrice vérifiant

$$\mathbb{A}\mathbb{A}^{-1} = \mathbb{A}^{-1}\mathbb{A} = \mathbb{I}. \tag{19}$$

Cette matrice est appelée matrice inverse de A.

Définition 2.15. Soit $\mathbb{A} \in \mathcal{M}_{m,n}(\mathbb{K})$

- ♦ On note $\ker(\mathbb{A}) = \{ \mathbf{v} \in \mathbb{K}^n \; ; \; \mathbb{A}\mathbf{v} = 0 \}$ le noyau de \mathbb{A} . ♦ On note $\operatorname{im}(\mathbb{A}) = \{ \mathbb{A}\mathbf{v} \in \mathbb{K}^m \; ; \; \mathbf{v} \in \mathbb{K}^n \}$ l'image de \mathbb{A} .
- $\diamond On \ note \ rank(\mathbb{A}) \stackrel{\mathsf{def}}{=} \dim(\operatorname{im}(\mathbb{A})) \ le \ rang \ de \ \mathbb{A}.$

Théorème 2.16 (théorème du rang). Soit $A \in \mathcal{M}_{m,n}(\mathbb{K})$. On a

$$\operatorname{rank}(\mathbb{A}) + \dim(\ker(\mathbb{A})) = n$$

Proposition 2.17. Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$. Les propriétés suivantes sont équivalentes

- A est inversible,
- 2. $\operatorname{rank}(\mathbb{A}) = n$,
- 3. $\boldsymbol{x} \in \mathbb{K}^n$, $\mathbb{A}\boldsymbol{x} = 0 \implies \boldsymbol{x} = 0$, (i.e. $\ker \mathbb{A} = \{0\}$)
- 4. $\det(\mathbb{A}) \neq 0$,
- 5. toutes les valeurs propres de A sont non nulles,
- 6. il existe $\mathbb{B} \in \mathcal{M}_n(\mathbb{K})$ tel que $\mathbb{AB} = \mathbb{I}$,
- 7. il existe $\mathbb{B} \in \mathcal{M}_n(\mathbb{K})$ tel que $\mathbb{B}\mathbb{A} = \mathbb{I}$.

Proposition 2.18. Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ et $\mathbb{B} \in \mathcal{M}_n(\mathbb{K})$ inversibles. On a alors $\mathbb{A}\mathbb{B}$ inversible et

$$(\mathbb{A}^t)^{-1} = (\mathbb{A}^{-1})^t$$
, $si \mathbb{K} = \mathbb{R}$, (20)

$$(\mathbb{A}^*)^{-1} = (\mathbb{A}^{-1})^*, \quad si \ \mathbb{K} = \mathbb{C}.$$
 (21)

$$(\mathbb{A}\mathbb{B})^{-1} = \mathbb{B}^{-1}\mathbb{A}^{-1} \tag{22}$$

$$\left(\mathbb{A}^{-1}\right)^{-1} = \mathbb{A} \tag{23}$$

Définition 2.19. Une matrice carrée A est :

- ♦ symétrique si A est réelle et A = A^t,
- \diamond hermitienne si $\mathbb{A} = \mathbb{A}^*$,
- ⋄ normale si AA* = A*A,
- $\diamond \ \ orthogonale \ \ si \ \mathbb{A} \ \ est \ r\'eelle \ \ et \ \mathbb{A} \mathbb{A}^t = \mathbb{A}^t \mathbb{A} = \mathbb{I},$
- \diamond unitaire $si \mathbb{AA}^* = \mathbb{A}^* \mathbb{A} = \mathbb{I}$,

Proposition 2.20. • une matrice symétrique ou hermitienne est nécessairement normale.

 une matrice orthogonale (resp. unitaire) est nécessairement normale et inversible d'inverse A^t (resp. A*).

Définition 2.21. Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne.

⋄ Elle est définie positive si

$$\langle A\boldsymbol{u}, \boldsymbol{u} \rangle > 0, \ \forall \boldsymbol{u} \in \mathbb{C}^n \setminus \{0\}$$

♦ Elle est **semi définie positive** si

$$\langle \mathbb{A}\boldsymbol{u}, \boldsymbol{u} \rangle \geqslant 0, \ \forall \boldsymbol{u} \in \mathbb{C}^n \setminus \{0\}$$
 (25)

(24)

Définition 2.22. Soit $A \in \mathcal{M}_n(K)$. La trace d'une matrice carrée $A = (a_{ij})$ est définie par

$$\operatorname{tr}\left(\mathbb{A}\right) = \sum_{i=1}^{n} a_{ii}.$$

Définition 2.23. Soit \mathcal{T}_n le groupe des permutations de l'ensemble $\{1, 2, ..., n\}$. A tout élément $\sigma \in \mathcal{T}_n$, on associe la matrice de permutation de $\mathbb{P}_{\sigma} \in \mathcal{M}_n(\mathbb{K})$ est définie par

$$(\mathbb{P}_{\sigma})_{i,j} = \delta_{i,\sigma(j)}.$$

On peut noter qu'une matrice de permutation est orthogonale.

