Partiel du 8 janvier 2025* durée : 3h00.

Sans documents et sans appareils électroniques

Le barême est donné à titre indicatif

Dans ce sujet:

- Les trois exercices sont indépendants.
- Les entrées/sorties des fonctions algorithmiques que vous écrirez devront être décrites.
- Le but de toute fonction algorithmique que vous écrirez, et qui n'est pas explicitement demandée, devra être précisé.

EXERCICE 1 (0.0 points)

Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ une matrice inversible dont les éléments diagonaux sont non nuls, $\boldsymbol{b} \in \mathbb{K}^n$ et $\underline{\boldsymbol{x}} = \mathbb{A}^{-1}\boldsymbol{b}$. On rappelle que si $\mathbb{G} \in \mathcal{M}_n(\mathbb{K})$ alors

$$\left(\forall \boldsymbol{v} \in \mathbb{K}, \lim_{k \to \infty} \mathbb{G}^k \boldsymbol{v} = 0\right) \iff \rho(\mathbb{G}) < 1. \tag{1}$$

Q. 1

On décompose \mathbb{A} sous la forme $\mathbb{A}=\mathbb{M}-\mathbb{N}$ avec \mathbb{M} inversible et on pose

$$\mathbb{B} = \mathbb{M}^{-1}\mathbb{N}$$
 et $\boldsymbol{c} = \mathbb{M}^{-1}\boldsymbol{b}$.

On définit la suite $(\boldsymbol{x}^{[k]})_{k\in\mathbb{N}}$ par

$$\boldsymbol{x}^{[0]} \in \mathbb{K}^n \quad et \quad \boldsymbol{x}^{[k+1]} = \mathbb{B}\boldsymbol{x}^{[k]} + \boldsymbol{c}.$$
 (2)

- **a.** Rappeler la définition de $\rho(\mathbb{B})$, rayon spectral de la matrice \mathbb{B} .
- **b.** Montrer que pour tout $k \in \mathbb{N}$

$$\underline{\boldsymbol{x}} - \boldsymbol{x}^{[k+1]} = \mathbb{B}(\underline{\boldsymbol{x}} - \boldsymbol{x}^{[k]}).$$

c. En déduire que la suite $(\boldsymbol{x}^{[k]})_{k\in\mathbb{N}}$ converge vers $\underline{\boldsymbol{x}}$ quelque soit $\boldsymbol{x}^{[0]}$ si et seulement si $\rho(\mathbb{B}) < 1$.

R. 1

a. Le rayon spectral d'une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ est le nombre ≥ 0 défini par

$$\rho(\mathbb{A}) = \max\{|\lambda_i(\mathbb{A})| : i \in [1, n]\}$$

Les $\lambda_i(\mathbb{A}) \in \mathbb{C}$ sont les n valeurs propres distinctes ou non de la matrice \mathbb{A} .

b. Comme $\underline{\boldsymbol{x}} = \mathbb{A}^{-1}\boldsymbol{b}$ (sans présupposer la convergence) on a $\mathbb{A}\underline{\boldsymbol{x}} = \boldsymbol{b}$. Comme $\mathbb{A} = \mathbb{M} - \mathbb{N}$, on a $\mathbb{M}\underline{\boldsymbol{x}} = \mathbb{N}\underline{\boldsymbol{x}} + \boldsymbol{b}$ et alors

$$\underline{\boldsymbol{x}} = \mathbb{M}^{-1} \mathbb{N} \underline{\boldsymbol{x}} + \mathbb{M}^{-1} \boldsymbol{b} = \mathbb{B} \underline{\boldsymbol{x}} + \boldsymbol{c}$$

On obtient donc

$$\boldsymbol{x} - \boldsymbol{x}^{[k+1]} = \mathbb{B}(\boldsymbol{x} - \boldsymbol{x}^{[k]}).$$

c. La suite $\boldsymbol{x}^{[k]}$ converge vers $\underline{\boldsymbol{x}}$ si et seulement si la suite $\boldsymbol{e}^{[k]} \stackrel{\text{def}}{=} \underline{\boldsymbol{x}} - \boldsymbol{x}^{[k]}$ converge vers $\boldsymbol{0}$. On a $\boldsymbol{e}^{[k]} = \mathbb{B}^k \boldsymbol{e}^{[0]}$. $\forall k \in \mathbb{N}$.

D'après le Théorème (3.37 page 105) du cours, on a $\lim_{k\to+\infty} \mathbb{B}^k \boldsymbol{e}^{[0]} = 0$, $\forall \boldsymbol{e}^{[0]} \in \mathbb{K}^n$ si et seulement si $\rho(\mathbb{B}) < 1$.

^{*}Compilé le 2025/09/04 à 11:08:04.

On décompose la matrice \mathbb{A} sous la forme $\mathbb{A} = \mathbb{D} - \mathbb{E} - \mathbb{F}$, où \mathbb{D} représente la diagonale de \mathbb{A} , $-\mathbb{E}$ la partie triangulaire inférieure stricte et $-\mathbb{F}$ la partie triangulaire supérieure stricte.

La méthode S.O.R. (successive over relaxation) est donnée par

$$x_i^{[k+1]} = \frac{w}{\mathbf{A}_{ii}} \left(b_i - \sum_{j=1}^{i-1} \mathbf{A}_{ij} x_j^{[k+1]} - \sum_{j=i+1}^{n} \mathbf{A}_{ij} x_j^{[k]} \right) + (1 - w) x_i^{[k]}, \quad \forall i \in [1, n]$$
 (3)

 $[\mathbf{Q.~2}]$

a. Montrer que (3) s'écrit vectoriellement sous la forme

$$\boldsymbol{x}^{[k+1]} = \mathbb{B}_{w} \boldsymbol{x}^{[k]} + \boldsymbol{c}$$

où l'on explicitera la matrice \mathbb{B}_w et le vecteur \boldsymbol{c} en fonction de \mathbb{D} , \mathbb{E} , \mathbb{F} , et \boldsymbol{b} .

