Exercices associés au cours d' $Analyse\ Num\'erique\ I$ $Interpolation^1$

1 Exercices du cours

EXERCICE 1

Soient $n \in \mathbb{N}^*$ et (n+1) couples de \mathbb{R}^2 , $(x_i, y_i)_{i \in \mathbb{I}_0, n\mathbb{I}}$, tels que les x_i sont distincts deux à deux. On note

a. Soit $i \in [0, n]$. Montrer qu'il existe un unique polynôme L_i de degré n vérifiant

$$L_i(x_j) = \delta_{ij}, \ \forall j \in [0, n]. \tag{1.1}$$

b. Montrer que les $(L_i)_{i \in [\![0,n]\!]}$ forment une base de $\mathbb{R}_n[X]$ (espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n).

On défini le polynôme P_n par

$$P_n(x) = \sum_{i=0}^{n} y_i L_i(x).$$
 (1.2)

Montrer que polynôme P_n est l'unique polynôme de degré au plus n vérifiant $P_n(x_i) = y_i, \forall i \in [1, n]$.

EXERCICE 2

Ecrire la fonction Lagrange permettant de calculer \mathcal{P}_n (polynôme d'interpolation de Lagrange associé aux (n+1) couples $(x_i, y_i)_{i \in [0, n]}$) en $t \in \mathbb{R}$.

EXERCICE 3

Soient I un intervalle non vide de \mathbb{R} , $n \in \mathbb{N}^*$ et $f: I \longrightarrow \mathbb{R}$. On suppose qu'il existe $(x_i)_{i=0}^n$ dans I, avec $x_0 < x_1 < \ldots < x_n$, tel que $\forall i \in [0, n], \quad f(x_i) = 0$.

Soit $f \in C^0(I; \mathbb{R})$, avec f dérivable sur I. On suppose qu'îl existe $(x_i)_{i=0}^n$ dans I, avec $x_0 < x_1 < \ldots < x_n$, tel que $\forall i \in [0, n], f(x_i) = 0$.

Montrer qu'il existe $(\xi_i)_{i=1}^n$ dans I, avec $x_0 < \xi_1 < x_1 < \xi_2 < x_2 < \ldots < \xi_n < x_n$, tel que

$$\forall i \in [1, n], f^{(1)}(\xi_i) = 0.$$

Démontrer par récurrence sur $n \in \mathbb{N}^*$ la proposition suivante

Soit $f \in C^{n-1}(I; \mathbb{R})$, $f^{(n-1)}$ dérivable sur I. Si f admet au moins (n+1) zeros distincts dans I, notés $x_0 < \ldots < x_n$, alors $f^{(n)}$ admet au moins un zéro dans $[x_0, x_n]$.

 (\mathcal{P}_n)

 $^{^1 {\}rm auteur} \colon$ F. Cuvelier. Compilé le 29 novembre 2025 à $3 \, {\rm h} \, 45.$

EXERCICE 4

Soient $(a,b) \in \mathbb{R}^2$, a < b, $n \in \mathbb{N}^*$, $f \in \mathcal{C}^{n+1}([a;b];\mathbb{R})$ et (n+1) couples de \mathbb{R}^2 , $(x_i,y_i)_{i\in[0,n]}$, tels que les $x_i \in [a;b]$ sont distincts deux à deux et $y_i = f(x_i)$.

On note par P_n le polynôme d'interpolation de Lagrange associé aux points $(x_i, y_i)_{i \in [\![0, n]\!]}$ et π_n le polynôme de degré (n+1) défini par

$$\pi_n(x) \stackrel{\text{def}}{=} \prod_{i=0}^n (x - x_i).$$

Soit $x \in [a;b]$ tel que, pour tout $i \in [0,n], x \neq x_i$. On note

$$x_{\min} = \min(x, x_0, \dots, x_n), \quad x_{\max} = \max(x, x_0, \dots, x_n),$$

et

$$F(t) = f(t) - P_n(t) - \frac{f(x) - P_n(x)}{\pi_n(x)} \pi_n(t).$$

- a. Démontrer que F est définie sur [a;b] et admet (n+2) racines distinctes.
- b. Montrer qu'il existe $\xi_x \in]x_{\min}; x_{\max}[$ tel que $F^{(n+1)}(\xi_x) = 0$.
- c. En déduire que

$$f(x) - P_n(x) = \frac{\pi_n(x)}{(n+1)!} f^{(n+1)}(\xi_x).$$
(4.1)

Montrer que, $\forall x \in [a;b]$, il existe ξ_x appartenant au plus petit intervalle ouvert contenant x, x_0, \dots, x_n vérifiant (4.1).

EXERCICE 5

Soient $n \in N^*$ et x_0, \dots, x_n des points distincts de [a, b] ordonnés par ordre croissant. On pose $E \stackrel{\text{def}}{=} \mathcal{C}^0([a, b]; \mathbb{R})$ et $F \stackrel{\text{def}}{=} \mathbb{R}_n[X]$, et, on les munit de la norme $\|.\|_{\infty}$. On note $\mathcal{L}_n : E \longrightarrow F$ l'application qui a $f \in E$ associe le polynôme d'interpolation de Lagrange $P_n \in F$ tel que $\forall i \in [0, n]$, $P_n(x_i) = f(x_i)$.

