Analyse Numérique I*

Sup'Galilée, Ingénieurs MACS, 1ère année / L3 MIM

François Cuvelier

Laboratoire d'Analyse Géométrie et Applications Institut Galilée Université Paris XIII.

2025/11/29

Chapitre V

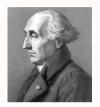
Interpolation

Plan

- Interpolation de Lagrange
 - Exercices
 - Résultats
 - Stabilité

2 Interpolation de Lagrange-Hermite

Historique



(a) Joseph-Louis Lagrange 1736-1813, mathématicien italien puis français

(b) Pafnouti Lvovitch Tchebychev 1821-1894, mathématicien russe

(c) Charles Hermite 1822-1901, mathématicien français

(d) Henri-Léon Lebesgue 1875-1941, mathématicien français

Plan

- Interpolation de Lagrange
 - Exercices
 - Résultats
 - Stabilité
- 2 Interpolation de Lagrange-Hermite

5 / 32

Exercice 1

Soient $n \in \mathbb{N}^*$ et (n+1) couples de \mathbb{R}^2 , $(x_i, y_i)_{i \in [0,n]}$, tels que les x_i sont distincts deux à deux. On note

(0,1) Soit $i \in [0,n]$. Montrer qu'il existe un unique polynôme L_i de degré n vérifiant

$$L_i(x_j) = \delta_{ij}, \ \forall j \in \llbracket 0, n \rrbracket. \tag{1}$$

② Montrer que les $(L_i)_{i \in [0,n]}$ forment une base de $\mathbb{R}_n[X]$ (espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n).

On défini le polynôme P_n par

$$P_n(x) = \sum_{i=0}^n y_i L_i(x). \tag{2}$$

Montrer que polynôme P_n est l'unique polynôme de degré au plus n vérifiant $P_n(x_i) = y_i$, $\forall i \in [1, n]$.

Interpolation de Lagrange Exercices 2025/11/29 6 / 32

Soient $n \in \mathbb{N}^*$ et (n+1) couples de \mathbb{R}^2 , $(x_i, y_i)_{i \in [0, n]}$, tels que les x_i sont distincts deux à deux. Le **polynôme** d'interpolation de Lagrange de $\mathbb{R}_n[X]$, noté P_n , et vérifiant

$$\forall i \in [0, n], \quad P_n(x_i) = y_i \tag{1}$$

est donné par

$$\forall x \in \mathbb{R}, \quad P_n(x) = \sum_{i=0}^n y_i L_i(x), \tag{2}$$

où les $L_i \in \mathbb{R}_p[X]$ sont les **polynômes de base de Lagrange** donnés par

$$\forall i \in \llbracket 0, n \rrbracket, \ \forall x \in \mathbb{R}, \ L_i(x) = \prod_{\substack{j=0\\j \neq i}}^n \frac{x - x_j}{x_i - x_j}. \tag{3}$$

Théorème 1.1

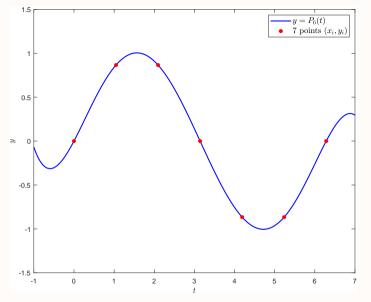
Le **polynôme d'interpolation de Lagrange**, \mathcal{P}_n , associé aux (n+1) couples $(x_i, y_i)_{i \in [\![0, n]\!]}$, est l'unique polynôme de degré au plus n, vérifiant

$$\mathcal{P}_n(x_i) = y_i, \ \forall i \in [0, n]. \tag{4}$$

4□▶4両▶4≣▶4≣▶ ■ 900

2025/11/29

7 / 32



Polynôme d'interpolation de Lagrange avec 7 points donnés

Exercice 2

Ecrire la fonction Lagrange permettant de calculer \mathcal{P}_n (polynôme d'interpolation de Lagrange associé aux (n+1) couples $(x_i,y_i)_{i\in \llbracket 0,n\rrbracket}$) en $t\in \mathbb{R}$.