Définition 2.24. Soient $\mathbb{A}=(A_{i,j})_{i,j=1}^n\in\mathcal{M}_n(\mathbb{K})$ et \mathcal{T}_n le groupe des permutations de l'ensemble $\{1,2,\ldots,n\}$. Le déterminant d'une matrice \mathbb{A} est défini par

$$\det\left(\mathbb{A}\right) = \sum_{\sigma \in \mathcal{T}_n} \varepsilon_{\sigma} \prod_{j=1}^{n} A_{\sigma(j),j}$$

où ε_{σ} désigne la signature de la permutation σ .

Proposition 2.25 (Méthode de Laplace ou des coffacteurs). Soit $\mathbb{A} = (A_{i,j})_{i,j=1}^n \in \mathcal{M}_n(\mathbb{K})$. On note $\mathbb{A}^{[i,j]} \in \mathcal{M}_{n-1}(\mathbb{K})$ la matrice obtenue en supprimant la ligne i et la colonne j de \mathbb{A} . On a alors le **développement par rapport** à la ligne $i \in [\![1,n]\!]$

$$\det(\mathbb{A}) = \sum_{i=1}^{n} (-1)^{i+j} A_{i,j} \det(\mathbb{A}^{[i,j]}),$$
 (26)

et le développement par rapport à la colonne $j \in [1, n]$

$$\det\left(\mathbb{A}\right) = \sum_{i=1}^{n} (-1)^{i+j} A_{i,j} \det\left(\mathbb{A}^{[i,j]}\right). \tag{27}$$

Le terme $(-1)^{i+j}$ det $(\mathbb{A}^{[i,j]})$ est appellé le **cofacteur** du terme $A_{i,j}$.

Définition 2.26. Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$. On dit que $\lambda \in \mathbb{C}$ est valeur propre de \mathbb{A} s'il existe $\mathbf{u} \in \mathbb{C}^n$ non nul tel que

$$A\mathbf{u} = \lambda \mathbf{u}. \tag{28}$$

Le vecteur \mathbf{u} est appelé vecteur propre associé à la valeur propre λ . Le couple (λ, \mathbf{u}) est appelé élément propre de \mathbb{A} .

Définition 2.27. Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$. Soit $\lambda \in \mathbb{C}$ une valeur propre de \mathbb{A} . Le sous-espace

$$E_{\lambda} = \{ \boldsymbol{u} \in \mathbb{C}^n : A\boldsymbol{u} = \lambda \boldsymbol{u} \} = \ker(A - \lambda \mathbb{I})$$
 (29)

est appelé sous-espace propre associé à la valeur propre λ . La dimension de E_{λ} est appelée multiplicité géométrique de la valeur propre λ .

Définition 2.28. Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$. Le polynôme de degré n défini par

$$\mathcal{P}_{\mathbb{A}}(\lambda) = \det(\mathbb{A} - \lambda \mathbb{I}) \tag{30}$$

est appellé polynôme caractéristique de la matrice A.

Proposition 2.29. Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$.

- \diamond Les racines complexes du polynôme caractéristique $\mathcal{P}_{\mathbb{A}}$ sont les valeurs propres de la matrice \mathbb{A} .
- Si la racine λ de P_A est de multiplicité k, on dit que la valeur propre λ est de Multiplicité algébrique k.
- ♦ La matrice A possède n valeurs propres distinctes ou non.

Définition 2.30. Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$. On note $\lambda_i(\mathbb{A})$, $i \in [\![1,n]\!]$, les n valeurs propres de \mathbb{A} . Le spectre de la matrice \mathbb{A} est le sous-ensemble

$$Sp(\mathbb{A}) = \bigcup_{i=1}^{n} \{\lambda_{i}(\mathbb{A})\}$$
(31)

du plan complexe.

Proposition 2.31. Soient A et B deux matrices de $M_n(K)$. On a les relations suivantes

$$\operatorname{tr}(\mathbb{A}) = \sum_{i=1}^{n} \lambda_i(\mathbb{A}),$$
 (32)

$$\det(\mathbb{A}) = \prod_{i=1}^{n} \lambda_i(\mathbb{A}), \tag{33}$$

$$\operatorname{tr}(\mathbb{AB}) = \operatorname{tr}(\mathbb{BA}),$$
 (34)

$$\operatorname{tr}(\mathbb{A} + \mathbb{B}) = \operatorname{tr} A + \operatorname{tr} B,$$
 (35)

$$\det(\mathbb{AB}) = \det(\mathbb{A}) \det(\mathbb{B}) = \det(\mathbb{BA}), \tag{36}$$

$$\det(\mathbb{A}^*) = \overline{\det(\mathbb{A})}. \tag{37}$$

Définition 2.32. Le rayon spectral d'une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ est le nombre ≥ 0 défini par

$$\rho(\mathbb{A}) = \max\{|\lambda_i(\mathbb{A})|; i \in [1, n]\}$$

2.2.2 Matrices particulières

Définition 2.33. Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est :