- **b.** En utilisant les résultats de Q.1, démontrer que la suite $\mathbf{x}^{[k]}$ converge vers $\underline{\mathbf{x}}$ si et seulement si $\rho(\mathbb{B}_w) < 1$.
- **c.** Soient $\mathbb{L} = \mathbb{D}^{-1}\mathbb{E}$ et $\mathbb{U} = \mathbb{D}^{-1}\mathbb{F}$. Montrer que

$$\mathbb{B}_w = (\mathbb{I} - w\mathbb{L})^{-1} ((1 - w)\mathbb{I} + w\mathbb{U}).$$

d. En déduire que

$$\rho(\mathbb{B}_w) \geqslant |w - 1|. \tag{4}$$

e. Que peut-on en déduire sur la convergence de la méthode S.O.R?

R. 2

a. Pour la **méthode S.O.R.** on a , $\forall i \in [1, n]$,

$$x_i^{[k+1]} = \frac{w}{\mathbf{A}_{ii}} \left(b_i - \sum_{j=1}^{i-1} \mathbf{A}_{ij} x_j^{[k+1]} - \sum_{j=i+1}^{n} \mathbf{A}_{ij} x_j^{[k]} \right) + (1-w) x_i^{[k]}$$

ce qui s'écrit aussi

$$\frac{\mathbf{A}_{ii}}{w} x_i^{[k+1]} + \sum_{j=1}^{i-1} \mathbf{A}_{ij} x_j^{[k+1]} = b_i - \sum_{j=i+1}^n \mathbf{A}_{ij} x_j^{[k]} + \frac{1-w}{w} \mathbf{A}_{ii} x_i^{[k]}$$

et matriciellement on obtient

$$\left(\frac{\mathbb{D}}{w} - \mathbb{E}\right) \boldsymbol{x}^{[k+1]} = \left(\frac{1-w}{w}\mathbb{D} + \mathbb{F}\right) \boldsymbol{x}^{[k]} + \boldsymbol{b}.$$

Comme la matrice $(\frac{\mathbb{D}}{w} - \mathbb{E})$ est inversible (car triangulaire inférieure à éléments diagonaux non nuls), on a

$$\boldsymbol{x}^{[k+1]} = \left(\frac{\mathbb{D}}{w} - \mathbb{E}\right)^{-1} \left(\frac{1-w}{w}\mathbb{D} + \mathbb{F}\right) \boldsymbol{x}^{[k]} + \left(\frac{\mathbb{D}}{w} - \mathbb{E}\right)^{-1} \boldsymbol{b}$$

La matrice d'itération de S.O.R. est $\mathbb{B}_w = \left(\frac{\mathbb{D}}{w} - \mathbb{E}\right)^{-1} \left(\frac{1-w}{w}\mathbb{D} + \mathbb{F}\right)$ et le vecteur $\mathbf{c} = \left(\frac{\mathbb{D}}{w} - \mathbb{E}\right)^{-1} \mathbf{b}$.

b. En posant

$$\mathbb{M} = \frac{\mathbb{D}}{w} - \mathbb{E} \text{ et } \mathbb{N} = \frac{1-w}{w} \mathbb{D} + \mathbb{F}$$

on a M inversible et

$$M - N = D - F - F = A$$

On est donc sous les hypothèses de Q.1, ce qui nous donne le résultat demandé.

c. Comme $\mathbb{E} = \mathbb{DL}$ et $\mathbb{F} = \mathbb{DU}$ on obtient

$$\mathbb{B}_{w} = \left(\frac{\mathbb{D}}{w} - \mathbb{DL}\right)^{-1} \left(\frac{1-w}{w}\mathbb{D} + \mathbb{DU}\right)$$

$$= \left(\frac{1}{w}\mathbb{D}[\mathbb{I} - w\mathbb{L}]\right)^{-1} \left(\frac{1}{w}\mathbb{D}[(1-w)\mathbb{I} + w\mathbb{U}]\right)$$

$$= (\mathbb{I} - w\mathbb{L})^{-1} \left(\frac{1}{w}\mathbb{D}\right)^{-1} \left(\frac{1}{w}\mathbb{D}\right) ((1-w)\mathbb{I} + w\mathbb{U})$$

$$= (\mathbb{I} - w\mathbb{L})^{-1} ((1-w)\mathbb{I} + w\mathbb{U}).$$

d. La matrice \mathbb{L} est triangulaire inférieure à diagonale nulle car elle est le produit d'une matrice diagonale (et donc triangulaire inférieure) \mathbb{D}^{-1} et d'une matrice triangulaire inférieure \mathbb{E} à diagonale nulle. De même la matrice \mathbb{U} est triangulaire supérieure à diagonale nulle.

On sait que le déterminant d'une matrice est égale aux produits de ses valeurs propres comptées avec leurs multiplicités. En notant n la dimension de la matrice \mathbb{B}_w , et en notant $\lambda_i(\mathbb{B}_w)$ ses n valeurs propres, on a donc

$$\det(\mathbb{B}_w) = \prod_{i=1}^n \lambda_i(\mathbb{B}_w).$$

Le rayon spectral de \mathbb{B}_w , noté $\rho(\mathbb{B}_w)$, correspond au plus grand des modules des valeurs propres. On a alors

$$\rho(\mathbb{B}_w) = \max_{i \in [1, n]} |\lambda_i(\mathbb{B}_w)| \ge |\det(\mathbb{B}_w)|^{1/n}$$

De plus on a

$$\det(\mathbb{B}_w) = \det\left((\mathbb{I} - w\mathbb{L})^{-1} \left((1 - w)\mathbb{I} + w\mathbb{U} \right) \right) = \det\left((\mathbb{I} - w\mathbb{L})^{-1} \right) \det\left(((1 - w)\mathbb{I} + w\mathbb{U}) \right)$$