On a

$$P_n(t) = \sum_{i=0}^n y_i L_i(t).$$

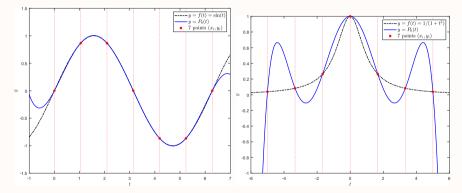
avec

$$L_i(t) = \prod_{\substack{j=0\\i\neq i}}^n \frac{t-x_j}{x_i-x_j}$$

Soit une fonction $f:[a,b] \longrightarrow \mathbb{R}$. On suppose que les y_i sont donnés par

$$y_i = f(x_i), \quad \forall i \in [0, n]. \tag{5}$$

On cherche à évaluer l'erreur $E_n(t) = f(t) - \mathcal{P}_n(t), \ \forall t \in [a,b].$



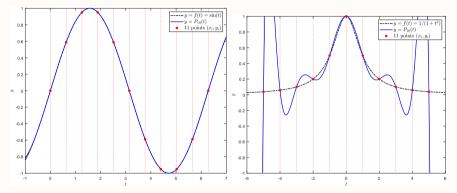
Polynômes d'interpolation de lagrange avec n=6 (7 points) uniformément répartis. A gauche pour la fonction $f:t\longrightarrow sin(t)$ avec $x_0=0$, $x_6=2\pi$ et à droite pour la fonction $f:t\longrightarrow 1/(1+t^2)$ avec $x_0=-5$, $x_6=5$.

Soit une fonction $f:[a,b] \longrightarrow \mathbb{R}$. On suppose que les y_i sont donnés par

$$y_i = f(x_i), \quad \forall i \in [0, n]. \tag{5}$$

10 / 32

On cherche à évaluer l'erreur $E_n(t) = f(t) - \mathcal{P}_n(t), \ \forall t \in [a,b].$

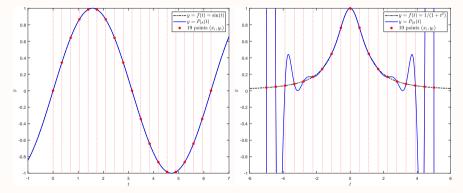


Polynômes d'interpolation de lagrange avec n=10 (11 points) uniformément répartis. A gauche pour la fonction $f:t\longrightarrow sin(t)$ avec $x_0=0$, $x_{10}=2\pi$ et à droite pour la fonction $f:t\longrightarrow 1/(1+t^2)$ avec $x_0=-5$, $x_{10}=5$.

Soit une fonction $f:[a,b] \longrightarrow \mathbb{R}$. On suppose que les y_i sont donnés par

$$y_i = f(x_i), \quad \forall i \in [0, n]. \tag{5}$$

On cherche à évaluer l'erreur $E_n(t) = f(t) - \mathcal{P}_n(t), \ \forall t \in [a,b].$



Polynômes d'interpolation de lagrange avec n=18 (19 points) uniformément répartis. A gauche pour la fonction $f:t\longrightarrow sin(t)$ avec $x_0=0$, $x_{18}=2\pi$ et à droite pour la fonction $f:t\longrightarrow 1/(1+t^2)$ avec $x_0=-5$, $x_{18}=5$.

Plan

- Interpolation de Lagrange
 - Exercices
 - Résultats
 - Stabilité
- 2 Interpolation de Lagrange-Hermite

Lemme 1.1 : Séparation des zéros d'une fonction

Soient I un intervalle non vide de \mathbb{R} , $n \in \mathbb{N}^*$ et $f: I \longrightarrow \mathbb{R}$. On suppose qu'il existe $(x_i)_{i=0}^n$ dans I, avec $x_0 < x_1 < ... < x_n$, tel que

$$\forall i \in \llbracket 0, n \rrbracket, \quad f(x_i) = 0.$$

① Si $f \in C^0(I; \mathbb{R})$, avec f dérivable sur I, alors, il existe $(\xi_i)_{i=1}^n$ dans I, avec $x_0 < \xi_1 < x_1 < \xi_2 < x_2 < \dots < \xi_n < x_n$, tel que

$$\forall i \in [1, n], f^{(1)}(\xi_i) = 0.$$

② Si $f \in \mathcal{C}^{n-1}(I;\mathbb{R})$, avec $f^{(n-1)}$ dérivable alors il existe $\xi \in]x_0, x_n[$ tel que $f^{(n)}(\xi) = 0$.

