Exercices associés au cours d'Analyse Numérique I Résolution de systèmes linéaires Méthodes itératives

1 Exercices du cours

EXERCICE 1

Soit $\mathbb A$ une matrice inversible décomposée sous la forme $\mathbb A=\mathbb M-\mathbb N$ avec $\mathbb M$ inversible. On pose

$$\mathbb{B} = \mathbb{M}^{-1}\mathbb{N} \text{ et } \boldsymbol{c} = \mathbb{M}^{-1}\boldsymbol{b}.$$

Montrer que la suite définie par

$$\boldsymbol{x}^{[0]} \in \mathbb{K}^n \text{ et } \boldsymbol{x}^{[k+1]} = \mathbb{B}\boldsymbol{x}^{[k]} + \boldsymbol{c}$$

converge vers $\bar{\boldsymbol{x}} = \mathbb{A}^{-1}\boldsymbol{b}$ quelque soit $\boldsymbol{x}^{[0]}$ si et seulement si $\rho(\mathbb{B}) < 1$.

Correction On rappelle tout d'abord le Théorème ??, page ??:

Théorème. Soit $\mathbb B$ une matrice carrée. Les conditions suivantes sont équivalentes :

- a. $\lim_{k\to\infty} \mathbb{B}^k = 0$,
- b. $\lim_{k\to\infty} \mathbb{B}^k \mathbf{v} = 0$ pour tout vecteur \mathbf{v} ,
- $c. \ \rho(\mathbb{B}) < 1,$
- $d. \ \|\mathbb{B}\| < 1 \ pour \ au \ moins \ une \ norme \ matricielle \ subordonn\'ee \ \| \bullet \| \ .$

Comme $\bar{\boldsymbol{x}} = \mathbb{A}^{-1}\boldsymbol{b}$ (sans présupposer de la convergence) on a

$$\mathbb{A}\bar{x} = b \iff \mathbb{M}\bar{x} = \mathbb{N}\bar{x} + b$$

et, comme M est inversible

$$\bar{\boldsymbol{x}} = \mathbb{M}^{-1} \mathbb{N} \bar{\boldsymbol{x}} + \mathbb{M}^{-1} \boldsymbol{b} = \mathbb{B} \bar{\boldsymbol{x}} + \boldsymbol{c}$$

On obtient donc

$$\bar{\boldsymbol{x}} - \boldsymbol{x}^{[k+1]} = \mathbb{B}(\bar{\boldsymbol{x}} - \boldsymbol{x}^{[k]})$$

Or la suite $x^{[k]}$ converge vers \bar{x} si et seulement si la suite $e^{[k]} \stackrel{\text{def}}{=} \bar{x} - x^{[k]}$ converge vers 0. On a

$$\forall k \in \mathbb{N}. \quad \boldsymbol{e}^{[k]} = \mathbb{B}^k \boldsymbol{e}^{[0]}.$$

D'après le théorème cité, on a $\lim_{k\to +\infty}\mathbb{B}^k\pmb{e}^{[0]}=0,\, \forall \pmb{e}^{[0]}\in\mathbb{K}^n$ si et seulement si $\rho(\mathbb{B})<1.$

EXERCICE 2

Soit $\mathbb{A} \in \mathcal{M}_{n,n}(\mathbb{C})$ une matrice hermitienne inversible décomposée en $\mathbb{A} = \mathbb{M} - \mathbb{N}$ où \mathbb{M} est inversible. On note $\mathbb{B} = \mathbb{I} - \mathbb{M}^{-1}\mathbb{A}$.

 $\stackrel{\mathbf{Q. \ 1}}{|} Montrer \ que \ la \ matrice \ \mathbb{M}^* + \mathbb{N} \ est \ hermitienne.$

R. 1

La matrice $\mathbb{M}^* + \mathbb{N}$ est donc hermitienne.

On suppose maintenant que $\mathbb{M}^* + \mathbb{N}$ est définie positive.

Soit \boldsymbol{x} un vecteur quelconque de \mathbb{C}^n et $\boldsymbol{y} = \mathbb{B}\boldsymbol{x}$.

a. Montrer que

$$\langle \boldsymbol{x}, \mathbb{A}\boldsymbol{x} \rangle - \langle \boldsymbol{y}, \mathbb{A}\boldsymbol{y} \rangle = \langle \boldsymbol{x}, \mathbb{A}\mathbb{M}^{-1}\mathbb{A}\boldsymbol{x} \rangle + \langle \mathbb{M}^{-1}\mathbb{A}\boldsymbol{x}, \mathbb{A}\boldsymbol{x} \rangle - \langle \mathbb{M}^{-1}\mathbb{A}\boldsymbol{x}, \mathbb{A}\mathbb{M}^{-1}\mathbb{A}\boldsymbol{x} \rangle$$
(2.1)

et

$$\boldsymbol{x} - \boldsymbol{y} = \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x}. \tag{2.2}$$

b. En déduire que

$$\langle \boldsymbol{x}, \mathbb{A}\boldsymbol{x} \rangle - \langle \boldsymbol{y}, \mathbb{A}\boldsymbol{y} \rangle = \langle (\boldsymbol{x} - \boldsymbol{y}), (\mathbb{M}^* + \mathbb{N})(\boldsymbol{x} - \boldsymbol{y}) \rangle.$$
 (2.3)

R. 2

a. On a $\boldsymbol{y} = \mathbb{B}\boldsymbol{x}$ avec $\mathbb{B} = \mathbb{I} - \mathbb{M}^{-1}\mathbb{A}$ ce qui donne

$$x - y = x - \mathbb{B}x = (\mathbb{I} - \mathbb{B})x = \mathbb{M}^{-1}\mathbb{A}x.$$

L'équation (2.2) est donc démontrée. Pour prouver (2.1), on note que

$$y = x - \mathbb{M}^{-1} \mathbb{A} x$$

et donc

$$egin{aligned} \left\langle oldsymbol{y}, \mathbb{A} oldsymbol{y}
ight
angle &= \left\langle oldsymbol{x} - \mathbb{M}^{-1} \mathbb{A} oldsymbol{x}, \mathbb{A} \left(oldsymbol{x} - \mathbb{M}^{-1} \mathbb{A} oldsymbol{x}
ight)
ight
angle \\ &= \left\langle oldsymbol{x}, \mathbb{A} oldsymbol{x}
ight
angle - \left\langle \mathbb{M}^{-1} \mathbb{A} oldsymbol{x}, \mathbb{A} oldsymbol{M}^{-1} \mathbb{A} oldsymbol{x}
ight
angle + \left\langle \mathbb{M}^{-1} \mathbb{A} oldsymbol{x}, \mathbb{A} \mathbb{M}^{-1} \mathbb{A} oldsymbol{x}
ight
angle \\ &= \left\langle oldsymbol{x}, \mathbb{A} oldsymbol{x}
ight
angle - \left\langle oldsymbol{x}, \mathbb{A} \mathbb{M}^{-1} \mathbb{A} oldsymbol{x}
ight
angle + \left\langle \mathbb{M}^{-1} \mathbb{A} oldsymbol{x}, \mathbb{A} \mathbb{M}^{-1} \mathbb{A} oldsymbol{x}
ight
angle \\ &= \left\langle oldsymbol{x}, \mathbb{A} oldsymbol{x}
ight
angle - \left\langle oldsymbol{x}, \mathbb{A} \mathbb{M}^{-1} \mathbb{A} oldsymbol{x}
ight
angle + \left\langle \mathbb{M}^{-1} \mathbb{A} oldsymbol{x}, \mathbb{A} \mathbb{M}^{-1} \mathbb{A} oldsymbol{x}
ight
angle \\ &= \left\langle oldsymbol{x}, \mathbb{A} oldsymbol{x}
ight
angle - \left\langle oldsymbol{x}, \mathbb{A} oldsymbol{x} \right
angle - \left\langle oldsymbol{x}, \mathbb{A} oldsymbol{x} \right
angle + \left\langle \mathbb{M}^{-1} \mathbb{A} oldsymbol{x}, \mathbb{A} oldsymbol{x} \right
angle \\ &= \left\langle oldsymbol{x}, \mathbb{A} oldsymbol{x} \right
angle + \left\langle \mathbb{M}^{-1} oldsymbol{x}, \mathbb{A} oldsymbol{x} \right
angle + \left\langle \mathbb{M}^{-1} oldsymbol{x}, \mathbb{A} oldsymbol{x} \right
angle \\ &= \left\langle oldsymbol{x}, \mathbb{A} oldsymbol{x} \right
angle + \left\langle \mathbb{M}^{-1} oldsymbol{x}, \mathbb{A} oldsymbol{x} \right
angle + \left\langle \mathbb{M}^{-1} oldsymbol{x}, \mathbb{A} oldsymbol{x} \right
angle \\ &= \left\langle oldsymbol{x}, \mathbb{A} oldsymbol{x} \right
angle + \left\langle \mathbb{M}^{-1} oldsymbol{x}, \mathbb{A} oldsymbol{x} \right
angle + \left\langle \mathbb{M}^{-1} oldsymbol{x}, \mathbb{A} oldsymbol{x} \right
angle \\ &= \left\langle oldsymbol{x}, \mathbb{A} oldsymbol{x} \right
angle + \left\langle \mathbb{M}^{-1} oldsymbol{x}, \mathbb{A} oldsymbol{x} \right
angle + \left\langle \mathbb{M}^{-1} oldsymbol{x} \right
angle + \left\langle \mathbb{M}^{-1$$