- \diamond diagonale si $a_{ij} = 0$ pour $i \neq j$,
- \diamond triangulaire supérieure si $a_{ij} = 0$ pour i > j,
- \diamond triangulaire inférieure si $a_{ij} = 0$ pour i < j,
- triangulaire si elle est triangulaire supérieure ou triangulaire inférieure
- ♦ à diagonale dominante si

$$|a_{ii}| \geqslant \sum_{j \neq i} |a_{ij}|, \forall i \in [1, n],$$
 (38)

♦ à diagonale strictement dominante s

$$|a_{ii}| > \sum_{i \neq i} |a_{ij}|, \ \forall i \in [1, n].$$
 (39)

Proposition 2.34. Soient \mathbb{A} et \mathbb{B} deux matrices de $\mathcal{M}_n(\mathbb{K})$ triangulaires inférieures (resp. triangulaires supérieures). Alors la matrice \mathbb{AB} est aussi triangulaire inférieure (resp. triangulaire supérieure). De plus on a

$$(AB)_{i,i} = A_{i,i}B_{i,i}, \forall i \in [1, n].$$

Proposition 2.35. Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire inférieure (resp. triangulaire supérieure).

- A est inversible si et seulement si ses éléments diagonaux sont tous non nuls (i.e. A_{i,i} ≠ 0, ∀i ∈ [1, n]).
- 2. Si A est inversible alors son inverse est triangulaire inférieure (resp. triangulaire supérieure) et

$$(A^{-1})_{i,i} = \frac{1}{(A)_{i,i}}$$

Définition 2.36. On appelle matrice bande une matrice \mathbb{A} telle que $a_{ij} \neq 0$ pour $|j-i| \leqslant c$. c est la demi largeur de bande.

Lorsque c = 1, la matrice est dite **tridiagonale**. Lorsque c = 2, la matrice est dite **pentadiagonale**.

Définition 2.37. On appelle **sous-matrice** d'une matrice donnée, la matrice obtenue en supprimant certaines lignes et certaines colonnes. En particulier, si on supprime les (n-k) dernières lignes et colonnes d'une matrice carrée $\mathbb A$ d'ordre n, on obtient la **sous matrice principale** d'ordre k.

Définition 2.38. On appelle matrice bloc une matrice $\mathbb{A} \in \mathcal{M}_{N,M}(\mathbb{K})$ écrite sous la forme

$$\mathbb{A} = \begin{pmatrix} \mathbb{A}_{1,1} & \cdots & \mathbb{A}_{1,q} \\ \vdots & & \vdots \\ \mathbb{A}_{p,1} & \cdots & \mathbb{A}_{p,q} \end{pmatrix}$$

 $o\grave{u} \ \forall i \in [\![1,p]\!], \ \forall j \in [\![1,q]\!], \ \mathbb{A}_{i,j} \in \mathcal{M}_{n_i,m_j}(\mathbb{K}), \ et, \ avec \ N = \sum_{i=1}^p n_i \ et \ M = \sum_{j=1}^q m_j.$

On dit que \mathbb{A} et une matrice **bloc-carrée** si p = q et si tous les blocs diagonaux sont des matrices carrées.

Propriété 2.39 (Multiplication de matrices blocs). Soient $\mathbb{A} \in \mathcal{M}_{N,M}(\mathbb{K})$ et $\mathbb{B} \in \mathcal{M}_{M,S}(\mathbb{K})$. Le produit $\mathbb{P} = \mathbb{AB} \in \mathcal{M}_{N,S}(\mathbb{K})$ peut s'écrire sous forme bloc si les matrices \mathbb{A} et \mathbb{B} sont compatibles par blocs : il faut que le nombre de blocs colonne de \mathbb{A} soit égale au nombre de blocs ligne de \mathbb{B} avec correspondance des dimensions.

$$\mathbb{A} = \begin{pmatrix} \mathbb{A}_{1,1} & \cdots & \mathbb{A}_{1,q} \\ \vdots & & \vdots \\ \mathbb{A}_{p,1} & \cdots & \mathbb{A}_{p,q} \end{pmatrix} \ et \ \mathbb{B} = \begin{pmatrix} \mathbb{B}_{1,1} & \cdots & \mathbb{A}_{1,r} \\ \vdots & & \vdots \\ \mathbb{B}_{q,1} & \cdots & \mathbb{A}_{q,r} \end{pmatrix}$$