voir Exercice 3

Exercice 4 🧆

Soient $(a,b) \in \mathbb{R}^2$, a < b, $n \in \mathbb{N}^*$, $f \in \mathcal{C}^{n+1}([a;b];\mathbb{R})$ et (n+1) couples de \mathbb{R}^2 , $(x_i,y_i)_{i \in [0,n]}$, tels que les $x_i \in [a;b]$ sont distincts deux à deux et $y_i = f(x_i)$.

On note par P_n le polynôme d'interpolation de Lagrange associé aux points $(x_i, y_i)_{i \in [0, n]}$ et π_n le polynôme de degré (n+1) défini par

$$\pi_n(x) \stackrel{\mathsf{def}}{=} \prod_{i=0}^n (x - x_i).$$

Q. 1 Soit $x \in [a; b]$ tel que, pour tout $i \in [0, n], x \neq x_i$. On note

$$x_{\min} = \min(x, x_0, \dots, x_n), \quad x_{\max} = \max(x, x_0, \dots, x_n),$$

et

$$F(t) = f(t) - P_n(t) - \frac{f(x) - P_n(x)}{\pi_n(x)} \pi_n(t).$$

- ① Démontrer que F est définie sur [a;b] et admet (n+2) racines distinctes.
- 2 Montrer qu'il existe $\xi_x \in]x_{\min}; x_{\max}[$ tel que $F^{(n+1)}(\xi_x) = 0$.
- 3 En déduire que

$$f(x) - P_n(x) = \frac{\pi_n(x)}{(n+1)!} f^{(n+1)}(\xi_x). \tag{1}$$

Montrer que, $\forall x \in [a; b]$, il existe ξ_x appartenant au plus petit intervalle ouvert contenant x, x_0, \dots, x_n vérifiant (1).

13 / 32

Interpolation de Lagrange Résultats 2025/11/29

Théorème 1.2

Soient $n \in \mathbb{N}^*$ et $(x_i)_{i=0}^n$, (n+1) points distincts de l'intervalle [a,b]. Soient $f \in \mathcal{C}^{n+1}([a;b];\mathbb{R})$ et \mathcal{P}_n le polynôme d'interpolation de Lagrange de degré n passant par $(x_i, f(x_i))$, $\forall i \in [0, n]$. Alors,

 $\forall x \in [a, b], \exists \xi_x \in (min(x_i, x), max(x_i, x)),$

$$f(x) - \mathcal{P}_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$
 (6)

Comment "minimiser" $f(x) - P_n(x)$?

"jouer" sur le choix des points x_i

14 / 32

Interpolation de Lagrange Résultats 2025/11/29

Trouver $(\bar{x}_i)_{i=0}^n$, $\bar{x}_i \in [a, b]$, distincts deux à deux, tels que $\forall (x_i)_{i=0}^n$, $x_i \in [a, b]$, distincts 2 à 2

$$\max_{t \in [a,b]} \prod_{i=0}^{n} |t - \bar{x}_i| \leq \max_{t \in [a,b]} \prod_{i=0}^{n} |t - x_i|, \tag{7}$$

On a alors le résultat suivant

Théorème 1.3 : admis

Les points réalisant (7) sont les points de Tchebychev donnés par

$$\bar{x}_i = \frac{a+b}{2} + \frac{b-a}{2}\cos(\frac{(2i+1)\pi}{2n+2}), \ \forall i \in [0,n].$$
 (8)

