$Analyse\ Num\'erique\ I: \ Chapitre\ \emph{6},\ Int\'egration\ num\'erique^1$

6.1 Méthodes de quadrature élémentaires

Définition 6.1. Soient $f \in C^0([a,b];\mathbb{R})$ et $Q_n(f,a,b)$ la formule de quadrature élémentaire donnée par :

$$Q_n(f, a, b) \stackrel{\text{def}}{=} (b - a) \sum_{j=0}^n w_j f(x_j)$$
(1)

avec $\forall j \in [0,n] \ w_j \in \mathbb{R}$ et $x_j \in [a,b]$ distincts deux à deux. L'erreur associée à cette formule de quadrature, notée $\mathcal{E}_{a,b}(f)$, est définie par

$$\mathcal{E}_{a,b}(f) = \int_{a}^{b} f(x)dx - \mathcal{Q}_{n}(f,a,b), \quad \forall f \in \mathcal{C}^{0}([a,b]; \mathbb{R})$$
 (2)

Définition 6.2. On dit qu'une formule d'intégration (ou formule de quadrature) est d'ordre p ou a pour **degré** d'exactitude p si elle est exacte pour les polynômes de degré inférieur ou égal à p.

Proposition 6.1. Soit $Q_n(f, a, b)$ definie en (1), une formule de quadrature élémentaire à (n + 1) points (distincts deux à deux dans [a, b]).

L'application $f \mapsto \mathcal{Q}_n(f, a, b)$ définie de $\mathcal{C}^0([a, b]; \mathbb{R})$, muni de la norme infini, à valeurs dans \mathbb{R} est linéaire continue, et elle a pour degré d'exactitude $k \in \mathbb{N}$ si et seulement si

$$Q_n(x \mapsto x^r, a, b) = \int_a^b x^r dx, \quad \forall r \in [0, k].$$

Proposition 6.2. Soit $Q_n(f, a, b)$ definie en (1), une formule de quadrature élémentaire à (n + 1) points $(x_i)_{i \in [0,n]}$ (distincts deux à deux dans [a,b]).

On note $x = \varphi(t) = \alpha + \beta t$, $\beta \in \mathbb{R}^*$, le changement de variable affine, $t_i = \varphi^{-1}(x_i)$, $\forall i \in [0, n]$, et

$$Q_n(g, \varphi^{-1}(a), \varphi^{-1}(b)) = (\varphi^{-1}(b) - \varphi^{-1}(a)) \sum_{i=0}^n w_i g(t_i).$$
(3)

Alors $Q_n(f, a, b)$ est de degré d'exactitude k si et seulement si $Q_n(g, \varphi^{-1}(a), \varphi^{-1}(b))$ est de degré d'exactitude k.

Proposition 6.3. La formule de quadrature élémentaire (1) à (n + 1) points, distincts deux à deux, est de degré d'exactitude k (au moins) si et seulement si

$$(b-a)\sum_{i=0}^{n} w_i x_i^r = \frac{b^{r+1} - a^{r+1}}{r+1}, \quad \forall r \in [0, k].$$
(4)

 $^{^1 \}mathrm{auteur}\colon$ F. Cuvelier. Compilé le 29 novembre 2025 à 6 h 15.

Corollaire 6.1. La formule de quadrature élémentaire (1) à (n+1) points est de degré d'exactitude 0 au moins $si\ et\ seulement\ si$

$$\sum_{i=0}^{n} w_i = 1.$$

Proposition 6.4. Soient $(x_i)_{i \in [0,n]}$ des points deux à deux distincts de l'intervalle [a,b] donnés. Il existe alors une unique formule de quadrature élémentaire (1) à (n+1) points de degré d'exactitude n au moins. Les poids $(w_i)_{i=0}^n$ sont alors solutions de

$$(b-a) \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_0 & x_1 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_0^n & x_1^n & \cdots & x_n^n \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} \frac{b-a}{\frac{b^2-a^2}{2}} \\ \vdots \\ \frac{b^{n+1}-a^{n+1}}{n+1} \end{pmatrix}$$
 (5)

Proposition 6.5. Soit $Q_n(f,a,b)$ definie en (1), une formule de quadrature élémentaire à (n+1) points (distincts deux à deux). On dit qu'elle est **symétrique** si

$$\forall i \in [0, n], \quad \frac{x_i + x_{n-i}}{2} = \frac{a+b}{2} \quad et \quad w_i = w_{n-i}. \tag{6}$$

Dans ce cas si cette formule est exacte pour les polynômes de degré 2m alors elle est nécessairement exacte pour les polynômes de degré 2m + 1.