On en déduit immédiatement (2.1).

b. En utilisant (2.2), on obtient

$$\begin{split} \left\langle \boldsymbol{x} - \boldsymbol{y}, \left(\mathbb{M}^* + \mathbb{N} \right) (\boldsymbol{x} - \boldsymbol{y}) \right\rangle &= \left\langle \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x}, \left(\mathbb{M}^* + \mathbb{N} \right) \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x} \right\rangle \\ &= \left\langle \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x}, \left(\mathbb{M} + \mathbb{N}^* \right) \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x} \right\rangle \quad \text{car } \mathbb{M}^* + \mathbb{N} \text{ hermitienne} \\ &= \left\langle \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x}, \left(\mathbb{M} + \mathbb{M}^* - \mathbb{A}^* \right) \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x} \right\rangle \quad \text{car } \mathbb{N} = \mathbb{M} - \mathbb{A} \\ &= \left\langle \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x}, \mathbb{A} \boldsymbol{x} \right\rangle + \left\langle \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x}, \mathbb{M}^* \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x} \right\rangle - \left\langle \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x}, \mathbb{A} \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x} \right\rangle \quad \text{car } \mathbb{A} \text{ hermitienne} \end{split}$$

Or, par propriété du produit scalaire, on a

$$\left\langle \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x}, \mathbb{M}^* \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x} \right\rangle = \left\langle \mathbb{M} \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x}, \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x} \right\rangle = \left\langle \mathbb{A} \boldsymbol{x}, \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x} \right\rangle = \left\langle \boldsymbol{x}, \mathbb{A}^* \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x} \right\rangle.$$

Comme A est hermitienne, on obtient

$$\langle \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x}, \mathbb{M}^* \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x} \rangle = \langle \boldsymbol{x}, \mathbb{A} \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x} \rangle.$$

On abouti alors à

$$\langle \boldsymbol{x} - \boldsymbol{y}, (\mathbb{M}^* + \mathbb{N})(\boldsymbol{x} - \boldsymbol{y}) \rangle = \langle \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x}, \mathbb{A} \boldsymbol{x} \rangle + \langle \boldsymbol{x}, \mathbb{A} \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x} \rangle - \langle \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x}, \mathbb{A} \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x} \rangle.$$

L'équation (2.3) est obtenue en utilisant (2.1).

Montrer que si \mathbb{A} est définie positive alors $\rho(\mathbb{B}) < 1$.

(R. 3)

On veut démontrer que sous les hypothèses \mathbb{A} hermitienne définie positive et $\mathbb{M}^* + \mathbb{N}$ (hermitienne) définie positive on a $\rho(\mathbb{B}) < 1$, c'est à dire que pour tout élément propre $(\lambda, \boldsymbol{u})$ de \mathbb{B} alors $|\lambda| < 1$. Soit $(\lambda, \boldsymbol{u}) \in \mathbb{C} \times \mathbb{C}^n \setminus \{0\}$ un élément propre de \mathbb{B} . On a $\mathbb{B}\boldsymbol{u} = \lambda \boldsymbol{u}$. En prenant $\boldsymbol{x} = \boldsymbol{u}$ dans $\mathbf{Q}.2$, on a $\boldsymbol{y} = \mathbb{B}\boldsymbol{u} = \lambda \boldsymbol{u}$ et donc $\boldsymbol{x} - \boldsymbol{y} = (1 - \lambda)\boldsymbol{u}$. De (2.3) on obtient

$$\langle \boldsymbol{u}, \mathbb{A}\boldsymbol{u} \rangle - \langle \lambda \boldsymbol{u}, \lambda \mathbb{A}\boldsymbol{u} \rangle = \langle (1-\lambda)\boldsymbol{u}, (\mathbb{M}^* + \mathbb{N})((1-\lambda)\boldsymbol{u}) \rangle$$

c'est à dire

$$(1 - |\lambda|^2) \langle \boldsymbol{u}, \mathbb{A}\boldsymbol{u} \rangle = |1 - \lambda|^2 \langle \boldsymbol{u}, (\mathbb{M}^* + \mathbb{N})\boldsymbol{u} \rangle.$$
 (R2.1)

On va montrer que $|1-\lambda|>0$, c'est à dire $\lambda\neq 1$. Pour celà on effectue une démonstration par l'absurde.

Par l'absurde on suppose $\lambda = 1$. Dans ce cas, comme $\mathbb{B}\boldsymbol{u} = \boldsymbol{u}$, on a $\boldsymbol{x} = \boldsymbol{y}$. De (2.2), on déduit alors $\mathbb{M}^{-1}\mathbb{A}\boldsymbol{x} = \boldsymbol{0}$ et comme \mathbb{A} et \mathbb{M}^{-1} sont inversibles $\boldsymbol{x} = \boldsymbol{0}$. Or $\boldsymbol{x} = \boldsymbol{u}$ est un vecteur propre de \mathbb{B} , il ne peut donc être nul! On a une contradiction et donc, l'hypothèse de départ est fausse: on a démontré que $\lambda \neq 1$.

Comme par hypothèse, la matrice $\mathbb{M}^* + \mathbb{N}$ (hermitienne) est définie positive et $\boldsymbol{u} \neq 0$, on obtient

$$|1-\lambda|^2 \langle \boldsymbol{u}, (\mathbb{M}^* + \mathbb{N})\boldsymbol{u} \rangle > 0.$$

On déduit alors de (R2.1) que

$$(1-|\lambda|^2)\langle \boldsymbol{u}, \mathbb{A}\boldsymbol{u}\rangle > 0.$$

Comme A est hermitienne définie positive et $\mathbf{u} \neq 0$, on a

$$\langle \boldsymbol{u}, \mathbb{A}\boldsymbol{u} \rangle > 0$$

et donc $1 - |\lambda|^2 > 0$, c'est à dire $|\lambda| < 1$.

On suppose $\rho(\mathbb{B}) < 1$ et on va démontrer, par l'absurde, que \mathbb{A} est définie positive.

On suppose qu'il existe $\mathbf{x}^{[0]} \in \mathbb{C}^n \setminus \{0\}$ tel que $\alpha_0 \stackrel{\text{def}}{=} \langle \mathbf{x}^{[0]}, \mathbb{A}\mathbf{x}^{[0]} \rangle \in \mathbb{C} \setminus [0, +\infty[$. On défini alors les suites

$$\forall k \in \mathbb{N}^*, \ \boldsymbol{x}^{[k]} = \mathbb{B}\boldsymbol{x}^{[k-1]} \ \ et \ \ \alpha_k = \left\langle \boldsymbol{x}^{[k]}, \mathbb{A}\boldsymbol{x}^{[k]} \right\rangle.$$

a. Montrer que

$$\lim_{k \to +\infty} \boldsymbol{x}^{[k]} = 0 \quad et \quad \lim_{k \to +\infty} \alpha_k = 0.$$

- b. Montrer que $\alpha_0 \in]-\infty,0]$.
- c. Démontrer par récurrence sur $k \in \mathbb{N}^*$ que

$$(\mathcal{P}_k) : \mathbf{x}^{[k]} \neq \mathbf{0}, \ \mathbf{x}^{[k]} - \mathbf{x}^{[k-1]} \neq \mathbf{0}, \ et \ 0 \geqslant \alpha_{k-1} > \alpha_k.$$

d. Conclure.

R. 4

Q. 4

a. On a alors

$$\boldsymbol{x}^{[k]} = \mathbb{B}^k \boldsymbol{x}^{[0]}, \ \forall k \in \mathbb{N}.$$

D'après le Théorème ??, page ??,

$$\rho(\mathbb{B}) < 1 \iff \lim_{k \to +\infty} \mathbb{B}^k \boldsymbol{v} = \boldsymbol{0}, \ \forall \boldsymbol{v} \in \mathbb{C}^n.$$

On a donc

$$\lim_{k\to+\infty} \boldsymbol{x}^{[k]} = \mathbf{0}.$$

Comme l'application $\boldsymbol{x} \mapsto \langle \boldsymbol{x}, \mathbb{A}\boldsymbol{x} \rangle$ est continue, on en déduit

$$\lim_{k \to +\infty} \alpha_k = \lim_{k \to +\infty} \left\langle \boldsymbol{x}^{[k]}, \mathbb{A}\boldsymbol{x}^{[k]} \right\rangle = 0.$$

b. Pour une matrice quelconque $\langle \boldsymbol{x}, \mathbb{A}\boldsymbol{x} \rangle \in \mathbb{C}$, or \mathbb{A} étant hermitienne, on a $\langle \boldsymbol{x}, \mathbb{A}\boldsymbol{x} \rangle \in \mathbb{R}$. En effet, par propriété du produit scalaire on a

$$\langle \boldsymbol{x}, \mathbb{A}\boldsymbol{x} \rangle = \langle \mathbb{A}^*\boldsymbol{x}, \boldsymbol{x} \rangle = \langle \mathbb{A}\boldsymbol{x}, \boldsymbol{x} \rangle = \overline{\langle \boldsymbol{x}, \mathbb{A}\boldsymbol{x} \rangle}$$

Comme par hypothèse $\alpha_0 \in \mathbb{C} \setminus [0, +\infty[$, on en déduit $\alpha_0 \in]-\infty, 0]$

c. Tout d'abord de l'égalité (2.3) avec $\boldsymbol{x} = \boldsymbol{x}^{[k-1]}$ et $\boldsymbol{y} = \mathbb{B}\boldsymbol{x} = \boldsymbol{x}^{[k]}$ on obtient

$$\left\langle \boldsymbol{x}^{[k-1]}, \mathbb{A}\boldsymbol{x}^{[k-1]} \right\rangle - \left\langle \boldsymbol{x}^{[k]}, \mathbb{A}\boldsymbol{x}^{[k]} \right\rangle = \left\langle (\boldsymbol{x}^{[k-1]} - \boldsymbol{x}^{[k]}), (\mathbb{M}^* + \mathbb{N})(\boldsymbol{x}^{[k-1]} - \boldsymbol{x}^{[k]}) \right\rangle$$

• Initialisation : montrons que (\mathcal{P}_0) est vérifiée.

