10. Dynamics of Infectious Diseases:
Epidemic Models and AIDS

10.1 Historical Aside on Epidemics

The history of epidemics is an ever fascinating area; the 14th century Black Death is just
the most famous epidemic historically (see Chapter 13, Volume II, which deals with the
spatial spread of epidemics, for a brief history of it). In Europe, which had a population
of around 85 million at the time, about a third of the population died.

One epidemic which has exercised classical scholars for a very long time is the
Plague of Athens (430—428 BC) described in great detail by Thucydides including the
symptoms and disease progression. He also gave some exact figures such as that 1050 of
4000 soldiers on an expedition died of the disease. The disease described so minutely
by Thucydides, even to the fact that dogs who ate the dead bodies also suffered, has
been the source of numerous articles over some hundreds of years with cases being
made (with great conviction and defended vehemently) for an incredible range of dis-
eases such as bubonic plague, measles, Malta fever, smallpox, scarlet fever, typhus, ty-
phoid fever and many others. The symptoms described by Thucydides are (i) heat in the
head, (ii) inflammation of the eyes, (iii) suffusion with blood of the tongue and throat,
(iv) foetid breath, (v) hoarseness with violent coughing, (vi) vomiting of bile, (vii) retch-
ing and convulsions, (viii) pustular and ulcerating eruptions of the skin, (ix) total body
hyperaesthesia and restlessness, (x) irresistible desire for water to assuage thirst and im-
mersion therein to alleviate body heat, (xi) terminal exhaustion apparently produced by
diarrhoea, (xii) loss of toes, fingers and genitalia, (xiii) destruction of eyes and, (xiv) if
recovery occurs, amnesia, the latter no doubt a blessing. Based on the symptoms none of
the above suggestions seems to fit the Athens disease. Whatever it was it was certainly
very nasty. An interesting review article on the Athens plague is given by Poole and
Holladay (1979). They conclude that it has either become extinct or has been modified
over the millennia. Since then other articles have appeared with yet other possiblities.

One of the interesting aspects of Thucydides’ account is that there is no mention of
person-to-person contagion which we now accept so freely with diseases. It was only in
the 19th century that it was beginning to be discussed. Evil exhalations from the earth,
aerial miasmata and so on were generally accepted. The latter explanation for some dis-
eases, or rather illnesses, is not as ridiculous as it might at first appear when you think of
the number of people, with the same epidemiclike medical problems, who live on con-
taminated ground or in regions where the water is iodine-deficient resulting in goitres
to mention just two examples. Many South-East Asians can be forgiven for believing
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that the smog and smoke belching from the forest fires in Indonesia are responsible for
the large upsurge of dengue fever, carried by the mosquito, Aedes aegypti. This is a
man-made mosquito in effect since it breeds in urban areas in water gathering in plastic,
rubber and metallic containers that litter many poor urban areas.

The study of epidemics with its long history has come up with an astonishing
number and variety of models and explanations for the spread and cause of epidemic
outbreaks. Even today they are often attributed to evil spirits or displeased gods. For
example, AIDS (autoimmune deficiency syndrome), the dominant epidemic of the past
20 years and the major one since the 1918 influenza pandemic have been ascribed by
many as a punishment sent by God. Hippocrates (459—377 BC), in his essay on ‘Airs,
Waters and Localities’ wrote that one’s temperament, personal habits and environment
were important factors—not unreasonable even today, particularly so in view of the
comments in the last paragraph. Somewhat less relevant, but not without its moments of
humour, is Alexander Howe’s (1865) book in which he sets out his ‘Laws of Pestilence’
in 31 propositions of which the following, proposition 2, is typical: “The length of the
interval between successive periodic visitations corresponds with the period of a single
revolution of the lunar node, and a double revolution of the lunar apse time.’

The first major epidemic in the U.S.A. was the Yellow Fever epidemic in Philadel-
phia in 1793 in which about 5000 people died out of a population of around 50,000,
although estimates suggest that about 20,000 fled the city; see the interesting Scientific
American article by Foster et al. (1998) and the book by Powell (1993). The epidemic
story here is a saga of wild, as well as sensible, theories as to cause and treatment,
petty jealousies with disastrous consequencies, genuine humanity and fomented contro-
versies. A leading physician was the strongest advocate of bleeding as the appropriate
treatment while others recommended cleanliness, rest, Peruvian bark and wine. This
epidemic had a major impact on the subsequent life and politics of the country.

The landmark book by McNeill (1989) is a fascinating story of the relation be-
tween disease and people. More recently there have been several books which try to ex-
plain various aspects of diseases from the triumphs of medicine (Oldstone 1998) to the
socioeconomic (Watts 1998). The latter is written from a very anti-European, western-
imperial-colonialists-are-responsible-for-it-all, viewpoint. Europeans are blamed for
most of the world’s problems with infectious diseases. Leaving aside some of his wilder
assertions,? the polemics and the emotional outbursts, he has diligently researched his-
torical data and unearthed some dreadful examples of how diseases have been spread by
the stupidity of certain colonial western nations with horrifying consequences. Watts’

IThe influenza epidemic in 1918-1919 is the most deadly pandemic (that is, a world epidemic) per unit
time in recorded history and somewhat surprisingly has been to a large extent ignored in historical studies until
relatively recently. The Black Death palls in comparison with its severity. The original estimate of the number
that died is continually being upgraded. A meeting on the epidemic in 1998 concluded that as many as 100
million people died. Coming towards the end of World War I some people at the time thought it was perhaps
germ warfare. If a similar virulent influenza struck in the U.S.A. now, on the order of 1.5 million would die,
although current medical treatments could possibly reduce that figure if vaccine could be produced quickly
enough. It is about 20 years since the last flu epidemic and many epidemioloigists feel the next is overdue in
the cycle of such outbreaks.

2For example, Watts asserts that syphilis in the 17th to 19th centuries was a consequence of the Christians’
opposition to masturbation.
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book is an important contribution to the history and current global relevance of infec-
tious diseases.

Since the end of World War 11, public health strategy has focused on the elimination
and control of organisms which cause disease. The advent of new antibiotics changed
the whole ethos of disease control. Just over 20 years ago, in 1978, the United Nations
signed the ‘Health for All, 2000’ accord which set the ambitious goal of the eradication
of disease by the year 2000. AIDS at the time had not yet been discovered, or perhaps
recognised is a better word, and in the year before, the last known case of smallpox
had been treated. There was certainly cause for optimism albeit short lived. Scientists
thought that microbes were biologically stationary targets and hence would not mutate
in resistance to drugs and other biological influences.

This comforting image of unchanging microbes started to change shortly after this
time with the emergence of microbes that could swim in a pool of bleach, grow on a
bar of soap, and ignore doses of penicillin logarithmically larger than those effective
in the 1950’s (Garrett 1996). The practical reality of bacterial mutation is dramatically
seen in New York City with tuberculosis. Control of the W-strain of the disease, which
first appeared in the city in 1992, is resistant to every available drug and kills over half
its victims, has already cost more than $1 billion. It was only 20 years ago that it was
predicted that tuberculosis would be eradicated in the world by 2000.

Another aspect in the current spread of disease is with the modern era of trans-
portation allowing more than a million people a day to cross international borders, the
threat of a major outbreak of exotic diseases is very real. The population explosion, es-
pecially in underdeveloped countries, is another factor in the microbes’ favour. These
played key roles in the proliferation of HIV (human immunodeficiency virus) in the
1980’s. Recently the World Health Organization (WHO) estimated that over 30 million
people worldwide are currently infected with HIV. Information on global and country-
specific disease statistics can be found on the Web pages of places such as the WHO
(www.who.org) and the Centers for Disease Control (CDC: www.cdc.gov) in Atlanta.

Diseases (including such as heart disease and cancer) cause orders of magnitude
more deaths in the world than anything else, even wars and famines. The appearance of
new diseases, and resurgence of old ones, makes the case for interdisciplinary involve-
ment ever more pressing. Modelling can play an increasingly significant role. Histori-
ans can also play a role. Like the plague of Athens much has been written about the
‘sweating sickness’ of the late 15th and first half of the 16th centuries in England.® The
symptoms of the progression of the disease are, among others, high temperatures, body
filling with fluid, particularly the lungs, the apparently well-being of a person in the
morning and death the same day or within a day or two. The symptoms are so similar
to those of the hanta virus in the 1993 outbreak in the Southwest U.S.A. that there is a
plausible case they are the same disease but which has been dormant for several hundred
years. There is some justification in believing that some of the new diseases are in fact
reappearances of old ones.

3Henry VII of England succeeded to the throne because his older brother died of the sweating sickness,
and changed the course of history. Henry, for example, dissolved the monasteries, helped usher in the Refor-
mation and developed the British Navy as a professional service which was the basis for the later development
of the British Empire.
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There are four main disease-causing microrganisms: viruses, bacteria, parasites and
fungi. In this chapter, we describe some models for the population dynamics of disease
agents and later (in Chapter 13, Volume II) the spatiotemporal spread of infections.
Such models have been commonly used to model the spread of viral, bacterial and para-
sitic infections but considerably less so with fungal infections. We shall discuss several
models and then try to exploit the models in the control, or ideally the eradication, of
the disease or infection we are considering. The practical use of such models must rely
heavily on the realism put into the models. As usual, this does not mean the inclusion of
all possible effects, but rather the incorporation in the model mechanisms, in as simple
a way as possible, of what appear to be the major components. Like most models they
generally go through several versions before qualitative phenomena can be explained or
predicted with any degree of confidence. Great care must be exercised before practical
use is made of any epidemic models. However, even simple models should, and fre-
quently do, pose important questions with regard to the underlying process and possible
means of control of the disease or epidemic. One such case study, which went through
various hypothetical scenarios, is the model proposed by Capasso and Paveri-Fontana
(1979) for the 1973 cholera epidemic in the port city of Bari in southern Italy.*

An interesting early mathematical model, involving a nonlinear ordinary differen-
tial equation, by Bernoulli (1760), considered the effect of cow-pox inoculation on the
spread of smallpox. The article has some interesting data on child mortality at the time.
It is probably the first time that a mathematical model was used to assess the practi-
cal advantages of a vaccination control programme. Thucydides mentions immunity in
connection with the Athens plague and there is evidence of an even more ancient Chi-
nese custom where children were made to inhale powders made from the crusts of skin
lesions of people recovering from smallpox.

Models can also be extremely useful in giving reasoned estimates for the level
of vaccination for the control of directly transmitted infectious diseases. We discuss
one case study later in the chapter when modelling bovine tuberculosis; see, for ex-
ample, Anderson and May (1982, 1985, 1991), and Herbert et al. (1994). The recent
paper by Schuette and Hethcote (1999) discusses vaccination protocols in connection
with chickenpox and shingles and highlights certain dangers of extensive vaccination.
Among other things, they evaluate with their models the effects of different vaccina-
tion programmes. The classical theoretical papers on epidemic models by Kermack and
McKendrick (1927, 1932, 1933) have had a major influence in the development of math-
ematical models and are still relevant in a suprising number of epidemic situations; we

4In the epidemic, cases of cholera were most common in the poorer areas near the port. At the time raw
sewage from the hospital that treated the cholera patients went directly into the sea. One suggestion was that
the bacteria infected local people bathing in the area. On investigation this did not seem to be borne out.
Another thought was that the water in the stand pipes, commonly in use in these districts, was contaminated.
Again this was found not to be the case. Yet another thought was that the cholera entered the mussel population
which was caught in the shore areas near the port and which was sold and eaten at the local stalls and shops
by the local inhabitants as a delicacy, thus passing it on to humans. However, after a few hours away from
direct bacterial contact mussels actually kill the cholera bacteria so this was also discarded since several hours
elapsed between catching and selling. The solution was finally found to be indeed in the infected sea water.
The stall holders kept a bucket of (contaminated) sea water with which they regularly doused the displayed
mussels to make them look fresh and succulent. It was the bacteria in the ‘fresh’ sea water sprayed on the
shells which caused the cholera infection.
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describe some of these in this chapter. The modelling literature is now extensive and
growing very quickly. Although now quite old, a good introduction to the variety of
problems and models for the spread and control of infectious diseases is the book by
Bailey (1975). The article by Hethcote (1994) reviews three basic epidemiological mod-
els. The book by Diekmann and Heesterbeek (2000) is a good introduction to the field.
For example, they discuss how to use biological assumptions in constructing models
and present applications; they cover both deterministic and stochastic modelling. Other
sources are to be found in the above references and in the papers referred to in the rest of
this chapter. Particularly useful sources for the latest information on specific diseases,
either globally or for a specific country, are the WHO (http://www.who.org/) and the
CDC (http://www.cdc.gov/); their search and information features are very efficient.

