

Ecole d'ingénieurs Sup Galilée Energétique - Informatique - Instrumentation Mathématiques Appliquées et Calcul Scientifique Télécommunications et Réseaux

Ingénieurs MACS 2 - TP F.E.M. (S8)

Eléments finis \mathbb{P}_1 -Lagrange en dimension ≥ 1 : épisode 1

Espace fonctionnel des éléments finis P₁-Lagrange

François Cuvelier

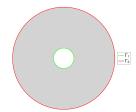
Laboratoire d'Analyse Géométrie et Applications Institut Galilée Université Paris XIII.

Prérequis

- Notion de maillages,
- Eléments finis \mathbb{P}_1 -Lagrange en dimension 1,
 - → voir vidéos dédiées

Objectif: approcher $u \in \mathcal{C}^0(\Omega_1; \mathbb{R})$ ou $u \in \mathcal{C}^0(\Gamma_1; \mathbb{R})$ ou $u \in \mathcal{C}^0(\Gamma_2; \mathbb{R})$ par exemples

- Espaces des éléments finis P₁-Lagrange sur un maillage,
- Fonctions de base associées.



Plan

Espace fonctionnel E.F. P1-Lagrange

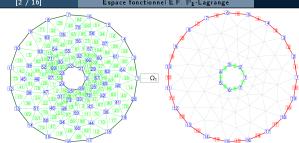


Figure: Ω^h : maillage d'un anneau $\Omega = \Omega_1$, Γ_1 bord intérieur, Γ_2 bord extérieur.

Maillage

2 Espace discret

Fonctions de base

Interpolation

Composé de trois maillages élémentaires, deux sont décrits :

• $\Omega_1^h(=\Omega^h)$: q1, size = (2, n_q); me1, size = (3, n_{me}); toG1, size = (1, n_q) avec n_q = 73, n_{me} = 120, $\Omega_1^h = \begin{bmatrix} T_k, & \text{et } T_k, & \text{triangle de sommets } q1 & \text{(:, me1(:,k))}. \end{bmatrix}$

 $\bullet \ \Gamma_1^h: \texttt{q_b1}, \ \texttt{size} = (2, \textit{n}_q); \ \texttt{me_b1}, \ \texttt{size} = (2, \texttt{n}_{me}); \ \texttt{toG_b1}, \ \texttt{size} = (1, \textit{n}_q) \ \texttt{avec} \ \textit{n}_q = 7, \ \texttt{n}_{me} = 7, \ \texttt{n}_{me}$ $\Gamma_1^h = \bigcup_{k=1}^{n_{\text{me}}} S_k$, et S_k , segment de sommets $q_b 1(:, me_b 1(:, k))$.

Dans ce maillage particulier, on a: q b1 == q1(:,toG b1)

r voir ep01.ring00

Espace fonctionnel E.F. P1-Lagrange

Plan

- Maillage
- 2 Espace discret
- Fonctions de base
- 4 Interpolation

Chaque maillage élémentaire *E_h* possède son propre jeu de données:

• $E_h.q$, size = (n, n_q) ; $E_h.me$, size = $(d+1, n_{me})$; $E_h.toGlobal$, size = $(1, n_q)$ \rightarrow avec $n_q = E_h.n_q$, $n_{me} = E_h.n_{me}$, $n = E_h.n$, ...

$$V(E_h) = \left\{ v \in \mathcal{C}^0(E_h; \mathbb{K}) \text{ tq } \forall k \in [1, n_{\text{me}}], \ v_{|\mathcal{K}_k} \in \mathbb{K}_1[X_1, \dots, X_n] \right\}$$

Propriétés: espace $V(E_h)$

- espace vectoriel, $\dim(V(E_h)) = n_q$,
- Soit $i \in [\![1,n_{\mathrm{q}}]\!], \, \exists ! \varphi_i \in V(E_h)$ tel que

$$\varphi_i(\mathbf{q}^j) = \delta_{i,j}, \ \forall j \in [1, n_{\mathbf{q}}], \quad \text{où } \mathbf{q}^j \stackrel{\mathsf{def}}{=} E_h.\mathbf{q}^j$$

