Partiel du 8 janvier 2025* durée : 3h00.

Sans documents et sans appareils électroniques

Le barême est donné à titre indicatif

Dans ce sujet:

- Les trois exercices sont indépendants.
- Les entrées/sorties des fonctions algorithmiques que vous écrirez devront être décrites.
- Le but de toute fonction algorithmique que vous écrirez, et qui n'est pas explicitement demandée, devra être précisé.

EXERCICE 1 (8.75 points)

Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ une matrice inversible dont les éléments diagonaux sont non nuls, $\boldsymbol{b} \in \mathbb{K}^n$ et $\underline{\boldsymbol{x}} = \mathbb{A}^{-1}\boldsymbol{b}$. On rappelle que si $\mathbb{G} \in \mathcal{M}_n(\mathbb{K})$ alors

$$\left(\forall \boldsymbol{v} \in \mathbb{K}, \lim_{k \to \infty} \mathbb{G}^k \boldsymbol{v} = 0\right) \iff \rho(\mathbb{G}) < 1. \tag{1}$$

Q. 1

On décompose \mathbb{A} sous la forme $\mathbb{A} = \mathbb{M} - \mathbb{N}$ avec \mathbb{M} inversible et on pose

$$\mathbb{B} = \mathbb{M}^{-1} \mathbb{N}$$
 et $\mathbf{c} = \mathbb{M}^{-1} \mathbf{b}$.

On définit la suite $(\boldsymbol{x}^{[k]})_{k\in\mathbb{N}}$ par

$$\boldsymbol{x}^{[0]} \in \mathbb{K}^n \quad et \quad \boldsymbol{x}^{[k+1]} = \mathbb{B}\boldsymbol{x}^{[k]} + \boldsymbol{c}. \tag{2}$$

- **a.** Rappeler la définition de $\rho(\mathbb{B})$, rayon spectral de la matrice \mathbb{B} .
- **b.** Montrer que pour tout $k \in \mathbb{N}$

$$\underline{\boldsymbol{x}} - \boldsymbol{x}^{[k+1]} = \mathbb{B}(\underline{\boldsymbol{x}} - \boldsymbol{x}^{[k]}).$$

c. En déduire que la suite $(\boldsymbol{x}^{[k]})_{k\in\mathbb{N}}$ converge vers $\underline{\boldsymbol{x}}$ quelque soit $\boldsymbol{x}^{[0]}$ si et seulement si $\rho(\mathbb{B}) < 1$.

On décompose la matrice \mathbb{A} sous la forme $\mathbb{A} = \mathbb{D} - \mathbb{E} - \mathbb{F}$, où \mathbb{D} représente la diagonale de \mathbb{A} , $-\mathbb{E}$ la partie triangulaire inférieure stricte et $-\mathbb{F}$ la partie triangulaire supérieure stricte.

La méthode S.O.R. (successive over relaxation) est donnée par

$$x_i^{[k+1]} = \frac{w}{A_{ii}} \left(b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{[k+1]} - \sum_{j=i+1}^n A_{ij} x_j^{[k]} \right) + (1-w) x_i^{[k]}, \quad \forall i \in [1, n]$$
 (3)

^{*}Compilé le 2025/09/04 à 10:54:45.

- Q. 2
- a. Montrer que (3) s'écrit vectoriellement sous la forme

$$\boldsymbol{x}^{[k+1]} = \mathbb{B}_w \boldsymbol{x}^{[k]} + \boldsymbol{c}$$

où l'on explicitera la matrice \mathbb{B}_w et le vecteur \mathbf{c} en fonction de \mathbb{D} , \mathbb{E} , et \mathbf{b} .

- **b.** En utilisant les résultats de Q.1, démontrer que la suite $\mathbf{x}^{[k]}$ converge vers \mathbf{x} si et seulement si $\rho(\mathbb{B}_w) < 1.$
- **c.** Soient $\mathbb{L} = \mathbb{D}^{-1}\mathbb{E}$ et $\mathbb{U} = \mathbb{D}^{-1}\mathbb{F}$. Montrer que

$$\mathbb{B}_w = (\mathbb{I} - w\mathbb{L})^{-1} \left((1 - w)\mathbb{I} + w\mathbb{U} \right).$$

d. En déduire que

$$\rho(\mathbb{B}_w) \geqslant |w - 1|. \tag{4}$$

e. Que peut-on en déduire sur la convergence de la méthode S.O.R?