In this chapter we discuss several quite different models for very different dis-
eases which incorporate some general aspects of epidemiological modelling of disease
transmission, time evolution of epidemics, acquired resistance to infection, vaccination
strategies and so on. The use of mathematical modelling in immunology and virology is
also growing very quickly. We discuss in some detail models for the dynamics of HIV
infections and relate them to patient data. We also discuss a bacterial infection and one
involving parasites. In Chapter 13, Volume II we consider the geographic spread of in-
fectious diseases and describe in detail a practical model for the spatial spread of rabies,
a possible means of its control and the effect of including immunity. The modelling
of infectious diseases involves the concepts of population dynamics which we have di-
cussed in earlier chapters. Although the detailed forms of the equations are different the
essential elements and analysis are very similar.

At the basic level we consider two types of models. In one the total population
is taken to be approximately constant with, for example, the population divided into
susceptible, infected and immune groups: other groupings are also possible, depending
on the disease. We first discuss models in this category. In the other, the population
size is affected by the disease via the birth rate, mortality and so on. Host—parasite
interacting populations often come into this category. We only discuss deterministic
models which are deficient in certain situations—eradication of a disease is one, since
here the probability that the last few infected individuals will infect another susceptible
is not deterministic. Nevertheless it is perhaps surprising how useful, and quantitatively
predictive, deterministic models can often be; the examples below are only a very few
examples where this has proven to be the case.

10.2 Simple Epidemic Models and Practical Applications

In the classical (but still highly relevant) models we consider here the total population
is taken to be constant. If a small group of infected individuals is introduced into a
large population, a basic problem is to describe the spread of the infection within the
population as a function of time. Of course this depends on a variety of circumstances,
including the actual disease involved, but as a first attempt at modelling directly trans-
mitted diseases we make some not unreasonable general assumptions.

Consider a disease which, after recovery, confers immunity which, if lethal, in-
cludes deaths: dead individuals are still counted. Suppose the disease is such that the
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population can be divided into three distinct classes: the susceptibles, S, who can catch
the disease; the infectives, I, who have the disease and can transmit it; and the removed
class, R, namely, those who have either had the disease, or are recovered, immune or
isolated until recovered. The progress of individuals is schematically represented by

S— I — R.

Such models are often called SIR models. The number of classes depends on the disease.
ST models, for example, have only susceptible and infected classes while SEIR models
have a suceptible class, S, a class in which the disease is latent, E, an infectious class,
I, and a recovered or dead class, R.

The assumptions made about the transmission of the infection and incubation pe-
riod are crucial in any model; these are reflected in the terms in the equations and the
parameters. With S(¢), I(¢) and R(¢) as the number of individuals in each class we as-
sume here that: (i) The gain in the infective class is at a rate proportional to the number
of infectives and susceptibles, that is, 7SI, where » > 0 is a constant parameter. The sus-
ceptibles are lost at the same rate. (ii) The rate of removal of infectives to the removed
class is proportional to the number of infectives, that is, al where a > 0 is a constant;
1/a is a measure of the time spent in the infectious state. (iii) The incubation period is
short enough to be negligible; that is, a susceptible who contracts the disease is infective
right away.

We now consider the various classes as uniformly mixed; that is, every pair of
individuals has equal probability of coming into contact with one another. This is a
major assumption and in many situations does not hold as in most sexually transmitted
diseases (STD’s). The model mechanism based on the above assumptions is then

ds SI (10.1)
— = —rSl, .
dt

dl

— =rSI —al, (10.2)
dt

dR

— =al, 10.3
I ¢ (10.3)

where r > 0 is the infection rate and @ > 0 the removal rate of infectives. This is the
classic Kermack—McKendrick (1927) model. We are, of course, only interested in non-
negative solutions for S, I and R. This is a basic model but, even so, we can make some
highly relevant general comments about epidemics and, in fact, adequately describe
some specific epidemics with such a model.

The constant population size is built into the system (10.1)—(10.3) since, on adding
the equations,

dS dlI dR
it Tt ey St)+ 1)+ R(t) =N, 10.4
dt+dt+dt = @) +1(t)+ R@@) (10.4)

where N is the total size of the population. Thus, §, I and R are all bounded above by
N. The mathematical formulation of the epidemic problem is completed given initial
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conditions such as
S0)=8 >0, I0)=1I>0 RO =0. (10.5)

A key question in any epidemic situation is, given r, a, So and the initial number
of infectives Iy, whether the infection will spread or not, and if it does how it develops
with time, and crucially when it will start to decline. From (10.2),

dl >0 . > p a
I:El:o_lo(rSo—a) {<O if S {<,0’ ,0_;. (10.6)

Since, from (10.1),dS/dt <0, § < So we have, if Sy < a/r,

dl
i I(rS—a)<0 forall >0, (10.7)

in which case Iy > I(t) — 0 ast — oo and so the infection dies out; that is, no

epidemic can occur. On the other hand if Sy > a/r then I(¢) initially increases and

we have an epidemic. The term ‘epidemic’ means that 7(¢) > Iy for some ¢t > 0; see

Figure 10.1. We thus have a threshold phenomenon. 1If Sy > S. = a/r there is an

epidemic while if Sy < S, there is not. The critical parameter p = a/r is sometimes

called the relative removal rate and its reciprocal o (= r/a) the infection’s contact rate.
We write

[max B
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Figure 10.1. Phase trajectories in the susceptibles (S)-infectives (/) phase plane for the SIR model epidemic
system (10.1)—(10.3). The curves are determined by the initial conditions /(0) = Iy and S(0) = Sp. With
R(0) = 0, all trajectories start on the line S + I = N and remain within the triangle since 0 < S +1 < N
for all time. An epidemic situation formally exists if /(1) > Iy for any time ¢ > 0; this always occurs if
So > p(=a/r)and Iy > 0.
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Ro = @,

a
where Ry is the basic reproduction rate of the infection, that is, the number of sec-
ondary infections produced by one primary infection in a wholly susceptible popula-
tion. Here 1/a is the average infectious period. If more than one secondary infection
is produced from one primary infection, that is, Ry > 1, clearly an epidemic ensues.
The whole question of thresholds in epidemics is obviously important. The definition
and derivation or computation of the basic reproduction rate is crucial and can be quite
complicated. One such example is if the population is heterogeneous (Diekman et al.
1990).

The basic reproduction rate is a crucial parameter grouping for dealing with an
epidemic or simply a disease which is currently under control with vaccination, for
example. Although the following arguments are based on Ry they are quite general.
Clearly one way to reduce the reproduction rate is to reduce the number of sucepti-
bles, Sp. Vaccination is the common method of doing this and it has been successful in
eradicating smallpox. In the U.S.A. it reduced the incidence of measles from 894,134
reported cases in 1941 to 135 in 1997 and for polio from 21,269 in 1952 to the last in-
digenously acquired case of wild-virus polio reported in 1979 (the Western hempisphere
was officially certified polio-free in 1994) with similar reductions in other childhood
diseases. Mass vaccination is the cheapest and most effective means of disease control.
However, although vaccines are generally extremely safe, no medicine is totally risk-
free, however small the risk may be. (There have, however, been a few cases of instant
death from diptheria and tetanus vaccines and there is currently much controversy about
the vaccine for Anthrax for the military.) As people in the West forget the ravages of
polio, measles, diptheria, rubella and so on, many will become less keen to have their
children vaccinated because of the risk even if very small. Vaccination not only pro-
vides protection for the individual it also provides it for the community at large since
it keeps the effective reproduction rate below the level which would allow an epidemic
to start. This is the so-called ‘herd immunity.” The point is that once the threshold herd
immunity level of Ry has been reached and memory of former diseases fades there is
the possibility that people will not have their children vaccinated but have a free ride
instead; the unvaccinated have effectively the same immunity. In this situation the best,
but unethical, strategy for parents is to urge all other parents to have their children vac-
cinated but free ride with their own. The important point to keep in mind, however, is
that an epidemic can start and rise very quickly if the reproduction rate increases beyond
the critical value for an epidemic so in the end free-riding is not without its own risks.
(This happened with the Conquistadors in Mexico.)

We can derive some other useful analytical results from this simple model. From
(10.1) and (10.2)

dl rS—a)l

147 & a£0
s~ st s PR '

The singularities all lie on the / = 0 axis. Integrating the last equation gives the (1, S)
phase plane trajectories as

I+ S —pInS = constant = Iy + Sy — pIn S, (10.8)
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where we have used the initial conditions (10.5). The phase trajectories are sketched in
Figure 10.1. Note that with (10.5), all initial values Sy and Iy satisfy Ip 4+ So = N since
R(O)=0andsoforr >0,0<S+1 < N.

If an epidemic exists we would like to know how severe it will be. From (10.7) the
maximum /, In,x , occurs at S = p where d1/dt = 0. From (10.8), with S = p,

Imax =plnp—p+Ip+ So—plnSy

=10+(So—p)+,01n<ﬁ>
So
0
=N — In{ — ).
pre n<50)

For any initial values Iy and Sy > p, the phase trajectory starts with S > p and we
see that / increases from Iy and hence an epidemic ensues. It may not necessarily be a
severe epidemic as is the case if Ij is close to Imax. It is also clear from Figure 10.1 that
if So < p then I decreases from Iy and no epidemic occurs.

Since the axis I = 0 is a line of singularities, on all trajectories I — 0 as t — oo.
From (10.1), S decreases since dS/dt < 0 for S # 0, I # 0. From (10.1) and (10.3),

(10.9)

ds S

dR ™ p

= S=Se ’r>50e NP0
= 0< S(c0) <N.

(10.10)

In fact from Figure 10.1, 0 < S(oc0) < p. Since I (c0) = 0, (10.4) implies that R(c0) =
N — S(00). Thus, from (10.10),

R(o0)

N — S(c0)
S(00) = Sp exp I:—T:| = Spexp [—7]

P

and so S(00) is the positive root 0 < z < p of the transcendental equation

N_
So exp [— Z} = (10.11)
P

We then get the total number of susceptibles who catch the disease in the course of the
epidemic as

Iiotal = 1o + So — S(00), (10.12)

where S(00) is the positive solution z of (10.11). An important implication of this anal-
ysis, namely, that 7 (#) — 0 and S(r) — S(oc0) > 0, is that the disease dies out from a
lack of infectives and not from a lack of susceptibles.

The threshold result for an epidemic is directly related to the relative removal rate,
p:if Sy > p an epidemic ensues whereas it does not if Sy < p. For a given disease,
the relative removal rate varies with the community and hence determines whether an
epidemic may occur in one community and not in another. The number of susceptibles
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So also plays a major role, of course. For example, if the density of susceptibles is high
and the removal rate, a, of infectives is low (through ignorance, lack of medical care,
inadequate isolation and so on) then an epidemic is likely to occur. Expression (10.9)
gives the maximum number of infectives while (10.12) gives the total number who get
the infection in terms of p(= a/r), Iy, So and N.

In most epidemics it is difficult to determine how many new infectives there are
each day since only those that are removed, for medical aid or whatever, can be counted.
Public Health records generally give the number of infectives per day, week or month.
So, to apply the model to actual epidemic situations, in general we need to know the
number removed per unit time, namely, d R/dt, as a function of time.

From (10.10), (10.4) and (10.3) we get an equation for R alone; namely,

Cj{—f =al =a(N-R-S)=a(N-R- Soe*R/P]) . RO)=0, (10.13)
which can only be solved analytically in a parametric way: the solution in this form
however is not particularly convenient. Of course, if we know a, r, So and N it is a
simple matter to compute the solution numerically. Usually we do not know all the
parameters and so we have to carry out a best fit procedure assuming, of course, the
epidemic is reasonably described by such a model. In practice, however, it is often
the case that if the epidemic is not large, R/p is small—at least R/p < 1. Following
Kermack and McKendrick (1927) we can then approximate (10.13) by

aR Noso+ (2 —1)r SoR?
— =d —_ —_— —_—— .
dt 0 o 202

Factoring the right-hand side quadratic in R, we can integrate this equation to get, after
some elementary but tedious algebra, the solution

2
R(t) = ;—0 [(% - 1) + o tanh <“Tat - ¢)}

2 _ 172 tanh~! (52— (10.14)
a:[(io >+2SO(N So)] o (3 )

p? - o

The removal rate is then given by

dR  aa?p? n2 aat " (10.15)
— = sec —_— = , .
dt AV 2

which involves only 3 parameters, namely, aa?p?/(250), aa and ¢. With epidemics
which are not large, it is this function of time which we should fit to the public health
records. On the other hand, if the disease is such that we know the actual number of the
removed class then it is R(¢) in (10.14) we should use. If R/p is not small, however, we
must use the differential equation (10.13) to determine R(¢).

We now apply the model to two very different epidemic situations.