On a $\mathbf{x}^{[0]} \neq 0$ et $\mathbf{x}^{[1]} = \mathbb{B}\mathbf{x}^{[0]}$.

On montre par l'absurde que $\boldsymbol{x}^{[1]} \neq 0$. Supposons $\boldsymbol{x}^{[1]} = 0$, alors $\alpha_1 = 0$ et $\boldsymbol{x}^{[0]} - \boldsymbol{x}^{[1]} = \boldsymbol{x}^{[0]} \neq 0$. Comme $\mathbb{M}^* + \mathbb{N}$ est hermitienne définie positive on obtient

$$\alpha_0 - \alpha_1 = \left\langle (\boldsymbol{x}^{[0]} - \boldsymbol{x}^{[1]}), (\mathbb{M}^* + \mathbb{N})(\boldsymbol{x}^{[0]} - \boldsymbol{x}^{[1]}) \right\rangle > 0$$

et contradiction avec $\alpha_0 \leq 0$.

On montre ensuite par l'absurde que $\boldsymbol{x}^{[0]} \neq \boldsymbol{x}^{[1]}$. Supposons $\boldsymbol{x}^{[1]} = \boldsymbol{x}^{[0]}$. Par construction $\boldsymbol{x}^{[1]} = \mathbb{B}\boldsymbol{x}^{[0]}$, et dans ce cas, comme $\boldsymbol{x}^{[0]} \neq 0$, $(1, \boldsymbol{x}^{[0]})$ serait un élément propre de \mathbb{B} : contradiction avec $\rho(\mathbb{B}) < 1$. Comme $\boldsymbol{x}^{[0]} - \boldsymbol{x}^{[1]} \neq 0$, on a

$$\alpha_0 - \alpha_1 = \left\langle (\boldsymbol{x}^{[0]} - \boldsymbol{x}^{[1]}), (\mathbb{M}^* + \mathbb{N})(\boldsymbol{x}^{[0]} - \boldsymbol{x}^{[1]}) \right\rangle > 0$$

et donc $0 \ge \alpha_0 > \alpha_1$.

• **Hérédité**: soit $k \in \mathbb{N}^*$. On suppose (\mathcal{P}_k) vérifiée. On a alors $\boldsymbol{x}^{[k]} \neq 0$, $\boldsymbol{x}^{[k+1]} = \mathbb{B}\boldsymbol{x}^{[k]}$ et $\alpha_k \leq 0$. On montre par l'absurde que $\boldsymbol{x}^{[k+1]} \neq 0$. Supposons $\boldsymbol{x}^{[k+1]} = 0$, alors $\alpha_{k+1} = 0$ et $\boldsymbol{x}^{[k]} - \boldsymbol{x}^{[k+1]} = \boldsymbol{x}^{[k]} \neq 0$. Comme $\mathbb{M}^* + \mathbb{N}$ est hermitienne définie positive on obtient

$$\alpha_k - \alpha_{k+1} = \left\langle (\boldsymbol{x}^{[k]} - \boldsymbol{x}^{[k+1]}), (\mathbb{M}^* + \mathbb{N})(\boldsymbol{x}^{[k]} - \boldsymbol{x}^{[k+1]}) \right\rangle > 0$$

et contradiction avec $\alpha_k \leq 0$.

On montre ensuite par l'absurde que $\boldsymbol{x}^{[k]} \neq \boldsymbol{x}^{[k+1]}$. Supposons $\boldsymbol{x}^{[k+1]} = \boldsymbol{x}^{[k]}$. Par construction $\boldsymbol{x}^{[k+1]} = \mathbb{B}\boldsymbol{x}^{[k]}$, et dans ce cas, comme $\boldsymbol{x}^{[k]} \neq 0$, $(1, \boldsymbol{x}^{[k]})$ serait un élément propre de \mathbb{B} : contradiction avec $\rho(\mathbb{B}) < 1$. Comme $\boldsymbol{x}^{[k]} - \boldsymbol{x}^{[k+1]} \neq 0$, on a

$$\alpha_k - \alpha_{k+1} = \left\langle (\boldsymbol{x}^{[k]} - \boldsymbol{x}^{[k+1]}), (\mathbb{M}^* + \mathbb{N})(\boldsymbol{x}^{[k]} - \boldsymbol{x}^{[k+1]}) \right\rangle > 0$$

et donc $0 \ge \alpha_k > \alpha_{k+1}$.

- Conclusion : la proposition est vérifiée pour tout $k \in \mathbb{N}^*$.
- d. La suite $(\alpha_k)_{k\in\mathbb{N}}$ est donc strictement décroissante de premier terme $\alpha_0 \leq 0$: elle ne peut converger vers 0. On a donc une contradiction avec l'hypothèse initiale, \mathbb{A} hermitienne non définie positive

EXERCICE 3

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ une matrice inversible dont les éléments diagonaux sont non nuls. On note $A_{i,j}$ la composante (i,j) de la matrice \mathbb{A} . On décompose la matrice \mathbb{A} sous la forme $\mathbb{A} = \mathbb{D} - \mathbb{E} - \mathbb{F}$, où \mathbb{D} représente la diagonale de \mathbb{A} , $-\mathbb{E}$ la partie triangulaire inférieure stricte et $-\mathbb{F}$ la partie triangulaire supérieure stricte.

La méthode S.O.R. (successive over relaxation) est donnée par

$$x_i^{[k+1]} = \frac{w}{\mathbf{A}_{ii}} \left(b_i - \sum_{j=1}^{i-1} \mathbf{A}_{ij} x_j^{[k+1]} - \sum_{j=i+1}^{n} \mathbf{A}_{ij} x_j^{[k]} \right) + (1 - w) x_i^{[k]}, \quad \forall i \in [1, n]$$

Déterminer la matrice d'itération $\mathbb B$ et le vecteur $oldsymbol{c}$ tels que

$$\boldsymbol{x}^{[k+1]} = \mathbb{R}\boldsymbol{x}^{[k]} + \boldsymbol{c}$$

en fonction de \mathbb{D} , \mathbb{E} , \mathbb{F} , et **b**.

Pour la **méthode S.O.R.** on a , $\forall i \in [1, n]$,

$$x_i^{[k+1]} = \frac{w}{\mathbf{A}_{ii}} \left(b_i - \sum_{j=1}^{i-1} \mathbf{A}_{ij} x_j^{[k+1]} - \sum_{j=i+1}^{n} \mathbf{A}_{ij} x_j^{[k]} \right) + (1 - w) x_i^{[k]}$$

ce qui s'écrit aussi

$$\frac{\mathbf{A}_{ii}}{w} x_i^{[k+1]} + \sum_{j=1}^{i-1} \mathbf{A}_{ij} x_j^{[k+1]} = b_i - \sum_{j=i+1}^{n} \mathbf{A}_{ij} x_j^{[k]} + \frac{1-w}{w} \mathbf{A}_{ii} x_i^{[k]}$$

et matriciellement on obtient

$$\left(\frac{\mathbb{D}}{w} - \mathbb{E}\right) \boldsymbol{x}^{[k+1]} = \left(\frac{1-w}{w}\mathbb{D} + \mathbb{F}\right) \boldsymbol{x}^{[k]} + \boldsymbol{b}.$$

Comme la matrice $\left(\frac{\mathbb{D}}{w} - \mathbb{E}\right)$ est inversible (car triangulaire inférieure à éléments diagonaux non nuls), on a

$$\boldsymbol{x}^{[k+1]} = \left(\frac{\mathbb{D}}{w} - \mathbb{E}\right)^{\text{-1}} \left(\frac{1-w}{w}\mathbb{D} + \mathbb{F}\right) \boldsymbol{x}^{[k]} + \left(\frac{\mathbb{D}}{w} - \mathbb{E}\right)^{\text{-1}} \boldsymbol{b}$$

La matrice d'itération de S.O.R. est $\mathbb{B} = \left(\frac{\mathbb{D}}{w} - \mathbb{E}\right)^{-1} \left(\frac{1-w}{w}\mathbb{D} + \mathbb{F}\right)$ et le vecteur $\mathbf{c} = \left(\frac{\mathbb{D}}{w} - \mathbb{E}\right)^{-1} \mathbf{b}$.

