Exercices associés au cours d'Analyse Numérique I Chapitre 6: Intégration numérique¹

References

- [1] F. CUVELIER, Analyse numérique élémentaire (version du 29 sep. 2025), Polycopié (téléchargement), 2025.
- [2] F. Cuvelier, Analyse numérique I, intégration numérique, résumé., 2025. fichier pdf, https://www.math. univ-paris13.fr/~cuvelier/docs/Enseignements/MACS1/AnaNumI/25-26/resume_Integration_print-2by1.pdf.

Exercices du cours 1

EXERCICE 1

Soient f une fonction définie sur [a,b] à valeurs réelles et $n \in \mathbb{N}$. On souhaite approcher $\int_a^b f(x)dx$ par $\mathcal{Q}_n(f,a,b)$ une formule de quadrature élémentaire

$$Q_n(f, a, b) \stackrel{\text{def}}{=} (b - a) \sum_{i=0}^n w_i f(x_i)$$

$$\tag{1.1}$$

où les $(x_i)_{i=0}^n$ sont des points distincts 2 à 2 dans [a,b] et les $(w_i)_{i=0}^n$ sont des réels.

- Démontrer que l'application $f \mapsto \mathcal{Q}_n(f,a,b)$ définie de $\mathcal{C}^0([a,b];\mathbb{R})$, muni de la norme infini, à valeurs dans \mathbb{R} est
- Soit $k \in \mathbb{N}$. Montrer que $\mathcal{Q}_n(f, a, b)$ est de degré d'exactitude k si et seulement si

$$\forall r \in [0, k], \quad \mathcal{Q}_n(x \mapsto x^r, a, b) = \int_a^b x^r dx. \tag{1.2}$$

EXERCICE 2

Soient f une fonction définie sur [a,b] à valeurs réelles et $n \in \mathbb{N}$. On souhaite approcher $\int_a^b f(x)dx$ par $\mathcal{Q}_n(f,a,b)$ une formule de quadrature élémentaire

$$Q_n(f, a, b) \stackrel{\text{def}}{=} (b - a) \sum_{i=0}^n w_i f(x_i)$$
(2.1)

où les $(x_i)_{i=0}^n$ sont des points distincts 2 à 2 dans [a,b] et les $(w_i)_{i=0}^n$ sont des réels. On note $x=\varphi(t)=\alpha+\beta t,\ \beta\in\mathbb{R}^*$, le changement de variable affine, $t_i=\varphi^{-1}(x_i),\ \forall i\in[0,n]$, et

$$Q_n(g, \varphi^{-1}(a), \varphi^{-1}(b)) = (\varphi^{-1}(b) - \varphi^{-1}(a)) \sum_{i=0}^n w_i g(t_i).$$
(2.2)

Expliciter φ^{-1} .

Soit $k \in \mathbb{N}$.

- Montrer que si $Q_n(f, a, b)$ est de degré d'exactitude k alors $Q_n(g, \varphi^{-1}(a), \varphi^{-1}(b))$ est de degré d'exactitude k.
- Montrer que si $Q_n(g, \varphi^{-1}(a), \varphi^{-1}(b))$ est de degré d'exactitude k alors $Q_n(f, a, b)$ est de degré d'exactitude k.

 $^{^1 \}mathrm{auteur}\colon$ F. Cuvelier. Compilé le 29 novembre 2025 à 6 h 15.

EXERCICE 3

Soient f une fonction définie sur [a,b] à valeurs réelles, $n \in \mathbb{N}$ et $(x_i)_{i=0}^n$ des points distincts 2 à 2 dans [a,b]. On souhaite approcher $\int_a^b f(x)dx$ par $\mathcal{Q}_n(f,a,b)$, une formule de quadrature élémentaire,

$$Q_n(f, a, b) \stackrel{\text{def}}{=} (b - a) \sum_{i=0}^n w_i f(x_i)$$
(3.1)

où les $(w_i)_{i=0}^n$ sont des réels à déterminer.