10.2 Simple Epidemic Models and Practical Applications 325

©

ol

(=}
1
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Bombay Plague Epidemic 1905-1906

This plague epidemic lasted for almost a year. Since most of the victims who got the
disease died, the number removed per week, that is, d R /dt, was approximately equal to
the number of deaths per week. On the basis that the epidemic was not severe (relative
to the population size), Kermack and McKendrick (1927) compared the actual data with
(10.15) and determined the best fit for the three parameters which resulted in

dR )
— = 890 sech” (0.2 — 3.4). (10.16)

This is illustrated in Figure 10.2 together with the actual epidemic data.

Influenza Epidemic in an English Boarding School 1978

In 1978 in the British medical journal, The Lancet, there was a report with detailed
statistics of a flu epidemic in a boys’ boarding school with a total of 763 boys. Of these
512 were confined to bed during the epidemic, which lasted from 22nd January to 4th
February 1978. It seems that one infected boy initiated the epidemic. This situation
has many of the requirements assumed in the above model derivation. Here, however,
the epidemic was severe and the full system has to be used. Also, when a boy was
infected he was put to bed and so we have I (¢) directly from the data. Since in this
case we have no analytical solution for comparison with the data, a best fit numerical
technique was used directly on the equations (10.1)—(10.3) for comparison of the data.
Figure 10.3 illustrates the resulting time evolution for the infectives, I (¢), together with
the epidemic statistics. The R-equation (10.3) is uncoupled; the solution for R(¢) is
simply proportional to the area under the 7 (¢) curve.
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Figure 10.3. Influenza epidemic data (e) for a boys’ boarding school as reported in the British medical
journal, The Lancet, 4th March 1978. The continuous curves for the infectives (/) and susceptibles () were
obtained from a best fit numerical solution of the SIR system (10.1)—(10.3): parameter values N = 763,
So=762,1=1,p=202,r =2.18 x 10*3/day. The conditions for an epidemic to occur, namely, Sy > p,
are clearly satisfied and the epidemic is severe since R/p is not small.

Plague in Eyam, England 1665—-1666

There was an outbreak of plague in the village of Eyam in England from 1665 to 1666.
In this remarkable altruistic incident, the village sealed itself off when plague was dis-
covered, so as to prevent it spreading to the neighbouring villages, and it was successful.
By the end of the epidemic only 83 of the original population of 350 survived. Raggett
(1982) applied the SIR model (10.1)—(10.3) to this outbreak. Here, S(co) = 83 out
of an initial So = 350. This is another example, like the school flu epidemic, where
the epidemic was severe. Raggett (1982) shows how to determine the parameters from
the available data and knowledge of the etiology of the disease. He reiterates the view
that although the initial form was probably bubonic plague, the pneumonic form most
likely became prevalent; the latter form can be transmitted from the cough of a victim
(see Chapter 13, Volume II for a brief description of the plague and its history). The
comparison between the solutions from the deterministic model and the Eyam data is
very good. The comparison is much better than that obtained from the corresponding
stochastic model, which Raggett (1982) also considered. We discuss a model for the
spatial spread of plague in Chapter 13, Volume II.

If a disease is not of short duration then (10.1), the equation for the susceptibles,
should include birth and death terms. Mortality due to natural causes should also be
included in equation (10.2) for the infectives and in (10.3) for the removed class. The
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resulting models can be analysed in a similar way to that used here and in Chapter 3 on
interacting populations: they are still systems of ordinary differential equations. It is not
surprising, therefore, that oscillatory behaviour in disease epidemics is common; these
are often referred to as epidemic waves. Here they are temporal waves. Spatial epidemic
waves appear as an epidemic spreads geographically. The latter are also common and
we consider them in detail in Chapter 13, Volume II.

Many diseases have a latent or incubation period when a susceptible has become
infected but is not yet infectious. Measles, for example, has an 8- to 13-day latent
period. The incubation time for AIDS, on the other hand, is anything from a few months
to years after the patient has been shown to have antibodies to the human immun-
odeficiency virus (HIV). We can, for example, incorporate this as a delay effect, or
by introducing a new class, E(¢) say, in which the susceptible remains for a given
length of time before moving into the infective class. Such models give rise to in-
tegral equation formulations and they can exhibit oscillatory behaviour as might be
expected from the inclusion of delays. Some of these are described by Hoppensteadt
(1975, see also 1982). Nonlinear oscillations in such models have been studied by
Hethcote et al. (1981); see also Hethcote (1994). Alternative approaches recently used
in modelling AIDS are discussed below. Finally age, a, is often a crucial factor in
disease susceptibility and infectiousness. The models then become partial differential
equations with independent variables (¢, a); we consider one such model later in this
chapter.

There are many modifications and extensions which can and often must be incor-
porated in epidemic models; these depend critically on the disease and location. In the
following sections we discuss a few more general models to illustrate different but im-
portant points. The books and references already cited describe numerous models and
go into them in considerable detail.

10.3 Modelling Venereal Diseases

The incidence of sexually transmitted diseases (STDs), such as gonorrhea (Neisseria
gonorrhoeae), chlamydia, syphilis and, of course, AIDS, is a major health problem
in both developed and developing countries. In the U.S.A., for example, as reported
by the Centers for Disease Control (www.cdc.gov), in 1996 there were over 300,000
cases of gonorrhea reported and over 11,000 cases of syphilis and nearly 500,000 cases
of chlamydia. Whereas the rate has been decreasing for gonorrhea and syphilis it is
growing for chlamydia. We give some of the numbers for HIV incidence in the AIDS
sections below.

STDs have certain characteristics which are different from other infections, such as
measles or rubella (German measles). One difference is that they are mainly restricted to
the sexually active community so the assumption of uniform mixing in the whole popu-
lation is not really justified. Another is that often the carrier is asymptomatic (that is, the
carrier shows no overt symptoms) until quite late on in the development of the infection.
A third crucial difference is that STDs induce little or no acquired immunity following
an infection. Equally important in virus infections is the lack of present knowledge of
some of the parameters which characterise the transmission dynamics.
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Although gonorrhea, syphilis and AIDS are well known, with the latter growing
alarmingly, one of the STDs which has far outstripped gonorrhea is the less well-known
Chlamydia trachomatis, which in 1996 struck more than gonorrhea and syphilis put to-
gether and is on the increase. It can produce sterility in women without their ever show-
ing any overt symptoms. Diagnostic techniques are now sufficiently refined to make
diagnosis more accurate and less expensive and could account in part for the increase in
reported cases.’ The asymptomatic character of this disease among women is serious.
Untreated, it causes pelvic inflammatory disorders (PID) which are often accompanied
by chronic pain, fever and sterility. With pregnancy, PID, among other complications,
can often cause premature delivery and ectopic pregnancies (that is, the fertilised egg
is implanted outside the womb) which are life threatening. Untreated gonorrhea, for
example, can also cause blindness, PID, heart failure and ultimately death. STDs are a
major cause of sterility in women. The consequences of untreated STDs in general are
very unpleasant. The vertical transmission of STDs from mother to newborn children is
another of the threats and tragedies of many STDs. Another problem is the appearance
of new strains: in connection with AIDS, HIV-1 is the common virus but a relatively
new one, HIV-2 has now been found. With gonorrhea the relatively new strain, Neisse-
ria gonorrhoeae, which was discovered in the 1970’s proved resistant to penicillin.

In this section we present a simple classical epidemic model which incorporates
some of the basic elements in the heterosexual spread of venereal diseases. We have
in mind such diseases as gonorrhea; AIDS we discuss separately later in the chapter.
The monograph by Hethcote and Yorke (1984) is still a good survey of models used
for the spread and control of gonorrhea. They show how models and data can be used
to advantage; the conclusions they arrived at are specifically aimed at public health
workers.

For the model here we assume there is uniformly promiscuous behaviour in the
population we are considering. As a simplification we consider only heterosexual en-
counters. The population consists of two interacting classes, males and females, and
infection is passed from a member of one class to the other. It is a criss-cross type of
disease in which each class is the disease host for the other. In all of the models we
have assumed homogeneous mixing between certain population subgroups. Dietz and
Hadeler (1988), for example, considered epidemic models for STDs in which there is
heterogeneous mixing. More complex models can include the pairing of two suscep-
tibles, which confers temporary immunity, several subgroups and so on. We discuss a
multi-group example later in this section.

Criss-cross infection is similar in many ways to what goes on in malaria® and bil-
harzia, for example, where two criss-cross infections occur. In bilharzia it is between

50ne U.S. Public Health official when asked some years ago about the high incidence of chlamydia and
what doctors were doing about it, is said to have remarked ‘Doing about it? Most of them can’t even spell it.”

5A very interesting, exciting and potentially important new and cheap treatment for malaria, which kills
around 2.7 million people a year, has been discovered by Dr. Henry Lai, and his colleagues in Bioengineering
in the University of Washington. They found that the malarial parasite Plasmodium falciparum (the deadliest
of the four malarial parasites) can lose vigour and die when subjected to small oscillating magnetic fields
(of the order of the earth’s field). They suggest it may be due to the movement caused in the very small iron
particles inside the parasite which damages the parasites by disrupting their feeding process which involves
the haemoglobin in the red blood cells of the host. They found that exposed samples of the parasite ended up
with 33-70% fewer parasites as compared to unexposed samples.
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humans and a particular type of snail. Bilharzia, or schistosomiasis, has been endemic
in Africa for a very long time. (See footnote 1 in Chapter 3.) We discuss in detail later
in this chapter a more complex practical example of a criss-cross infection between
badgers and cattle, namely, bovine tuberculosis.

Since the incubation period for venereal diseases is usually quite short—in gonor-
rhea, for example, it is three to seven days—when compared to the infectious period, we
use an extension of the simple epidemic model in Section 10.2. We divide the promis-
cuous male population into susceptibles, S, infectives, I, and a removed class, R; the
similar female groups we denote by S*, I* and R*. If we do not include any transition
from the removed class to the susceptible group, the infection dynamics is schematically

S—I1—R
(10.17)

S* — ¥ — R*.

Here I'* infects S and [ infects S*.

As we noted above, the contraction of gonorrhea does not confer immunity and so
an individual removed for treatment becomes susceptible again after recovery. In this
case a better dynamics flow diagram for gonorrhea is

R

I — R

S —
S* — ¥ — R*. (1019

An even simpler version involving only susceptibles and infectives is

VS
S — 1

(10.19)
S* — T,
~
which, by way of illustration, we now analyse. It is a criss-cross S7 model.
We take the total number of males and females to be constant and equal to N and
N* respectively. Then, for (10.19),

S+ 1) =N, S*)+1*(t) = N*. (10.20)

As before we now take the rate of decrease of male susceptibles to be proportional to
the male susceptibles times the infectious female population with a similar form for the
female rate. We assume that once infectives have recovered they rejoin the susceptible
class. A model for (10.19) is then (10.20) together with

das as*

= —rSI* +al, = —r*S*I +a*I*

@ o (10.21)
— =rSI* —al, =r*S*I —a*I*,

dt dt

where r, a, r* and a* are positive parameters. We are interested in the progress of the
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disease given initial conditions
S$(0)=2S8, I10)=1, S*0)=S;, I70)=1I;. (10.22)

Although (10.21) is a 4th-order system, with (10.20) it reduces to a 2nd-order sys-
tem in either S and S* or I and I*. In the latter case we get

dl dr*
Z:rl*(z\/_l)_a], ; =r*I(N* = I'*) —a*I"*, (10.23)

which can be analysed in the (I, I*) phase plane in the standard way (cf. Chapter 3).
The equilibrium points, that is, the steady states of (10.23), are I = 0 = I'* and
* * * * *
NN ot NN T a4 (10.24)
p+ N* p*+ N r r*
Thus nonzero positive steady state levels of the infective populations exist only if
NN*/pp* > 1: this is the threshold condition somewhat analogous to that found in
Section 10.2.
With the experience gained from Chapter 3, we now expect that, if the positive
steady state exists then the zero steady state is unstable. This is indeed the case. The
eigenvalues A for the linearisation of (10.23) about / = 0 = I* are given by

—a — A rN

r*N* —a*—k‘zo

NN* 172
= 21:—(a+a*):|:|:(a+a*)2+4aa*< - —1>:| .
op

So, if the threshold condition NN*/pp* > 1 holds, A.; < 0 < X, and the origin is a
saddle point in the (I, I*) phase plane. If the threshold condition is not satisfied, that is,
(0 <)NN*/pp* < 1, then the origin is stable since both A < 0. In this case positive I
and I do not exist.

If I, and I exist, meaning in the context here that they are positive, then linearising
(10.23) about it, the eigenvalues A satisfy

—a—rlf—Xx rN —rl _o
FEN* — p¥[* —a*—r*ls—)» -
that is,

A2+ Ala +a* + rIf +r* )+ [a*rIf +ar* Iy + rr*(I"N + IN¥)
+aa* —rr*NN*1=0,

the solutions of which have Re A < 0 and so the positive steady state (I, I;) in (10.24)
is stable.