 $avec \ \mathbb{A}_{i,k} \in \mathcal{M}_{n_i,m_k}(\mathbb{K}) \ et \ \mathbb{B}_{k,j} \in \mathcal{M}_{m_k,s_j}(\mathbb{K}) \ pour \ tout \ i \in [\![1,p]\!], \ k \in [\![1,q]\!] \ et \ j \in [\![1,r]\!]. \ La \ matrice \ produit \ \mathbb{P} \ s'écrit \ alors \ sous \ la \ forme \ bloc$

$$\mathbb{P} = \begin{pmatrix} \mathbb{P}_{1,1} & \cdots & \mathbb{P}_{1,r} \\ \vdots & \vdots & \vdots \\ \mathbb{P}_{n,1} & \cdots & \mathbb{P}_{n,r} \end{pmatrix}$$

avec $\forall i \in [1, p], \forall j \in [1, r] \mathbb{P}_{i,j} \in \mathcal{M}_{n_i, s_j}(\mathbb{K})$ et

$$\mathbb{P}_{i,j} = \sum_{k=1}^{q} \mathbb{A}_{i,k} \mathbb{B}_{k,j}.$$

Définition 2.40. On dit qu'une matrice bloc-carrée $\mathbb A$ est triangulaire inférieure (resp. supérieure) par blocs si elle peut s'écrire sous la forme d'une matrice bloc avec les sous matrices $\mathbb A_{i,j}=0$ pour i< j (resp.

i > j). . Elle s'écrit donc sous la forme

$$\mathbb{A} = \begin{pmatrix} & \mathbb{A}_{1,1} & \mathbb{O} & \cdots & \mathbb{O} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbb{O} \\ & \mathbb{A}_{n,1} & \cdots & \cdots & \mathbb{A}_{n,n} \end{pmatrix} (resp. \ \mathbb{A} = \begin{pmatrix} & \mathbb{A}_{1,1} & \cdots & \cdots & \mathbb{A}_{n,1} \\ & \mathbb{O} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ & \mathbb{O} & \cdots & \mathbb{O} & \mathbb{A}_{n,n} \end{pmatrix}$$

Définition 2.41. On dit qu'une matrice bloc-carrée \mathbb{A} est diagonale par blocs ou bloc-diagonale si elle peut s'écrire sous la forme d'une matrice bloc avec les sous matrices $\mathbb{A}_{i,j}=0$ pour $i\neq j$. Elle s'écrit donc sous la forme

$$\mathbb{A} = \begin{pmatrix} \mathbb{A}_{1,1} & \mathbb{O} & \cdots & \mathbb{O} \\ \mathbb{O} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbb{O} \\ \mathbb{O} & \cdots & \mathbb{O} & \mathbb{A}_{n,n} \end{pmatrix}$$

Proposition 2.42. Soit $\mathbb A$ une matrice bloc-carré décomposée en $n \times n$ blocs. Si $\mathbb A$ est bloc-diagonale ou triangulaire par blocs alors son déterminant est le produit des déterminant des blocs diagonaux :

$$\det \mathbb{A} = \prod_{i=1}^{n} \det \mathbb{A}_{i,i}$$
(40)

Proposition 2.43. Soit \mathbb{A} une matrice bloc-carré inversible décomposée en $n \times n$ blocs.

- Si A est bloc-diagonale alors son inverse (décomposée en $n \times n$ blocs) est aussi bloc-diagonale.
- Si A est triangulaire inférieure par blocs (resp. supérieure) alors son inverse (décomposée en n × n blocs) est aussi triangulaire inférieure par blocs (resp. supérieure).

Dans ces deux cas les blocs diagonaux de la matrice inverse sont les inverses des blocs diagonaux de A. On a

$$\mathbb{A} = \begin{pmatrix} A_{1,1} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & \circ & \mathbb{A}_{n,n} \end{pmatrix} et \, \mathbb{A}^{-I} = \begin{pmatrix} A_{1,1}^{-I} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mathbb{A}_{n,n}^{-I} \end{pmatrix}$$

$$\mathbb{A} = \begin{pmatrix} A_{1,1} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \mathbb{A}_{n,1} & \cdots & \cdots & \mathbb{A}_{n,n} \end{pmatrix} et \, \mathbb{A}^{-I} = \begin{pmatrix} A_{1,1}^{-I} & 0 & \cdots & 0 \\ \bullet & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \mathbb{A}_{n,n}^{-I} \end{pmatrix} et \, \mathbb{A}^{-I} = \begin{pmatrix} A_{1,1}^{-I} & \bullet & \cdots & \bullet \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \bullet \\ 0 & \cdots & 0 & \mathbb{A}_{n,n}^{-I} \end{pmatrix}$$

2.3 Normes vectorielles et normes matricielles

Définition 2.44. Une norme sur un espace vectoriel V est une application $\| \bullet \| : V \to \mathbb{R}^+$ qui vérifie les propriétés suivantes

- $\diamond \|\boldsymbol{v}\| = 0 \Longleftrightarrow \boldsymbol{v} = 0,$
- $\diamond \|\alpha \boldsymbol{v}\| = |\alpha| \|\boldsymbol{v}\|, \ \forall \alpha \in \mathbb{K}, \ \forall \boldsymbol{v} \in V,$
- $||u + v|| \le ||u|| + ||v||, \ \forall (u, v) \in V^2$ (inégalité triangulaire).