Proposition 6.6. Soit $Q_n(f, a, b)$ definie en (1), une formule de quadrature élémentaire à (n + 1) points $(x_i)_{i\in \llbracket 0,n\rrbracket}$ (distincts deux à deux).

La formule de quadrature est de degré d'exactitude n au moins si et seulement si pour tout $i \in [0, n]$, les poids w_i sont donnés par

$$w_{i} = \frac{1}{b-a} \int_{a}^{b} \prod_{\substack{j=0\\j\neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}} dx = \int_{0}^{1} \prod_{\substack{j=0\\j\neq i}}^{n} \frac{t-t_{j}}{t_{i}-t_{j}} dt, \quad \forall i \in [0, n]$$
 (7)

avec $t_i = (x_i - a)/(b - a)$. Si $f \in C^{n+1}([a,b]; \mathbb{R})$ alors on a

$$\left| \int_{a}^{b} f(x)dx - \mathcal{Q}_{n}(f, a, b) \right| \leq \frac{1}{(n+1)!} \left\| f^{(n+1)} \right\|_{\infty} \int_{a}^{b} \left| \prod_{i=0}^{n} (x - x_{i}) \right| dx \tag{8}$$

Lemme 6.1. Soient $(x_i)_{i=0}^n$ des points distincts 2 à 2 de l'intervalle [a,b] vérifiant

$$\forall i \in [0, n], \quad \frac{x_i + x_{n-i}}{2} = \frac{a+b}{2}.$$

Soient $(w_i)_{i=0}^n$ définis par

$$w_i = \frac{1}{b-a} \int_a^b \prod_{\substack{j=0\\j\neq i}}^n \frac{x-x_j}{x_i - x_j} dx, \quad \forall i \in [0, n]$$

On a alors

$$\forall i \in [0, n], \quad w_i = w_{n-i}$$

et la formule de quadrature élémentaire associée est de degré d'exactitude au moins n si n est impaire et au moins n + 1 sinon.

Proposition 6.7 (Degré maximal d'exactitude). Soit $Q_n(f,a,b)$ défini par (1) une formule de quadrature élémentaire de degré d'exactitude au moins n. Elle est alors de degré d'exactitude n+m, $m \in \mathbb{N}^*$, au moins si et seulement si

$$\int_{a}^{b} \pi_{n}(x) Q(x) dx = 0, \ \forall Q \in \mathbb{R}_{m-1}[X]$$
(9)

où π_n est le polynôme de degré n+1 défini par

$$\pi_n(x) = \prod_{i=0}^n (x - x_i). \tag{10}$$

Le degré maximal d'exactitude d'une formule de quadrature élémentaire à n+1 points est 2n+1. De plus, on a

$$(9) \Longleftrightarrow \int_{a}^{b} \pi_{n}(x) x^{k} dx = 0, \ \forall k \in [0, m-1].$$

$$(11)$$

6.2 Formules élémentaires de Newton-Cotes

 $\forall i \in [0, n], \ x_i = a + ih \text{ avec } h = (b - a)/n.$

On a alors

$$\forall i \in \llbracket 0,n \rrbracket, \quad \frac{x_i + x_{n-i}}{2} = \frac{a+b}{2}.$$

Proposition 6.8. Soient $f \in C^0([a,b]; \mathbb{R})$ et $(x_i)_{i \in [0,n]}$ une discrétisation régulière de l'intervalle [a,b]: $x_i = a + ih$ avec h = (b-a)/n.

Les formules de quadrature élémentaires de Newton-Cotes s'écrivent sous la forme

$$\int_{a}^{b} f(x)dx \approx (b-a) \sum_{i=0}^{n} w_{i} f(x_{i})$$

où les poids $(w_i)_{i=0}^n$ sont donnés par (7).

Elles sont symétriques et leur degré d'exactitude (d.e. dans le tableau suivant) est égal à n si n est impair et à n+1 sinon.