The threshold condition for a nonzero steady state infected populationis NN*/pp*
= (rN/a)(r*N*/a*) > 1. We can interpret each term as follows. If every male is sus-
ceptible then »N/a is the average number of males contacted by a female infective
during her infectious period; a reciprocal interpretation holds for r* N*/a*. These quan-
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tities, ¥ N/a and r*N*/a*, are the maximal male and female contact rates respec-
tively.

Although parameter values for contacts during an infectious stage are notoriously
unreliable from individual questionnaires, what is abundantly clear from the statistics
since 1950 is that an epidemic has occurred in a large number of countries and so
NN*/pp* > 1. From data given by a male and a female infective, in the U.S.A. in
1973, regarding the number of contacts during a period of their infectious state, figures
of maximal contact rates of N/p ~ 0.98 and N*/p* ~ 1.15 were calculated for the
male and female respectively which give NN*/pp* ~ 1.127.

10.4 Multi-Group Model for Gonorrhea and Its Control

Although the ST model in the last section is a particularly simple one, it is not too unre-
alistic. In the case of gonorrheal infections, however, it neglects many relevant factors.
For example, as already mentioned a large proportion of females, although infected and
infectious, show no obvious symptoms; that is, they form an asymptomatic group. There
are, in fact, various population subgroups. For example, we could reasonably have sus-
ceptible, symptomatic, treated infective and untreated infective groups. Lajmanovich
and Yorke (1976) proposed and analysed an 8-group model for gonococcal infections
consisting of sexually (i) very active and (ii) active females (males) who are asymp-
tomatic when infectious and (iii) very active and (iv) active females (males) who are
symptomatic when infectious.

If the total populations of active male and female are N and N*, assumed constant,
we can normalise the various group populations as fractions of N and N*. Denote the
groups of women with indices 1, 3, 5, 7 and the men with indices 2, 4, 6, 8. Then if Nj;,
i=1,2,...,8denote the normalised populations

Ni+N3+Ns+N;=1, Np+ Ny+ Ng+ Ng=1. (10.25)

Since neither immunity nor resistance is acquired in gonococcal infections we con-
sider only two classes, susceptibles and infectives. If /;(¢),i = 1,2, ..., 8 denote the
fractions infectious at any time 7, the fractional numbers of susceptibles at that time are
thenl — [;(¢),i =1,2,...,8.

We again assume homogeneous mixing. For each group let D; be the mean length
of time (in months) of the infection in group i. Then, there is a 1/D; chance of an
infective recovering each month. This implies that the removal rate per month is /; / D;.

Let L;; be the number of effective contacts per month of an infective in group j
with an individual in group i. Since the model here considers only heterosexual (as
opposed to homosexual) contacts we have

Lij =0 ifi+ jeven.
The matrix [L;;] is called the contact matrix. Although there are seasonable variations

in the L;; we take them to be constant here. Then the average number of susceptibles
infected per unit time (month) in group i by group j is L;;j(1 — I;). Thus the model
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differential equation system is

d(NlI)

N;I;
= ZL”(I Nl = = (10.26)
\— 1
rate of new recovery rate
infectives . rate of new of infectives
infectives (incidence)
with given initial conditions /; (0) = I;p.

By considering the linearisation about the nonzero steady state the effect of varying
the parameters can be assessed and hence the effects of various control strategies. This
model is analysed in detail by Lajmanovich and Yorke (1976).

Major aims in control include of course the reduction in incidence and an increase
in detection, each of which affects the long term progress of the spread of the disease.
So, screening, detection and treatment of infectives is the major first step in control. The
paper by Hethcote et al. (1982) compares various control methods for gonorrhea; it also
has references to other models which have been proposed.

As an example, suppose C is a parameter proportional to the number of women
screened and C R; is the rate at which infected women are detected in group i. Let E P;
be the general supplementary detection rate where E is a measure of the effort put in
and P; is the population of a group i: E depends on the control strategy. Then, in place
of (10.26) we have the control model

d(NiI}) & Nil;
( ) Z Ii)Nj]j—Dl—il—CR,-—EP,-. (10.27)
Different control methods imply different R; and P;.

Suppose there is general screening of women (the major control procedure in the
U.S.A.). On the basis that the number of infected women detected is directly propor-
tional to the number infected and the supplementary programme is general screening of
the women population, we have

P[:RiZIiN,', i=1,3,5,7; P[ZR[ZO, i=2,4,6,8.

If the programme is for men, the odd and even number range is interchanged.

These and other control procedures are discussed in the paper by Hethcote et al.
(1982); see also Hethcote and Yorke (1984). They also discuss the important problem
of parameter estimation and finally carry out a comparison of various control strategies.
The cost and social range of screening are not negligible factors in the practical imple-
mentation of such programmes. The political and sociological considerations can also
be rather sensitive.

It should be emphasised again, that venereal disease models, which are to be used
in control programmes, must have a realistic validation, which can only come from a
comparison of their solutions and predictions with actual data. This should, of course,
apply to all disease control models.
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10.5 AIDS: Modelling the Transmission Dynamics of the Human
Immunodeficiency Virus (HIV)

Some Background, Myths, Statistics and Polemics

One aspect of the AIDS (autoimmune deficiency syndrome) epidemic is the myth of
denial, a not uncommon phenomenon with certain diseases where, for example, there
is a perceived social stigma or a strong economic element; the brief highly pertinent
article by Weiss (1996) discusses some recent examples of this regarding AIDS and
suggests some of the modern reasons for it. He also quotes some astonishing statements
such as one by a British Government Home Office minister who said that HIV could not
possibly be transmitted in prisons because drugs and sex were not permitted. Another is
by a medical journalist writing in the respected British newspaper The Independent who
said ‘The government has wasted £150 million of our taxpayers’ money anathematizing
the innocent pleasures of casual heterosexual intercourse.” The belief that HIV does
not cause AIDS is subscribed to in the book by the scientist Duesberg (1996) of the
University of California at Berkeley. Among other things, he says that AIDS is not only
not contagious but that it is caused by drugs taken for the express purpose of blocking
HIV. Lauritsen (1993) attributes AIDS to the medical-industrial complex whose aim is
profiteering and genocide: he claims that the medicine AZT, used in the treatment of
HIV, actually causes AIDS! The problem of how so much AZT could have got into sub-
Saharan Africa, the major problem area, is not discussed. A recent book on the origin
of the disease by Hooper (1999) makes the controversial case for AIDS being caused
by an experimental oral vaccine for polio which was given to around a million people
in Rwanda, Burundi and the Congo from 1957 to 1960. This area is the epicentre of the
African epidemic. He argues that the vaccine might have been made with chimpanzee
tissue which was contaminated with an ancestor of the virus. This has subsequently been
denied by doctors involved in the programme. His argument is carefully researched but
the evidence is still circumstantial.

The major horror of the AIDS epidemic is in Africa where around 70% of the total
AIDS deaths in the world have occurred and, as recently stated (July, 1999) by Dr. Peter
Piot, head of the United Nations AIDS (UNAIDS) programmes, half of all newborn
babies in Africa are HIV positive. The regular early ludicrous denials in the 1980’s of
its existence by some African leaders (“There is no AIDS in my country.”) and others in
positions of responsibility, however, began to change in the mid-1990’s. In sub-Saharan
Africa up to 1998 HIV has infected 34 million people and killed 11.5 million since
1981 and approximately 1.8 million in 1998 alone. In 1999 an estimated 5.6 million
adults and children became infected with the virus with a worldwide total estimated at
50 million infected since 1981 of which 16 million have died; around 2.6 million died
in 1999 alone, the highest number of any year. In Zimbabwe, Malawi and Botswana
perhaps the countries worst afflicted with HIV infection, it is a human and economic
catastrophe: in Zimbabwe at least 20% are HIV positive while in Botswana it is more
than 35%. Its extremely rapid growth in South Africa (where as many as 20% of the
population is HIV positive) is alarming.” Life expectancy which increased dramatically

"In the case of South Africa it was certainly not helped by the Health Minister saying (in the National
Assembly in the week of 16th November 1999) that AZT may be too dangerous to use. (Perhaps it has to be
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in South Africa in the 1990’s is now plummeting. Malthus (see Chapter 1) may well be
right about his disease prognosis and population control. A broad picture of the world
scene and several important aspects of the disease is given in the special report on AIDS
in Scientific American (1998) by various authors dealing with such issues as prevention,
ethical dilemmas, children with HIV, drug resistance, vaccines and others.

AIDS, unlike its early image as a homosexual disease, is now very much a hetero-
sexual disease. In a UNAIDS report for World AIDS Day, 1st December 1999, it says
that of the 22.3 million adults in sub-Saharan Africa with HIV, 55% of them are women.
In South and Southeast Asia it is estimated that 30% are women and in North America
20%. In Africa it is mainly transmitted by heterosex whereas in the U.S. it is mainly
homosexual transmission.

The most important aspect of defense against infectious diseases is unquestionably
surveillance which characterises the pattern of each disease. Although there are social
problems associated with gathering data on the number of people who have the HIV,
it is unlikely that the epidemic will be contained if this information is not made avail-
able.® Widespread surveillance of human tuberculosis (Mycobacterium tuberculosis) in
the 1950’s essentially eradicated the disease in many developed countries. However,
new human strains are now appearing including in the developed world: it is already a
significant problem in New York. Tuberculosis is still a major killer in the world; be-
tween 1990 and 1999 approximately 30 million people have died (Cosivi et al. 1998)
from the disease.

The lack of knowledge about HIV creates enormous difficulties in designing effec-
tive control programmes, not to mention those for health care facilities. Education pro-
grammes as to how it can spread are the minimum requirement. Those that have been
pursued have had some success but even their continuing use and new ones have often
been blocked by the religious establishments (and not just the loony right). Without a
knowledge of the reservoir of the disease, it is extremely difficult to evaluate effective
prevention and control strategies. According to a depressing UNAIDS Report (Global
HIV/AIDS Epidemic December 1997) there are an estimated 16,000 new cases a day
and that around 27 million people are HIV positive but do not know it. AIDS is just one
disease where surveillance has been disastrously inadequate. Another in which the lack
of surveillance is going to cause serious problems in the very near future is the misuse
of antibiotics which is giving rise to resistant strains of bacteria.

accepted that a drug to treat a fatal disease is more toxic than drinking herbal tea.) If that was not enough,
in April 2000 President Thabo Mbeki astonishingly and depressingly said that he wished to discuss HIV
and AIDS specifically with those scientists who say there is no connection; he simply refused to accept the
connection between HIV and AIDS.

8In a class on modelling epidemics I once had the students construct a model for the spread of an hypo-
thetical disease which was based, in fact, on the spread of HIV but which I took pains to hide. After they
produced a reasonable first model I then asked the class to discuss strategies for its control. Without exception
everybody in the class agreed that the only way was to have universal surveillance with everyone being tested
for the virus. I then took their model and at each step I related it directly to the present AIDS epidemic. The
reaction in the class was what I had expected (but not the intensity of feeling): the class immediately launched
into a very heated discussion among the civil libertarians, the politicians, the humanists, the religious group
taking the moral high ground and the pragmatists. (I kept out of the discussion and was only the moderator.) In
the end the students were unified only in believing that I had deliberately conned them into saying that clearly
everybody should be tested for HIV positivity—they were absolutely right, of course; it was my intention.
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Other than the new strains of HIV there is an increasing number of new or newly
identified diseases or old agents in new locations, such as Vibrio cholera 0139 (new
agent 1992) which is a variant of cholera, Hepatitis E virus (new 1990), Hemorrhagic
fever (1991) in Venezuela, Hantavirus (1993) in Southwest U.S.A., Anthrax (1993) in
the Carribean, Lasa fever (1992) in West Africa and numerous others. The book by
Garrett (1994) specifically deals with newly emerging diseases which he refers to as
‘the coming plague.’ In spite of the appearance of other new diseases, recurrence of
old ones and the other major killing diseases, AIDS is arguably the major epidemic of
the 20th century and perhaps of all time. Its progression has exceeded the gloomy view
expressed in the first edition of this book in 1989 and now in the year 2000 can only
give pessimists cause for optimism.

Human Immunodeficiency Virus (HIV)—Background

The human immunodeficiency virus, HIV, leads to acquired immune deficiency syn-
drome, AIDS. HIV is a retrovirus and like most of the viruses in this family of viruses,
the Retroviridae, only replicates in dividing cells. HIV has some unfortunate unique
properties even within this retrovirus family such as using the mRNA processing of the
cell it invades to synthesise its own viral RNA. Although studies (Ho et al. 1995) have
shown the dynamics of viral replication is very high in vivo the immune system can
counteract this replication from 5 to 10 years or more depending on the initial infection.
Cases of haemophiliacs who have been given contaminated blood have succumbed in a
matter of months.

