$Analyse\ Num\'erique\ I:$ Résolution de systèmes linéaires $M\'ethodes\ it\'eratives^1$

Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ inversible et $\mathbf{b} \in \mathbb{C}^n$.

On souhaite construire des matrices d'itérations \mathbb{B} et des vecteurs c telles que

$$\boldsymbol{x}^{[k+1]} = \mathbb{B}\boldsymbol{x}^{[k]} + \boldsymbol{c}, \ k \geqslant 0, \ \boldsymbol{x}^{[0]}$$
 arbitraire

vérifie

$$\lim_{k\to\infty} \boldsymbol{x}^{[k]} = \tilde{\boldsymbol{x}} \text{ avec } \tilde{\boldsymbol{x}} = \mathbb{A}^{-1}\boldsymbol{b}$$

3.1 Résultats généraux

Théorème 3.1 ($_{3.4.1 \text{ p.112}}$). Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ une matrice inversible décomposée sous la forme $\mathbb{A} = \mathbb{M} - \mathbb{N}$ avec \mathbb{M} inversible. On pose

$$\mathbb{B} = \mathbb{M}^{-1}\mathbb{N}$$
 et $\boldsymbol{c} = \mathbb{M}^{-1}\boldsymbol{b}$.

Alors la suite définie par

$$\boldsymbol{x}^{[0]} \in \mathbb{K}^n \quad et \quad \boldsymbol{x}^{[k+1]} = \mathbb{B}\boldsymbol{x}^{[k]} + \boldsymbol{c}$$

converge vers $\bar{\boldsymbol{x}} = \mathbb{A}^{-1}\boldsymbol{b}$ quelque soit $\boldsymbol{x}^{[0]}$ si et seulement si $\rho(\mathbb{B}) < 1$.

Théorème 3.2 ($_{3.4.3 \text{ p.115}}$). Soient \mathbb{A} une matrice hermitienne inversible décomposée en $\mathbb{A} = \mathbb{M} - \mathbb{N}$ avec \mathbb{M} inversible et $\mathbb{M}^* + \mathbb{N}$ hermitienne définie positive. On a alors

 $\rho(\mathbb{M}^{-1}\mathbb{N}) < 1$ si et seulement si \mathbb{A} est définie positive.

3.2 Notations

Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ inversible avec $\forall i \in [1, n]$, $A_{i,i} \neq 0$, et $\boldsymbol{b} \in \mathbb{C}^n$. On décompose \mathbb{A} sous la forme

$$\mathbb{A} = \mathbb{D} - \mathbb{E} - \mathbb{F} = \begin{pmatrix} \ddots & -\mathbb{F} \\ & \mathbb{D} \\ -\mathbb{E} & \ddots \end{pmatrix}$$

avec $\mathbb{D} = \operatorname{diag}(\mathbb{A})$ inversible, \mathbb{E} triangulaire inférieure à diagonale nulle et \mathbb{F} triangulaire supérieure à diagonale nulle.

3.3 Méthodes classiques

Soit $\boldsymbol{x}^{[0]} \in \mathbb{C}^n$.

• La méthode itérative de **Jacobi** s'écrit sous forme scalaire

$$\forall k \in \mathbb{N}, \left(\forall i \in [1, n], \quad x_i^{[k+1]} = \frac{1}{\mathbf{A}_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n \mathbf{A}_{ij} x_j^{[k]} \right) \right)$$
 (1)

et sous forme vectorielle

$$\forall k \in \mathbb{N}, \left(\boldsymbol{x}^{[k+1]} = \mathbb{D}^{-1}(\mathbb{E} + \mathbb{F})\boldsymbol{x}^{[k]} + \mathbb{D}^{-1}\boldsymbol{b} \right). \tag{2}$$

et on note $\mathbb{J} \in \mathcal{M}_n(C)$ sa matrice d'itération

$$\mathbb{J} = \mathbb{D}^{-1}(\mathbb{E} + \mathbb{F}) \tag{3}$$

 $^{^1}$ auteur: F. Cuvelier. Compilé le 24 novembre 2025 à $13\,\mathrm{h}\,40.$

• La méthode itérative de Gauss-Seidel s'écrit sous forme scalaire

$$\forall k \in \mathbb{N}, \left(\forall i \in [1, n], \ x_i^{[k+1]} = \frac{1}{A_{ii}} \left(b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{[k+1]} - \sum_{j=i+1}^{n} A_{ij} x_j^{[k]} \right) \right)$$
(4)

et sous forme vectorielle

$$\forall k \in \mathbb{N}, \left(\boldsymbol{x}^{[k+1]} = (\mathbb{D} - \mathbb{E})^{-1} \mathbb{F} \boldsymbol{x}^{[k]} + (\mathbb{D} - \mathbb{E})^{-1} \boldsymbol{b}\right). \tag{5}$$

et on note $\mathbb{G} \in \mathcal{M}_n(C)$ sa matrice d'itération

$$\mathbb{G} = (\mathbb{D} - \mathbb{E})^{-1} \mathbb{F} \tag{6}$$

• La méthode itérative S.O.R. (successive over relaxation) de paramètre $w \in \mathbb{R}$ s'écrit sous forme scalaire