A l'itération k, on note le résidu par $\mathbf{r}^{[k]} = \mathbf{b} - \mathbb{A}\mathbf{x}^{[k]}$ et, l'erreur par $\mathbf{e}^{[k]} = \overline{\mathbf{x}} - \mathbf{x}^{[k]}$ où $\overline{\mathbf{x}} \in \mathbb{R}^n$ est la solution $de A \boldsymbol{x} = \boldsymbol{b}.$

- Q. 3
- **a.** Soit $\varepsilon > 0$. Montrer que si $\|\mathbf{r}^{[k]}\| \leq \varepsilon \max(\|\mathbf{b}\|, 1)$ (critère d'arrêt de convergence) alors, il existe C > 0, indépendant de ε , tel que
 - $\left\| \boldsymbol{e}^{[k]} \right\| \leqslant C\varepsilon \max(\left\| \boldsymbol{b} \right\|, 1)$
- **b.** [Algo] Ecrire une fonction SOR, utilisant (3), et permettant de retourner:
 - le premier vecteur $\boldsymbol{x}^{[k]}$ vérifiant le critère d'arrêt de convergence ou le dernier vecteur $\boldsymbol{x}^{[k_{\max}]}$ sinon (k_{max} étant le nombre maximal d'itérations),
 - k, le nombre d'itération si convergence et $-k_{\text{max}}$ sinon.

Soient $\alpha \in \mathbb{R}$ et $\boldsymbol{b} \in \mathbb{R}^3$. On définit la matrice \mathbb{A}_{α} par

$$\mathbb{A}_{\alpha} = \left(\begin{array}{ccc} 2 & 0 & \alpha \\ 0 & 2 & 0 \\ \alpha & 0 & 2 \end{array} \right)$$

On note respectivement $\mathbb{J}\stackrel{\mathsf{def}}{=}\mathbb{D}^{-1}(\mathbb{E}+\mathbb{F})$ et $\mathcal{L}_1\stackrel{\mathsf{def}}{=}(\mathbb{D}-\mathbb{E})^{-1}\mathbb{F}$ les matrices d'itérations des méthodes itératives de Jacobi et de Gauss-Seidel.

- Q. 4
- a. Etudier la convergence de la méthode de Jacobi pour la résolution de $\mathbb{A}_{\alpha}x = b$.
- **b.** Etudier la convergence de la méthode de Gauss-Seidel pour la résolution de $\mathbb{A}_{\alpha}x = b$.

EXERCICE 2 (5.5 points)

Soient $n \in \mathbb{N}^*$ et (n+1) couples de \mathbb{R}^2 , $(x_i, y_i)_{i \in [0,n]}$, tels que les x_i sont distincts deux à deux. On note

Q. 1

a. Soit $i \in [0, n]$. Montrer qu'il existe un unique polynôme L_i de degré n, que l'on explicitera, et vérifiant

$$L_i(x_j) = \delta_{ij}, \ \forall j \in [0, n]. \tag{1}$$

b. Montrer que les $(L_i)_{i \in [0,n]}$ forment une base de $\mathbb{R}_n[X]$ (espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n).

On définit le polynôme P_n par

$$P_n(t) = \sum_{i=0}^n y_i L_i(t). \tag{2}$$

Q. 2

a. Montrer que le polynôme P_n est l'unique polynôme de $\mathbb{R}_n[X]$ vérifiant

$$\forall i \in [0, n], \ P_n(x_i) = y_i. \tag{3}$$

b. [Algo] Ecrire une fonction algorithmique, nommée Lagrange, retournant $P_n(t)$ avec $t \in \mathbb{R}$ donné.

Soit $k \in [0, n]$, on note par P_k l'unique polynôme de $\mathbb{R}_k[X]$ vérifiant $P_k(x_i) = y_i$, $\forall i \in [0, k]$, et par π_k le polynôme

$$\pi_k(t) = \prod_{i=0}^k (t - x_i).$$

On va établir une formule de récurrence permettant de déterminer P_k à partir de P_{k-1} .

Q. 3

En effectuant la division euclidienne du polynôme P_k par le polynôme π_{k-1} on a

$$P_k = R_{k-1} + Q_{k-1}\pi_{k-1} \tag{4}$$

avec $R_{k-1} \in \mathbb{R}_{k-1}[X]$ et $Q_{k-1} \in \mathbb{R}_0[X]$.