Infection by the virus HIV-1, the most common variety, has many highly complex
characteristics, most of which are still not understood. The fact that the disease pro-
gression can last more than 10 years from the first day of infection is just one of them.
Another is that while most viral infections can be eliminated by an immune response,
HIV is only briefly controlled by it. HIV primarily infects a class of white blood cells or
lymphocytes, called CD4 T-cells, but also infects other cells such as dendritic cells. The
virus has a high affinity for a receptor present on the cell surface of each of these cells
which guides the virus to their location in vivo. When the CD4 T-cell count, normally
around 1000/uL, decreases to 200/uL or below, a patient is characterized as having
AIDS. There are very specific clearly defined clinical categories (Morb Mort Week Re-
port 42 (No. RR-17), Table 308-1 and Table 308-2, December 18, 1992) which are used
to diagnose the AIDS; the CD4 T-cell count is not the only factor. The categories are
regularly updated. These are used by the Centers for Disease Control for surveillance
purposes. For example, if a patient with the virus has a CD4 T-cell count greater than
500/ L but has, or has had one of a variety of diseases then a formal diagnosis is made
and registered. The reason for the fall in the T-cell count is unknown. T-cells are nor-
mally replenished very quickly in the body, so the infection may affect the source of
new T-cells or the life span of preexisting ones. Although HIV can kill cells that it in-
fects, only a small fraction of CD4 T-cells are infected at any given time. Because of
the central role of CD4 T-cells in immune regulation, their depletion has widespread
deleterious effects on the functioning of the immune system as a whole and this is what
leads to AIDS.

Since the mid-1980’s, numerous models, deterministic and stochastic, have been
developed to describe the immune system and its interaction with HIV. It is a highly
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controversial area. Stochastic models aim to account for the early events in the disease
when there are few infected cells and a small number of viruses. Nowak et al. (1996;
see earlier references there) look at the effects of variability among viral strains but this
and earlier work has been commented on critically by Stilianakis et al. (1994) and Wein
et al. (1998).

Most models have been deterministic such as those by McLean and Nowak (1992),
Perelson et al. (1993), Essunger and Perelson (1994), Frost and McLean (1994), Stil-
ianakis et al. (1994), Kirschner and Webb (1997) and Wein et al. (1998). Deterministic
models, which attempt to reflect the dynamic changes in mean cell numbers, are more
applicable to later stages of the process when the population is large. These models
typically consider the dynamics of the CD4 cells, latently infected cells and virus pop-
ulations as well as the effects of drug therapy.

Because of the ethics, among other things, of doing experiments on humans, funda-
mental information has been lacking about the dynamics of HIV infection. For example,
since the disease takes an average of 10 years to develop it was widely thought that the
components of the disease process would also be slow. A combination of mathemati-
cal modelling and experiment has shown this is not the case by showing that there are
a number of different timescales in HIV infection, from minutes to hours and days to
months. The current understanding of the rapidity of HIV infection has totally changed
the manner in which HIV is treated in patients and has had a major impact in extending
peoples’ lives; see the review paper by Perelson and Nelson (1999).

Figure 10.4 shows a typical course of HIV infection. Immediately after infection
the amount of virus detected in the blood, V, increases rapidly. After a few weeks to
months the symptoms disappear and the virus concentration falls to a lower level. An
immune response to the virus occurs and antibodies against the virus can be detected in
the blood. A test, now highly refined, to detect these antibodies determines if a person
has been exposed to HIV. If the antibodies are detected, a person is said to be HIV-
positive.

HIV antibodies

Plasma concentration levels

2 - 10 weeks § Up to 10 years

Figure 10.4. Schematic time course of a typical HIV infection in an infected adult. The viral concentration,
the level of antibodies and the CD4 T-cells are sketched as a function of time. The early peak corresponds
to the primary infection which leads to a period of latency. Note the typical gradual decline in the level of
CD4 T-cells over the years. Eventually the symptoms of full-blown AIDS start to appear. (From Perelson and
Nelson 1999 and reproduced with permission)
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The level the virus falls to after the initial infection has been called the set-point.
The viral concentration then seems to remain at a quasi-steady state level during which
the concentration of CD4 T-cells measured in blood slowly declines. This period in
which the virus concentration stays relatively constant but in which the T-cell count
slowly falls is typically a period in which the infected person has no disease symptoms.

A key question then is what is going on during this asymptomatic period. Many
believed that the virus was simply quiescent or latent during this period, as seen in other
viral diseases, such as herpes. One method of determining whether or not the virus is
active is to perturb the host—virus system during the asymptomatic period. In the mid-
1990’s work started on new antiretroviral drugs, the protease inhibitors. With their in-
troduction it became possible to perturb the host—virus system during the asymptomatic
period. In 1994, David Ho (Aaron Diamond AIDS Research Center) ran an experiment
which examined the response of 20 patients infected with HIV to the protease inhibitor,
ritonavir. The results were dramatic. Figure 10.5 shows the amount of virus measured in
blood plasma fell rapidly once the drug was given. Alan Perelson (Los Alamos National
Laboratory) and his colleagues then developed a model system which was applied to the
patient data and estimations of crucial parameters were obtained. The work is reported
in Ho et al. (1995).

Before discussing a model which includes protease inhibitor treatment, we first
describe an early model by Anderson et al. (1986) for pedagogical reasons since it is
a common way of constructing an epidemic model using a flow chart. It is much less
specific and less directly related to current HIV thinking than the one we discuss below
in relation to the data and qualitative behaviour of the virus as shown in Figures 10.4
and 10.5. A nice review of the state of AIDS modelling at the time is given by Isham
(1988).
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Figure 10.5. After treatment started at # = 0 with a protease inhibitor the plasma viral load declined rapidly.
The data are from 2 of the 20 patients studied in Ho et al. (1995): all 20 patients exhibited similar rapid
declines. (Reproduced with permission)
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Basic Epidemic Model for HIV Infection in a Homosexual Population

Here we are interested in the development of an AIDS epidemic in a homosexual pop-
ulation. Let us assume there is a constant immigration rate B of susceptible males into
a population of size N (). Let X (¢), Y (¢), A(¢) and Z(¢) denote respectively the num-
ber of susceptibles, infectious males, AIDS patients and the number of HIV-positive or
seropositive men who are noninfectious. We assume susceptibles die naturally at a rate
w; if there were no AIDS, the steady state population would then be N* = B/u. We
assume AIDS patients die at a rate d: 1/d is of the order of months to years, more often
the latter. Figure 10.6 is a flow diagram of the disease on which we base our model.

As in previous models we consider uniform mixing. A reasonable first model sys-
tem, based on the flow diagram in Figure 10.6, is then

X ux—nex, a=bY (10.28)
ar DT HA TR AE '
dy

T =X =+ Y. (10.29)
dA

= Y — @+ A, (10.30)
2 _ oy —uz (10.31)
d[ - p v M ’ .
N@) = X0+ Y@) + Z() + AQ). (10.32)

Here B is the recruitment rate of susceptibles, u is the natural (non-AIDS-related) death
rate, A is the probability of acquiring infection from a randomly chosen partner (A =

B

Susceptible X ——L—-) Natq;a.l death

Ac

Infectious Y ——’1—9 Natural death

/ NIZ)“

Natural dea.thd-——“—- AIDS A Seropositive Z £ 5 Natural death
non-infectious

d

Discase-induced death

Figure 10.6. The flow diagram of the disease as modelled by the system (10.28)—(10.32). B represents the
recruitment of susceptibles into the homosexual community. The rate of transferral from the susceptible to the
infectious class is Ac, where A is the probability of acquiring infection from a randomly chosen partner and
¢ is the number of sexual partners. A proportion of the infectious class is assumed to become noninfectious
with the rest developing AIDS. Natural (non-AIDS induced) death is also included in the model. Parameters
are defined in the text.
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BY /N, where B is the transmission probability), c is the number of sexual partners, d
is the AIDS-related death rate, p is the proportion of HIV-positives who are infectious
and v is the rate of conversion from infection to AIDS here taken to be constant. 1/v,
equal to D say, is then the average incubation time of the disease. (Actually A here is
more appropriately 8Y /(X 4+ Y + Z) but A is considered small in comparison with N.)
Note that in this model the total population N () is not constant, as was the case in the
epidemic models in Section 10.2. If we add equations (10.28)—(10.32) we get

dN

An epidemic ensues if the basic reproductive rate Ry > 1: that is, the number of
secondary infections which arise from a primary infection is greater than 1. In (10.32) if,
att = 0, an infected individual is introduced into an otherwise infection-free population
of susceptibles, we have initially X ~ N and so near t = 0,

dy
7 (Bc —v—wY = v(Ro — DY (10.34)

since the average incubation time, 1/v, from infection to development of the disease,
is very much shorter than the average life expectancy, 1/u, of a susceptible; that is,
v > w. Thus the approximate threshold condition for an epidemic to start is, from the
last equation,

Ry ~ be 1. (10.35)
v

Here the basic reproductive rate Ry is given in terms of the number of sexual partners
¢, the transmission probability B and the average incubation time of the disease 1/v.
When an epidemic starts, the system (10.28)—(10.32) evolves to a steady state given

by
xr o WHONT L @t (B = pNT)
B pvd
7 U=PErWB=pNYy BN (10.36)
pdu d
e _ BBlL@ +d + w) +vd(1 - p)]

[v+ nllb(d + p) — pvl

If we linearise about this steady state it can be shown that (X, Y, Z, A) tends to (X*, Y'*,
Z*, A*) in a damped oscillatory manner with a period of oscillation given in terms of
the model parameters; the method to obtain this is exactly the same as described in
Chapter 3 but the algebra is messy. With typical values for the parameters at the time
(Anderson et al. 1986) the period of epidemic outbreaks was of the order of 30 to 40
years. It is unrealistic to think that the parameters characterising social behaviour associ-
ated with the disease would remain unchanged over that time span. The life expectancy
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of people with HIV has dramatically increased since then, due mainly of course, to new
medicines such as AZT and protease inhibitors.

We can get some interesting information from an analysis of the system during
the early stages of an epidemic. Here the population consists of almost all susceptibles
and so X &~ N and the equation for the growth of the infectious, that is, HIV-positive,
Y-class is approximated by (10.34), the solution of which is

Y([) — Y(O) ev(RO—l)t — Y(O) 6‘”, (1037)

where Ry is the basic reproductive rate, 1/v is the average infectious period and Y (0) is
the initial number of infectious people introduced into the susceptible population. The
intrinsic growth rate, r = v(Ro — 1), is positive only if an epidemic exists (Ryp > 1).
From (10.37) we can obtain the doubling time for the epidemic, that is, the time #; when
Y(tg) =2Y(0), as

In2

ti=r'In2=

We thus see that the larger the basic reproductive rate Ry the shorter the doubling time.
If we substitute (10.37) into equation (10.30) for the AIDS patients, we get

dA
o= pvY (0) &' — (d + w)A.

Early on in the epidemic there are no AIDS patients, that is, A(0) = 0, and so the
solution is given by

rt_e—(d—i-u)t
Alt) = pvY(0)——————
(1) = pvY(0) T dta

Estimates for the parameter r were calculated by Anderson and May (1986) from
data from 6875 homosexual and bisexual men who attended a clinic in San Francisco
over the period 1978 to 1985: the average value is 0.88 yr~!. Crude estimates (Anderson
and May 1986, Anderson et al. 1986) for the other parameter values are Ry = 3 to 4,
d+pu~d=1-133yr"!, p = 10 to 30% (this is certainly very much higher),
v & 0.22yr~!, ¢ = 2 to 6 partners per month. With these estimates we then get an
approximate doubling time for the HIV-positive class as roughly 9 months.

Numerical simulations of the model system of equations (10.28)—(10.31) give a
clear picture of the epidemic development after the introduction of HIV into a suscepti-
ble homosexual population. Figure 10.7 shows one such simulation: the model predicts
that HIV incidence reaches a maximum around 12 to 15 years after the introduction
of the virus into the population. It should be kept in mind that this is an early (and
now more a pedagogical) model. It is interesting to compare these predictions of the
mid-1980’s with the situation in 2000.

In spite of the simplicity of the models, the results were in line with observation in
homosexual communities. More realistic, and not always more complex models, have
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Figure 10.7. Numerical solution of the model system (10.28)—(10.31) with initial conditions A(0) = Z(0) =
0, S(0) + Y (0) = N(0) = 100,000. Parameter values: B = 13333.3 yr— !, v =02 yr~ !, u = (1/32) yr !,
d=1 yrfl, p = 0.3, the basic reproductive rate of the epidemic Ry ~ Sc/v = 5.15. The graphs give the
proportion of those HIV-positive (seropositive) and the proportion who develop AIDS. (After Anderson et al.
1986)

been proposed such as those discussed below. A review of some of the current mathe-
matical models for the transmission dynamics of HIV infection and AIDS is given by
Perelson and Nelson (1999). With the accumulation of more data and information of
the epidemic, even more sophisticated models will no doubt be required in the normal
progression of realistic modelling. A practical use of good models at any stage is that,
among other things, it poses questions which can guide data collection and focus on
what useful information can be obtained from sparse or less than complete data. Esti-
mates of epidemic severity doubling time, and so on, are in themselves of considerable
interest and use. The model here is for a homosexual population. Now that the epidemic
is very much heterosexual other models are required. The approach described here is a
reasonable starting point. The models we now discuss take a very different approach to
HIV infection in that we deal with the actual viral population and not human popula-
tions. As such they can be more closely tied to in vivo data.