15 / 32

Interpolation de Lagrange Résultats 2025/11/29

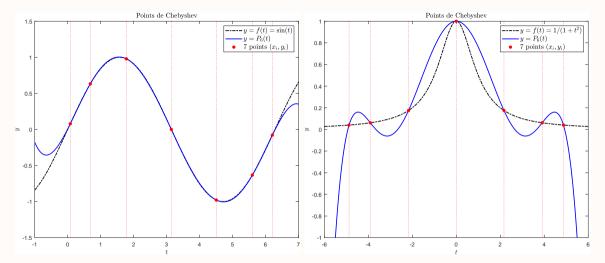


Figure: Erreurs d'interpolation avec n = 6

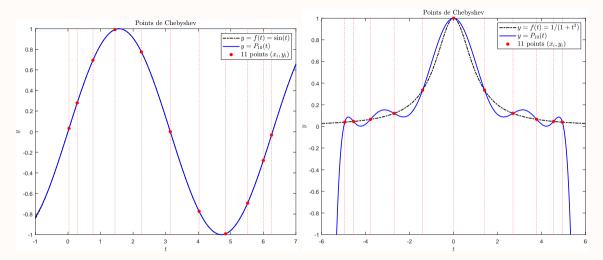


Figure: Erreurs d'interpolation avec n = 10

16 / 32

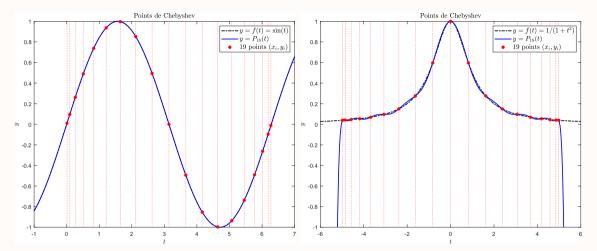


Figure: Erreurs d'interpolation avec n = 18

Plan

- Interpolation de Lagrange
 - Exercices
 - Résultats
 - Stabilité
- 2 Interpolation de Lagrange-Hermite

On commet des erreurs sur les données

$$f_i \approx f(x_i), \forall i \in [0, n]$$

$$\begin{split} \mathrm{P}_{n}(x) &= \sum_{i=0}^{n} f(x_{i}) \mathrm{L}_{i}(x) \quad \text{et} \quad \widehat{\mathrm{P}}_{n}(x) = \sum_{i=0}^{n} f_{i} \mathrm{L}_{i}(x) \\ |\widehat{\mathrm{P}}_{n}(x) - \mathrm{P}_{n}(x)| &= |\sum_{i=0}^{n} (f_{i} - f(x_{i})) \mathrm{L}_{i}(x)| \\ &\leq \sum_{i=0}^{n} |f_{i} - f(x_{i})| |\mathrm{L}_{i}(x)| \\ &\leq \max_{i \in [\![0,n]\!]} |f_{i} - f(x_{i})| \sum_{i=0}^{n} |\mathrm{L}_{i}(x)|. \end{split}$$

Constante de Lebesgue :
$$\Lambda_n = \max_{x \in [a,b]} \sum_{i=0}^n |L_i(x)|$$
.

$$\|\hat{\mathbf{P}}_n - \mathbf{P}_n\|_{\infty} \leq \Lambda_n \max_{i \in [0, n]} |f_i - f(x_i)|.$$

Théorème 1.4

Soient $n \in \mathbb{N}^*$ et x_0, \dots, x_n des points distincts de [a,b]. L'application $\mathcal{L}_n : \mathcal{C}^0([a,b];\mathbb{R}) \longrightarrow \mathbb{R}_n[X]$ qui a toute fonction $f \in \mathcal{C}^0([a,b];\mathbb{R})$ donne le polynôme d'interpolation de Lagrange P_n associés aux couples de $(x_i, f(x_i))_{i \in [0,n]}$ est bien définie et linéaire. On munit $\mathcal{C}^0([a,b];\mathbb{R})$ et $\mathbb{R}_n[X]$ de la norme $\|.\|_{\infty}$. On a alors

$$\|\mathcal{L}_n(f)\|_{\infty} \leqslant \Lambda_n \|f\|_{\infty}, \tag{9}$$

ce qui assure la continuité de \mathcal{L}_n ,

$$\|\mathcal{L}_n\| \stackrel{\mathsf{def}}{=} \sup_{\substack{f \in \mathcal{C}^0([a,b];\mathbb{R})\\f \neq 0}} \frac{\|\mathcal{L}_n(f)\|_{\infty}}{\|f\|_{\infty}} = \Lambda_n, \tag{10}$$