Une norme sur V est également appelée norme vectorielle. On appelle espace vectoriel normé un espace vectoriel muni d'une norme.

Les trois normes suivantes sont les plus couramment utilisées :

$$\begin{split} & \left\| \boldsymbol{v} \right\|_1 = \sum_{i=1}^n \left| v_i \right| \\ & \left\| \boldsymbol{v} \right\|_2 = \left(\sum_{i=1}^n \left| v_i \right|^2 \right)^{1/2} \\ & \left\| \boldsymbol{v} \right\|_\infty = \max_i \left| v_i \right|. \end{split}$$

Théorème 2.45. Soit V un espace de dimension finie. Pour tout nombre réel $p \geqslant 1$, l'application $\| ullet \|_p$ définie par

$$\|\boldsymbol{v}\|_p = \left(\sum_{i=1}^n |v_i|^p\right)^{1/p}$$

est une norme

Proposition 2.46. Pour p > 1 et $\frac{1}{p} + \frac{1}{q} = 1$, on a $\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{K}^n$

$$\sum_{i=1}^{n} |u_i v_i| \leq \left(\sum_{i=1}^{n} |u_i|^p \right)^{1/p} \left(\sum_{i=1}^{n} |v_i|^q \right)^{1/q} = \|\mathbf{u}\|_p \|\mathbf{v}\|_q. \tag{41}$$

Cette inégalité s'appelle l'inégalité de Hölder.

Définition 2.47. Deux normes $\|\bullet\|$ et $\|\bullet\|'$, définies sur un même espace vectoriel V, sont **équivalentes** s'il exite deux constantes C et C' telles que

$$\|\boldsymbol{v}\|' \leqslant C \|\boldsymbol{v}\| \quad et \quad \|\boldsymbol{v}\| \leqslant C' \|\boldsymbol{v}\|' \quad pour \ tout \ \boldsymbol{v} \in V.$$
 (42)

Proposition 2.48. Sur un espace vectoriel de dimension finie toutes les normes sont équivalentes.

Définition 2.49. Une norme matricielle sur $\mathcal{M}_n(\mathbb{K})$ est une application $\| \bullet \| : \mathcal{M}_n(\mathbb{K}) \to \mathbb{R}^+$ vérifiant

- 1. $\|\mathbb{A}\| = 0 \iff \mathbb{A} = 0$,
- 2. $\|\alpha A\| = |\alpha| \|A\|$, $\forall \alpha \in \mathbb{K}$, $\forall A \in \mathcal{M}_n(\mathbb{K})$,
- 3. $\|\mathbb{A} + \mathbb{B}\| \leq \|\mathbb{A}\| + \|\mathbb{B}\|, \ \forall (\mathbb{A}, \mathbb{B}) \in \mathcal{M}_n(\mathbb{K})^2 \ (inégalité \ triangulaire)$
- 4. $\|\mathbb{AB}\| \leq \|\mathbb{A}\| \|\mathbb{B}\|, \ \forall (\mathbb{A}, \mathbb{B}) \in \mathcal{M}_n(\mathbb{K})^2$

Proposition 2.50. Etant donné une norme vectorielle $\| \bullet \|$ sur \mathbb{K}^n , l'application $\| \bullet \|_s : \mathcal{M}_n(\mathbb{K}) \to \mathbb{R}^+$ définie

par

$$\|\mathbb{A}\|_{s} = \sup_{\substack{\mathbf{v} \in \mathbb{K}^{n} \\ \mathbf{v} \neq 0}} \frac{\|\mathbb{A}\mathbf{v}\|}{\|\mathbf{v}\|} = \sup_{\substack{\mathbf{v} \in \mathbb{K}^{n} \\ |\mathbf{v}| \leq 1}} \|\mathbb{A}\mathbf{v}\| = \sup_{\substack{\mathbf{v} \in \mathbb{K}^{n} \\ |\mathbf{v}| = 1}} \|\mathbb{A}\mathbf{v}\|, \tag{43}$$

est une norme matricielle, appelée **norme matricielle subordonnée** (à la norme vectorielle donnée).

$$\|\mathbb{A}\boldsymbol{v}\| \leqslant \|\mathbb{A}\|_{s} \|\boldsymbol{v}\| \ \forall \boldsymbol{v} \in \mathbb{K}^{n}$$
 (44)

et la norme $\|\mathbb{A}\|$ peut se définir aussi par

$$\|\mathbb{A}\|_{s} = \inf \{ \alpha \in \mathbb{R} : \|\mathbb{A}\boldsymbol{v}\| \leqslant \alpha \|\boldsymbol{v}\|, \ \forall \boldsymbol{v} \in \mathbb{K}^{n} \}.$$
 (45)