La matrice $\mathbb{I} - w\mathbb{L}$ est triangulaire inférieure à diagonale unité donc son inverse aussi. On en déduit $\det\left((\mathbb{I} - w\mathbb{L})^{-1}\right) = 1$. La matrice $(1 - w)\mathbb{I} + w\mathbb{U}$ est triangulaire supérieure avec tous ses éléments diagonaux valant 1 - w et donc $\det\left(((1 - w)\mathbb{I} + w\mathbb{U})\right) = (1 - w)^n$. On a alors $|\det(\mathbb{B}_w)| = |1 - w|^n$ et

$$\rho(\mathbb{B}_w) \geqslant |\det(\mathbb{B}_w)|^{1/n} = |1 - w|.$$

e. On a $\rho(\mathbb{B}_w) \ge 1$, si $w \in]-\infty,0] \cup [2,+\infty[$. On en déduit que la méthode S.O.R. diverge si $w \notin]0;2[$. Et donc, ll est nécessaire (mais non suffisant) d'avoir $w \in]0;2[$ pour espérer la convergence.

A l'itération k, on note le résidu par $\boldsymbol{r}^{[k]} = \boldsymbol{b} - \mathbb{A}\boldsymbol{x}^{[k]}$ et, l'erreur par $\boldsymbol{e}^{[k]} = \overline{\boldsymbol{x}} - \boldsymbol{x}^{[k]}$ où $\overline{\boldsymbol{x}} \in \mathbb{R}^n$ est la solution de $\mathbb{A}\boldsymbol{x} = \boldsymbol{b}$.

- Q. 3
- **a.** Soit $\varepsilon > 0$. Montrer que si $\|\boldsymbol{r}^{[k]}\| \le \varepsilon \max(\|\boldsymbol{b}\|, 1)$ (critère d'arrêt de convergence) alors, il existe C > 0, indépendant de ε , tel que $\|\boldsymbol{e}^{[k]}\| \le C\varepsilon \max(\|\boldsymbol{b}\|, 1)$
- **b.** [Algo] Ecrire une fonction SOR, utilisant (3), et permettant de retourner:
 - le premier vecteur $\mathbf{x}^{[k]}$ vérifiant le critère d'arrêt de convergence ou le dernier vecteur $\mathbf{x}^{[k_{\text{max}}]}$ sinon (k_{max} étant le nombre maximal d'itérations),
 - k, le nombre d'itération si convergence et $-k_{\rm max}$ sinon.
- R. 3
- a. On a

$$\boldsymbol{r}^{[k]} = \boldsymbol{b} - \mathbb{A}\boldsymbol{x}^{[k]} = \mathbb{A}(\overline{\boldsymbol{x}} - \boldsymbol{x}^{[k]}) = \mathbb{A}\boldsymbol{e}^{[k]}$$

et donc, comme \mathbb{A} est inversible, $\boldsymbol{e}^{[k]} = \mathbb{A}^{-1} \boldsymbol{r}^{[k]}$. On en déduit alors

$$\left\| \boldsymbol{e}^{[k]} \right\| \leqslant \left\| \mathbb{A}^{-1} \right\|_{S} \left\| \boldsymbol{r}^{[k]} \right\| \leqslant \left\| \mathbb{A}^{-1} \right\| \max(\boldsymbol{b}, 1) \varepsilon.$$

Avec $C = \|\mathbb{A}^{-1}\|$, on obtient le résultat souhaité.

b. Voici un exemple d'une telle fonction

```
Algorithme 1 Méthode itérative S.O.R. pour la résolution d'un système linéaire \mathbb{A}x = b
```

```
Données:
                   matrice de \mathcal{M}_n(\mathbb{K}),
                   vecteur de \mathbb{K}^n,
                   réel de ]0,2[,
              : vecteur initial de \mathbb{K}^n,
              : la tolérence, \varepsilon \in \mathbb{R}^+,
                   nombre maximum d'itérations, kmax \in \mathbb{N}^*
Résultat :
             un vecteur de \mathbb{K}^n, 1er vecteur \boldsymbol{x}^{[k]}
              vérifiant le critère d'arrêt de convergence ou
              le dernier vecteur \boldsymbol{x}^{[k_{\text{max}}]}
       : un entier naturel, le nombre d'itération si convergence
              et -k_{\text{max}} sinon.
  1: Fonction [X, k] \leftarrow SOR(A, b, w, x^0, \varepsilon, kmax)
         k \leftarrow 0, \boldsymbol{X} \leftarrow \emptyset
         \boldsymbol{x} \leftarrow \boldsymbol{x}^0, \, \boldsymbol{r} \leftarrow \boldsymbol{b} - \mathbb{A} * \boldsymbol{x},
         tol \leftarrow \varepsilon * max(\|\boldsymbol{b}\|, 1)
         Tantque \|r\| > \text{tol et } k \leq \text{kmax faire}
  5:
             k \leftarrow k + 1
  6:
             p \leftarrow x
  7:
             Pour i \leftarrow 1 à n faire
                S \leftarrow 0
  9:
10:
                Pour j \leftarrow 1 à i-1 faire
                    S \leftarrow S + A(i, j) * x(j)
11:
                Fin Pour
                Pour i \leftarrow i + 1 à n faire
13:
                    S \leftarrow S + A(i,j) * p(j)
14:
15:
                Fin Pour
                x(i) \leftarrow (w/A(i,i) * (b(i) - S) + (1 - w) * p(i)
16:
             Fin Pour
17:
             r \leftarrow b - \mathbb{A} * x
          Fin Tantque
20:
          \mathbf{Si} \| \boldsymbol{r} \| > \mathbf{tol} \ \mathbf{alors}
             k \leftarrow -\text{kmax}
23:
         Fin Si
24: Fin Fonction
```

Soient $\alpha \in \mathbb{R}$ et $\boldsymbol{b} \in \mathbb{R}^3$. On définit la matrice \mathbb{A}_{α} par

$$\mathbb{A}_{\alpha} = \left(\begin{array}{ccc} 2 & 0 & \alpha \\ 0 & 2 & 0 \\ \alpha & 0 & 2 \end{array} \right)$$

On note respectivement $\mathbb{J} \stackrel{\mathsf{def}}{=} \mathbb{D}^{-1}(\mathbb{E} + \mathbb{F})$ et $\mathcal{L}_1 \stackrel{\mathsf{def}}{=} (\mathbb{D} - \mathbb{E})^{-1}\mathbb{F}$ les matrices d'itérations des méthodes itératives de Jacobi et de Gauss-Seidel.