EXERCICE 4

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ une matrice inversible dont les éléments diagonaux sont non nuls. On note $A_{i,j}$ la composante (i,j) de la matrice \mathbb{A} . On décompose la matrice \mathbb{A} sous la forme $\mathbb{A} = \mathbb{D} - \mathbb{E} - \mathbb{F}$, où \mathbb{D} représente la diagonale de \mathbb{A} , $-\mathbb{E}$ la partie triangulaire inférieure stricte et $-\mathbb{F}$ la partie triangulaire supérieure stricte.

La matrice d'itération de la méthode S.O.R., notée \mathcal{L}_w , est donnée par

$$\mathcal{L}_w = \left(\frac{\mathbb{D}}{w} - \mathbb{E}\right)^{-1} \left(\frac{1 - w}{w} \mathbb{D} + \mathbb{F}\right). \tag{4.1}$$

On pose $\mathbb{L} = \mathbb{D}^{-1}\mathbb{E}$ et $\mathbb{U} = \mathbb{D}^{-1}\mathbb{F}$.

 $Montrer\ que$

$$\mathcal{L}_w = (\mathbb{I} - w\mathbb{L})^{-1} ((1 - w)\mathbb{I} + w\mathbb{U}).$$

R. 1 Comme $\mathbb{E} = \mathbb{DL}$ et $\mathbb{F} = \mathbb{DU}$ on obtient

$$\mathcal{L}_{w} = \left(\frac{\mathbb{D}}{w} - \mathbb{D}\mathbb{L}\right)^{-1} \left(\frac{1-w}{w}\mathbb{D} + \mathbb{D}\mathbb{U}\right)$$

$$= \left(\frac{1}{w}\mathbb{D}[\mathbb{I} - w\mathbb{L}]\right)^{-1} \left(\frac{1}{w}\mathbb{D}[(1-w)\mathbb{I} + w\mathbb{U}]\right)$$

$$= (\mathbb{I} - w\mathbb{L})^{-1} \left(\frac{1}{w}\mathbb{D}\right)^{-1} \left(\frac{1}{w}\mathbb{D}\right) ((1-w)\mathbb{I} + w\mathbb{U})$$

$$= (\mathbb{I} - w\mathbb{L})^{-1} ((1-w)\mathbb{I} + w\mathbb{U}).$$

 $En \ d\acute{e}duire \ que$

$$\rho(\mathcal{L}_w) \geqslant |w - 1|. \tag{4.2}$$

R. 2

La matrice \mathbb{L} est triangulaire inférieure à diagonale nulle car elle est le produit d'une matrice diagonale (et donc triangulaire inférieure) \mathbb{D}^{-1} et d'une matrice triangulaire inférieure \mathbb{E} à diagonale nulle. De même la matrice \mathbb{U} est triangulaire supérieure à diagonale nulle.

On sait que le déterminant d'une matrice est égale aux produits de ses valeurs propres comptées avec leurs multiplicités. En notant n la dimension de la matrice \mathcal{L}_w , et en notant $\lambda_i(\mathcal{L}_w)$ ses n valeurs propres, on a donc

$$\det(\mathcal{L}_w) = \prod_{i=1}^n \lambda_i(\mathcal{L}_w).$$

Le rayon spectral de \mathcal{L}_w , noté $\rho(\mathcal{L}_w)$, correspond au plus grand des modules des valeurs propres. On a alors

$$\rho(\mathcal{L}_w) = \max_{i \in [\![1,n]\!]} |\lambda_i(\mathcal{L}_w)| \geqslant |\det(\mathcal{L}_w)|^{1/n}$$

De plus on a

$$\det(\mathcal{L}_w) = \det\left((\mathbb{I} - w\mathbb{L})^{-1} \left((1 - w)\mathbb{I} + w\mathbb{U} \right) \right) = \det\left((\mathbb{I} - w\mathbb{L})^{-1} \right) \det\left(((1 - w)\mathbb{I} + w\mathbb{U}) \right)$$

La matrice $\mathbb{I} - w\mathbb{L}$ est triangulaire inférieure à diagonale unité donc son inverse aussi. On en déduit det $((\mathbb{I} - w\mathbb{L})^{-1}) = 1$. La matrice $(1 - w)\mathbb{I} + w\mathbb{U}$ est triangulaire supérieure avec tous ses éléments diagonaux valant 1 - w et donc

$$\det\left(\left((1-w)\mathbb{I}+w\mathbb{U}\right)\right)=(1-w)^n$$
. On a alors $|\det(\mathcal{L}_w)|=|1-w|^n$ et
$$\rho(\mathcal{L}_w)\geqslant |\det(\mathcal{L}_w)|^{1/n}=|1-w|.$$

EXERCICE 5

On note $\mathbb{T} \in \mathcal{M}_n(\mathbb{C})$ la matrice tridiagonale

$$\mathbb{T} = \begin{pmatrix}
a_1 & c_1 & 0 & \dots & 0 \\
b_2 & a_2 & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & c_{n-1} \\
0 & \dots & 0 & b_n & a_n
\end{pmatrix}.$$
(5.1)

- Soit $\mu \in \mathbb{C}^*$. On note $\mathbb{Q}(\mu) \in \mathcal{M}_n(\mathbb{C})$ la matrice diagonale de diagonale $(\mu, \mu^2, \dots, \mu^n)$.
 - a. Expliciter la matrice $\mathbb{T}(\mu) \stackrel{\text{def}}{=} \mathbb{Q}(\mu)\mathbb{T}\mathbb{Q}^{-1}(\mu)$ en fonction des coefficients tridiagonaux de la matrice \mathbb{T} et de μ .
 - b. Déterminer $\det(\mathbb{T}(\mu))$ en fonction de $\det(\mathbb{T})$.

R. 1

a. On peut noter que la matrice $\mathbb{Q}(\mu)$ est inversible car elle est diagonale et $\mu \in \mathbb{C}^*$. Son inverse est la matrice diagonale de diagonale $(\mu^{-1}, \mu^{-2}, \dots, \mu^{-n})$.

1ère démonstration. On a

$$\mathbb{T}(\mu) = \begin{pmatrix} \mu & 0 & \dots & 0 \\ 0 & \mu^{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \mu^{n} \end{pmatrix} \mathbb{T} \begin{pmatrix} \frac{1}{\mu} & 0 & \dots & 0 \\ 0 & \frac{1}{\mu^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{\mu^{n}} \end{pmatrix} \\
= \begin{pmatrix} \mu a_{1} & \mu c_{1} & 0 & \dots & 0 \\ \mu^{2} b_{2} & \mu^{2} a_{2} & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \mu^{n-1} c_{n-1} \\ 0 & \dots & 0 & \mu^{n} b_{n} & \mu^{n} a_{n} \end{pmatrix} \begin{pmatrix} \frac{1}{\mu} & 0 & \dots & 0 \\ 0 & \frac{1}{\mu^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{\mu^{n}} \end{pmatrix} \\
= \begin{pmatrix} a_{1} & \mu^{-1} c_{1} & 0 & \dots & 0 \\ \mu b_{2} & a_{2} & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \mu^{-1} c_{n-1} \\ 0 & \dots & 0 & \mu b_{n} & a_{n} \end{pmatrix}$$

2ème démonstration. Pour simplifier l'écriture, on pose $\mathbb{Q} \stackrel{\mathsf{def}}{=} \mathbb{Q}(\mu)$. Soit $(i,j) \in [1,n]^2$, on a

$$\left(\mathbb{T}(\mu)\right)_{i,j} \quad = \quad \left(\mathbb{Q}\mathbb{T}\mathbb{Q}^{-1}\right)_{i,j} = \sum_{k=1}^{n} \left(\mathbb{Q}\mathbb{T}\right)_{i,k} \left(\mathbb{Q}^{-1}\right)_{k,j}$$

Or $\mathbb{Q}^{\text{-1}}$ est diagonale, donc $(\mathbb{Q}^{\text{-1}})_{k,j} = 0$, si $k \neq j$. Ceci donne

$$\begin{split} \left(\mathbb{T}(\mu)\right)_{i,j} &= \left(\mathbb{QT}\right)_{i,j} \left(\mathbb{Q}^{-1}\right)_{j,j} = \mu^{-j} \left(\mathbb{QT}\right)_{i,j} \\ &= \mu^{-j} \sum_{k=1}^{n} \mathbb{Q}_{i,k} \mathbb{T}_{k,j}. \end{split}$$

De même, $\mathbb Q$ est diagonale, donc $\mathbb Q_{i,k}=0,$ si $k\neq i.$ Ceci donne

$$(\mathbb{T}(\mu))_{i,j} = \mu^{-j} \mathbb{Q}_{i,i} \mathbb{T}_{i,j} = \mu^{i-j} \mathbb{T}_{i,j}.$$