et

$$\forall f \in \mathcal{C}^{0}([a,b];\mathbb{R}), \quad \|f - \mathcal{L}_{n}(f)\|_{\infty} \leqslant (1+\Lambda_{n}) \inf_{\mathbf{Q} \in \mathbb{R}_{n}[X]} \|f - \mathbf{Q}\|_{\infty}$$

$$\tag{11}$$

voir Exercice 5 🥸

◆□▶◆□▶◆豆▶◆豆▶ 豆 釣९♡

• Pour les **points équidistants** $x_i = a + ih$, $i \in [0, n]$ et h = (b - a)/n,

$$\Lambda_n \geqslant \frac{2^n}{4n^2} \tag{12}$$

et le comportement asymptotique $(n \to +\infty)$

$$\Lambda_n \sim \frac{2^{n+1}}{e.n \ln(n)} \underset{n \to +\infty}{\longrightarrow} +\infty \tag{13}$$

Pour les points de Tchebychev,

$$\Lambda_n \leqslant C \ln(n), \text{ avec } C > 0$$
 (14)

et le comportement asymptotique

$$\Lambda_n \sim \frac{2}{\pi} \ln(n) \underset{n \to +\infty}{\longrightarrow} +\infty \tag{15}$$

voir Demailly2006, page 47-48.

4□▶4圖▶4필▶4필▶ 필 90

20 / 32

Proposition: admis

Pour toute famille de points d'interpolation, il existe une fonction $f \in C^0([a,b];\mathbb{R})$ telle que la suite des polynômes d'interpolation de Lagrange associés ne converge pas uniformément.

Proposition: admis

Soit f une fonction lipschitzienne sur [a,b] à valeurs réelles, i.e. il existe une constante $K\geqslant 0$ telle que $\forall (x,y)\in [a,b]^2$, on ait $|f(x)-f(y)|\leqslant K|x-y|$. Soient $n\in N^*$ et x_0,\cdots,x_n les points de Tchebychev [a,b]. On note $\mathcal{L}_n(f)$ le polynôme d'interpolation de Lagrange associés aux couples de $(x_i,f(x_i))_{i\in [\![0,n]\!]}$.

Alors la suite $(\mathcal{L}_n(f))_{n\geqslant 1}$ des polynômes d'interpolation converge uniformément vers f sur [a,b].

voir Demailly2006-im, page 50.

21 / 32

Interpolation de Lagrange Stabilité 2025/11/29

Conclusion

L'interpolation de Lagrange en des points équidistants n'est à utiliser qu'avec un nombre de points assez faible : des phénomènes d'instabilités pouvant apparaître.

Exercice 6 Interpolation de Lagrange-Hermite 🧆

Soient $(x_i, y_i, z_i)_{i \in [\![0,n]\!]} n+1$ triplets de \mathbb{R}^3 , où les x_i sont des points distincts deux à deux de l'intervalle [a, b]. Le polynôme d'interpolation de **Lagrange-Hermite**, noté H_n , associé aux n+1 triplets $(x_i, y_i, z_i)_{i \in [\![0,n]\!]}$, est défini par

$$H_n(x_i) = y_i \quad \text{et} \quad H'_n(x_i) = z_i, \ \forall i \in \llbracket 0, n \rrbracket$$

Quel est a priori le degré de H_n ?

On défini le polynôme P_n par

$$P_n(x) = \sum_{i=0}^n y_i A_i(x) + \sum_{i=0}^n z_i B_i(x)$$
 (2)

avec, pour $i \in [0, n]$, A_i et B_i polynômes de degré au plus 2n + 1 indépendants des valeurs y_i et z_i .