10.6 HIV: Modelling Combination Drug Therapy

This section is in part based on the work of Nelson (1998). We start with the simple,
but experimentally based model, proposed by Perelson et al. (1996). We then develop
a more complex nonlinear model which includes treatment for HIV infection with a
protease inhibitor and a reverse transcription inhibitor such as AZT.

The Ho et al. (1995) model was a simple linear first-order equation which accounted
for viral production and viral decline; namely,
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dv
— =P —cV, 10.39
dt ¢ ( )

where P represented a source of viral peptides and ¢ was the viral clearance rate. While
many factors play a role in the clearance of viral peptides such as immune cells, fluid
flow and absorption into other cells, ¢ did not distinguish between them. After intro-
duction of the protease inhibitor (the specific type of drug used on the patients) it was
assumed that the drug would be completely effective, or in other words, the drug would
block all viral production after being introduced. Hence P = 0, and we are left with the
simple equation

dv

Fri —cV = V()= Voe “, (10.40)
where V) is measured as the mean viral concentration in the plasma before treatment.
Plotting In V against ¢ and using linear regression to determine the slope (see Fig-
ure 10.5) gave an estimate for ¢ and hence for the half-life of the virus in the plasma;
namely, t12 = In2/c. The mean for the half-life was 1, = 2.1 4= 0.4 days; see Ho
et al. (1995) for the complete data. The experimentalists then assumed that the patients
were in a quasi-steady state before treatment: that is, the levels of viral load measured
in the plasma remained fairly constant. With this assumption, and knowing the value for
c and the initial viral concentration, Vj), they were able to compute the viral production
before therapy by solving P = cV. While these results were minimal estimates, based
on the assumption of a perfect drug (with no delays), they still provided an estimate of
over 1 billion viral particles being produced daily. This important result was contrary to
the belief that the viral dynamics during this latent period was close to dormant.® It is
an excellent example where even simple, mathematically trivial, models can be of im-
mense help in extracting crucial information from patient data. Another example which
changed the way patients with liver disease were assessed for (toxic) medication levels
is given in Connor et al. (1982a,b).10

Due to these results of Ho et al. (1995) many more models have been developed to
study the HIV; see Perelson and Nelson (1999) for a comprehensive review. In the rest
of this section we examine several models, in particular one which looks at combination
drug therapy and briefly discuss another which includes a delay.

Protease inhibitors are drugs which target the protease enzymes in the cell and
cause newly produced viruses to be noninfectious. To date there is no single drug (nor
even a combination of them) which completely kills the HIV infection because of the
ability of the virus to mutate into a drug resistant form. It takes time, however, for a

9This result, based on an incredibly simple mathematical model, did much to boost the usefulness of
mathematical models in the medical community, a consequence of which is that many more laboratories are
now looking for theoreticians to help in the modelling process.

10The model consisted of a two-compartment model which results in a pair of coupled linear ordinary
differential equations which can be solved simply analytically with patient-based initial conditions. I set it as
a modelling exercise for first-year mathematics students in Oxford but the question was not well described so
it was not clear exactly what was required. One of the college tutors, dealing with the difficulties his students
were having in understanding what was both going on and required, said I must have done it deliberately to
simulate what it was like talking to doctors.
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new form to evolve. The idea behind combination drug treatment is when the virus is
presented with two quite different antiviral drugs the time it takes for a mutiple-drug
resistant strain to emerge is much longer than if the virus had to contend with only one
toxic drug. This is also discussed in the paper by Perelson and Nelson (1999). The use
of multiple drug treatments, such as protease inhibitors together with AZT, has already
had a major effect (in the devloped world) in significantly slowing down the progression
from HIV infection to full-blown AIDS. It has not, however, effected a cure for the
disease. Already there is reemergence of drug-resistant strains of HIV in homosexuals
in San Francisco who have been taking the combination drug cocktail.

We consider each drug to be less then perfect, which thus allows for viral mutation
to a resistant form if administered independently. Let 7, be a measure of the effective-
ness of a protease inhibitor or combination of protease inhibitors in blocking production
of infectious virions so this will affect the viral dynamics directly and the T-cells indi-
rectly. Other commonly used drugs are reverse transcriptase inhibitors, of which AZT
is perhaps the best known. After the development of the protease inhibitors, a combina-
tion, or cocktail, therapy which included multiple drugs was prescribed. For instance,
patients would take a combination of three drugs made of up of a protease inhibitor and
two reverse transcriptase inhibitors. This combination was dramatic initially in reducing
the number of viral peptides detectable in the patient and it was thought that this might
be the cure for the AIDS virus. Unfortunately, with a virus as complex as the HIV it was
only a matter of time before the emergence of resistant viruses. While the combination
treatment is still showing promise for prolonging the lives of infected patients, it is too
early (2001) to say whether or not the virus is even permanently controlled, far less
cured.

We develop a four-species model which includes an equation for uninfected T-cells,
T, productively infected T-cells, T* (not all infected T-cells produce the virus), infec-
tious viruses, V; and noninfectious viruses, Vy;. The model consists of the following
equations which we motivate in turn below.

ar T — L 4T —kviT
a0 TF Tomax T e

dT* .
= (1 = n,)kV;T — 8T*,
dt (10.41)

A% .

7 = (1 —np)N(ST _CV],
dVnr N

7 = npN 8T* —cVny.

In the T-cell equation we consider the cells to be destroyed proportional to the number of
infected viruses and cells with clearance parameter k. In the absence of infection there
is a nonzero steady state, T, so we have a quadratic polynomial in 7 for the uninfected
T-cell dynamics: s, p, Tmax, dr and k are positive constants. The specific form of the
T-cell kinetics, namely, with a logistic form plus another source (s) and a clearance
term (—drT), is because of the form of T-cell recovery after therapy as indicated by
patient data. With the reverse transcriptase (RT) drug like AZT, the RT-inhibitor acts
on the source term for productively infected T-cells with 0 < n,; < | the measure of
its efficacy; if n,; = 1 it is completely effective and prevents all production of infected
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T-cells while if n,, = 0 it implies no RT-inhibitor is given. In the T* equation the effect
of the RT-inhibitor is to reduce the production of the infected cells. These cells also
have a natural death with a rate parameter, §. The protease inhibitor acts on the source
of the virus and so appears in the V; equation with n,, a measure of its efficacy. The
specific appearance in the equations for the effects of the drugs is due to the cellular
mechanisms of each drug and the stage at which they aim to target during infection.
When a drug is completely effective we set n, = 1 or n,, = 1. In the infected virus
V1 equation there is a factor N which is the bursting parameter for the viral production
after lysis (essentially the breaking up, or death, of the cell due to its penetration by the
infected virus and subsequent generation of a large number of viruses); it is of the order
of 480 virions/cell (a virion is a complete virus with all its coating, proteins and so on).
The infected viruses are considered to die naturally at a rate c. Finally the noninfectious
viruses are produced with a rate dependent on the protease drug and we assume they
die off at the same rate as the infected ones. This model lets us explore the effect of the
drugs on the HIV by varying, in particular, the parameters n,, and n,. For example, if
np = 0 we are using only the reverse transcriptase, or RT-inhibitors. We now analyse
this system in several ways and compare the results with patient data.

Some idea of the values of the dependent variables are (from Ho et al. 1995):
T ~ 180 cells/mm>, T~ ~ 2% T-cells, V; ~ 134 x 103 virions/ml, Vy; = 0 virions/ml.
Available parameter estimates are: the viral activity rate k ~ 3.43 x 10~ virions/ml (Ho
et al. 1995), death rate of infected cells § ~ 0.5/day (Perelson et al. 1996), viral pro-
duction by the bursting cell N ~ 480 virions/cell (Perelson et al. 1996), clearance rate
of the virus ¢ ~ 3/day (Perelson et al. 1996), T-cell source s = 0 — 10 cells/mm?/day
(Kirschner and Webb 1996) and death rate of targeted cells dr ~ 0.03/day (McLean
and Mitchie 1995).

T-Cell Recovery

Some models have assumed that the T-cells do not change dynamically during the first
weeks of treatment and hence set T = constant = Ty. However, after antiretroviral ther-
apy is initiated some recovery of T-cells is observed and patient data presented by Ho et
al. (1995) suggest that over a period of weeks the recovery of T-cells can be described
by either a linear or exponential function of time, with no statistically significant differ-
ence between the two functions over that time period. After therapy is initiated Vj(¢)
falls rapidly. For a perfect protease inhibitor, namely, n,, = 1, the solution of the fourth
equation of (10.41) is V;(t) = Voe ' and so after a few days (depending on ¢ of
course) the term —kV;T could be negligibly small in the equation for T-cells. T-cell
replacement can be due to the source s, which incorporates the generation of new cells
in the thymus, their export into the blood and the transport of already created T-cells in
tissues to the blood, or to proliferation of cells. It was previously thought that the adult
thymus no longer produced T-cells but with the significant advances in the study of HIV
dynamics some believe this to be incorrect. If the source s is the major mechanism of
T-cell replacement, we can then approximate the T-cell dynamics by

dT

=s—drT T =T t
=S —drT or ®)=Tp+a

where a is a rate constant.
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If we now consider the effect of only protease inhibitor drugs, that is, n,, = 0,
which relates directly to the patient data of Ho et al. (1995), and further assume the
above linear T-cell growth in line with the patient data, (10.41) become

I v, (T + ar) — 5T

ar= _ ar) — ST*,

dt 110

dv,

d—t’ =(1—n,)NST* —cVy, (10.42)
dVNI .

7 =npNST™ — cVny,

which is a nonautonomous system but which can be trivially made into one. To do
it we simply replace the Ty + at in the first equation by 7 and add to the sytem the
differential equation d 7T /dt = a with initial condition 7'(0) = Ty. Typical solutions of
this system are shown in Figure 10.8 with the estimated parameter values given in the
legend. In Figure 10.9 we show how the solutions compare with specific patient data.
The comparison is quantitatively very good.

We now consider the full nonlinear model given by (10.41), which, as is easily
shown, has two steady states one of which is the noninfected steady state (71, 0, 0, 0)
with preinfected T-cells; we are only interested in 751 > O of course. A little algebra
shows that this uninfected state is

T 4s
Ty = 2| (p—dp) + [(p—dr)? + =L (10.43)
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Figure 10.8. Solutions for the total virus population, V; + Vj, of the system (10.42) which assumes linear
T-cell growth T(t) = Ty + at and monotherapy with a protease inhibitor; that is, there is no AZT-like
drug so n;s = 0. Note the change in viral output as a function of the level of drug effectiveness. (a) The
viral decay assuming a pretreatment steady state value with ¢ = NkTj and varying np. (b) Viral decay
after treatment without a pretreatment value for c: the critical efficacy here is n, = 0.33. Parameter values:
N =480,k =3.43 x 10_5/day, & = 0.43/day, Ty = 180, a = 1 cells/day, ¢ = 2/day. (From Nelson 1998)
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Figure 10.9. Solutions for the total virus population, V. = V; + Vi, plotted in terms of the RNA, of the
system (10.42), which assumes constant T-cell growth and monotherapy with a protease inhibitor and their
comparison with three patient data of Ho et al. (1995). These are typical of the other patients. The parameters
for each patient were obtained from a best fit using figures equivalent to those in Figure 10.5. Parameter
values: § = 0.5/day then, patient 104: Ty = 2mm ™3, & = 1.5, V(0) = 52 x 103, ¢ = 3.7/day, total
viral production rate: P = 2.9 x 10%/day; patient 105: Ty = 11mm~3, « = 10.18, V(0) = 643 x 103,
¢ = 2.1/day, total viral production rate: P = 32.1 x 109/day; patient 107: Ty = 412mm3, o = 2.64,
V(0) = 77 x 103, ¢ = 3.1/day, total viral production rate = 3.0 x 10° /day. (From Perelson and Nelson
1999 and reproduced with permission)

We are interested in the stability of this steady state if perturbed with the introduction
of HIV. We examine the stability in the usual way, exactly as we did, for example, in
Chapter 3 by looking at the eigenvalues of the perturbed linear system. After somewhat
more algebra we find the eigenvalues are

2T,
A =p<1— “)-dr, A= —c,

max

c+4

1
A3 =— + 5\/(c +68)2 — 4cd + 4SNkT; (1 — ne) (10.44)

ne=1-U-npH1 - n[))v

where n. represents the effectiveness of the combination treatment. For stability we
require the eigenvalues to be negative; they are all real here. The only non obvious
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negative eigenvalues are Aj, which requires Ty1 > (1/2p)(p — dr)Tmax, @ condition
that is obviously satisfied from (10.43), and A,. The eigenvalue Ay < O is satisfied if

5 1
Ay = —CJZF + E\/(c+5)2 — 4¢8 + 45NkT, 1 (1 — n.) < O;

that is,

c+8>(c+8)2—4cs + 4SNkTy (1 — ne).