- a. Montrer que \mathcal{L}_n est bien définie.
 - b. Montrer que \mathcal{L}_n est linéaire.
 - c. Montrer que \mathcal{L}_n est continue et que

$$\|\mathcal{L}_n(f)\|_{\infty} \leqslant \Lambda_n \|f\|_{\infty} \,, \tag{5.1}$$

$$où \Lambda_n = \max_{x \in [a,b]} \sum_{i=0}^n |\mathcal{L}_i(x)|.$$

On note $\mathcal{L}(E,F)$ l'espace des applications linéaires et continues de E dans F muni de la norme

$$\forall \mathcal{H} \in \mathcal{L}(E, F), \ \|\mathcal{H}\| \stackrel{\text{\tiny def}}{=} \sup_{\substack{f \in \mathcal{C}^0([a,b]; \mathbb{R}) \\ f \neq 0}} \frac{\|\mathcal{H}(f)\|_{\infty}}{\|f\|_{\infty}}$$

a. Montrer que

$$\|\mathcal{L}_n\| \leqslant \Lambda_n. \tag{5.2}$$

b. Montrer qu'il existe $\bar{x} \in [a, b]$ vérifiant

$$\Lambda_n = \sum_{i=0}^n |\mathcal{L}_i(\bar{x})|.$$

c. Montrer qu'il existe $\bar{f} \in C^0([a,b];\mathbb{R})$ vérifiant

$$|\mathcal{L}_n(\bar{f})(\bar{x})| = \Lambda_n \|\bar{f}\|_{\infty}$$
.

d. Conclure.

Soit $f \in E$. Montrer que

$$||f - \mathcal{L}_n(f)||_{\infty} \le (1 + \Lambda_n) \inf_{\mathbf{Q} \in \mathbb{R}_n[X]} ||f - \mathbf{Q}||_{\infty}$$

$$(5.3)$$

EXERCICE 6

Soient $(x_i, y_i, z_i)_{i \in [0,n]}$ n+1 triplets de \mathbb{R}^3 , où les x_i sont des points distincts deux à deux de l'intervalle [a, b]. Le polynôme d'interpolation de **Lagrange-Hermite**, noté \mathcal{H}_n , associé aux n+1 triplets $(x_i, y_i, z_i)_{i \in [0,n]}$, est défini par

$$\mathcal{H}_n(x_i) = y_i \quad \text{et} \quad \mathcal{H}'_n(x_i) = z_i, \ \forall i \in [0, n]$$

$$\tag{6.1}$$

Q. 1 $Quel \ est \ a \ priori \ le \ degré \ de \ \mathcal{H}_n$?

On défini le polynôme P_n par

$$P_n(x) = \sum_{i=0}^n y_i A_i(x) + \sum_{i=0}^n z_i B_i(x)$$
(6.2)

avec, pour $i \in [0, n]$, A_i et B_i polynômes de degré au plus 2n + 1 indépendants des valeurs y_i et z_i .

- a. Déterminer des conditions suffisantes sur A_i et B_i pour que P_n vérifie (6.1).
 - b. En déduire les expressions de A_i et B_i en fonction de L_i et de $L'_i(x_i)$ où

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}.$$

Démontrer qu'il existe un unique polynôme d'interpolation de Lagrange-Hermite de degré au plus 2n+1 défini par (6.1).

EXERCICE 7

Soient $(a,b) \in \mathbb{R}^2$, a < b, $n \in \mathbb{N}^*$, $f \in \mathcal{C}^{2n+2}([a,b];\mathbb{R})$. et $(x_i)_{i=0}^n$, (n+1) points distincts de [a;b]. On note

$$\forall i \in [0, n], \ y_i = f(x_i) \ \text{et} \ z_i = f'(x_i).$$

On définit, par \mathcal{H}_n , le polynôme d'interpolation de Lagrange-Hermite associé aux triplets $(x_i, f(x_i), f'(x_i))_{i \in [\![0,n]\!]}$ et par π_n le polynôme défini par

$$\pi_n(t) \stackrel{\text{def}}{=} \prod_{i=0}^n (t - x_i).$$

Soit $x \in [a;b]$ tel que, pour tout $i \in [0,n], x \neq x_i$. On note

$$x_{\min} = \min(x, x_0, \dots, x_n), \quad x_{\max} = \max(x, x_0, \dots, x_n),$$

et

$$F(t) = f(t) - \mathcal{H}_n(t) - \frac{f(x) - \mathcal{H}_n(x)}{\kappa_n(x)} \kappa_n(t)$$

 $avec \ \kappa_n \stackrel{\text{\tiny def}}{=} \pi_n^2.$

- a. Démontrer que F est définie sur [a;b] et que $F \in C^{2n+2}([a,b];\mathbb{R})$.
- b. Montrer que F' admet 2(n+1) zéros distincts.
- c. Montrer qu'il existe $\xi_x \in]x_{\min}; x_{\max}[$ tel que $F^{(2n+2)}(\xi_x) = 0$.
- d. En déduire que

$$f(x) - \mathcal{H}_n(x) = \frac{\kappa_n(x)}{(2n+2)!} f^{(2n+2)}(\xi_x).$$
 (7.1)

Q. 2Montrer que, $\forall x \in [a; b]$, il existe ξ_x appartenant au plus petit intervalle ouvert contenant x, x_0, \dots, x_n vérifiant (7.1).

EXERCICE 8

Ecrire une fonction algorithmique Hermite permettant de calculer H_n (polynôme d'interpolation de Lagrange-Hermite associé aux n+1 triplets $(x_i,y_i,z_i)_{i\in \llbracket 0,n\rrbracket})$ en $t\in \mathbb{R}.$