- **a.** Démontrer que $R_{k-1} = P_{k-1}$.
- **b.** En déduire que

$$Q_{k-1} = \frac{y_k - P_{k-1}(x_k)}{\pi_{k-1}(x_k)}.$$

- c. Déterminer P_0 .
- **d.** [Algo] Proposer une fonction algorithmique récursive, nommée LagrangeRec, permettant de calculer $P_n(t)$ en utilisant la formule de récurrence (4).

Q. 4 Application

Soient A = (0, -2), B = (1, 1) et C = (2, 6). On cherche à expliciter le polynôme d'interpolation de Lagrange, noté P, passant par les points A, B et C.

- a. Sans utiliser la formule de récurrrence (4), déterminer P en détaillant les calculs.
- b. En utilisant la formule de récurrence (4), détailler les calculs permettant d'obtenir P.

EXERCICE 3 (6.25 points)

Soient f une fonction définie sur [-1,1] à valeurs réelles et $n \in \mathbb{N}$. On souhaite approcher $\int_{-1}^{1} f(x)dx$ par $\mathcal{Q}_n(f)$ une formule de quadrature élémentaire

$$Q_n(f) \stackrel{\text{def}}{=} 2 \sum_{i=0}^n w_i f(x_i) \tag{1}$$

où les $(x_i)_{i=0}^n$ sont des points distincts 2 à 2 dans [-1,1] et les $(w_i)_{i=0}^n$ sont des réels.

Q. 1

- **a.** Démontrer que l'application Q_n définie de $C^0([-1,1];\mathbb{R})$, muni de la norme infinie, à valeurs dans \mathbb{R} est linéaire et continue.
- **b.** Soit $k \in \mathbb{N}$. Montrer que \mathcal{Q}_n est de degré d'exactitude k au moins si et seulement si

$$\forall r \in [0, k], \quad \mathcal{Q}_n(x \mapsto x^r) = \int_{-1}^1 x^r dx. \tag{2}$$

On note $(t_i)_{i=0}^{n+1}$ les points de la discrétisation régulière de l'intervalle [-1,1] en (n+2) points et, pour $i \in [0,n]$, x_i le point milieu de l'intervalle $[t_i,t_{i+1}]$.

 $\left[\mathbf{Q.~2} \right]$

- **a.** Expliciter t_i et x_i en fonction de i et n.
- **b.** Soit $k \in \mathbb{N}$. Montrer que \mathcal{Q}_n est de degré d'exactitude k au moins si et seulement si

$$\forall r \in [0, k], \quad \sum_{i=0}^{n} w_i x_i^r = \begin{cases} 0 & \text{si } r \text{ est impaire} \\ \frac{1}{r+1} & \text{sinon} \end{cases}$$
 (3)

- **c.** Montrer que (3) peut s'écrire sous la forme d'un système linéaire $\mathbb{A}\mathbf{W} = \mathbf{b}$ avec $\mathbf{W} = (w_0, \dots, w_n)^{t} \in \mathbb{R}^{n+1}$ où l'on explicitera \mathbb{A} et \mathbf{b} en précisant leurs dimensions.
- **d.** En déduire qu'avec le choix des points $(x_i)_{i=0}^n$, il existe une unique formule de quadrature de degré d'exactitude n au moins.

On dispose des fonctions algorithmiques:

- $x \leftarrow \text{Solve}(\mathbb{A}, b)$ résolvant le système linéaire $\mathbb{A}x = b$ avec $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ inversible et $b \in \mathbb{R}^n$,
- $z \leftarrow \text{Power}(x, y)$ retournant x^y avec $(x, y) \in \mathbb{R}^2$.

Q. 3 [Algo]

- **a.** Ecrire une fonction algorithmique, nommée MidPoints, retournant l'ensemble des $(x_i)_{i=0}^n$ et des $(w_i)_{i=0}^n$ tels que \mathcal{Q}_n soit de degré d'exactitude n au moins.
- **b.** Ecrire une fonction algorithmique, nommée QuadElemMidPoints, retournant $Q_n(f)$ avec $f \in \mathcal{C}^0([-1,1];\mathbb{R})$.

Q. 4 Application

On fixe n=2.

- **a.** Déterminer explicitement les points $(x_i)_{i=0}^2$ et les poids $(w_i)_{i=0}^2$ de tel sorte que Q_2 soit de degré d'exactitude 2 au moins.
- **b.** Déterminer le degré d'exactitude maximal de Q_2 .