- Q. 4
- **a.** Etudier la convergence de la méthode de Jacobi pour la résolution de $\mathbb{A}_{\alpha} \boldsymbol{x} = \boldsymbol{b}$.
- **b.** Etudier la convergence de la méthode de Gauss-Seidel pour la résolution de $\mathbb{A}_{\alpha} \boldsymbol{x} = \boldsymbol{b}$.

R. 4

- a. Oui car la diagonale de \mathbb{A}_{α} est composée d'éléments non nuls.
- **b.** On a convergence si et seulement si $\rho(\mathbb{J}) < 1$, c'est à dire si les modules de valeurs propres de \mathbb{J} sont strictement plus petits que 1.

On a

$$\mathbb{J} = \left(\begin{array}{ccc}
0 & 0 & -\frac{1}{2}\alpha \\
0 & 0 & 0 \\
-\frac{1}{2}\alpha & 0 & 0
\end{array} \right)$$

Les valeurs propres de J sont les racines du polynôme caractéristique donné par

$$P(\lambda) = \det(\lambda \mathbb{I} - \mathbb{J})$$

$$= \det\begin{pmatrix} \lambda & 0 & \frac{1}{2}\alpha \\ 0 & \lambda & 0 \\ \frac{1}{2}\alpha & 0 & \lambda \end{pmatrix}$$

$$= t^3 - \frac{1}{4}\alpha^2 t$$

Ses racines sont $\left[-\frac{1}{2}\alpha, \frac{1}{2}\alpha, 0\right]$ et donc on a convergence si et seulement si $\alpha \in]-2;2[$.

c. On a convergence si et seulement si $\rho(\mathcal{L}_1) < 1$, c'est à dire si les modules de valeurs propres de \mathcal{L}_1 sont strictement plus petits que 1.

On a

$$\mathcal{L}_1 = \left(\begin{array}{ccc} 0 & 0 & -\frac{1}{2} \alpha \\ 0 & 0 & 0 \\ 0 & 0 & \frac{1}{4} \alpha^2 \end{array} \right)$$

Les valeurs propres de \mathcal{L}_1 sont les racines du polynôme caractéristique donné par

$$P(\lambda) = \det(\lambda \mathbb{I} - \mathcal{L}_1)$$

$$= \det\begin{pmatrix} \lambda & 0 & \frac{1}{2}\alpha \\ 0 & \lambda & 0 \\ 0 & 0 & -\frac{1}{4}\alpha^2 + \lambda \end{pmatrix}$$

$$= t^3 - \frac{1}{4}\alpha^2 t^2$$

Ses racines sont $\left[\frac{1}{4}\alpha^2, 0, 0\right]$ et donc on a convergence si et seulement si $\alpha \in]-2; 2[$.

EXERCICE 2 (0.0 points)

Soient $n \in \mathbb{N}^*$ et (n+1) couples de \mathbb{R}^2 , $(x_i, y_i)_{i \in [0,n]}$, tels que les x_i sont distincts deux à deux. On note

Q. 1

a. Soit $i \in [0, n]$. Montrer qu'il existe un unique polynôme L_i de degré n, que l'on explicitera, et vérifiant

$$L_i(x_j) = \delta_{ij}, \ \forall j \in [0, n]. \tag{1}$$

b. Montrer que les $(L_i)_{i \in [0,n]}$ forment une base de $\mathbb{R}_n[X]$ (espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n).

a. De (1), on déduit que les n points distincts x_j pour $j \in [0, n] \setminus \{i\}$ sont les n zéros du polynôme L_i de degré n: il s'écrit donc sous la forme

$$L_i(x) = C \prod_{\substack{j=0\\j\neq i}}^n (x - x_j) \text{ avec } C \in \mathbb{R}$$

Pour déterminer la constante C, on utilise (1) avec j = i

$$L_i(x_i) = 1 = C \prod_{\substack{j=0 \ j \neq i}}^{n} (x_i - x_j)$$

Les points x_i sont distincts deux à deux, on a $\prod_{\substack{j=0\\j\neq i}}^n (x_i-x_j) \neq 0$ et donc

$$C = \frac{1}{\prod_{\substack{j=0\\j\neq i}}^{n} (x_i - x_j)}$$

d'où

$$L_{i}(x) = \prod_{\substack{j=0\\j\neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}, \quad \forall i \in [0, n].$$
(R2.1)

Il reste à démontrer l'unicité. On suppose qu'il existe L_i et U_i deux polynômes de $\mathbb{R}_n[X]$ vérifiant (1). Alors $Q_i = L_i - U_i$ est polynôme de degré n (au plus) admettant n+1 zéros distincts, c'est donc le polynôme nul et on a nécessairement $L_i = U_i$.

b. On sait que dim $\mathbb{R}_n[X] = n + 1$. Pour que les $\{L_i\}_{i \in [0,n]}$ forment une base de $\mathbb{R}_n[X]$ il suffit de démontrer qu'ils sont linéairement indépendants.

Soit $\lambda_0, \dots, \lambda_n$ n+1 scalaires. Montrons pour celà que

$$\sum_{i=1}^{n} \lambda_i L_i = 0 \implies \lambda_i = 0, \ \forall i \in [0, n]$$

Noter que la première égalité est dans l'espace vectoriel $\mathbb{R}_n[X]$ et donc le 0 est pris au sens polynôme nul.