Démontrer que (3.1) est de degré d'exactitude k (au moins) si et seulement si

$$(b-a)\sum_{i=0}^{n} w_i x_i^r = \frac{b^{r+1} - a^{r+1}}{r+1}, \quad \forall r \in [0, k].$$
(3.2)

Les points $(x_i)_{i=0}^n$ étant fixés, montrer qu'il existe alors une unique formule de quadrature élémentaire (3.1) à (n+1) points de degré d'exactitude n au moins.

EXERCICE 4

Soient $(x_i)_{i=0}^n$ (n+1) points donnés et distincts 2 à 2 d'un intervalle [a,b] (a < b). Ecrire une fonction algorithmique WeightsFromPoints permettant de déterminer les poids $(w_i)_{i=0}^n$ de telle sorte que la formule de quadrature élémentaire associée soit de degré d'exactitude n au moins en s'inspirant de résultats obtenus dans la démonstration de la Proposition 5.1.4 [1]/6.4 [2]. On pourra utiliser la fonction algorithmique $\mathbf{x} \leftarrow \text{Solve}(\mathbb{A}, \mathbf{b})$ permettant de résoudre le système linéaire $\mathbb{A}\mathbf{x} = \mathbf{b}$.

EXERCICE 5

Soient f une fonction définie sur [a,b] à valeurs réelles et $n \in \mathbb{N}$. On souhaite approcher $\int_a^b f(x)dx$ par $\mathcal{Q}_n(f,a,b)$, une formule de quadrature élémentaire, donnée par

$$Q_n(f, a, b) \stackrel{\text{def}}{=} (b - a) \sum_{i=0}^n w_i f(x_i)$$

$$(5.1)$$

où les $(x_i)_{i=0}^n$ sont des points distincts 2 à 2 dans [a,b] et les $(w_i)_{i=0}^n$ sont des réels vérifiant

$$\forall i \in [0, n], \quad \frac{x_i + x_{n-i}}{2} = \frac{a+b}{2} \quad \text{et} \quad w_i = w_{n-i}.$$
 (5.2)

a. Etablir que

$$\forall i \in [0, n], \quad x_i - \frac{a+b}{2} = -\left(x_{n-i} - \frac{a+b}{2}\right).$$

- b. Si n est impair, montrer que $\forall i \in [0, n], x_i \neq \frac{a+b}{2}$.
- c. Si n est pair, montrer qu'il existe un unique $i \in [0, n]$ tel que $x_i = \frac{a+b}{2}$.
- d. En justifiant, donner explicitement un exemple de points $(x_i)_{i=0}^n$ vérifiant (5.2) (n restant quelconque).

Démontrer que l'application $f \mapsto \mathcal{Q}_n(f, a, b)$ définie de $f \in \mathcal{C}^0([a, b]; \mathbb{R})$, muni de la norme infini, à valeurs dans \mathbb{R} est linéaire et continue.

Soient $m \in \mathbb{N}^*$ et P un polynôme de degré 2m+1 s'écrivant sous la forme

$$P(x) = \sum_{j=0}^{2m+1} a_j x^j$$

 2

avec $(a_j)_{j=0}^{2m+1}$ des réels et $a_{2m+1} \neq 0$.

Q. 3

- a. Calculer les dérivées $P^{(2m+1)}$ et $P^{(2m+2)}$.
- b. Montrer que

$$P(x) = C\left(x - \frac{a+b}{2}\right)^{2m+1} + R(x)$$
 (5.3)

en déterminant le degré maximum de R et en exprimant C en fonction des $(a_j)_{j=0}^{2m+1}$.

 $\underbrace{Montrer\ que}$

$$\forall k \in \mathbb{N}, \quad \int_a^b \left(x - \frac{a+b}{2} \right)^{2k+1} dx = 0. \tag{5.4}$$

On suppose que la formule de quadrature élémentaire (5.1) est exacte pour les polynômes de $\mathbb{R}_{2m}[X]$.

a. Déduire de (5.3) et (5.4) que la formule de quadrature élémentaire (5.1) est exacte pour P si et seulement si

$$(b-a)\sum_{i=0}^{n} w_i \left(x_i - \frac{a+b}{2}\right)^{2m+1} = 0.$$
 (5.5)

b. En utilisant Q. 1, démontrer que (5.5) est toujours vérifiée.