- $\{\varphi_i\}_{i=1}^{n_q}$ base de $V(E_h)$,
- les φ_i sont appelées fonctions de base \mathbb{P}_1 -Lagrange associées à E_h , notées aussi $E_h.\varphi_i$.
- $\varphi_i \equiv 0 \text{ sur } K_k, \text{ si } q^i \notin K_k \Rightarrow \operatorname{supp}(\varphi_i) = \bigcup_{\{k \in [\![1, \operatorname{n_{me}}]\!]; \ q^i \in K_k\}} K_k$

$$u_h \in V(E_h) \iff u_h = \sum_{i=1}^{n_q} \mu_i \varphi_i \iff u_h(q) = \sum_{i=1}^{n_q} \mu_i \varphi_i(q), \ \forall q \in E_h$$

• E_h un maillage élémentaire composé de d-simplexes en dimension n: qh, size = $(n, n_{\rm q})$; meh, size = $(d+1, n_{\rm me})$; toGh, size = $(1, n_{\rm q})$

$$E_h = \bigcup_{k=1}^{n_{\text{me}}} K_k \subset \mathbb{R}^n$$
, et K_k , d -simplexe de sommets $qh(:, meh(:,k))$.

• $V(E_h)$ espace fonctionnel \mathbb{P}_1 -Lagrange associé au maillage élémentaire E_h :

$$\boxed{V(E_h) = \left\{ v \in \mathcal{C}^0(E_h; \mathbb{K}) \text{ tq } \forall k \in \llbracket 1, \mathrm{n_{me}} \rrbracket, \ v_{|K_k} \in \mathbb{K}_1[X_1, \dots, X_n] \right\}}$$

Traduction: $V(E_h)$, espace des fonctions continus sur E_h à valeurs dans \mathbb{K} (\mathbb{R} ou \mathbb{C}) telles que leurs restrictions à K_k soit un polynôme de degré 1, pour tout k. \bowtie $\dim(\mathbb{K}_1[X_1,\ldots,X_n])$?

Notations : $qh = E_h.q$, $meh = E_h.me$, $toGh = E_h.toGlobal$, $n_q = E_h.n_q$, $n_{me} = E_h.n_{me}$, ... Sur le maillage de l'anneau:

$$\begin{split} \mathcal{C}^0(\Omega;\mathbb{K}) \approx \textit{V}(\Omega_1^{\textit{h}}), \quad & \mathcal{C}^0(\Gamma_1;\mathbb{K}) \approx \textit{V}(\Gamma_1^{\textit{h}}) \quad \text{et} \quad & \mathcal{C}^0(\Gamma_2;\mathbb{K}) \approx \textit{V}(\Gamma_2^{\textit{h}}). \\ & \Omega_1^{\textit{h}}.\textit{n}_{\rm q} \neq \Gamma_1^{\textit{h}}.\textit{n}_{\rm q} \neq \Gamma_2^{\textit{h}}.\textit{n}_{\rm q}, \ldots \end{split}$$

F.E.M.: épisode 1 [6 / 16] Espace fonctionnel E.F. P₁-Lagrange 2. Espace discret

Plan

- Maillage
- 2 Espace discret
- Fonctions de base
- 4 Interpolation

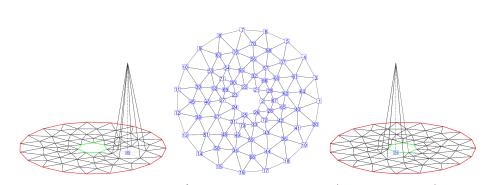


Figure: Numérotation des noeuds de Ω^h (centre), fonctions de base Ω^h . φ_{43} (gauche) et Ω^h . φ_{24} (droite) appartenant à $V(\Omega^h)$.

Figure: Fonction de base $\Gamma_1^h.\varphi_5$, numérotation locale (gauche) et globale (centre). Fonction de base $\Omega^h.\varphi_{24}$ (droite).