On a

$$\sum_{i=1}^{n} \lambda_i L_i = 0 \iff \sum_{i=1}^{n} \lambda_i L_i(x) = 0, \ \forall x \in \mathbb{R}$$

Soit $k \in [0, n]$. En choisissant $x = x_k$, on a par (1) $\sum_{i=1}^n \lambda_i L_i(x_k) = \lambda_k$ et donc

$$\sum_{i=1}^{n} \lambda_i L_i = 0 \implies \sum_{i=1}^{n} \lambda_i L_i(x_k) = 0, \ \forall k \in [0, n] \iff \lambda_k = 0, \ \forall k \in [0, n].$$

Les $\{L_i\}_{i\in \llbracket 0,n\rrbracket}$ sont donc linéairement indépendants.

On définit le polynôme P_n par

$$P_n(t) = \sum_{i=0}^n y_i L_i(t). \tag{2}$$

Q. 2

a. Montrer que le polynôme P_n est l'unique polynôme de $\mathbb{R}_n[X]$ vérifiant

$$\forall i \in [0, n], \ P_n(x_i) = y_i. \tag{3}$$

b. [Algo] Ecrire une fonction algorithmique, nommée Lagrange, retournant $P_n(t)$ avec $t \in \mathbb{R}$ donné.

R. 2

a. Par construction $P_n \in \mathbb{R}_n[X]$ et on a, $\forall j \in [0, n]$,

$$P_n(x_j) \stackrel{\text{def}}{=} \sum_{i=0}^n y_i L_i(x_j)$$
$$= \sum_{i=0}^n y_i \delta_{i,j} \text{ par } (1)$$
$$= y_j.$$

Pour demontrer l'unicité, on propose ici deux méthodes

• On note P_a et P_b deux polynômes de $\mathbb{R}_n[X]$ vérifiant (1). Le polynôme $Q = P_a - P_b$ appartient aussi à $\mathbb{R}_n[X]$ et il vérifie, $\forall i \in [0, n]$,

$$Q(x_i) = P_a(x_i) - P_b(x_i) = 0.$$

Les n+1 points x_i étant distincts, ce sont donc n+1 racines distinctes du polynôme Q. Or tout polynôme de degré n admet au plus n racines distinctes. On en déduit que le seul polynôme de degré au plus n admettant n+1 racines distinctes est le polynôme nulle et donc $P_a = P_b$.

- c'est l'unique polynôme de degré au plus n vérifiant (2) car la décomposition dans la base $\{L_i\}_{i\in [\![0,n]\!]}$ est unique.
- **b.** Voici un exemple de fonction

Algorithme 2 Fonction Lagrange permettant de calculer le polynôme d'interpolation de Lagrange $\mathcal{P}_n(x)$ défini par (2)

```
Données : X : vecteur/tableau de \mathbb{R}^{n+1}, X(i) = x_{i-1} \ \forall i \in \llbracket 1, n+1 \rrbracket et X(i) \neq X(j) pour i \neq j, Y : vecteur/tableau de \mathbb{R}^{n+1}, Y(i) = y_{i-1} \ \forall i \in \llbracket 1, n+1 \rrbracket, t : un réel.

Résultat : y : le réel y = \mathcal{P}_n(t).

1: Fonction y \leftarrow \text{Lagrange}(t, X, Y)

2: y \leftarrow 0

3: Pour i \leftarrow 1 à n+1 faire

4: L \leftarrow 1

5: Pour j \leftarrow 1 à n+1, (j \sim =i) faire

6: L \leftarrow L * (t-X(j))/(X(i)-X(j))

7: Fin Pour

8: y \leftarrow y + Y(i) * L

9: Fin Pour

10: return y

11: Fin Fonction
```

Soit $k \in [0, n]$, on note par P_k l'unique polynôme de $\mathbb{R}_k[X]$ vérifiant $P_k(x_i) = y_i$, $\forall i \in [0, k]$, et par π_k le polynôme

$$\pi_k(t) = \prod_{i=0}^k (t - x_i).$$

On va établir une formule de récurrence permettant de déterminer P_k à partir de P_{k-1} .

En effectuant la division euclidienne du polynôme P_k par le polynôme π_{k-1} on a

$$P_k = R_{k-1} + Q_{k-1}\pi_{k-1} \tag{4}$$

avec $R_{k-1} \in \mathbb{R}_{k-1}[X]$ et $Q_{k-1} \in \mathbb{R}_0[X]$.

Q. 3

- **a.** Démontrer que $R_{k-1} = P_{k-1}$.
- **b.** En déduire que

$$Q_{k-1} = \frac{y_k - P_{k-1}(x_k)}{\pi_{k-1}(x_k)}.$$

- c. Déterminer P_0 .
- **d.** [Algo] Proposer une fonction algorithmique récursive, nommée LagrangeRec, permettant de calculer $P_n(t)$ en utilisant la formule de récurrence (4).

(R. 3)

a. On a, $\forall i \in [0, k]$, $P_k(x_i) = y_i$, ce qui donne

$$\forall i \in [0, k-1], \quad y_i = R_{k-1}(x_i) + Q_{k-1} \underbrace{\pi_{k-1}(x_i)}^{=0} = R_{k-1}(x_i).$$

Or P_{k-1} est l'unique polynôme de $\mathbb{R}_{k-1}[X]$ tel que $\forall i \in [0, k-1], P_{k-1}(x_i) = y_i$. On en déduit donc $R = P_{k-1}$.

b. On a

$$P_k(x_k) = y_k = R(x_k) + Q_{k-1}\pi_{k-1}(x_k).$$

Les points $(x_i)_{i=0}^k$ étant distincts deux à deux, on obtient $\pi_{k-1}(x_k) \neq 0$ et on en déduit

$$Q_{k-1} = \frac{y_k - P_{k-1}(x_k)}{\pi_{k-1}(x_k)}.$$

- **c.** On a $P_0(x) = y_0$.
- d. Voici un exemple d'une telle fonction

Algorithme 3 Fonction Lagrange permettant de calculer le polynôme d'interpolation de Lagrange $\mathcal{P}_n(x)$ définit par ...