Q. 6 Ecrire de manière très précise le résultat démontré.

EXERCICE 6

Soient a,b deux réels, a < b et $\mathcal{F}([a;b];\mathbb{R})$ l'espace des fonctions définie de [a;b] à valeurs dans \mathbb{R} . Soient $f \in \mathcal{F}([a;b];\mathbb{R})$ et $n \in \mathbb{N}$. On souhaite approcher $\int_a^b f(x) dx$ par $\mathcal{Q}_n(f,a,b)$, une formule de quadrature élémentaire, donnée par

$$Q_n(f, a, b) \stackrel{\text{def}}{=} (b - a) \sum_{i=0}^n w_i f(x_i)$$

$$\tag{6.1}$$

où les $(x_i)_{i=0}^n$ sont des points distincts 2 à 2 dans [a,b] et les $(w_i)_{i=0}^n$ sont des réels.

Démontrer que l'application $f \mapsto \mathcal{Q}_n(f, a, b)$ définie de $\mathcal{F}([a; b]; \mathbb{R})$ à valeurs dans \mathbb{R} est linéaire.

On note, pour tout $i \in [0, n]$,

$$L_i(x) \stackrel{\text{def}}{=} \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

et $t_i = (x_i - a)/(b - a)$. On rappelle que le polynôme d'interpolation de Lagrange associés aux points $(x_i, f(x_i))_{i \in [0, n]}$ s'écrit

$$\mathcal{L}_n(f)(x) = \sum_{i=0}^n L_i(x)f(x_i)$$

et que si $f \in \mathcal{C}^{n+1}([a,b];\mathbb{R})$ alors on a

$$\forall x \in [a, b], \ \exists \xi_x \in [a, b], \ f(x) - \mathcal{L}_n(f)(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$
(6.2)

Montrer que

$$\frac{1}{b-a} \int_{a}^{b} L_{i}(x)dx = \int_{0}^{1} \prod_{\substack{j=0\\j\neq i}}^{n} \frac{t-t_{j}}{t_{i}-t_{j}}dt.$$
(6.3)

a. Montrer que si Q_n a pour degré d'exactitude n au moins alors, on a

$$\forall i \in [0, n], \quad w_i = \frac{1}{b - a} \int_a^b L_i(x) dx. \tag{6.4}$$

b. Montrer que si (8.3) est vérifiée, alors Q_n a pour degré d'exactitude n au moins.

On suppose les poids $(w_i)_{i=0}^n$ donnés par (8.3). Montrer que si $f \in \mathcal{C}^{n+1}([a,b];\mathbb{R})$ alors on a

$$\left| \int_{a}^{b} f(x)dx - \mathcal{Q}_{n}(f, a, b) \right| \leq \frac{1}{(n+1)!} \left\| f^{(n+1)} \right\|_{\infty} \int_{a}^{b} \left| \prod_{i=0}^{n} (x - x_{i}) \right| dx \tag{6.5}$$

EXERCICE 7

Soient $(x_i)_{i=0}^n$ des points distincts 2 à 2 de l'intervalle [a,b] vérifiant

$$\forall i \in [0, n], \quad \frac{x_i + x_{n-i}}{2} = \frac{a+b}{2}.$$

On note $L_i \in \mathbb{R}_n[X]$, $i \in [0, n]$ les (n + 1) polynômes de base de Lagrange définis par