La matrice \mathbb{T} étant tridiagonale, $\mathbb{T}(\mu)$ l'est aussi et on a

$$\begin{split} \left(\mathbb{T}(\mu)\right)_{i,i} &= \mathbb{T}_{i,i} = a_i, & \forall i \in [\![1,n]\!] & \text{(diagonale)} \\ \left(\mathbb{T}(\mu)\right)_{i,i+1} &= \mu^{-1}\mathbb{T}_{i,i+1} = \mu^{-1}c_i, & \forall i \in [\![1,n-1]\!] & \text{(sur-diagonale)} \\ \left(\mathbb{T}(\mu)\right)_{i-1,i} &= \mu\mathbb{T}_{i-1,i} = \mu^{-1}b_i, & \forall i \in [\![2,n]\!] & \text{(sous-diagonale)} \end{split}$$

b. On a

$$\det(\mathbb{T}(\mu)) = \det\left(\mathbb{Q}(\mu)\mathbb{T}\mathbb{Q}^{-1}(\mu)\right) = \det(\mathbb{Q}(\mu))\det(\mathbb{T})\det(\mathbb{Q}^{-1}(\mu)) = \det(\mathbb{T}),$$
 car $\det(\mathbb{Q}(\mu))\det(\mathbb{Q}^{-1}(\mu)) = 1.$

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ une matrice inversible dont les éléments diagonaux sont non nuls. On note $A_{i,j}$ la composante (i,j) de la matrice \mathbb{A} . On décompose la matrice \mathbb{A} sous la forme $\mathbb{A} = \mathbb{D} - \mathbb{E} - \mathbb{F}$, où \mathbb{D} représente la diagonale de \mathbb{A} , $-\mathbb{E}$ la partie triangulaire inférieure stricte et $-\mathbb{F}$ la partie triangulaire supérieure stricte.

On note respectivement $\mathbb{J}\stackrel{\text{def}}{=}\mathbb{D}^{-1}(\mathbb{E}+\mathbb{F})$ et $\mathcal{L}_1\stackrel{\text{def}}{=}(\mathbb{D}-\mathbb{E})^{-1}\mathbb{F}$ les matrices d'itérations des méthodes de Jacobi et de Gauss-Seidel.

Soit $\mathbf{y} \in \mathbb{R}^n$. On souhaite résoudre le système $\mathbb{A}\mathbf{x} = \mathbf{y}$ par la méthode de Gauss-Seidel ou par la méthode de Jacobi. On suppose dans la suite que la matrice inversible $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ s'écrit sous la forme

$$\mathbb{A} = \begin{pmatrix} \alpha_1 & \nu_1 & 0 & \dots & 0 \\ \beta_2 & \alpha_2 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \nu_{n-1} \\ 0 & \dots & 0 & \beta_n & \alpha_n \end{pmatrix}$$

$$(5.2)$$

et que ses éléments diagonaux sont non nuls.

Q. 2

a. Montrer que les valeurs propres de J sont les racines du polynôme

$$q_{\mathbb{J}}(\lambda) \stackrel{\text{def}}{=} \det(\lambda \mathbb{D} - \mathbb{E} - \mathbb{F}).$$

- b. En utilisant la question 1, montrer que $q_{\mathbb{J}}(\lambda) = \det(\lambda \mathbb{D} \lambda \mathbb{E} \frac{1}{\lambda}\mathbb{F})$.
- c. En déduire que si $\lambda \in \mathbb{C}$ est valeur propre de \mathbb{J} alors $-\lambda$ l'est aussi.

R. 2

a. Les valeurs propres de $\mathbb J$ sont les racines de son polynôme caractéristique

$$P_{\mathbb{J}}(\lambda) \stackrel{\text{def}}{=} \det(\lambda \mathbb{J} - \mathbb{J}).$$

Or on a

$$P_{\mathbb{J}}(\lambda) = \det \left(\lambda \mathbb{I} - \mathbb{D}^{-1}(\mathbb{E} + \mathbb{F}) \right)$$
$$= \det \left(\mathbb{D}^{-1}(\lambda \mathbb{D} - (\mathbb{E} + \mathbb{F})) \right)$$
$$= \det(\mathbb{D}^{-1}) \det \left(\lambda \mathbb{D} - (\mathbb{E} + \mathbb{F}) \right)$$
$$= \det(\mathbb{D}^{-1}) q_{\mathbb{J}}(\lambda).$$

Comme $\det(\mathbb{D}^{-1}) \neq 0$, les valeurs propres de \mathbb{J} sont aussi les racines de $q_{\mathbb{J}}(\lambda)$.

b. En reprenant les notations de la question 1, et en notant $\mathbb T$ la matrice

$$\mathbb{T} = \lambda \mathbb{D} - \mathbb{E} - \mathbb{F} = \begin{pmatrix}
\lambda \alpha_1 & \nu_1 & 0 & \dots & 0 \\
\beta_2 & \lambda \alpha_2 & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \nu_{n-1} \\
0 & \dots & 0 & \beta_n & \lambda \alpha_n
\end{pmatrix}$$

la matrice $\mathbb{T}(\lambda) \stackrel{\mathsf{def}}{=} \mathbb{Q}(\lambda) \mathbb{T} \mathbb{Q}^{-1}(\lambda)$ correspond alors à

$$\mathbb{T}(\lambda) = \begin{pmatrix} \lambda \alpha_1 & \frac{1}{\lambda} \nu_1 & 0 & \dots & 0 \\ \lambda \beta_2 & \lambda \alpha_2 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \frac{1}{\lambda} \nu_{n-1} \\ 0 & \dots & 0 & \lambda \beta_n & \lambda \alpha_n \end{pmatrix} = \lambda \mathbb{D} - \lambda \mathbb{E} - \frac{1}{\lambda} \mathbb{F}.$$

D'après la question 1, on a $\det(\mathbb{T}(\lambda)) = \det(\mathbb{T})$ ce qui donne

$$\det\left(\lambda\mathbb{D} - \lambda\mathbb{E} - \frac{1}{\lambda}\mathbb{F}\right) = \det\left(\lambda\mathbb{D} - \mathbb{E} - \mathbb{F}\right) = q_{\mathbb{J}}(\lambda).$$

c. Soit $\lambda \in \mathbb{C}$ une valeur propre de J. On a donc $P_{\mathbb{J}}(\lambda) = 0$. Or on a

$$P_{\mathbb{J}}(\lambda) = \det(\mathbb{D}^{-1})q_{\mathbb{J}}(\lambda) = \det(\mathbb{D}^{-1})\det(\lambda\mathbb{D} - \lambda\mathbb{E} - \frac{1}{\lambda}\mathbb{F})$$

et donc

$$P_{\mathbb{J}}(-\lambda) = \det(\mathbb{D}^{-1}) \det\left(-\lambda \mathbb{D} + \lambda \mathbb{E} + \frac{1}{\lambda}\mathbb{F}\right)$$
$$= (-1)^n \det(\mathbb{D}^{-1}) \det\left(\lambda \mathbb{D} - \lambda \mathbb{E} - \frac{1}{\lambda}\mathbb{F}\right)$$
$$= (-1)^n P_{\mathbb{J}}(\lambda)$$
$$= 0$$

c'est à dire $-\lambda$ est aussi une valeur propre de J.

 $egin{array}{c} oldsymbol{Q. 3} \\ \hline a. \ Montrer \ que \ les \ valeurs \ propres \ de \ \mathcal{L}_1 \ sont \ les \ racines \ du \ polynôme \end{array}$

$$q_{\mathcal{L}_1}(\lambda) \stackrel{\text{def}}{=} \det(\lambda \mathbb{D} - \lambda \mathbb{E} - \mathbb{F}).$$

b. En déduire que

$$\forall \lambda \in \mathbb{C}^*, \quad q_{\mathcal{L}_1}(\lambda^2) = \lambda^n q_{\mathbb{J}}(\lambda). \tag{5.3}$$

(R. 3)

a. Les valeurs propres de \mathcal{L}_1 sont les racines de son polynôme caractéristique

$$P_{\mathcal{L}_1}(\lambda) \stackrel{\text{def}}{=} \det(\lambda \mathbb{I} - \mathcal{L}_1).$$

Or on a

$$P_{\mathcal{L}_{1}}(\lambda) = \det \left(\lambda \mathbb{I} - (\mathbb{D} - \mathbb{E})^{-1} \mathbb{F}\right)$$

$$= \det \left((\mathbb{D} - \mathbb{E})^{-1} (\lambda(\mathbb{D} - \mathbb{E}) - \mathbb{F})\right)$$

$$= \det ((\mathbb{D} - \mathbb{E})^{-1}) \det \left(\lambda(\mathbb{D} - \mathbb{E}) - \mathbb{F}\right)$$

$$= \det ((\mathbb{D} - \mathbb{E})^{-1}) q_{\mathcal{L}_{1}}(\lambda).$$

Comme $\det((\mathbb{D} - \mathbb{E})^{-1}) = \det(\mathbb{D}^{-1}) \neq 0$, les valeurs propres de \mathcal{L}_1 sont aussi les racines de $q_{\mathcal{L}_1}(\lambda)$.

b. Soit $\lambda \in \mathbb{C}^*$. On a

$$\begin{split} q_{\mathcal{L}_1}(\lambda^2) &= \det\left(\lambda^2(\mathbb{D} - \mathbb{E}) - \mathbb{F}\right) \\ &= \det\left(\lambda(\lambda\mathbb{D} - \lambda\mathbb{E} - \frac{1}{\lambda}\mathbb{F})\right) \\ &= \lambda^n \det\left(\lambda\mathbb{D} - \lambda\mathbb{E} - \frac{1}{\lambda}\mathbb{F}\right). \end{split}$$

Et donc on obtient bien (5.3).