Il existe au moins un vecteur $\mathbf{u} \in \mathbb{K}^n$ tel que

$$\boldsymbol{u} \neq 0 \quad et \quad \|\mathbb{A}\boldsymbol{u}\| = \|\mathbb{A}\|_{s} \|\boldsymbol{u}\|.$$
 (46)

Enfin une norme subordonnée vérifie toujours

$$\|\mathbb{I}\|_s = 1 \tag{47}$$

Théorème 2.51. Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. On a

$$\|\mathbb{A}\|_{1} \stackrel{\text{def.}}{=} \sup_{\substack{\mathbf{v} \in \mathcal{O} \\ v \neq 0}} \frac{\|\mathbb{A}\mathbf{v}\|_{1}}{\|\mathbf{v}\|_{1}} = \max_{j \in [1, n]} \sum_{i=1}^{n} |a_{ij}|$$

$$\tag{48}$$

$$\|\mathbb{A}\|_{2} \stackrel{\text{def.}}{=} \sup_{\mathbf{v} \in \mathbb{C}_{n}^{n}} \frac{\|\mathbb{A}\mathbf{v}\|_{2}}{\|\mathbf{v}\|_{2}} = \sqrt{\rho\left(\mathbb{A}^{*}\mathbb{A}\right)} = \sqrt{\rho\left(\mathbb{A}\mathbb{A}^{*}\right)} = \|\mathbb{A}^{*}\|_{2}$$

$$(49)$$

$$\|\mathbb{A}\|_{\infty} \stackrel{\text{def.}}{=} \sup_{\mathbf{v} \in C_{\Omega}} \frac{\|\mathbb{A}\mathbf{v}\|_{\infty}}{\|\mathbf{v}\|_{\infty}} = \max_{i \in [1, n]} \sum_{j=1}^{n} |a_{ij}|$$

$$(50)$$

La norme $\| \bullet \|_2$ est invariante par transformation unitaire :

$$\mathbb{U}\mathbb{U}^* = \mathbb{I} \Longrightarrow \|\mathbb{A}\|_2 = \|\mathbb{A}\mathbb{U}\|_2 = \|\mathbb{U}\mathbb{A}\|_2 = \|\mathbb{U}^*\mathbb{A}\mathbb{U}\|_2. \tag{51}$$

Par ailleurs, si la matrice A est normale :

$$\mathbb{A}\mathbb{A}^* = \mathbb{A}^*\mathbb{A} \Longrightarrow \|\mathbb{A}\|_2 = \rho(\mathbb{A}). \tag{52}$$

Proposition 2.52. 1. Si une matrice \mathbb{A} est hermitienne, ou symétrique (donc normale), on a $\|\mathbb{A}\|_2 = \rho(\mathbb{A})$. 2. Si une matrice \mathbb{A} est unitaire, ou orthogonale (donc normale), on a $\|\mathbb{A}\|_2 = 1$.

Théorème 2.53. 1. Soit A une matrice carrée quelconque et ∥•∥ une norme matricielle subordonnée ou non, quelconque. Alors

$$\rho(\mathbb{A}) \leqslant \|\mathbb{A}\|.$$
(53)

 Etant donné une matrice A et un nombre ε > 0, il existe au moins une norme matricielle subordonnée telle que

$$\|\mathbb{A}\| \leqslant \rho(\mathbb{A}) + \varepsilon. \tag{54}$$

Théorème 2.54. L'application $\| \bullet \|_E : \mathcal{M}_n \to \mathbb{R}^+$ définie par

$$\|\mathbb{A}\|_{E} = \left(\sum_{(i,j)=\in[1,n]^{2}} |a_{ij}|^{2}\right)^{1/2} = \sqrt{\operatorname{tr}\left(\mathbb{A}^{*}\mathbb{A}\right)},\tag{55}$$

pour toute matrice $\mathbb{A}=(a_{ij})$ d'ordre n, est une norme matricielle non subordonnée (pour $n\geqslant 2$), invariante par transformation unitaire et qui vérifie

$$\|\mathbb{A}\|_{2} \leq \|\mathbb{A}\|_{E} \leq \sqrt{n} \|\mathbb{A}\|_{2}, \ \forall \mathbb{A} \in \mathcal{M}_{n}.$$
 (56)

De plus $||I||_E = \sqrt{n}$.

Théorème 2.55. 1. Soit $\| \bullet \|$ une norme matricielle subordonnée, et $\mathbb B$ une matrice vérifiant

$$\|B\| < 1.$$

Alors la matrice $(\mathbb{I} + \mathbb{B})$ est inversible, et

$$\left\| \left(\mathbb{I} + \mathbb{B} \right)^{-1} \right\| \leqslant \frac{1}{1 - \|\mathbb{B}\|}.$$

2. Si une matrice de la forme $(\mathbb{I} + \mathbb{B})$ est singulière, alors nécessairement

$$\|\mathbb{B}\| \geqslant 1$$

pour toute norme matricielle, subordonnée ou non.