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

et vérifiant $L_i(x_i) = \delta_{i,j}, \forall (i,j) \in [0,n]^2$

Soit $i \in [0, n]$. Montrer que

$$\forall x \in \mathbb{R}, \ L_i((a+b)-x) = L_{n-i}(x).$$

Soient $(w_i)_{i=0}^n$ définis par

$$w_i = \frac{1}{b-a} \int_a^b \mathbf{L}_i(t) dt, \quad \forall i \in [0, n]$$

Montrer que l'on a alors

$$\forall i \in [0, n], \quad w_i = w_{n-i}$$

EXERCICE 8

Soient a, b deux réels, a < b et $\mathcal{F}([a; b]; \mathbb{R})$ l'espace des fonctions définie de [a; b] à valeurs dans \mathbb{R} . Soient $f \in \mathcal{F}([a; b]; \mathbb{R})$ et $n \in \mathbb{N}$. On souhaite approcher $\int_a^b f(x) dx$ par $\mathcal{Q}_n(f, a, b)$, une formule de quadrature élémentaire, donnée par

$$Q_n(f, a, b) \stackrel{\text{def}}{=} (b - a) \sum_{i=0}^n w_i f(x_i)$$
(8.1)

où les $(x_i)_{i=0}^n$ sont des points distincts 2 à 2 dans [a,b] et les $(w_i)_{i=0}^n$ sont des réels. On suppose que (8.1) a pour degré d'exactitude n au moins.

0.1

Démontrer que l'application $f \mapsto \mathcal{Q}_n(f, a, b)$ définie de $\mathcal{F}([a; b]; \mathbb{R})$ à valeurs dans \mathbb{R} est linéaire.

Soient π_n le polynôme de degré (n+1) défini par

$$\pi_n(x) = \prod_{i=0}^n (x - x_i)$$

et $m \in \mathbb{N}^*$.

 \mathbf{rappel} division euclidienne: Soient A et B deux polynômes, B étant non nul, alors il existe un unique couple de polynômes (Q,R) tel que

$$A = BQ + R$$
 et $deg(R) < deg(B)$.

Dans la division euclidienne de A par B, Q est le quotient et R le reste.

Q. 2

a. Soit $P \in \mathbb{R}_{n+m}[X]$. Déterminer les degrés maximaux des polynômes Q (quotient) et R (reste), obtenus par la division euclidienne de P par π_n , et satisfaisant

$$P = \pi_n Q + R$$
.

b. En déduire que

$$\forall \mathbf{P} \in \mathbb{R}_{n+m}[X], \quad \int_{a}^{b} \mathbf{P}(x)dx - \mathcal{Q}_{n}(\mathbf{P}, a, b) = \int_{a}^{b} \mathbf{Q}(x)\pi_{n}(x)dx. \tag{8.2}$$

où Q est le quotient de la division euclidienne de P par π_n ,

Q. 3

Démontrer que (8.1) a pour degré d'exactitude n+m au moins si et seulement si

$$\forall \mathbf{H} \in \mathbb{R}_{m-1}[X], \quad \int_{a}^{b} \pi_{n}(x)\mathbf{H}(x)dx = 0. \tag{8.3}$$

 $egin{array}{ccc} \mathbf{Q.} & \mathbf{4} \\ E_{0} \end{array}$

En déduire le degré maximal d'exactitude de (8.1).

Q. 5

Démontrer que (8.1) a pour degré d'exactitude n + m au moins si et seulement si

$$\int_{a}^{b} \pi_{n}(x) x^{k} dx = 0, \ \forall k \in [0, m - 1].$$
(8.4)

EXERCICE 9

Q. 1

Ecrire une fonction algorithmique WeightsPointsNC retournant les (n+1) points et les (n+1) poids de la formule de quadrature élémentaire de Newton-Cotes à (n+1) points.

 $\mathbf{Q}.$

Ecrire une fonction algorithmique QuadElemNC retournant la valeur de $Q_n(f, a, b)$ correpondant à la formule de quadrature élémentaire de Newton-Cotes à (n + 1) points.

EXERCICE 10

Q. 1

Déterminer les points t_0 , t_1 de l'intervalle [-1,1] et les poids w_0 , w_1 tel que la formule de quadrature

$$\int_{-1}^{1} g(t)dt \approx 2 \sum_{i=0}^{1} w_{i}g(t_{i})$$

soit de degré d'exactitude 3.

Q. 2

En déduire une formule de quadrature pour le calcul de $\int_a^b f(x)dx$ qui soit de degré d'exactitude 3.