Avec $\gamma_{\Gamma_1^h}: V(\Omega^h) \longrightarrow V(\Gamma_1^h)$, fonction trace/restriction:

$$\gamma_{\Gamma_{1}^{h}}(\Omega^{h}.\varphi_{24}) = \Gamma_{1}^{h}.\varphi_{5}$$

 E_h maillage élémentaire de Ω^h . La restriction/trace sur E_h d'une fonction de base \mathbb{P}_1 -Lagrange de $V(\Omega^h)$ est une fonction de base \mathbb{P}_1 -Lagrange de $V(E_h)$: soit $i \in [1, E_h, n_0]$ et $r = E_h, toGlobal(i), (r \in [1, \Omega^h, n_0])$

$$E_h.\varphi_i = \Omega^h.\varphi_{r|E_h}$$

▶ Voir ep01.ring01

→ résultat utile pour la résolution de B.V.P. (Boundary Value Problem)!

Plan

- Maillage
- Espace discret
- Fonctions de base
- Interpolation

 $\mathcal{C}^0(\Omega; \mathbb{K}) \approx V(\Omega_1^h) = \operatorname{Vect}\left\{\varphi_1, \dots, \varphi_{n_q}\right\}$ avec $n_q = \Omega_1^h.n_q, \, \varphi_i = \Omega_1^h.\varphi_i, \, \dots,$

 \Rightarrow $\forall v_h \in V(\Omega_1^h)$, il existe $\pmb{\mu} = (\mu_i)_{i=1}^{n_{\mathrm{q}}} \in \mathbb{K}^{n_{\mathrm{q}}}$ unique tels que

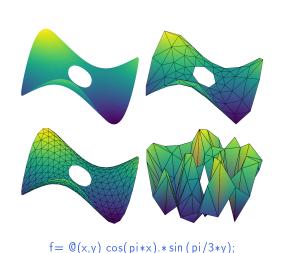
$$v_h(\mathbf{q}) = \sum_{i=1}^{n_{\mathbf{q}}} \mu_i \varphi_i(\mathbf{q}), \ \forall \mathbf{q} \in \Omega_1^h.$$

$$v_h(\mathbf{q}^j) = \sum_{i=1}^{n_q} \mu_i \underbrace{\varphi_i(\mathbf{q}^j)}_{=\delta_{i,i}} = \mu_j, \quad \mathbf{q}^j = \Omega_1^h.\mathbf{q}^j.$$

Soient $u \in \mathcal{C}^0(\Omega; \mathbb{K})$ et $\boldsymbol{U} = (U_i)_{i=1}^{n_q} \in \mathbb{K}^{n_q}$, avec $U_i = u(q^i)$. Alors

$$u(\mathbf{q}) \approx \sum_{i=1}^{n_{\mathbf{q}}} u(\mathbf{q}^i) \varphi_i(\mathbf{q}) = \sum_{i=1}^{n_{\mathbf{q}}} U_i \varphi_i(\mathbf{q}) \stackrel{\mathsf{def}}{=} \pi_h(u)(\mathbf{q})$$

$$\text{Op. d'interpolation } \left\{ \begin{array}{ccc} \pi_h & : & V(\Omega_1) & \longrightarrow & V(\Omega_1^h) \\ & & u & \longmapsto & \pi_h(u) = \sum_{i=1}^{n_{\mathrm{q}}} u(q^i) \varphi_i \end{array} \right., \ V(\Omega_1) = \mathcal{C}^0(\Omega;\mathbb{K}) \text{ ou } \mathrm{H}^1(\Omega_1) \text{ ou }$$



Représentation de $u_h \in V(\Omega_1^h)$

$$u_h(\mathbf{q}) = \sum_{i=1}^{n_{\mathbf{q}}} U_i \varphi_i(\mathbf{q})$$

en notant $\mathbf{q}^i = \Omega_1^h.\mathbf{q}^i \in \mathbb{R}^2$

- $\begin{array}{l} \bullet \;\; \text{haut-gauche:} \\ \;\; \text{Maillage fin} \;\; (\Omega_1^h.n_{\mathbf{q}} = 3328), \\ U_i = \mathsf{f}(\mathbf{q}_1^i,\mathbf{q}_2^i) \end{array}$
- $\begin{array}{l} \bullet \;\; \text{haut:} \\ \;\; \text{Maillage grossier} \;\; (\Omega_1^h.\textit{n}_{\rm q} = 73), \\ \textit{U}_i = \mathsf{f}(\mathbf{q}_1^i,\mathbf{q}_2^i) \end{array}$
- bas-gauche: Maillage moyen $(\Omega_1^h.n_{\mathbf{q}}=298),$ $U_i=\mathbf{f}(\mathbf{q}_1^i,\mathbf{q}_2^i)$
- bas-droit: Maillage grossier $(\Omega_1^h.n_{
 m q}=73),\ U_i={
 m rand}()$