\overline{n}	d.e.	w_i (poids)							nom		
1	1	$\frac{1}{2}$	$\frac{1}{2}$								trapèze
2	3	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$							Simpson
3	3	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$						Newton
4	5	$\frac{7}{90}$	$\frac{16}{45}$	$\frac{2}{15}$	$\frac{16}{45}$	$\frac{7}{90}$					Villarceau
5	5	$\frac{19}{288}$	$\frac{25}{96}$	$\frac{25}{144}$	$\frac{25}{144}$	$\frac{25}{96}$	$\frac{19}{288}$?
6	7	$\frac{41}{840}$	$\frac{9}{35}$	$\frac{9}{280}$	$\frac{34}{105}$	$\frac{9}{280}$	$\frac{9}{35}$	$\frac{41}{840}$			Weddle
7	7	$\frac{751}{17280}$	$\frac{3577}{17280}$	$\frac{49}{640}$	$\frac{2989}{17280}$	$\frac{2989}{17280}$	$\frac{49}{640}$	$\frac{3577}{17280}$	$\frac{751}{17280}$?
8	9	$\frac{989}{28350}$	$\frac{2944}{14175}$	$-rac{464}{14175}$	$\frac{5248}{14175}$	$-rac{454}{2835}$	$\frac{5248}{14175}$	$-rac{464}{14175}$	$\frac{2944}{14175}$	$\frac{989}{28350}$?

Table 1: Méthodes de Newton-Cotes

6.3 Formules élémentaires de Gauss-Legendre

Les polynômes de Legendre peuvent être définis par la formule de récurrence de Bonnet

$$(n+1)P_{n+1}(t) = (2n+1)tP_n(t) - nP_{n-1}(t), \ \forall n \ge 1$$
(12)

avec $P_0(t) = 1$ et $P_1(t) = t$.

On a les propriétés suivantes:

prop.1 le polynôme de Legendre P_n est de degré n,

prop.2 la famille $\{P_k\}_{k=0}^n$ est une base de $\mathbb{R}_n[X]$,

prop.3 pour tout $(m, n) \in \mathbb{N}^2$, on a

$$\int_{-1}^{1} P_m(t) P_n(t) dt = \frac{2}{2n+1} \delta_{m,n}, \tag{13}$$

ce qui correspond à l'orthogonalité des polynômes de Legendre pour le produit scalaire

$$\langle \mathbf{P}_m, \mathbf{P}_n \rangle = \int_{-1}^1 \mathbf{P}_m(t) \mathbf{P}_n(t) dt.$$

prop.4 Soit $n \ge 1$, P_n est scindé sur \mathbb{R} et ses n racines, notées $(t_i)_{i=0}^n$, sont simples dans]-1,1[, c'est à dire

$$P_n(t) = C \prod_{i=0}^{n-1} (t - t_i), \ C \in \mathbb{R}^*$$

où les t_i sont 2 à 2 distincts (et ordonnés). Les (n+1) racines simples de P_{n+1} sont alors chacunes dans l'un des (n+1) intervalles $]-1,t_0[,]t_0,t_1[,\ldots,]t_{n-2},t_{n-1}[,]t_{n-1},1[.$

Proposition 6.9. Soit $(t_i)_{i=0}^n$ les (n+1) racines distinctes du polynôme de Legendre de degré (n+1). On note $x_i = \frac{a+b}{2} + \frac{b-a}{2}t_i$, $\forall i \in [0,n]$ et w_i les poids donnés par (7). La formule de quadrature élémentaire

$$\int_{a}^{b} f(x)dx \approx (b-a) \sum_{i=0}^{n} w_{i} f(x_{i})$$

est appelée la formule de quadrature de Gauss-Legendre. C'est l'unique formule de quadrature élémentaire à (n+1) points ayant pour degré d'exactitude 2n+1.

\overline{n}	exactitude	w_i (poids)	t_i (points)
0	1	1	0
1	3	1/2, 1/2	$-\sqrt{1/3}, \sqrt{1/3}$
2	5	5/18, 8/18, 5/18	$-\sqrt{3/5}, 0, \sqrt{3/5}$

Table 2: Méthodes de Gauss-Legendre sur [-1,1]

Théorème 6.1. Soient $f \in C^{2n+2}([a,b];\mathbb{R})$ et $Q_n(f,a,b)$ la formule de quadrature de Gauss-Legendre définie dans la Proposition 6.9. Alors on a

$$\left| \int_{a}^{b} f(x)dx - \mathcal{Q}_{n}(f, a, b) \right| \leq \frac{\left\| f^{(2n+2)} \right\|_{\infty}}{(2n+2)!} \int_{a}^{b} \pi_{n}(x)^{2} dx \tag{14}$$

où $\pi_n(x) = \prod_{i=0}^n (x-x_i)$, les x_i étant les points de la formule de quadrature.