EXERCICE 11

L'objectif de cet exercice est de calculer les points et les poids de la formule de quadrature de Gauss-Legendre à (n+1) points. La formule de quadrature de Gauss-Legendre à (n+1) points sur [-1,1] est donnée par

$$\int_{-1}^{1} g(t)dt \approx 2 \sum_{i=0}^{n} w_i g(t_i)$$

où les $(t_i)_{i=0}^n$ sont les (n+1) racines du polynôme de Legendre $P_{n+1}(t)$. Cette formule à pour degré d'exactitude 2n+1. Soient $\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)dt$ le produit scalaire sur $\mathbb{R}[X]$ et $\|P\| = \langle P, P \rangle^{1/2}$ la norme associée.

Soit M_n le polynôme de Legendre normalisé de degré (n+1), $M_n = \frac{P_n}{\|P_n\|}$. On utilisera les résultats sur les polynômes de Legendre rappelés en cours.

 $\underbrace{\mathbf{Q. 1}}_{Montrer\ que}$

$$c_{n+1}M_{n+1}(t) = tM_n(t) - c_nM_{n-1}(t), \quad n > 1$$
(11.1)

avec

$$M_0(t) = \sqrt{\frac{1}{2}}, \ M_1(t) = \sqrt{\frac{3}{2}}t \ et \ c_n = \sqrt{\frac{n^2}{4n^2 - 1}}$$

On définit le vecteur $\boldsymbol{M}(t)$ de \mathbb{R}^{n+1} par

$$\boldsymbol{M}(t) = (\mathbf{M}_0(t), \dots, \mathbf{M}_n(t))^t.$$

Montrer que l'on a

$$t\mathbf{M}(t) = \mathbf{A}\mathbf{M}(t) + c_{n+1}\mathbf{M}_{n+1}(t)\mathbf{e}_{n+1}$$

$$(11.2)$$

où l'on explictera la matrice tridiagonale $\mathbb{A} \in \mathcal{M}_{n+1}(\mathbb{R})$ en fonction des coefficients c_1, \ldots, c_n . Le vecteur \mathbf{e}_{n+1} étant le (n+1)-ème vecteur de la base canonique de \mathbb{R}^{n+1} .

En déduire que les (n+1) racines distinctes de $M_{n+1} \in \mathbb{R}_{n+1}[X]$ sont les (n+1) valeurs propres de \mathbb{A} .

Montrer que

$$2\sum_{k=0}^{n} w_k \mathbf{M}_i(t_k) \mathbf{M}_j(t_k) = \delta_{i,j}, \ \forall (i,j) \in [0,n]^2$$
(11.3)

 $où \delta_{i,j} = 0$, $si \ i \neq j \ et \delta_{i,i} = 1$.

On note $\mathbb{W} \in \mathcal{M}_{n+1}(\mathbb{R})$ la matrice diagonale, de diagonale (w_0, \dots, w_n) et $\mathbb{P} \in \mathcal{M}_{n+1}(\mathbb{R})$ la matrice définie par $\mathbb{P}_{i+1,j+1} = M_j(t_i), \ \forall (i,j) \in [0,n]^2$.

a. Montrer que $2\mathbb{P}^t \mathbb{WP} = \mathbb{I}$.

b. En déduire que $\mathbb{W}^{-1} = 2\mathbb{PP}^t$.

c. En déduire que $\frac{1}{w_i} = 2\sum_{k=0}^n (M_k(t_i))^2$, $\forall i \in [0, n]$.

On suppose que l'on dispose de la fonction **algorithmique** $eig(\mathbb{A})$ retournant l'ensemble des valeurs propres d'une matrice symétrique $\mathbb{A} \in \mathcal{M}_{n+1}(\mathbb{R})$ dans l'ordre croissant sous la forme d'un vecteur de \mathbb{R}^{n+1} .

a. Ecrire la fonction $[t, w] \leftarrow \text{GaussLegendre}(n)$ retournant le tableau des points t et le tableau des poids w en utilisant les résultats obtenus dans cet exercice.

b. Ecrire la fonction $I \leftarrow \text{QuadElemGaussLegendre}(f, a, b, n)$ retournant une approximation de $\int_a^b f(x) dx$ en utilisant la formule de quadrature de Gauss-Legendre à (n+1) points sur l'intervalle [a,b].