Q. 4

- a. Comparer les valeurs propres de \mathbb{J} à celles de \mathcal{L}_1 .
- b. Une des deux méthodes est-elle à privilégier dans ce cas?

R. 4

- a. Si λ est une valeur propre de \mathbb{J} alors λ^2 est une valeur propre de \mathcal{L}_1 . Si $\mu \neq 0$ est une valeur propre de \mathcal{L}_1 alors ses racines carrées complexes $\sqrt{\mu}$ et $-\sqrt{\mu}$ sont valeurs propres de \mathbb{J} .
- b. On a $\rho(\mathcal{L}_1) = \rho(\mathbb{J})^2$, et donc $\rho(\mathcal{L}_1) < 1 \Leftrightarrow \rho(\mathbb{J}) < 1$. Les deux méthodes convergent donc simultanément. Toutefois, lorsqu'il y a convergence, on a

$$\rho(\mathcal{L}_1) = \rho(\mathbb{J})^2 < \rho(\mathbb{J}) < 1$$

et donc, Il faut privilégier la méthode de Gauss-Seidel car une méthode itérative converge d'autant plus vite que le rayon spectral de sa matrice d'itération est petit.

2 Exercice supplémentaire

EXERCICE 6

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne définie positive et $\boldsymbol{b} \in \mathbb{C}^n$.

Q. 1

Montrer les résultats suivant:

- a. tous les éléments diagonaux de \mathbb{A} sont dans \mathbb{R}_{+}^{*} .
- b. toutes les valeurs propres de \mathbb{A} sont dans \mathbb{R}_{+}^{*} .
- $c. \ \land \ est \ inversible.$

R. 1

a. Soit $i \in [1, n]$ et $e_i \in \mathbb{C}^n$, le *i*-ème vecteur de la base canonique de \mathbb{C}^n . On a

$$\langle \boldsymbol{e}_i, \mathbb{A}\boldsymbol{e}_i \rangle = A_{i,i}.$$

Or, on a

$$\langle \boldsymbol{e}_i, \mathbb{A} \boldsymbol{e}_i \rangle = \langle \mathbb{A}^* \boldsymbol{e}_i, \boldsymbol{e}_i \rangle$$

$$= \langle \mathbb{A} \boldsymbol{e}_i, \boldsymbol{e}_i \rangle$$

$$= \overline{\langle \boldsymbol{e}_i, \mathbb{A} \boldsymbol{e}_i \rangle}$$

par propriété du produit scalaire $\operatorname{car}\,\mathbb{A}\,\operatorname{est}\,\operatorname{hermitienne}$ par propriété du produit scalaire

et donc $A_{i,i} = \overline{A_{i,i}}$, c'est à dire $A_{i,i} \in \mathbb{R}$.

Comme \mathbb{A} est hemitienne définie positive, et, comme $e_i \neq 0$, on a

$$\langle \mathbb{A}\boldsymbol{e}_i, \boldsymbol{e}_i \rangle > 0$$

et donc $A_{i,i} > 0$.

b. Soit $(\lambda, \mathbf{u}) \in \mathbb{C} \times \mathbb{C}^n \setminus \{\mathbf{0}\}$ un élément propre de \mathbb{A} . On a

$$\langle \mathbb{A}\boldsymbol{u}, \boldsymbol{u} \rangle = \langle \lambda \boldsymbol{u}, \boldsymbol{u} \rangle = \overline{\lambda} \langle \boldsymbol{u}, \boldsymbol{u} \rangle$$

et

$$\langle \boldsymbol{u}, \mathbb{A}\boldsymbol{u} \rangle = \langle \boldsymbol{u}, \lambda \boldsymbol{u} \rangle = \lambda \langle \boldsymbol{u}, \boldsymbol{u} \rangle.$$

Or A est hermitienne, donc on a

$$\langle \mathbb{A}\boldsymbol{u}, \boldsymbol{u} \rangle = \langle \boldsymbol{u}, \mathbb{A}^* \boldsymbol{u} \rangle = \langle \boldsymbol{u}, \mathbb{A}\boldsymbol{u} \rangle.$$

On en déduit que

$$\overline{\lambda}\langle \boldsymbol{u}, \boldsymbol{u}\rangle = \lambda \langle \boldsymbol{u}, \boldsymbol{u}\rangle.$$

le vecteur \boldsymbol{u} étant non nul, on a $\langle \boldsymbol{u}, \boldsymbol{u} \rangle = \|\boldsymbol{u}\|_2^2 \neq 0$ et donc $\lambda = \overline{\lambda}$, c'est à dire $\lambda \in \mathbb{R}$.

De plus, A est définie positive entraine que

$$\lambda \|u\|_2^2 = \langle \mathbb{A}\boldsymbol{u}, \boldsymbol{u} \rangle > 0$$

et donc $\lambda > 0$.

c. Comme toutes les valeurs propres de A sont non nulles (puique strictement positives), A est inversible.

On note \underline{x} la solution de $\mathbb{A}x = b$ et on décompose la matrice \mathbb{A} sous la forme $\mathbb{A} = \mathbb{D} - \mathbb{E} - \mathbb{F}$ où $\mathbb{D} = \operatorname{diag}(\mathbb{A})$ est la matrice diagonale telle que, $\forall i \in [\![1,n]\!]$, $D_{i,i} = A_{i,i}$, \mathbb{E} est triangulaire inférieure d'éléments diagonaux nuls, et, \mathbb{F} est triangulaire supérieure d'éléments diagonaux nuls.

On va étudier une méthode itérative pour la résolution du système linéaire $\mathbb{A} \boldsymbol{x} = \boldsymbol{b}$.

Soit $\boldsymbol{x}_0 \in \mathbb{C}^n$ donné. On définit la suite $(\boldsymbol{x}_k)_{k \in \mathbb{N}}$ par, $\forall k \in \mathbb{N}$,

$$(\mathbb{D} - \mathbb{E})\boldsymbol{x}_{k+1/2} = \mathbb{F}\boldsymbol{x}_k + \boldsymbol{b} \tag{6.1}$$

$$(\mathbb{D} - \mathbb{F})\boldsymbol{x}_{k+1} = \mathbb{E}\boldsymbol{x}_{k+1/2} + \boldsymbol{b} \tag{6.2}$$

a. Démontrer, en justifiant toutes les opérations utilisées, que le vecteur \boldsymbol{x}_{k+1} peut s'écrire sous la forme

$$\boldsymbol{x}_{k+1} = \mathbb{B}\boldsymbol{x}_k + \boldsymbol{c} \tag{6.3}$$

en déterminant le vecteur \boldsymbol{c} et en montrant que

$$\mathbb{B} = (\mathbb{D} - \mathbb{F})^{-1} \mathbb{E} (\mathbb{D} - \mathbb{E})^{-1} \mathbb{F}.$$

b. Montrer que

$$\boldsymbol{x}_{k+1} - \underline{\boldsymbol{x}} = \mathbb{B}(\boldsymbol{x}_k - \underline{\boldsymbol{x}}).$$

c. Montrer que

$$\mathbb{D}^{-1} = (\mathbb{D} - \mathbb{E})^{-1} - \mathbb{D}^{-1} \mathbb{E} (\mathbb{D} - \mathbb{E})^{-1}. \tag{6.4}$$

R. 2

Q. 2

a. La matrice diagonale \mathbb{D} est inversible car, pour tout $i \in [1, n]$, $D_{i,i} = A_{i,i} > 0$.

On en déduit que les matrices $\mathbb{D} - \mathbb{E}$ (triangulaire inférieure de diagonale la diagonale de \mathbb{D}) et $\mathbb{D} - \mathbb{F}$ (triangulaire supérieure de diagonale la diagonale de \mathbb{D}) sont inversibles.