2.4 Réduction des matrices

Définition 2.56. Soit $A: V \to V$ une application linéaire, représenté par une matrice carrée $\mathbb{A} \in \mathcal{M}_n$ relativement à une base $\{e_i\}_{i \in [1,n]}$. Relativement à une autre base $\{f_i\}_{i \in [1,n]}$, la même application est représentée par la matrice

$$\mathbb{B} = \mathbb{P}^{-1} \mathbb{A} \mathbb{P} \tag{57}$$

où $\mathbb P$ est la matrice inversible dont le j-ème vecteur colonne est formé des composantes du vecteur f_j dans la base $\{e_i\}_{i\in \mathbb I}$, $n_{\mathbb I}$:

$$\mathbb{P} = \begin{pmatrix}
\langle \boldsymbol{e}_{1}, \boldsymbol{f}_{1} \rangle & \langle \boldsymbol{e}_{1}, \boldsymbol{f}_{2} \rangle & \cdots & \langle \boldsymbol{e}_{1}, \boldsymbol{f}_{n} \rangle \\
\langle \boldsymbol{e}_{2}, \boldsymbol{f}_{1} \rangle & \langle \boldsymbol{e}_{1}, \boldsymbol{f}_{2} \rangle & \ddots & \vdots \\
\vdots & \ddots & \ddots & \langle \boldsymbol{e}_{n-1}, \boldsymbol{f}_{n} \rangle \\
\langle \boldsymbol{e}_{n}, \boldsymbol{f}_{1} \rangle & \cdots & \langle \boldsymbol{e}_{n}, \boldsymbol{f}_{n-1} \rangle & \langle \boldsymbol{e}_{n}, \boldsymbol{f}_{n} \rangle
\end{pmatrix}$$
(58)

 $La \ matrice \ \mathbb{P} \ est \ appelée \ \textit{matrice} \ \textit{de passage de la base} \ \ \{\textit{e}_i\}_{i \in \llbracket 1, n \rrbracket} \ \textit{dans le base} \ \ \{\textit{f}_i\}_{i \in \llbracket 1, n \rrbracket}.$

Définition 2.57. On dit que la matrice carrée $\mathbb A$ est diagonalisable s'il existe une matrice inversible $\mathbb P$ telle que la matrice $\mathbb P^{-1}\mathbb A\mathbb P$ soit diagonale.

Remarque. On notera que, dans le cas où $\mathbb{A} \in \mathcal{M}_n$ est diagonalisable, les éléments diagonaux de la matrice $\mathbb{P}^{-1}\mathbb{A}\mathbb{P}$ sont les valeurs propres $\lambda_1, \lambda_2, \dots, \lambda_n$ de la matrice \mathbb{A} , et que le j-ème vecteur colonne p_j de la matrice \mathbb{P} est formé des composantes, dans la même base que \mathbb{A} , d'un vecteur propre associé à la valeur propre λ_j . On a

$$\mathbb{P}^{-1}\mathbb{AP} = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \iff \mathbb{A}\mathbf{p}_j = \lambda_j \mathbf{p}_j, \ \forall j \in [1, n].$$
 (59)

 $C'est \ \grave{a} \ dire \ qu'une \ matrice \ est \ diagonalisable \ si, \ et \ seulement \ si, \ il \ existe \ une \ base \ de \ vecteurs \ propres.$

Théorème 2.58. 1. Etant donnée une matrice carrée \mathbb{A} , il existe une matrice unitaire \mathbb{U} telle que la matrice $\mathbb{U}^{-1}\mathbb{A}\mathbb{U}$ soit triangulaire.

 Etant donnée une matrice normale A, il existe une matrice unitaire U telle que la matrice U⁻¹AU soit diagonale. 3. Etant donnée une matrice symétrique \mathbb{A} , il existe une matrice orthogonale \mathbb{U} telle que la matrice $\mathbb{U}^{-1}\mathbb{A}\mathbb{U}$ soit diagonale.

2.5 Suites de vecteurs et de matrices

Définition 2.59. Soit V un espace vectoriel muni d'une norme $\| \bullet \|$, on dit qu'une suite (v_k) d'éléments de V converge vers un élément $v \in V$, si

$$\lim_{k\to\infty}\|\boldsymbol{v}_k-\boldsymbol{v}\|=0$$

et on écrit

$$v = \lim_{k \to \infty} v_k$$
.

Théorème 2.60. Soit B une matrice carrée. Les conditions suivantes sont équivalentes :

- 1. $\lim_{k\to\infty} \mathbb{B}^k = 0$,
- 2. $\lim_{k\to\infty} \mathbb{B}^k \mathbf{v} = 0$ pour tout vecteur \mathbf{v} ,
- 3. $\rho(\mathbb{B}) < 1$,
- 4. $\|\mathbb{B}\| < 1$ pour au moins une norme matricielle subordonnée $\| \bullet \|$.