$$\forall k \in \mathbb{N}, \left(\forall i \in [1, n], \ x_i^{[k+1]} = \frac{w}{\mathbf{A}_{ii}} \left(b_i - \sum_{j=1}^{i-1} \mathbf{A}_{ij} x_j^{[k+1]} - \sum_{j=i+1}^{n} \mathbf{A}_{ij} x_j^{[k]} \right) + (1 - w) x_i^{[k]} \right)$$
 (7)

et sous forme vectorielle

$$\forall k \in \mathbb{N}, \left(\boldsymbol{x}^{[k+1]} = \left(\frac{\mathbb{D}}{w} - \mathbb{E}\right)^{-1} \left(\frac{1-w}{w}\mathbb{D} + \mathbb{F}\right) \boldsymbol{x}^{[k]} + \left(\frac{\mathbb{D}}{w} - \mathbb{E}\right)^{-1} \boldsymbol{b}\right). \tag{8}$$

et on note $\mathcal{L}_w \in \mathcal{M}_n(C)$ sa matrice d'itération

$$\mathcal{L}_w = \left(\frac{\mathbb{D}}{w} - \mathbb{E}\right)^{-1} \left(\frac{1 - w}{w} \mathbb{D} + \mathbb{F}\right). \tag{9}$$

En particulier, on a $\mathcal{L}_1 = \mathbb{G}$.

Avec les notations du Théorème 3.1, on a

- Jacobi : $\mathbb{J} = \mathbb{M}^{-1}\mathbb{N}$ avec $\mathbb{M} = \mathbb{D}$ et $\mathbb{N} = \mathbb{E} + \mathbb{F}$.
- Gauss-Seidel : $\mathbb{G} = \mathbb{M}^{-1}\mathbb{N}$ avec $\mathbb{M} = \mathbb{D} \mathbb{E}$ et $\mathbb{N} = \mathbb{F}$
- S.O.R.: $\mathcal{L}_w = \mathbb{M}^{-1}\mathbb{N}$ avec $\mathbb{M} = \frac{\mathbb{D}}{w} \mathbb{E}$ et $\mathbb{N} = \frac{1-w}{w}\mathbb{D} + \mathbb{F}$

Proposition 3.1. Soit \mathbb{A} une matrice inversible telle que tous ses éléments diagonaux soient non nuls. On note $\mathbb{D} = \operatorname{diag}(\mathbb{A})$ et \mathbb{E} , \mathbb{F} , les matrices à diagonales nulles respectivement triangulaire inférieure et supérieure telles que $\mathbb{A} = \mathbb{D} - \mathbb{E} - \mathbb{F}$.

La matrice d'itération de la méthode S.O.R., notée \mathcal{L}_w , donnée par

$$\mathcal{L}_w = \left(\frac{\mathbb{D}}{w} - \mathbb{E}\right)^{-1} \left(\frac{1-w}{w}\mathbb{D} + \mathbb{F}\right)$$

vérifie

$$\rho(\mathcal{L}_w) \geqslant |w - 1|. \tag{10}$$

La méthode S.O.R. diverge $si\ w \in]-\infty,0] \cup [2,+\infty[$.

Une condition nécessaire de convergence de la méthode S.O.R. est 0 < w < 2.

Proposition 3.2 (Matrice tridiagonale). Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ une matrice tridiagonale (i.e. $A_{i,j} = 0$, si |i-j| > 1) d'éléments diagonaux non nuls.

Alors les rayons spectraux des matrices d'itération de Jacobi, \mathbb{J} , et de Gauss-Seidel, \mathcal{L}_1 , vérifient

$$\rho(\mathcal{L}_1) = \rho(\mathbb{J})^2.$$

Proposition 3.3 ([Matrice tridiagonale voir Ciarlet[2006],Introduction à l'analyse numérique matricielle et à l'optimisation, Théorème 5.3-5, pages 106 à 109.). Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ une matrice tridiagonale dont les éléments diagonaux sont non nuls. On suppose que les valeurs propres de la matrice d'itération de Jacobi \mathbb{J} sont réelles et que $\rho(\mathbb{J}) < 1$. On note w_0 le paramètre optimal de la méthode S.O.R. vérifiant

$$\rho(\mathcal{L}_{w_0}) = \min_{w \in]0,2[} (\rho(\mathcal{L}_w)).$$

et donné par

$$w_0 = \frac{2}{1 + \sqrt{1 - \rho(\mathbb{J})^2}} > 1. \tag{11}$$

On a alors

$$\rho(\mathcal{L}_{w_0}) = w_0 - 1 \quad \text{et} \quad \rho(\mathcal{L}_{w_0}) \leqslant \rho(\mathcal{L}_1) = \rho(\mathbb{J})^2 < \rho(\mathbb{J}).$$

Théorème 3.3 (voir Lascaux-Théodor, vol.2, Théorème 19 et 20, pages 346 à 349). Soit A une matrice à diagonale strictement dominante ou une matrice inversible à diagonale fortement dominante alors

- la méthode de Jacobi est convergente,
- $si\ w \in]0,1]$ la méthode S.O.R. est convergente.

Théorème 3.4 (voir Lascaux-Théodor, vol.2, Corollaire 24, page 351). Soit \mathbb{A} une matrice hermitienne définie positive, alors la méthode S.O.R. converge si et seulement si $w \in]0,2[$.