Données : X : vecteur/tableau de \mathbb{R}^{n+1} , $X(i) = x_{i-1} \ \forall i \in [1, n+1]$ et

 $X(i) \neq X(j)$ pour $i \neq j$,

Y: vecteur/tableau de \mathbb{R}^{n+1} , $Y(i) = y_{i-1} \ \forall i \in [1, n+1]$,

t: un réel.

Résultat : z : le réel $z = \mathcal{P}_n(t)$.

- 1: Fonction $y \leftarrow \texttt{LagrangeRec}(t, X, Y)$
- 2: $n \leftarrow \operatorname{length}(X) 1$
- 3: Si n == 0 alors
- 4: $z \leftarrow Y(1)$
- 5: Sinon
- 6: $Q \leftarrow (Y(n+1) \texttt{LagrangeRec}(\boldsymbol{X}(n+1), \boldsymbol{X}(1:n), \boldsymbol{Y}(1:n)))/\text{PolyPin}(\boldsymbol{X}(n+1), \boldsymbol{X}(1:n))$
- 7: $z \leftarrow \text{LagrangeRec}(t, \boldsymbol{X}(1:n), \boldsymbol{Y}(1:n)) + Q * \text{PolyPin}(t, \boldsymbol{X}(1:n))$
- 8: **Fin Si**
- 9: Fin Fonction

Algorithme 4 Fonction Polypin permettant de calculer le polynôme π_n en $t \in \mathbb{R}$ donné par $\pi_n(t) = \prod_{i=1}^n (t - x_i)$

$$\prod_{j=0} (t - x_j)$$

Données : X : vecteur/tableau de \mathbb{R}^{n+1} , $X(i) = x_{i-1} \ \forall i \in [1, n+1]$ et

 $\boldsymbol{X}(i) \neq \boldsymbol{X}(j) \text{ pour } i \neq j,$

t : un réel.

Résultat : y : le réel $y = \pi_n(t)$.

1: Fonction $y \leftarrow \mathtt{PolyPin}(\ t, \pmb{X}\)$

 $2: y \leftarrow 1$

3: Pour $j \leftarrow 0$ à n faire

4: $y \leftarrow y * (t - \boldsymbol{X}(j+1))$

5: Fin Pour

6: Fin Fonction

Q. 4 Application

Soient A=(0,-2), B=(1,1) et C=(2,6). On cherche à expliciter le polynôme d'interpolation de Lagrange, noté P, passant par les points A, B et C.

a. Sans utiliser la formule de récurrrence (4), déterminer P en détaillant les calculs.

b. En utilisant la formule de récurrence (4), détailler les calculs permettant d'obtenir P.

R. 4

a. En utilisant la formule (2) avec n = 2 et en posant

$$(x_0, y_0) = A, (x_1, y_1) = B \text{ et } (x_2, y_2) = C$$

on obtient

$$L_0(x) = \frac{1}{2}(x-1)(x-2), \ L_1(x) = -(x-2)x \text{ et } L_2(x) = \frac{1}{2}(x-1)x.$$

On en déduit alors

$$P(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x) = -(x-1)(x-2) + 3(x-1)x - (x-2)x = x^2 + 2x - 2.$$

b. On a $P_0(x) = y_0 = -2$ puis on utilise la formule de recurrence:

• k = 1. On a

$$Q = \frac{y_1 - P_0(x_1)}{\pi_0(x_1)} = \frac{1 - -2}{1} = 3$$

et donc

$$P_1(x) = P_0(x) + Q\pi_1(x) = 3x - 2.$$

• k = 2. On a

$$Q = \frac{y_2 - P_1(x_2)}{\pi_1(x_2)} = \frac{6 - 4}{2} = 1$$

et donc

$$P_2(x) = P_1(x) + Q\pi_2(x) = (x-1)x + 3x - 2 = x^2 + 2x - 2.$$

EXERCICE 3 (0.0 points)

Soient f une fonction définie sur [-1,1] à valeurs réelles et $n \in \mathbb{N}$. On souhaite approcher $\int_{-1}^{1} f(x)dx$ par

$$Q_n(f) \stackrel{\text{def}}{=} 2 \sum_{i=0}^n w_i f(x_i) \tag{1}$$

où les $(x_i)_{i=0}^n$ sont des points distincts 2 à 2 dans [-1,1] et les $(w_i)_{i=0}^n$ sont des réels.

 \mathbf{Q} . 1

- **a.** Démontrer que l'application Q_n définie de $C^0([-1,1];\mathbb{R})$, muni de la norme infinie, à valeurs dans \mathbb{R} est linéaire et continue.
- **b.** Soit $k \in \mathbb{N}$. Montrer que \mathcal{Q}_n est de degré d'exactitude k au moins si et seulement si

$$\forall r \in [0, k], \quad \mathcal{Q}_n(x \mapsto x^r) = \int_{-1}^1 x^r dx. \tag{2}$$

R. 1

a. On commence par démontrer la linéarité. Soient f et g dans $\in C^0([-1,1];\mathbb{R})$, et λ et μ deux réels. Alors $\lambda f + \mu g \in C^0([-1,1];\mathbb{R})$, et on a

$$Q_n(\lambda f + \mu g) = 2 \sum_{j=0}^n w_j (\lambda f + \mu g)(x_j)$$

$$= 2 \sum_{j=0}^n w_j (\lambda f(x_j) + \mu g(x_j))$$

$$= \lambda 2 \sum_{j=0}^n w_j f(x_j) + \mu 2 \sum_{j=0}^n w_j g(x_j)$$

$$= \lambda Q_n(f) + \mu Q_n(g).$$

L'application $f \mapsto \mathcal{Q}_n(f)$ est donc linéaire. Pour démontrer qu'elle est continue, il suffit alors de démontrer que

$$\exists C > 0$$
, tel que $\forall f \in \mathcal{C}^0([-1,1]; \mathbb{R}), |\mathcal{Q}_n(f)| \leqslant C ||f||_{\infty}$.