ring02 voir ep01 ring02

$$\mathcal{C}^0(\Gamma_2; \mathbb{K}) \approx V(\Gamma_2^h) = \operatorname{Vect} \left\{ \varphi_1, \dots, \varphi_{n_q} \right\}$$

• Notations (locales):

$$\mathbf{q} = \Gamma_2^h.\mathbf{q}, \ n_{\mathbf{q}} = \Gamma_2^h.n_{\mathbf{q}}, \ \mathbf{me} = \Gamma_2^h.\mathbf{me}, \ \ldots, \ \boldsymbol{\varphi_i} = \Gamma_2^h.\boldsymbol{\varphi_i}, \ \ldots$$

Soient $u \in \mathcal{C}^0(\Gamma_2; \mathbb{K})$ et $\boldsymbol{U} = (U_i)_{i=1}^{n_q} \in \mathbb{K}^{n_q}$, avec $U_i = u(\mathbf{q}^i)$ et $\mathbf{q}^i = \Gamma_2^h.\mathbf{q}^i$. Alors

$$u(\mathbf{q}) \approx \sum_{i=1}^{n_{\mathbf{q}}} u(q^i) \varphi_i(\mathbf{q}) = \sum_{i=1}^{n_{\mathbf{q}}} U_i \varphi_i(\mathbf{q}) \stackrel{\mathsf{def}}{=} \pi_h(u)(\mathbf{q})$$

$$\text{Op\'erateur d'interpolation } \left\{ \begin{array}{ccc} \pi_h & : & V(\Gamma_2) & \longrightarrow & V(\Gamma_2^h) \\ & & u & \longmapsto & \pi_h(u) = \sum\limits_{i=1}^{n_{\mathrm{q}}} u(q^i)\varphi_i \end{array} \right.$$

avec $V(\Gamma_2)=\mathcal{C}^0(\Gamma_2;\mathbb{K})$ ou $\mathrm{H}^{1/2}(\Gamma_2)$ ou \dots

E.M.: épisode 1 [13 /

Espace fonctionnel E.F.

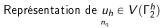
4. Interpolatio

E.M.: épisode 1

space fonctionnel E.F. Pa-Lagra

4 Interpolation

(Γ_0^h)



$$u_h(\mathbf{q}) = \sum_{i=1}^{n_{\mathbf{q}}} U_i \varphi_i(\mathbf{q})$$

avec $\mathbf{q}^i = \Gamma_2^h.\mathbf{q}^i \in \mathbb{R}^2$ et $U_i = \mathsf{f}(\mathbf{q}_1^i,\mathbf{q}_2^i)$

- bas: Maillage moyen $(\Gamma_2^h.n_q = 51)$,
- gauche: avec maillage
- droite: avec f en gris foncé

™ voir ep01 ring03

Codes fournis

Codes fournis dans archive ep01.tar.gz permettant de reproduire les figures et utilisant le package (esimesh :

- ep01.ring00 à ep01.ring03 programmes Matlab/Octave,
- ullet ep01.plot_BasisFunction fonction pour la représentation de fonctions de base en 2D,
- ep01.special_plot fonction pour la représentation de fonctions de base en 2D sur les bords,
- \bullet ring.geo fichier de géométrie pour GMSH dans répertoire geofile

Le contenu des codes n'est pas forcément à comprendre dès maintenant.

F.E.M.: épisode

[15 / 16]

 $f = Q(x,y) \cos(pi*x).*\sin(pi/3*y);$

Espace fonctionnel

tionnel E.F. P1-L

P1-Lagrange

4. Interpolati

F.E.M.: épisode 1

[16 / 16]

Espace fonctionnel E.F. \mathbb{P}_1 -L:

2022/03/24