- Q. 2
- ① Déterminer des conditions suffisantes sur A_i et B_i pour que P_n vérifie (1).
- ② En déduire les expressions de A_i et B_i en fonction de L_i et de $L'_i(x_i)$ où

$$L_i(x) = \prod_{\substack{j=0\\i\neq j}}^n \frac{x - x_j}{x_i - x_j}.$$

Q. 3

Démontrer qu'il existe un unique polynôme d'interpolation de Lagrange-Hermite de degré au plus 2n + 1 défini par (1).

Definition 2.1

Soient $n \in \mathbb{N}^*$ et $(x_i, y_i, z_i)_{i \in [\![0,n]\!]}$ (n+1) triplets de \mathbb{R}^3 , où les x_i sont des points distincts deux à deux de \mathbb{R} . Le **polynôme d'interpolation de Lagrange-Hermite**, noté H_n , associé aux (n+1) triplets $(x_i, y_i, z_i)_{i \in [\![0,n]\!]}$, est défini par

$$H_n(x) = \sum_{i=0}^n y_i A_i(x) + \sum_{i=0}^n z_i B_i(x)$$
 (16)

avec

$$A_i(x) = (1 - 2(x - x_i)L_i'(x_i))L_i^2(x) \text{ et } B_i(x) = (x - x_i)L_i^2(x)$$
(17)

οù

$$L_i(x) = \prod_{\substack{j=0\\i\neq i}}^n \frac{x-x_j}{x_i-x_j}.$$

Théorème 2.1

Le **polynôme d'interpolation de Lagrange-Hermite**, H_n , associé aux n+1 triplets $(x_i, y_i, z_i)_{i \in [0,n]}$, est l'unique polynôme de degré au plus 2n+1, vérifiant

$$H_n(x_i) = y_i \text{ et } H'_n(x_i) = z_i, \ \forall i \in [0, n]$$
 (18)

Exercice 7 Interpolation de Lagrange-Hermite 🧆

Soient $(a,b) \in \mathbb{R}^2$, a < b, $n \in \mathbb{N}^*$, $f \in \mathcal{C}^{2n+2}([a,b];\mathbb{R})$. et $(x_i)_{i=0}^n$, (n+1) points distincts de [a;b]. On note

$$\forall i \in \llbracket 0, n
rbracket, y_i = f(x_i) \text{ et } z_i = f'(x_i).$$

On définit, par H_n , le polynôme d'interpolation de Lagrange-Hermite associé aux triplets $(x_i, f(x_i), f'(x_i))_{i \in [\![0,n]\!]}$ et par π_n le polynôme défini par

$$\pi_n(t) \stackrel{\mathsf{def}}{=} \prod_{i=0}^n (t - x_i).$$

Soit $x \in [a; b]$ tel que, pour tout $i \in [0, n], x \neq x_i$. On note

$$x_{\min} = \min(x, x_0, \dots, x_n), \quad x_{\max} = \max(x, x_0, \dots, x_n),$$

et

$$F(t) = f(t) - H_n(t) - \frac{f(x) - H_n(x)}{\kappa_n(x)} \kappa_n(t)$$

avec $\kappa_n \stackrel{\mathsf{def}}{=} \pi_n^2$.

- ① Démontrer que F est définie sur [a;b] et que $F \in C^{2n+2}([a,b];\mathbb{R})$.
- ② Montrer que F' admet 2(n+1) zéros distincts.
- 3 Montrer qu'il existe $\xi_x \in]x_{\min}; x_{\max}[$ tel que $F^{(2n+2)}(\xi_x) = 0$.
- En déduire que

$$f(x) - H_n(x) = \frac{\kappa_n(x)}{(2n+2)!} f^{(2n+2)}(\xi_x). \tag{1}$$

Montrer que, $\forall x \in [a; b]$, il existe ξ_x appartenant au plus petit intervalle ouvert contenant x, x_0, \dots, x_n vérifiant (1).