Or, on a, pour tout $f \in C^0([-1,1]; \mathbb{R})$,

$$\begin{aligned} |\mathcal{Q}_n(f)| &= |2\sum_{j=0}^n w_j f(x_j)| \\ &\leqslant 2\sum_{j=0}^n |w_j| |f(x_j)| \\ &\leqslant C \|f\|_{\infty}, \quad \text{avec} \quad C = 2\sum_{j=0}^n |w_j| \text{ indépendant de } f. \end{aligned}$$

b. \Rightarrow Soit $r \in [0, k]$, Comme $x \mapsto x^r$ est dans $C^0([-1, 1]; \mathbb{R})$, et que la formule de quadrature est exacte pour tout polynôme de degré inférieur ou égal à k, on en déduit

$$Q_n(x \mapsto x^r) = \int_{-1}^1 x^r dx, \quad \forall r \in [0, k].$$

 \Leftarrow Soit $P \in \mathbb{R}_k[X]$. On peut le décomposer dans la base des monomes: il existe $(a_i)_{i=0}^k$ réels tels que

$$P(x) = \sum_{i=0}^{k} a_i x^i.$$

Par linéarité de l'application $f \longmapsto \mathcal{Q}_n(f)$, on a

$$Q_n(x \mapsto P(x)) = \sum_{i=0}^k a_i Q_n(x \mapsto x^i).$$

Par hypothèse, on a

$$Q_n(x \mapsto x^r) = \int_{-1}^1 x^r dx, \quad \forall r \in [0, k]$$

et donc

$$Q_n(x \mapsto P(x)) = \sum_{i=0}^k a_i \int_{-1}^1 x^i dx.$$

Par linéarité de l'intégrale, on obtient

$$Q_n(x \mapsto P(x)) = \int_{-1}^1 \sum_{i=0}^k a_i x^i dx = \int_{-1}^1 P(x) dx.$$

On en déduit donc que $Q_n(f)$ est de degré d'exactitude k.

On note $(t_i)_{i=0}^{n+1}$ les points de la discrétisation régulière de l'intervalle [-1,1] en (n+2) points et, pour $i \in [0,n]$, x_i le point milieu de l'intervalle $[t_i,t_{i+1}]$.

 $\mathbf{Q.~2}$

- **a.** Expliciter t_i et x_i en fonction de i et n.
- **b.** Soit $k \in \mathbb{N}$. Montrer que \mathcal{Q}_n est de degré d'exactitude k au moins si et seulement si

$$\forall r \in [0, k], \quad \sum_{i=0}^{n} w_i x_i^r = \begin{cases} 0 & \text{si } r \text{ est impaire} \\ \frac{1}{r+1} & \text{sinon} \end{cases}$$
 (3)

- **c.** Montrer que (3) peut s'écrire sous la forme d'un système linéaire $\mathbb{A}\mathbf{W} = \mathbf{b}$ avec $\mathbf{W} = (w_0, \dots, w_n)^{t} \in \mathbb{R}^{n+1}$ où l'on explicitera \mathbb{A} et \mathbf{b} en précisant leurs dimensions.
- **d.** En déduire qu'avec le choix des points $(x_i)_{i=0}^n$, il existe une unique formule de quadrature de degré d'exactitude n au moins.

R. 2

a. On a

$$\forall i \in [0, n+1], \ t_i = -1 + ih, \ \text{avec} \ h = \frac{2}{n+1}$$

et

$$\forall i \in [0, n], \ x_i = t_i + \frac{h}{2}.$$

Ce qui donne

$$\forall i \in [0, n+1], \ t_i = \frac{2i - (n+1)}{n+1} \text{ et } \forall i \in [0, n], \ x_i = \frac{2i + 1 - (n+1)}{n+1}$$

b. On a vu que Q_n est de degré d'exactitude k au moins si et seulement si (3) est vérifiée. Or on a

$$\forall r \in [0, k], \quad \mathcal{Q}_n(x \mapsto x^r) = 2\sum_{i=0}^n w_i x_i^r$$

et

$$\forall r \in [0, k], \int_{-1}^{1} x^{r} dx = \begin{cases} 0 & \text{si } r \text{ est impaire} \\ \frac{2}{r+1} & \text{sinon} \end{cases}$$

Ce qui prouve le résultat.

c. On a (k+1) équations à (n+1) inconnues qui s'écrit sous la forme $\mathbb{A} \mathbf{W} = \mathbf{b}$ avec avec

$$\mathbb{A} = \begin{pmatrix} x_0^0 & x_1^0 & \cdots & x_n^0 \\ x_0^1 & x_1^1 & \cdots & x_n^1 \\ \vdots & \vdots & & \vdots \\ x_0^k & x_1^k & \cdots & x_n^k \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ x_0^1 & x_1^1 & \cdots & x_n^1 \\ \vdots & \vdots & & \vdots \\ x_0^k & x_1^k & \cdots & x_n^k \end{pmatrix} \in \mathcal{M}_{k+1,n+1}(\mathbb{R})$$

et $\boldsymbol{b} \in \mathbb{R}^{k+1}$ avec

$$\forall j \in [1, k+1], \ \boldsymbol{b}_j = \left\{ \begin{array}{ll} 0 & \text{si } j \text{ est pair} \\ \frac{1}{j} & \text{sinon} \end{array} \right.$$

d. Avec k = n, Q_n est de degré d'exactitude n au moins si et seulement si

$$AW = b$$

avec $\mathbb{A} \in \mathcal{M}_{n+1}(\mathbb{R})$ et $\boldsymbol{b} \in \mathbb{R}^{N+1}$ donnés précédemment. On peut voir que la matrice \mathbb{A} est la transposée de la matrice de Vandermonde associée aux points $(x_i)_{i=0}^n$. Hors cette matrice est inversible si et seulement si les points $(x_i)_{i=0}^n$ sont distincts deux à deux. C'est le cas ici! On en déduit donc l'existence et l'unicité du vecteur \boldsymbol{W} et donc des $(w_i)_{i=0}^n$.