7 Méthodes de quadrature composées

Définition 7.1. Soit $(\alpha_i)_{i \in [0,k]}$ une subdivison de l'intervalle $[\alpha,\beta]$:

$$\alpha = \alpha_0 < \alpha_1 < \dots < \alpha_k = \beta.$$

On a alors

$$\int_{\alpha}^{\beta} f(x)dx = \sum_{i=1}^{k} \int_{\alpha_{i-1}}^{\alpha_i} f(x)dx.$$
 (15)

Soit $Q_n(g,a,b)$ la formule de quadrature élémentaire à n+1 points d'ordre p donnée par

$$Q_n(g, a, b) \stackrel{\text{\tiny def}}{=} (b - a) \sum_{j=0}^n w_j g(x_j) \approx \int_a^b g(x) dx.$$

La méthode de quadrature composée associée à Q_n , notée $Q_{k,n}^{comp}$, est donnée par

$$Q_{k,n}^{\text{comp}}(f,\alpha,\beta) = \sum_{i=1}^{k} Q_n(f,\alpha_{i-1},\alpha_i) \approx \int_{\alpha}^{\beta} f(x)dx$$
 (16)

Proposition 7.1. Soit Q_n une formule de quadrature élémentaire à n+1 points. Si Q_n est d'ordre p alors la méthode de quadrature composée associée est aussi d'ordre p: elle est exacte pour tout polynôme de degré p.

Théorème 7.1 ([1], page 43 (admis)). Soient $\mathcal{Q}_{k,n}^{\text{comp}}$ une méthode de quadrature composée associée à une méthode de quadrature élémentaire \mathcal{Q}_n de degré d'exactitude $p \ge n$ et $f \in \mathcal{C}^{p+1}([\alpha, \beta]; \mathbb{R})$. On a alors

$$\left| \int_{\alpha}^{\beta} f(x)dx - \mathcal{Q}_{k,n}^{\text{comp}}(f,\alpha,\beta) \right| \leq C_{p}(\beta - \alpha)h^{p+1} \left\| f^{(p+1)} \right\|_{\infty}$$
(17)

avec $h = \max_{j \in [1,k]} (\alpha_j - \alpha_{j-1})$ et $C_p > 0$. Ceci s'écrit aussi sous la forme

$$\left| \int_{\alpha}^{\beta} f(x)dx - \mathcal{Q}_{k,n}^{\text{comp}}(f,\alpha,\beta) \right| = \mathcal{O}(h^{p+1})$$
(18)

et son ordre de convergence est p + 1.

8 Dominance (rappels?)

Définition 8.1. Soient X un sous-ensemble de \mathbb{R} , et f et g deux fonctions définies sur X à valeurs réelles. On dit que f est dominée par g au voisinage de $a \in \overline{X}$ s'il existe un voisinage U de a et un réel $C \in \mathbb{R}_+^*$ tel que

$$\forall x \in U \cap X, |f(x)| \le C|g(x)|.$$

On note $f(x) = \mathcal{O}(g(x))$, ou $f = \mathcal{O}(g)$ (notation de Bachmann), ou, lorsqu'il n'y pas d'ambiguïté sur la valeur de a, $f(x) = \mathcal{O}(g(x))$.

Proposition 8.1. Soient X un sous-ensemble de \mathbb{R} , f et g deux fonctions définies sur X à valeurs réelles, et $a \in \overline{X}$.

• Si a est fini, $f(x) = \mathcal{O}(g(x))$ si et seulement si

$$\exists \eta > 0, \ \exists C > 0, \ tel \ que \ \forall x \in X, \ |x - a| < \eta \implies |f(x) \leqslant C|g(x)|.$$

• $Si\ a = +\infty$, $f(x) = \mathcal{O}(g(x))$ $si\ et\ seulement\ si$

$$\exists M > 0, \ \exists C > 0, \ tel \ que \ \forall x \in X, \ x > M \implies |f(x) \leqslant C|g(x)|.$$

References

[1] M. Crouzeix and A.L. Mignot. Analyse numérique des équations différentielles. Mathématiques appliquées pour la maîtrise. Masson, 1992.