EXERCICE 12

Ecrire une fonction algorithmique QuadSimpson retournant une approximation de l'intégrale d'une fonction f sur l'intervalle $[\alpha, \beta]$ utilisant la méthode de quadrature composée de Simpson en **minimisant** le nombre d'appels à la fonction f. On rappelle que la formule élémentaire de Simpson est donnée par

$$\mathcal{Q}_2(g,a,b) \stackrel{\text{\tiny def}}{=} \frac{b-a}{6} (g(a) + 4g(\frac{a+b}{2}) + g(b)).$$

2 Exercices supplémentaires

EXERCICE 13: Matrice de Vandermonde

Soient $(z_i)_{i=0}^n$ n+1 points distincts 2 à 2 de \mathbb{C} . Soit $\mathbb{V} \in \mathcal{M}_{n+1}(\mathbb{C})$ la matrice définie par

$$V_{i,j} = z_{i-1}^{j-1}, \ \forall (i,j) \in [1, n+1].$$

Q. 1

Ecrire la matrice \mathbb{V} .

Soient $\boldsymbol{w}=(w_i)_{i=1}^{n+1}$ un vecteur de \mathbb{C}^{n+1} . On note $P_{\boldsymbol{w}}\in\mathbb{C}_n[X]$, le polynôme défini par

$$P_{\boldsymbol{w}}(z) = \sum_{i=0}^{n} w_{i+1} z^{i}$$

Q. 2

Exprimer $\mathbf{v} = \mathbf{v} \mathbf{w}$ en fonction de $\mathbf{P}_{\mathbf{w}}$.

Q. 3

En déduire que \mathbb{V} est inversible.

EXERCICE 14

Soient $(t_i)_{i=0}^n$, (n+1) points distincts de [-1;1].

On note $\mathcal{F}([-1;1];\mathbb{R})$ l'espace des fonctions définie de [-1;1] à valeurs dans \mathbb{R} . Soient $g \in \mathcal{F}([-1;1];\mathbb{R})$ et $n \in \mathbb{N}$. On souhaite approcher $\int_{-1}^{1} g(t)dt$ par $\mathcal{S}_{n}(g)$, une formule de quadrature élémentaire, donnée par

$$S_n(g) \stackrel{\text{def}}{=} 2 \sum_{i=0}^n w_i g(t_i)$$

Q. 1

Démontrer que l'application $g \mapsto \mathcal{S}_n(g)$ définie de $\mathcal{F}([-1;1];\mathbb{R})$ à valeurs dans \mathbb{R} est linéaire.

On pose

$$\forall i \in [\![0,n]\!], \quad L_i(t) \stackrel{\text{\tiny def}}{=} \prod_{\substack{j=0\\j \neq i}}^n \frac{t-t_j}{t_i-t_j}.$$

Q. 2

a. Montrer que si S_n a pour degré d'exactitude n au moins alors, on a

$$\forall i \in [0, n], \quad w_i = \frac{1}{2} \int_{-1}^1 L_i(t) dt. \tag{14.1}$$

b. Montrer que si (14.1) est vérifiée, alors S_n a pour degré d'exactitude n au moins.

On rappele que la formule de quadrature S_n à (n+1) points distincts, dont les poids $(w_i)_{i=0}^n$ sont données par (14.1), a pour degré d'exactitude (n+m), $m \in \mathbb{N}^*$ si et seulement si

$$\int_{-1}^{1} \pi_n(t) Q(t) dt = 0, \ \forall Q \in \mathbb{R}_{m-1}[X]$$
 (14.2)

avec $\pi_n(t) \stackrel{\text{def}}{=} \prod_{i=0}^n (t - t_i).$

Par la suite, on suppose que les $(t_i)_{i=0}^n$ sont les (n+1) racines distinctes dans]-1;1[du polynôme de Legendre de degré (n+1) et que les poids $(w_i)_{i=0}^n$ sont données par (14.1).