On dispose des fonctions algorithmiques:

- $\boldsymbol{x} \leftarrow \text{Solve}(\mathbb{A}, \boldsymbol{b})$ résolvant le système linéaire $\mathbb{A}\boldsymbol{x} = \boldsymbol{b}$ avec $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ inversible et $\boldsymbol{b} \in \mathbb{R}^n$,
- $z \leftarrow \text{Power}(x, y) \text{ retournant } x^y \text{ avec } (x, y) \in \mathbb{R}^2.$

Q. 3 [Algo]

- a. Ecrire une fonction algorithmique, nommée MidPoints, retournant l'ensemble des $(x_i)_{i=0}^n$ et des $(w_i)_{i=0}^n$ tels que \mathcal{Q}_n soit de degré d'exactitude n au moins.
- **b.** Ecrire une fonction algorithmique, nommée QuadElemMidPoints, retournant $Q_n(f)$ avec $f \in \mathcal{C}^0([-1,1];\mathbb{R})$.

(R. 3)

a. Voci un exemple de fonction:

Algorithme 5 Fonction MidPoint permettant de calculer les points $(x_i)_{i=0}^n$ et $(w_i)_{i=0}^n$ tels que \mathcal{Q}_n soit de degré d'exactitude n au moins

Données : n : un entier naturel.

Résultat : X : vecteur/tableau de \mathbb{R}^{n+1} , $W(i) = x_{i-1} \ \forall i \in [1, n+1]$ et

avec

 \boldsymbol{W} : vecteur/tableau de \mathbb{R}^{n+1} , $\boldsymbol{W}(i) = w_{i-1} \ \forall i \in [1, n+1]$ et

 $X(i) \neq X(j)$ pour $i \neq j$,

```
1: Fonction [X, W] \leftarrow \texttt{MidPoint}(n)
```

2: $h \leftarrow 2/(n+1)$

3: Pour $i \leftarrow 0$ à n faire

4: $X(i+1) \leftarrow -1 + (i+1/2) * h$

5: Fin Pour

6: $\mathbb{A} \leftarrow \mathbb{O}_{n+1}$

7: Pour $i \leftarrow 1$ à n+1 faire

8: Pour $j \leftarrow 1$ à n+1 faire

9: $\mathbb{A}(i,j) \leftarrow \text{Power}(X(j),i-1)$

10: Fin Pour

11: Fin Pour

12: $\boldsymbol{b} \leftarrow \boldsymbol{O}_{n+1}$

13: Pour $j \leftarrow 1$ à n + 1 (pas +2) faire

14: $\boldsymbol{b}(j) \leftarrow 1/j$

15: Fin Pour

16: $\mathbf{W} \leftarrow \text{Solve}(\mathbb{A}, \mathbf{b})$

17: Fin Fonction

b. Voci un exemple de fonction:

Algorithme 6 Fonction QuadelemMidPoint permettant de calculer $\mathcal{Q}_n(f)$

Données : $f : f \in \mathcal{C}^0([-1,1];\mathbb{R}),$

n: un entier naturel.

Résultat: $y : y = Q_n(f) \in \mathbb{R}$.

1: Fonction $y \leftarrow \texttt{QuadElemMidPoint}(f, n)$

 $[X, W] \leftarrow \text{MidPoint}(n)$

4: Pour $i \leftarrow 1$ à n+1 faire 5: $y \leftarrow y + W(i) * f(X(i))$ 6: Fin Pour 7: $y \leftarrow 2 * y$

Q. 4 Application

On fixe n=2.

a. Déterminer explicitement les points $(x_i)_{i=0}^2$ et les poids $(w_i)_{i=0}^2$ de tel sorte que \mathcal{Q}_2 soit de degré d'exactitude 2 au moins.

b. Déterminer le degré d'exactitude maximal de Q_2 .

R. 4

a. On a $x_0 = -\frac{2}{3}$, $x_1 = 0$ et $x_2 = \frac{2}{3}$.

$$\begin{aligned} \mathcal{Q}_2(x \mapsto 1) &= 2 \, w_0 + 2 \, w_1 + 2 \, w_2 & \text{et} & \int_{-1}^1 1 dx = 2 \\ \mathcal{Q}_2(x \mapsto x) &= -\frac{4}{3} \, w_0 + \frac{4}{3} \, w_2 & \text{et} & \int_{-1}^1 x dx = 0 \\ \mathcal{Q}_2(x \mapsto x^2) &= \frac{8}{9} \, w_0 + \frac{8}{9} \, w_2 & \text{et} & \int_{-1}^1 x^2 dx = \frac{2}{3} \end{aligned}$$

On obtient donc le systeme

$$\begin{cases}
2 w_0 + 2 w_1 + 2 w_2 &= 2 \\
-\frac{4}{3} w_0 + \frac{4}{3} w_2 &= 0 \\
\frac{8}{9} w_0 + \frac{8}{9} w_2 &= \frac{2}{3}
\end{cases}$$

Après résolution, on obtient

$$w_0 = \left(\frac{3}{8}\right), \ w_1 = \left(\frac{1}{4}\right), \ w_2 = \left(\frac{3}{8}\right).$$

b. On a

$$Q_2(x \mapsto x^3) = -\frac{16}{27}w_0 + \frac{16}{27}w_2 = 0$$
 et $\int_{-1}^1 x^3 dx = 0$.

Ce qui donne

$$Q_2(x \mapsto x^3) = \int_{-1}^1 x^3 dx$$

et donc Q_2 est de degré d'exactitude 3 au moins.

On a

$$Q_2(x \mapsto x^4) = \frac{32}{81} w_0 + \frac{32}{81} w_2 = \frac{8}{27}$$
 et $\int_{-1}^1 x^4 dx = \frac{2}{5}$.

Ce qui donne

$$Q_2(x \mapsto x^4) \neq \int_{-1}^1 x^4 dx$$

et donc Q_2 à pour degré d'exactitude maximal 3.