Théorème 2.2

Soient $n \in \mathbb{N}^*$ et $x_0, \dots, x_n, n+1$ points distincts de l'intervalle [a,b]. Soient $f \in \mathcal{C}^{2n+2}([a;b];\mathbb{R})$ et H_n le polynôme d'interpolation de Lagrange-Hermite associé aux n+1 triplets $(x_i, f(x_i), f'(x_i))_{i \in [0,n]}$. On a alors $\forall x \in [a,b]$, $\exists \xi_x \in (\min(x_i,x), \max(x_i,x))$, tels que

$$f(x) - H_n(x) = \frac{f^{(2n+2)}(\xi_x)}{(2n+2)!} \prod_{i=0}^n (x - x_i)^2$$
 (19)

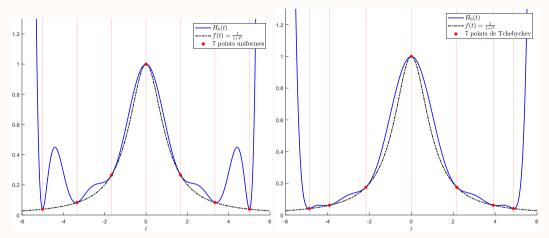


Figure: Polynôme d'interpolation de lagrange-Hermite avec n=6 (7 points) pour la fonction $f:x\longrightarrow 1/(1+25x^2)$. A gauche avec des points uniforméments répartis et à droite avec des points de Tchebychev

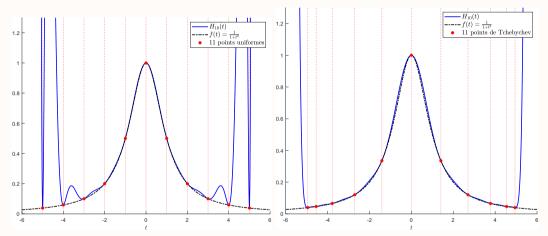


Figure: Polynôme d'interpolation de lagrange-Hermite avec n = 10 (11 points) pour la fonction $f: x \longrightarrow 1/(1+x^2)$. A gauche avec des points uniforméments répartis et à droite avec des points de Tchebychev

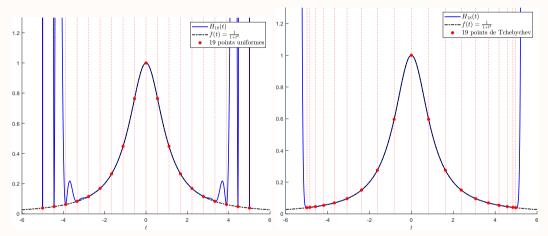


Figure: Polynôme d'interpolation de lagrange-Hermite avec n = 18 (19 points) pour la fonction $f: x \longrightarrow 1/(1+x^2)$. A gauche avec des points uniforméments répartis et à droite avec des points de Tchebychev

Interpolation de Lagrange-Hermite

30 / 32

M Definition : (rappel)

Soient $n \in \mathbb{N}^*$ et $(x_i, y_i, z_i)_{i \in [\![0,n]\!]}$ (n+1) triplets de \mathbb{R}^3 , où les x_i sont des points distincts deux à deux de \mathbb{R} . Le **polynôme** d'interpolation de Lagrange-Hermite, noté H_n , associé aux (n+1) triplets $(x_i, y_i, z_i)_{i \in [\![0,n]\!]}$, est défini par

$$H_n(x) = \sum_{i=0}^n y_i A_i(x) + \sum_{i=0}^n z_i B_i(x)$$
 (20)

avec

$$A_i(x) = (1 - 2(x - x_i)L_i'(x_i))L_i^2(x) \text{ et } B_i(x) = (x - x_i)L_i^2(x)$$
(21)

ΟÙ

$$L_i(x) = \prod_{\substack{j=0\\i\neq i}}^n \frac{x-x_j}{x_i-x_j}.$$

Exercice 8 Interpolation de Lagrange-Hermite

Ecrire une fonction algorithmique Hermite permettant de calculer H_n (polynôme d'interpolation de Lagrange-Hermite associé aux n+1 triplets $(x_i, y_i, z_i)_{i \in [0,n]}$) en $t \in \mathbb{R}$.

Il existe de nombreuses autres façons d'approcher une fonction:

- interpolation affine par morceau,
- interpolation par fonctions splines,
- méthodes des moindres carrés,
- interpolation trigonométrique et FFT,

• . . .