So, the uninfected steady state is stable if

ne=1—=0—-np)1—ny) < = ne > 1 (10.45)

C
NkTy © NkTy

This means that if the drug treatment is strong enough the virus will be eliminated.
(Actually, the virus is never eliminated but it does fall below detectable levels.) We can
estimate the required effectiveness of treatment from this condition. Under the assump-
tion of a pretreatment steady state, with T = Ty, the second and third of (10.41) imply
¢ = NkTy. By way of example, if we set n,; = 0, the stability condition (10.45) then
becomes

n,>1——.
P T

Healthy individuals have T-cell counts of about 1000/mm?> so we can assume Ty =
1000. Hence for a patient with a pretreatment T-cell count of say, Ty = 200, we find
np needs to be greater than 0.8. For a less advanced patient with a T-cell count of
To = 500, n,, need only be greater than 0.5. Thus, this analysis supports the notion that
patients should be started on antiretroviral drug therapy as early as possible (Perelson
and Nelson 1999). On the other hand if we have both drugs administered the condition
is then
To
I=np)d—npy) <1——
Ts)
and with Ty = 200 we need only have, for example, an efficacy of 0.55 for each of n,
and n,;.
The second steady state, the infected steady state, is obtained, after some algebra,
from (10.41) as

To=-S" w=""qllp(1i-12) 4
2= Nknew T k1, Tk | Tom) 7|
- c‘_/l — an[

TON(—n, M T 1=n,

where overbars denote steady state quantities and as before n, = (1 —n,,)(1 —np). In
the absence of treatment, n. = 1 but here we are concerned with studying the effects of
less than perfect drugs so 0 < n. < 1.
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This steady state is relevant only if \71 > 0; that is,

N Ty
—+p—dr—p > 0. (10.46)
Ty Tax

If the inequality (10.46) is replaced by an equality and the equation V; = 0 solved for
T2, we obtain an expression identical to the expression for 7. Thus, at Vi = 0 the
uninfected and infected steady states merge. Further, as T, decreases the left-hand side
of (10.46) increases. So, for V; > 0, an infected steady state exists, 0 < Tyn» < Tyq,
which of course makes biological sense since in the infected steady state the system
should have fewer T-cells than in the uninfected state.

Substituting the expression for Ty, into the steady state equation for V; gives a
necessary condition for the infected steady state to exist; namely,

gy NAzng) JTH G ¢ N _glso (10.47)
c k NkTmax(1 — nc)

If we look at a limiting case where s = 0, from (10.47), certainly if

Cc

Nk < ——
Tiax (1 — ne)

= V; <0.

Let us now consider the stability of this infected steady state by calculating the
eigenvalues. The Jacobian matrix, evaluated at the infected steady state, is

p(l— 75y —dr —kV; 0 —kT 0
(1 —n)kV; -8 (1 —n)kT 0

0 SN(1 —nyp) —c 0|’
0 8Nn, 0 —c

where T = Ty».
The characteristic equation immediately gives one eigenvalue as A4 = —c < 0.
The other three eigenvalues, A, are determined by solving the cubic

[p (1 — 2TT ) —dr —kV; — )\} [(c+M@B+ 1) —kTSN( —ne)]
—kVikTSN(1 —ne) =0

which, using the steady state value for T, simplifies to

max

2T - -
[p(l— )—dT—kVI—/\}[A2+(8+c)A]—kc8V1:0;
that is,

B+ AV +BL+C =0,
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where
2pT -
A=8+c+ —(p—dr)+kVy,
Tmax
2pT _ _
B:(8+c)|: P —(p—dT)+kV1}, C = c5kV;.
Tmax

We do not need the actual expressions for the eigenvalues, only the sign of their
real part. The Routh—Hurwitz conditions (see Appendix B) state that,if A > 0,C > 0
and AB — C > 0 then the eigenvalues have negative real parts. By inspection, C > 0.
At steady state,

.
s+ (p—dr)T — =kViT.
Tmax
Since s > 0,
I
(p—dr)T — < kViT
max
or
pT _
p—dr < + kVy,

max

from which it follows that A > 0. The remaining condition necessary for stability of the
infected steady state is AB — C > 0. Let us write A = (6 + ¢ + Bp) with B; defined by
the expression for A and note that B can then be written as B = (6 4 ¢) B;. Exploiting
this form and noting that By contains the term kV;, it can then be simply shown that
AB = Bi(8 + ¢)*> + 312(8 +¢) > 8ckV; = C. Hence the infected steady state, if it
exists, is stable.

As noted above if the infected steady state exists, T2 < Ts1, which we can rewrite
as

c < NkTs1(1 —n.).

To summarise, if ¢ > NkT;1(1 — n.) then the only nonnegative steady state is the
uninfected steady state and it is stable. Conversely, if ¢ < NkT;1(1 — n.) then the
uninfected state is unstable and the infected state exists and is stable. This is equivalent
to saying that there is a transcritical bifurcation when ¢ = NkTg (1 — n.). We can
express these conditions in a different way in terms of the model parameters. The critical
treatment efficacies, for example, are related to the model parameters by

c 4sp
[ =)0 = 1)) = 3o [\/ (p—dr)*+ =

max

—(p— dT):| . (10.48)
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10.7 Delay Model for HIV Infection with Drug Therapy

We now touch on some recent work in which a discrete delay is added to the model to
account for the time lag between the time a cell becomes infected and the time at which
the infected cell starts producing virus. Work in this area has shown that including a
delay of this form affects the estimated values derived from kinetic experiments for
the half-life of productively infected cells and viruses. Here we only give a very brief
description of the current work with delay models.

Time Lags in the HIV Infection Process

The virus life cycle plays a major role in disease progression during HIV infection. The
binding of a viral particle to a receptor on the CD4 T-cell, or other targeted cell, be-
gins a chain of events that can eventually lead to the CD4 T-cell becoming productively
infected, that is, producing new viruses. Most previous models consider this process
to occur instantaneously. In other words, it is assumed that as soon as virus contacts a
targeted cell the cell begins producing viruses. However, biologically there is a measur-
able time delay between initial viral entry into a cell and subsequent viral production.
Recently there have been models which examine this effect and they have shown that
this delay needs to be taken into account to determine accurately the half-life of a free
virus from drug perturbation experiments. If the drug is assumed to be completely effi-
cacious, the delay does not affect the estimated rate of decay of viral producing T-cells
(Herz et al. 1996, Mittler et al. 1998, 1999). If the assumption of the drug being com-
pletely effective is not assumed (to date no drug is 100% effective) the introduction of
the delay then affects the estimated value for the infected T-cell loss rate (Nelson 1998,
Nelson et al. 2000).

Such a delay model, based on the one in the last section, is given and discussed in
detail by Nelson et al. (2000). In it we incorporate the intracellular delay by considering
the generation of virus-producing cells at time ¢ to be due to the infection of targeted
cells at time ¢ — 7, where the delay, 7, is taken to be a constant. Of course in reality the
delay is a distributed function (refer to Chapter 1). We also assume uninfected T-cells
remain constant; thatis, 7 = Tp. Model equations describing this scenario are (compare
with (10.41))

T Vit — o) — T
= —7T) — s
dt ovr
v
d—t’ = (1 —n,)NST* —cVy, (10.49)
v
dftv’ =n,N8T* — cVyy,

where the term V;(r — ) allows for the time delay between contact and viral production.
The average life span of a virus is 1/§. With delay we are saying that the average life
span of a cell from time of infection to death is 7+ (1/§). We do not have a precise value
for T but estimates of 1 to 1.5 days (Perelson et al. 1996, Mittler et al. 1998, 1999). So,
to a first approximation, T-cells infected with HIV-1 might live on average 2 to 3 days
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rather an average of 1 to 2 days. The rate constant for infection, k, is assumed constant
because the drug we are modelling, namely, a protease inhibitor, does not affect k. If a
reverse transcriptase inhibitor were being used then the appropriate model would have
k in the dT* /dt equation replaced by [1 —n,:(t — T)]k(t — 7). Here the Viy; equation is
uncoupled from the 7* and V; equations and so can be solved independently once the
solution for the first two equations is known. Analysis of a more general form of this
delay model, which included uninfected T-cells and nonlinearities are given in Nelson
(1998). The method of analysis is similar to that discussed in detail in Chapter 7.

This model has been used, among other things, to analyze the change in parameters
associated with the decay rate seen in data from patients undergoing antiviral treat-
ment. It has also helped in getting better estimates for crucial parameters from patient
data. The main conclusions from the analysis of the model, with experimentally esti-
mated parameters, is that when the drug efficacy is less than 100%—the case in vivo at
present—the rate of decline of the virus concentration in the plasma primarily depends
on the efficacy of the therapy, the death rate of the virus producing cells and the length
of the delay. These are all to be expected. The main point of the model and its analysis
is that the results quantify these effects in terms of the measurable (and experimentally
changeable) parameters.

10.8 Modelling the Population Dynamics of Acquired Immunity to
Parasite Infection

Gastrointestinal nematode parasite infections in man are of immense medical impor-
tance throughout the developing world. An estimated 800 to 1000 million people are in-
fected with Ascaris lumbricoides, 700 to 900 million with the hookworms Ancyclostoma
duodenale and Nector americanus and 500 million with the whipworm Trichuris tri-
chiura (Walsh and Warren 1979). To design optimal control policies, we must have an
understanding of the factors which regulate parasite abundance and influence the size
and stability of helminth populations. So, in this section we present a model for the im-
munological response by the host against gastrointestinal parasites which was proposed
and studied by Berding et al. (1986). We show that such relatively simple modelling can
have highly significant implications for real world control programmes.

Parasites invoke extremely complex immunological responses from their mam-
malian hosts. We still do not know exactly how these come about but current experi-
mental research provides some important pointers which form the basis for the mathe-
matical model. Also the modelling in this section demonstrates how to determine some
of the parameter estimates from a combination of theory and experiment which would
be difficult to obtain from experiment alone.

Let us first summarise the relevant biological facts starting with a brief review
of key experiments. Laboratory experiments in which mice are repeatedly exposed to
parasite infection at constant rates can provide a suitable test for mathematical mod-
els of helminth population dynamics. Experiments relevant for our model (Slater and
Keymer 1986) involve two groups of 120 mice, which are fed on artificial diets con-
taining either 2% (‘low protein’) or 8% (‘high protein’) weight for weight protein. Both
groups were subdivided into 4 groups of 30 mice, which we denote by (a), (b), (c)
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and (d), which were subjected to repeated infection with larvae of the nematode Helig-
mosoides polygyrus. The subgroups were infected at different rates: group (a) with 5
larvae/mouse/two weeks, group (b) with 10 larvae/mouse/two weeks, group (c) with 20
larvae/mouse/two weeks and group (d) with 40 larvae/mouse/two weeks. So, we have a
total of 8 subgroups of 30 mice differing either in their infection rates or in the protein
diets they were fed on. It is known that protein deprivation impairs the function of the
immune system so this scheme lets us compare parasite population dynamics, under
various infectious conditions, in the presence and the absence of an acquired immune
response.

The most important experimental observations were the temporal changes in the
mean worm burden, M, namely, the total number of adult worms divided by the total
number of hosts. Every two weeks throughout the experiment a sample of 5 mice from
each group was examined for the presence of adult parasites. The number of parasites
present in each mouse was determined by postmortem examination of the small intes-
tine. The main experimental results are shown in Figure 10.10 which displays the mean
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Figure 10.10. Change in mean adult worm burden, M, in mice hosts fed on a protein diet for a repeated
infection over a 12-week period: (a) low protein diet; (b) high protein diet. The infection rates are (a) 5, (b)
10, (¢) 20, (d) 40 larvae/mouse/2 weeks. The periods are the experimental points from Slater and Keymer
(1986). The continuous lines are solutions of the mathematical model; how these were obtained is described
in the text in the subsection on the population dynamics model and analysis. (From Berding et al. 1986)
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Figure 10.11. These experimental results show the worm survival after a single infection of larvae. There
is a linear relationship between larval dose and adult worm burden; these results are after 14 days from the
infection. The circles represent mice fed on a low protein diet and the triangles are for mice fed on a high
protein diet. The solid line is a best fit linear description of the data; the gradient is 0.64, from which we
deduce that 64% of the larvae survive. (From Berding et al. 1986)

worm burden as a function of time for the low and the high protein groups, respectively.
The letters (a), (b), (c) and (d) refer to infection rates of 5, 10, 20 and 40 larvae per two
weeks.