De (6.1), on obtient en multipliant à gauche par $(\mathbb{D} - \mathbb{E})^{-1}$

$$oldsymbol{x}_{k+1/2} = \left(\mathbb{D} - \mathbb{E}
ight)^{ ext{-}1} \mathbb{F} oldsymbol{x}_k + \left(\mathbb{D} - \mathbb{E}
ight)^{ ext{-}1} oldsymbol{b}.$$

En remplaçant cette expression de $x_{k+1/2}$ dans (6.2), on a

$$(\mathbb{D} - \mathbb{F})\boldsymbol{x}_{k+1} = \mathbb{E}\left((\mathbb{D} - \mathbb{E})^{-1}\mathbb{F}\boldsymbol{x}_k + (\mathbb{D} - \mathbb{E})^{-1}\boldsymbol{b}\right) + \boldsymbol{b}$$
$$= \mathbb{E}(\mathbb{D} - \mathbb{E})^{-1}\mathbb{F}\boldsymbol{x}_k + \left(\mathbb{E}(\mathbb{D} - \mathbb{E})^{-1} + \mathbb{I}\right)\boldsymbol{b}$$

En multipliant à gauche cette équation par $(\mathbb{D}-\mathbb{F})^{\text{-}1},$ on abouti a

$$\boldsymbol{x}_{k+1} = (\mathbb{D} - \mathbb{F})^{-1} \mathbb{E} (\mathbb{D} - \mathbb{E})^{-1} \mathbb{F} \boldsymbol{x}_k (\mathbb{D} - \mathbb{F})^{-1} \left(\mathbb{E} (\mathbb{D} - \mathbb{E})^{-1} + \mathbb{I} \right) \boldsymbol{b}$$

En posant

$$\mathbb{B} = (\mathbb{D} - \mathbb{F})^{-1} \mathbb{E} (\mathbb{D} - \mathbb{E})^{-1} \mathbb{F}$$
$$\mathbf{c} = (\mathbb{D} - \mathbb{F})^{-1} \left(\mathbb{E} (\mathbb{D} - \mathbb{E})^{-1} + \mathbb{I} \right) \mathbf{b}$$

on obtient (6.3).

b. La matrice \mathbb{A} est inversible et donc \underline{x} est bien définie. De l'équation (6.1), on déduit

$$(\mathbb{D} - \mathbb{E})\boldsymbol{x}_{k+1/2} = \mathbb{F}\boldsymbol{x}_k + \mathbb{A}\underline{\boldsymbol{x}} = \mathbb{F}\boldsymbol{x}_k + (\mathbb{D} - \mathbb{E} - \mathbb{F})\underline{\boldsymbol{x}}$$

et donc

$$(\mathbb{D} - \mathbb{E})(\boldsymbol{x}_{k+1/2} - \underline{\boldsymbol{x}}) = \mathbb{F}(\boldsymbol{x}_k - \underline{\boldsymbol{x}})$$
(R6.2)

De la même manière à partir de l'équation (6.2), on déduit

$$(\mathbb{D} - \mathbb{F})(\boldsymbol{x}_{k+1} - \underline{\boldsymbol{x}}) = \mathbb{E}(\boldsymbol{x}_{k+1/2} - \underline{\boldsymbol{x}})$$
(R6.3)

En utilisant (R6.2), l'équation (R6.4) devient

$$(\mathbb{D} - \mathbb{F})(\boldsymbol{x}_{k+1} - \boldsymbol{x}) = \mathbb{E}(\mathbb{D} - \mathbb{E})^{-1}\mathbb{F}(\boldsymbol{x}_k - \boldsymbol{x})$$

c'est à dire

$$\boldsymbol{x}_{k+1} - \underline{\boldsymbol{x}} = \mathbb{B}(\boldsymbol{x}_k - \underline{\boldsymbol{x}}).$$

c. L'expression à démontrer est bien définie car $\mathbb D$ et $\mathbb D-\mathbb E$ inversibles. De plus on a

$$\mathbb{I} = (\mathbb{D} - \mathbb{E})(\mathbb{D} - \mathbb{E})^{-1}$$

En multipliant à gauche cette équation par \mathbb{D}^{-1} on obtient

$$\begin{array}{rcl} \mathbb{D}^{-1} & = & \mathbb{D}^{-1}(\mathbb{D} - \mathbb{E})(\mathbb{D} - \mathbb{E})^{-1} \\ & = & (\mathbb{D} - \mathbb{E})^{-1} - \mathbb{D}^{-1}\mathbb{E}(\mathbb{D} - \mathbb{E})^{-1}. \end{array}$$

Q. 3

a. Montrer que

$$\lambda \mathbb{A} \boldsymbol{p} + (\lambda - 1) \mathbb{E} \mathbb{D}^{-1} \mathbb{F} \boldsymbol{p} = 0. \tag{6.5}$$

b. En déduire que

$$\lambda = \frac{\langle \mathbb{F} \boldsymbol{p}, \mathbb{D}^{-1} \mathbb{F} \boldsymbol{p} \rangle}{\langle \boldsymbol{p}, \mathbb{A} \boldsymbol{p} \rangle + \langle \mathbb{F} \boldsymbol{p}, \mathbb{D}^{-1} \mathbb{F} \boldsymbol{p} \rangle} \in [0, 1[.$$
(6.6)

c. En déduire la convergence x_k vers \underline{x} .

R. 3

a. On a

$$\mathbb{B}\boldsymbol{p} = \lambda \boldsymbol{p} \quad \Leftrightarrow \quad (\mathbb{D} - \mathbb{F})^{-1}\mathbb{E}(\mathbb{D} - \mathbb{E})^{-1}\mathbb{F}\boldsymbol{p} = \lambda \boldsymbol{p}$$

$$\Leftrightarrow \quad \mathbb{E}(\mathbb{D} - \mathbb{E})^{-1}\mathbb{F}\boldsymbol{p} = \lambda(\mathbb{D} - \mathbb{F})\boldsymbol{p}$$

$$\Leftrightarrow \quad \mathbb{D}^{-1}\mathbb{E}(\mathbb{D} - \mathbb{E})^{-1}\mathbb{F}\boldsymbol{p} = \lambda\mathbb{D}^{-1}(\mathbb{D} - \mathbb{F})\boldsymbol{p}$$

De (6.4), on a

$$\mathbb{D}^{\text{-}1}\mathbb{E}(\mathbb{D}-\mathbb{E})^{\text{-}1}=(\mathbb{D}-\mathbb{E})^{\text{-}1}-\mathbb{D}^{\text{-}1}$$

et donc

$$\mathbb{B}\boldsymbol{p} = \lambda \boldsymbol{p} \quad \Leftrightarrow \quad \left((\mathbb{D} - \mathbb{E})^{-1} - \mathbb{D}^{-1} \right) \mathbb{F}\boldsymbol{p} = \lambda \mathbb{D}^{-1} (\mathbb{D} - \mathbb{F}) \boldsymbol{p}$$

$$\Leftrightarrow \quad (\mathbb{D} - \mathbb{E}) \left((\mathbb{D} - \mathbb{E})^{-1} - \mathbb{D}^{-1} \right) \mathbb{F}\boldsymbol{p} = \lambda (\mathbb{D} - \mathbb{E}) \mathbb{D}^{-1} (\mathbb{D} - \mathbb{F}) \boldsymbol{p}$$

$$\Leftrightarrow \quad \left(\mathbb{I} - \mathbb{I} + \mathbb{E} \mathbb{D}^{-1} \right) \mathbb{F}\boldsymbol{p} = \lambda (\mathbb{I} - \mathbb{E} \mathbb{D}^{-1}) (\mathbb{D} - \mathbb{F}) \boldsymbol{p}$$

$$\Leftrightarrow \quad \mathbb{E} \mathbb{D}^{-1} \mathbb{F}\boldsymbol{p} = \lambda (\mathbb{D} - \mathbb{E} - \mathbb{F} + \mathbb{E} \mathbb{D}^{-1} \mathbb{F}) \boldsymbol{p}$$

$$\Leftrightarrow \quad \mathbb{E} \mathbb{D}^{-1} \mathbb{F}\boldsymbol{p} = \lambda (\mathbb{A} + \mathbb{E} \mathbb{D}^{-1} \mathbb{F}) \boldsymbol{p}$$

On en déduit alors

$$\lambda \mathbb{A} \boldsymbol{p} + (\lambda - 1) \mathbb{E} \mathbb{D}^{-1} \mathbb{F} \boldsymbol{p} = 0.$$

b. On déduit de l'équation (6.5)

$$0 = \langle \boldsymbol{p}, \lambda \mathbb{A} \boldsymbol{p} + (\lambda - 1) \mathbb{E} \mathbb{D}^{-1} \mathbb{F} \boldsymbol{p} \rangle$$
$$= \lambda \langle \boldsymbol{p}, \mathbb{A} \boldsymbol{p} \rangle + (\lambda - 1) \langle \boldsymbol{p}, \mathbb{E} \mathbb{D}^{-1} \mathbb{F} \boldsymbol{p} \rangle$$

et donc

$$\lambda \left(\langle \boldsymbol{p}, \mathbb{A}\boldsymbol{p} \rangle + \left\langle \boldsymbol{p}, \mathbb{E}\mathbb{D}^{-1}\mathbb{F}\boldsymbol{p} \right\rangle \right) = \left\langle \boldsymbol{p}, \mathbb{E}\mathbb{D}^{-1}\mathbb{F}\boldsymbol{p} \right\rangle \tag{R6.4}$$

Comme la matrice \mathbb{A} est définie positive, on a $\langle \mathbb{A}p, p \rangle > 0$ car $p \neq 0$ (vecteur propre) et donc

$$\langle \boldsymbol{p}, \mathbb{A}\boldsymbol{p} \rangle = \overline{\langle \mathbb{A}\boldsymbol{p}, \boldsymbol{p} \rangle} = \langle \mathbb{A}\boldsymbol{p}, \boldsymbol{p} \rangle > 0.$$

De plus on a

$$\langle \boldsymbol{p}, \mathbb{E}\mathbb{D}^{-1}\mathbb{F}\boldsymbol{p} \rangle = \langle \mathbb{E}^*\boldsymbol{p}, \mathbb{D}^{-1}\mathbb{F}\boldsymbol{p} \rangle.$$