Les polynômes de Legendre peuvent être définis par la formule de récurrence de Bonnet

$$(n+1)P_{n+1}(t) = (2n+1)tP_n(t) - nP_{n-1}(t), \ \forall n \ge 1$$
(14.3)

avec $P_0(t) = 1$ et $P_1(t) = t$.

On a les propriétés suivantes:

prop.1 le polynôme de Legendre P_n est de degré n,

prop.2 la famille $\{P_k\}_{k=0}^n$ est une base de $\mathbb{R}_n[X]$,

prop.3 pour tout $(m, n) \in \mathbb{N}^2$, on a

$$\int_{-1}^{1} P_m(t) P_n(t) dt = \frac{2}{2n+1} \delta_{m,n}, \tag{14.4}$$

ce qui correspond à l'orthogonalité des polynômes de Legendre pour le produit scalaire

$$\langle \mathbf{P}_m, \mathbf{P}_n \rangle = \int_{-1}^1 \mathbf{P}_m(t) \mathbf{P}_n(t) dt.$$

prop.4 Soit $n \ge 1$, P_n est scindé sur \mathbb{R} et ses n racines, notées $(t_i)_{i=0}^n$, sont simples dans]-1,1[, c'est à dire

$$P_n(t) = C \prod_{i=0}^{n-1} (t - t_i), \ C \in \mathbb{R}^*$$

où les t_i sont 2 à 2 distincts (et ordonnés). Les (n+1) racines simples de P_{n+1} sont alors chacunes dans l'un des (n+1) intervalles $]-1,t_0[,]t_0,t_1[,\ldots,]t_{n-2},t_{n-1}[,]t_{n-1},1[.$

- a. En utilisant les polynômes de Legendre, démontrer que la formule de quadrature S_n est de degré d'exactitude 2n+1.
 - b. Montrer que la formule de quadrature S_n n'est pas de degré d'exactitude 2n+2.
 - c. Démontrer que S_n est l'unique formule de quadrature à (n+1) points distincts dans [-1;1] ayant pour degré d'exactitude 2n+1.

Soient a,b deux réels, a < b. On note $x_i = \frac{a+b}{2} + \frac{b-a}{2}t_i$, $\forall i \in [0,n]$, où les $(t_i)_{i=0}^n$ sont les (n+1) racines distinctes dans]-1;1[du polynôme de Legendre de degré (n+1).

Soient $f \in \mathcal{F}([a;b];\mathbb{R})$, espace des fonctions définies de [a;b] à valeurs dans \mathbb{R} ., et $n \in \mathbb{N}$.

On souhaite approcher $\int_a^b f(x)dx$ par $Q_n(f,a,b)$, une formule de quadrature élémentaire, donnée par

$$\mathcal{Q}_n(f,a,b) \stackrel{\text{\tiny def}}{=} (b-a) \sum_{i=0}^n w_i^{\star} f(x_i)$$

On pose

Q. 4

$$\forall i \in [0, n], \quad L_i^{\star}(x) \stackrel{\text{def}}{=} \prod_{\substack{j=0\\ j \neq i}}^n \frac{x - x_j}{x_i - x_j}$$

a. Montrer que la formule de quadrature Q_n est de degré d'exactitude n au moins si et seulement si

$$w_i^{\star} = \frac{1}{b-a} \int_a^b L_i^{\star}(x) dx, \quad \forall i \in [0, n].$$
 (14.5)

b. En déduire que la formule de quadrature Q_n est de degré d'exactitude n au moins si et seulement si

$$w_i^{\star} = w_i, \quad \forall i \in [0, n].$$

où les w_i sont donnée par (14.1).

On suppose que $w_i^* = w_i, \forall i \in [0, n].$

Montrer que Q_n est l'unique formule de quadrature élémentaire à (n+1) points distincts dans [a,b] ayant pour degré d'exactitude (2n+1) précisement.