Théorème 2.61. Soit $\mathbb B$ une matrice carrée, et $\| ullet \|$ une norme matricielle quelconque. Alors

$$\lim_{k\to\infty}\left\|\mathbb{B}^k\right\|^{1/k}=\rho(\mathbb{B}).$$

Index

Index	
K, 6	limite, 4
$\delta_{i,j}$, 7	lipschitzienne, 5
$\mathcal{O}(g)$, 1	Formule
$\mathcal{O}(h^p)$, 1	Taylor-Lagrange, 1
det (A), 11	Taylor-Landau, 2
$im(\mathbb{A}), 9$,
$\ker(\mathbb{A}), 9$	Gram-Schmidt, 7
$\operatorname{rank}(\mathbb{A}), 9$	grand O , 1
$\mathcal{M}_{m,n}$, 8	groupe des permutations, 10
Sp(A), 12	
$\rho(\mathbb{A}), 12$	Hermitienne, 10
$\operatorname{tr}(\mathbb{A}), 10$	T1 1777 0
\mathbb{L} ou \mathbb{L}_n , 9	Identitée, 9
$\mathbb{O}_{m,n}$, 8	Intérieur, 3
·	Inverse, 9
Adhérence, 3	Inversible, 9
	Inégalité de Hölder, 15
Boule	Kronecker, 7
fermée, 2	Kronecker, 1
ouverte, 2	Matrice
	adjointe, 8
Compacte, 4	bande, 13
Convergence	bloc, 13
cubique, 6	bloc-carrée, 13
linéaire, 6	de passage, 18
ordre, 6	demi largeur de bande, 13
quadratique, 6	diagonale, 12
sous-linéaire, 6	diagonale dominante, 12
super-linéaire, 6	diagonale par blocs, 14
Convergence :ordre, 6	diagonale strictement dominante, 12
Diagonalizable 19	diagonalisable, 18
Diagonalisable, 18	définie positive, 10
Distance, 2	déterminant, 11
Déterminant, 11	elément propre, 11
Elément propre, 11	hermitienne, 10
Ensemble	identitée, 9
adhérence, 3	image, 9
Borné, 2	inverse, 9
fermé, 3	inversible, 9
intérieur, 3	non iversible, 9
Ensemble :compact, 4	normale, 10
Ensemble :orthonormal, 7	norme, 16
Ensemble :ouvert, 3	noyau, 9
Ensemble :voisinage, 3	nulle $\mathbb{O}_{m,n}$, 8
Espace de Banach, 5	orthogonale, 10
Espace métrique, 2	pentadigonale, 13
complet, 5	permutation, 10
Espace vectoriel	polynôme caractéristique, 11
norme, 15	produit de, 8
normé, 15	projection orthogonale, 7
,	rang, 9
Fermé, 3	rayon spectrale, 12
Fonction	régulière, 9
continuité, 4	semi définie positive, 10
continuité uniforme, 4	singulière, 9
contractante, 5	sous matrice, 13
	sous manree, 10

sous matrice principale, 13	Rolle, 1
sous-espace propre, 11	Trace d'une matrice, 10
spectre, 12	II-:4-: 10
symétrique, 10	Unitaire, 10
trace, 10	Valeur propre, 11
transposée, 8	multiplicité algébrique, 11
triangulaire, 12	multiplicité géométrique, 11
triangulaire inférieure, 12	Vecteur
triangulaire par blocs, 14 triangulaire supérieure, 12	adjoint, 7
tridiagonale, 13	base, 6
unitaire, 10	colonne, 6
valeur propre, 11	convergence, 18
vecteur propre, 11	ligne, 6 nul 0_n ou 0 , 7
Normale, 10	orthogonal à une partie, 7
Norme, 15	orthogonaux, 7
invariance par transformation unitaire, 16	orthonormaux, 7
matricielle non subordonnée, 17	produit scalaire, 7
matricielle subordonnée, 16	propre, 11
vectorielle, 15	transposé, 7
Norme matricielle, 16	Voisinage, 3
Vormes	
équivalentes, 16	
Opérateur de projection, 7 Ordre de convergence, 6 Orthogonale, 10 Ouvert, 3	
Partie	
bornée, 2	
permutations, 10	
Point	
adhérent, 3	
intérieur, 3	
Polynôme caractéristique, 11	
Procédé d'orthonormalisation de Gram-Schmidt, 7	
Projection orthogonale :opérateur, 7	
Rayon spectral, 12 Régulière, 9	
tegunere, 9	
Singulière, 9	
Sous matrice, 13	
Sous matrice principale, 13	
Sous-espace propre, 11	
Spectre, 12	
Suite	
convergente, 3	
divergente, 3	
Suite de Cauchy, 5	
Symetrique, 10	
Γhéorème	
accroissements finis, 1	
Bolzano, 1	
de bijection, 2	
de Heine, 5	
des valeurs intermédiaire (TVI), 1	