La matrice \mathbb{A} étant hermitienne, on a $\mathbb{E}^* = \mathbb{F}$ et donc

$$\langle \boldsymbol{p}, \mathbb{E}\mathbb{D}^{-1}\mathbb{F}\boldsymbol{p} \rangle = \langle \mathbb{F}\boldsymbol{p}, \mathbb{D}^{-1}\mathbb{F}\boldsymbol{p} \rangle.$$

La matrice \mathbb{A} étant définie positive, la matrice diagonale \mathbb{D} est définie positive car $d_{i,i} > 0$, $\forall i \in [1, n]$, et donc \mathbb{D}^{-1} aussi. Comme $\mathbb{F}p$ n'est pas nécessairement non nul, on a

$$\langle \mathbb{D}^{-1} \mathbb{F} \boldsymbol{p}, \mathbb{F} \boldsymbol{p} \rangle \in \mathbb{R}^+.$$

On en déduit

$$\left\langle \mathbb{F} \boldsymbol{p}, \mathbb{D}^{\text{--}1} \mathbb{F} \boldsymbol{p} \right\rangle = \overline{\left\langle \mathbb{D}^{\text{--}1} \mathbb{F} \boldsymbol{p}, \mathbb{F} \boldsymbol{p} \right\rangle} = \left\langle \mathbb{D}^{\text{--}1} \mathbb{F} \boldsymbol{p}, \mathbb{F} \boldsymbol{p} \right\rangle \geqslant 0.$$

De l'équation (R6.4), on obtient

$$\lambda(\langle \pmb{p}, \mathbb{A}\pmb{p}\rangle + \left\langle \mathbb{F}\pmb{p}, \mathbb{D}^{\text{-1}}\mathbb{F}\pmb{p}\right\rangle) = \left\langle \mathbb{F}\pmb{p}, \mathbb{D}^{\text{-1}}\mathbb{F}\pmb{p}\right\rangle.$$

Or

$$\langle \boldsymbol{p}, \mathbb{A}\boldsymbol{p} \rangle + \langle \mathbb{F}\boldsymbol{p}, \mathbb{D}^{-1}\mathbb{F}\boldsymbol{p} \rangle > 0 \text{ donc } \neq 0$$

ce qui donne

$$\lambda = rac{\left\langle \mathbb{F}oldsymbol{p}, \mathbb{D}^{-1}\mathbb{F}oldsymbol{p}
ight
angle}{\left\langle oldsymbol{p}, \mathbb{A}oldsymbol{p}
ight
angle + \left\langle \mathbb{F}oldsymbol{p}, \mathbb{D}^{-1}\mathbb{F}oldsymbol{p}
ight
angle}$$

On a alors $\lambda \in [0, 1[$.

c. En posant
$$\boldsymbol{e}_k = \boldsymbol{x}_k - \underline{\boldsymbol{x}}$$
 on a alors

$$\mathbf{e}_k = \mathbb{B}^k \mathbf{e}_0, \quad \forall k \geqslant 0.$$

Or la suite \boldsymbol{x}_k converge vers $\underline{\boldsymbol{x}}$ si et seulement si la suite \boldsymbol{e}_k converge vers $\boldsymbol{0}$. Pour celà, d'après le Théorème ??, page ??, il est nécessaire et suffisant d'avoir $\rho(\mathbb{B}) < 1$. Comme toutes les valeurs propres de \mathbb{B} sont dans [0,1[, on a $\rho(\mathbb{B}) < 1$ et donc la convergence est assurée.

Q. 4

- a. Ecrire une fonction algorithmique $[\mathbb{D}, \mathbb{E}, \mathbb{F}] \leftarrow \text{Decomp}(\mathbb{A})$ retournant la décomposition de la matrice \mathbb{A} en $\mathbb{A} = \mathbb{D} \mathbb{E} \mathbb{F}$.
- b. Ecrire une fonction algorithmique RSLiter utilisant (6.1)-(6.2) pour approcher la solution du système linéaire $\mathbb{A}\mathbf{x} = \mathbf{b}$. Pour celà on pourra utiliser les fonctions
 - $x \leftarrow \text{RSLtriinf}(\mathbb{A}, b)$ retourne la solution du système $\mathbb{A}x = b$ où \mathbb{A} est une matrice triangulaire inférieure inversible,
 - $\boldsymbol{x} \leftarrow \text{RSLtrisup}(\mathbb{A}, \boldsymbol{b})$ retourne la solution du système $\mathbb{A}\boldsymbol{x} = \boldsymbol{b}$ où \mathbb{A} est une matrice triangulaire supérieure inversible.

En aucun cas, il ne faudra utiliser les matrices inverses...

R. 4

a. Voici une correction possible:

Algorithme 1 Décomposition d'une matrice \mathbb{A} en $\mathbb{D} - \mathbb{E} - \mathbb{F}$

```
Données :
```

```
\mathbb{A}: matrice de \mathcal{M}_n(\mathbb{K})
```

Résultat:

12: Fin Fonction

```
\mathbb{D}: matrice de \mathcal{M}_n(\mathbb{K}) diagonale,
```

 \mathbb{E} : matrice de $\mathcal{M}_n(\mathbb{K})$ triangulaire inférieure à diagonale nulle,

 \mathbb{F} : matrice de $\mathcal{M}_n(\mathbb{K})$ triangulaire supérieure à diagonale nulle.

```
1: Fonction [\mathbb{D}, \mathbb{E}, \mathbb{F}] \leftarrow \text{Decomp}(\mathbb{A})
           \mathbb{D} \leftarrow \mathbf{0}_{n,n}, \, \mathbb{E} \leftarrow \mathbf{0}_{n,n}, \, \mathbb{F} \leftarrow \mathbf{0}_{n,n}
           Pour i \leftarrow 1 à n faire
 3:
               Pour j \leftarrow 1 à i-1 faire
 4:
                     \mathbb{E}(i,j) \leftarrow -\mathbb{A}(i,j)
 5:
                Fin Pour
 6:
               \mathbb{D}(i,i) \leftarrow \mathbb{A}(i,i)
 7:
               Pour j \leftarrow i + 1 à n faire
 8:
 9:
                     \mathbb{F}(i,j) \leftarrow -\mathbb{A}(i,j)
                Fin Pour
10:
           Fin Pour
11:
```

b. Connaissant les vecteurs \boldsymbol{x}_k et \boldsymbol{b} , ainsi que les matrices \mathbb{D} , \mathbb{E} et \mathbb{F} , il est possible de déterminer \boldsymbol{x}_{k+1} en effectuant les opérations suivantes:

$$egin{aligned} & oldsymbol{x}_{k+1/2} \leftarrow \mathrm{RSLtriinf}(\mathbb{D} - \mathbb{E}, \mathbb{F} oldsymbol{x}_k + oldsymbol{b}) \\ & oldsymbol{x}_{k+1} \leftarrow \mathrm{RSLtrisup}(\mathbb{D} - \mathbb{F}, \mathbb{E} oldsymbol{x}_{k+1/2} + oldsymbol{b}) \end{aligned}$$

car les matrices $\mathbb{D} - \mathbb{E}$ et $\mathbb{D} - \mathbb{F}$ sont respectivement triangulaire inférieure et triangulaire supérieure. Voici une correction possible:

Algorithme 2 Méthode itérative de l'exercice pour la résolution d'un système linéaire $\mathbb{A}x = b$

```
matrice de \mathcal{M}_n(\mathbb{K}) d'éléments diagonaux non nuls
  \mathbb{A}
  \boldsymbol{b}
                          vecteur de \mathbb{K}^n,
                          vecteur initial de \mathbb{K}^n,
                          la tolérence, \varepsilon \in \mathbb{R}^+,
                          nombre maximum d'itérations, kmax \in \mathbb{N}^*
  kmax :
Résultat :
  m{X} : un vecteur de \mathbb{K}^n
  1: Fonction X \leftarrow \text{RSLiter}(\mathbb{A}, \boldsymbol{b}, \boldsymbol{x}^0, \varepsilon, \text{kmax})
            k \leftarrow 0, \mathbf{X} \leftarrow \emptyset\mathbf{x} \leftarrow \mathbf{x}^0, \mathbf{r} \leftarrow \mathbf{b} - \mathbb{A} * \mathbf{x},
           tol \leftarrow \varepsilon(\|\boldsymbol{b}\| + 1)
           [\mathbb{D}, \mathbb{E}, \mathbb{F}] \leftarrow \underline{\mathrm{Decomp}}(\mathbb{A})
            \mathbb{L} \leftarrow \mathbb{D} - \mathbb{E}, \, \mathbb{U} \leftarrow \mathbb{D} - \mathbb{F}
            Tantque \|\boldsymbol{r}\| > \text{tol et } k \leq \text{kmax faire}
             k \leftarrow k + 1
                x \leftarrow \text{RSLtriinf}(\mathbb{L}, \mathbb{F} * x + b)
 9:
10:
                \boldsymbol{x} \leftarrow \text{RSLtrisup}(\mathbb{U}, \mathbb{E} * \boldsymbol{x} + \boldsymbol{b})
                r \leftarrow b - \mathbb{A} * x
11:
            Fin Tantque
            Si \|r\| \le \text{tol alors}
13:
                 X \leftarrow x
14:
            Fin Si
15:
16: Fin Fonction
```