Other experiments were carried out to quantify parasite establishment and survival
in primary infection. Here only a single dose of larvae was given unlike the repeated
infection in Figure 10.10. The results shown in Figure 10.11 give the mean worm burden
as a function of the infection dose. From this figure we estimate that approximately 64%
of the infective larvae survive to become adult worms.

The survival of adult worms in a single infection is summarised in Figure 10.12:
it again shows the mean worm burden as a function of time. In this situation the worm
population remains free from effects of the host’s immune system: we use this figure to
estimate the natural death rate of the adult worms.

So as to be able to construct a realistic model, let us summarise these and related
experimental observations.

(A1) Infective parasite larvae, after ingestion by the host, develop into tissue dwelling
larvae which become adult worms found within the lumen of the alimentary canal.
This invokes a distinct immunological response from the host. Typically, the tis-
sue dwelling larvae are in the most immunogenic stage in the parasite life cycle.
We thus assume that the immune system is triggered according to the larval bur-
den experienced by the host.

(A2) Many experiments point to the presence of delay, that is, memory, effects in im-
mune response. Some of these effects can be accounted for by including delay in
the models.
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The experimental results shown in Figure 10.10 suggest, importantly, that the
strength of the immune response is very much dependent on the nutritional status
of the host. We interpret the differences in the dynamics of infection in mice feed-
ing on low and high protein diets, that is, Figures 10.10(a) and (b) respectively, as
a consequence of a relationship between the nutritional status and immunological
competence.

The similarity between Figures 10.10(a) (a),(b) and Figures 10.10(b) (a),(b) and
the differences between Figures 10.10(a) (¢),(d) on the one hand and Figures 10.10
(b),(c),(d) on the other, clearly indicate a threshold behaviour of the immune sys-
tem. Biologically this means that the full activation of the immune system re-
quires a certain threshold of exposure to parasite infection.

Available evidence on the effectiveness of the immune response, which we define
here as the per capita rate of limitation in parasite establishment and survival,
in relation to its stimulus, that is, increased exposure to infection, suggests the
following scenario. After an initial increase, the activity of the immune response
to the parasites saturates at a maximum level. Further stimulation does not seem
to increase the subsequent effectiveness of acquired immunity. So, we assume
here that the activity of immune response saturates at a defined maximum level.

(C) The immunological response may act against several stages in the parasite life cy-

cle. In some strains of mice it directly kills tissue-dwelling larvae. However, in
others the immune response is not capable of preventing larval development. In
these, larvae subjected to immunological attack emerge as stunted adults, with
a correspondingly high mortality rate. So, to reflect these experimental findings
we model immunological competence by an increased mortality rate of the adult
parasite.
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Let us now construct the model on the basis of these assumptions, all firmly based

on experimental observations, in the following three main steps.

(@

(i)

(iii)

We introduce a variable, E, for the immune system, which takes into account
assumptions (A1) and (A2), by

t
E= / L(t" dt, (10.50)
t—T

where L(t) denotes the mean number of tissue-dwelling larvae in a host at time
t with T the time-span over which the immune system retains memory of past
infections. So, E is a measure of the number of larvae in the host during the time
interval (t — T, t). Note that with the form (10.50) different situations (for ex-
ample, a small infection persistent for a long time and a large infection persistent
for a short time) can lead to the same values of E.

To account in a simple way for the biological facts in (B1) through (B3) we in-
troduce an expression to describe the immune system’s activity; namely,

aE?

y (10.51)

I = Ip(E) =

where E is the input variable (10.50), « is the maximum functional activity of
the host’s immune response and 8 provides a measure of the sensitivity of the
immune system. (Recall the predation response in the budworm model dynamics
in Chapter 1.) According to (B1), « also reflects the nutritional status of the host
being considered; we can think of « as a monotonic increasing function of the
nutritional status. 8 also may be host specific since it seems likely that 8 also has
a direct biological interpretation in genetic terms since different strains of mice
differ in their immune response against parasitic infections.

Finally we have to incorporate (10.50) with (10.51) into a dynamical model for
the complete host—parasite community. According to assumption (C), and inde-
pendent of the specific dynamical situation under consideration, the activity of
the host’s immune system simply leads to an increase in the mortality of the adult
parasites. This requires an additional loss term in the dynamical equations for the
mean worm burden, M (¢), of the form —I M (t) < 0, where I, the strength of
immunological response, plays the role of a death rate for parasites; it depends on
the level of infection.

Population Dynamics Model and Analysis

From the above, mice fed on low protein diets appear to have little or no immune re-
sponse; we refer to these as the low protein diet group (LPG) and investigate the dy-
namics of their mean worm burden by a simple immigration—death model. On the
other hand, hosts feeding on a high protein diet are expected to show an immune re-
sponse.
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Low Protein Model

Let us start by considering the parasite dynamics of the LPG. The parasites, harboured
by a host population of constant size, are subdivided into two categories: larvae in the
wall of the small intestine, and adult worms in the gut lumen. We model the dynamics
of the mean number of larvae, L, per host by

dL )
—=h—uDL. i=1234, (10.52)

where A;, i = 1,2, 3, 4, refer to the experimentally controlled infection rates, for ex-
ample, 5, 10, 20 and 40 larvae per mouse per 2 weeks as in the experiments recorded
in Figure 10.10. Here 1/D = C denotes the proportion of larvae developing into
adult worms after a developmental time delay ¢, here denoted by 1/u. For the par-
asite Heligmosoides polygyrus, t; = 1/ =~ 8days and from Figure 10.11 we esti-
mate C;, = 0.64. We can now evaluate the net loss rate of the larval population per
host as D =~ 0.195day~! which implies (i) an effective life span of a larval worm
of 1/(uD) ~ 5.12days, and (ii) the natural larval mortality rate uo = u(D — 1) =
0.07 day—".
We model the dynamics of the mean adult worm burden, M, by

am
= uL M, (10.53)
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Figure 10.13. Mean worm burden M (¢) for mice on the low
protein diet (LPD) obtained from the analytical solution
201~ (10.54) of the model (10.52) and (10.53). The curves
correspond to the different larvae infection rates A;,
i=1,2,3,4:(a) 5, (b) 10, (c) 20, (d) 40 larvae per mouse per
0 L 1 ] 2 weeks. Parameter values: u = 0.125 dayfl, D =1.56,

1
0 2 4 6 8 1012 §=56x10"3 day_l. These curves correspond to those
Weeks superimposed on Figure 10.10(a).
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where & denotes the natural death rate of the adult worms in the absence of competitive
or immunological constraints. We estimate § = 5.6 x 107> day~! from the experimental
results of a single infection shown in Figure 10.12, which implies an adult worm life
span of approximately 25 weeks.

Solutions of the linear equations (10.52) and (10.53), with the initial conditions
L(0) = M(0) = 0, are simply

A
_ ! _ ,—mDt
L(t) = —MD(I e HD1y

A s (10.54)
M =3 {5 (1= e
+ (uD —8)" (e 1P —e—‘”)}, i=1,234

Figure 10.13 plots M(¢) fori = 1,2, 3, 4 for the first 12 weeks using the above esti-
mates for the parameter values. These are the curves which are superimposed on the
experimental results in Figure 10.10(a); there is very good quantitative agreement.

High Protein Model

With this diet the host’s immune system comes into play and so we have to incorporate
its action into the dynamical equation (10.53) for the worm burden. In line with the
observation (iii) above, this equation now takes the form

amMm
—-=nL—@+DM, (10.55)
aE2 t
=i E =/ Lt dt, (10.56)
t—=T

where [ is the cumulative effect of increased mortality of the worms by the immune
response.

The larvae equation is still taken to be (10.52) since we assume the immune re-
sponse does not principally alter the larvae dynamics. The infection pattern in the labo-
ratory situation is then given by (10.54) as

0, t<0

Lo SS(—e P, 10
n

(10.57)

where A;, i = 1,2, 3,4 are the different larval infection rates. This generates the im-
mune system input function E given by (10.56); integration gives

Ai 1
;){t——D(l—e_“Dt)}, O0<t<T
E(t) = "A “1 (10.58)
- {T——e“D’(l—e“D')}, t>T
uD uD

which, as t — 0o, asymptotes to the constant ;7 /uD.
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The high protein model consists of (10.52) and (10.55) and to solve it we must first
obtain estimates for the immune system parameters 7', o and 3, respectively the memory
time from past infections, the maximum mortality contribution from the immune system
and the worm burden at which the immune response is switched on. Accurate estimates
of immunological memory time 7 are not available. Some data (Rubin et al. 1971)
indicate that some mice retain active immunity against Heligmosoides polygyrus for at
least 30 weeks after infection. On the basis of this we assume 7 is at least larger than
the experimental duration time of 12 weeks of experiments; see Figure 10.10.

Consider now the parameter «, which characterises maximum functional activity
of the host immune response and also reflects the nutritional status of the host. We can
estimate it from the asymptotic steady state value M (0co0) = My, of the worm burden.
Let us consider the highest infection rate A4, then from (10.58) in the limit ¢t — oo, we
have

which on substituting into (10.56) gives

MD\/B‘

Ad

I~a for T> (10.59)
The experimentally observed saturation, as described in (B3), ensures the validity of
this assumption on 7. We can use (10.59) with (10.55) at the steady state to determine
o, to get

" DMy

Mo = uL(00) — Mo = « — 4. (10.60)
Since, within the experimental observation time, the system does not reach its final
steady state, we use (10.60) to predict M, as a function of «, namely,

Ad

T (10.61)

o0

Finally we use the experimental data given in Figures 10.10(b)(d), which corre-
spond to the highest rate of infection, to determine the sensitivity of the immune system
as measured by S. Note there that the mean adult worm burden rises to a maximum
value M* at a time ¢* and then declines under the influence of host immunity, despite
continual reinfection, to settle at the asymptotic steady state value M. For the maxi-
mum point (M*, t*), M* = M(t*), equations (10.55) and (10.56) give

aEXM*
B+E*

0=pulL —SM* — (10.62)
Since, in the laboratory situation, t* satisfies

1
) Lt <T, (10.63)
[
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we use the first of (10.58) to get E and then solve (10.62) for $ to get

_ E*(aM* — L 4+ 8M*)

p uL —SM*

, (10.64)

where L(t) and E(t) are their values at t = t*; as before M* = M(t*). We estimate
the values for M*(~ 50 worms) and t*(~ 7 weeks) from the experimental data in Fig-
ures 10.10(b)(d) and in turn use (10.64) in subsequent calculations to determine the
sensitivity 8, which is measured in Wormzdayz, as a function of «. So, we have used
the experimental data and the fact that the laboratory situation is in the regime r < T to
determine the respective parameters « and 8 by using (10.60) and (10.64).

We can now analyze the complete nonlinear immigration—death model

dL )

E:A,-—uDL, i=1,2,3,4,

M (10.65)
WZML_((S_‘_I)M’

where the acquired immune response function / is given in terms of E and L by (10.56).
Numerical integration of (10.65) gives the solution for the mean adult worm burden as
a function of time; the results are plotted in Figure 10.14 for the first 12 weeks. The
different curves again represent the different infection rates.

Here we have chosen « equal to 0.5 day~!, which implies 8 ~ 6.1 x 10® worms?-
day2 (the units are dictated by the form of the immune function 7 in (10.56)). With
these, the solutions give a very satisfactory fit to the experimental data in Figure 10.10.
Since « is related to My, by (10.61), we thus predict that a continuation of the present
experimental setting eventually leads to an asymptotic steady state of My, = 4 worms.
If we restrict ourselves to the same genetic type of hosts and the same dietary conditions,
the model can also be used to investigate more realistic situations such as when the hosts
are subjected to natural infection. We briefly discuss this below.

801~
M
60+
d Figure 10.14. The time evolution in the mean worm burden,
401 M (t), in mice hosts fed on a high protein diet for a 12-week
c period of repeated infection, obtained from a numerical
integration of equations (10.65), which govern the population
20k dynamics in the presence of host immune response. These curves
are the ones used to compare with the experimental data in
a Figure 10.10(b). Parameter values: . = 0.125 day_l, D = 1.56,
0 L1 and§ = 5.6 x 1073 day*1 as in Figure 10.13, and @ = 0.5

L
0 2 4 6 8 1012 (which imply 8 = 0.1 x 10) for the maximum functional
Weeks activity of the immune system.
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For even more general applications of (10.65), such as to arbitrary nutritional con-
ditions or different strains of mice, further experiments are necessary to clarify: (i) the
detailed functional dependence of the maximum functional activity, ¢, on the nutritional
status of the hosts, (ii) the specific relationship of the sensitivity, 8, to various strains
of mice and (iii) the size of the memory time, 7. With these the system (10.75) can
be used to predict the time-evolution and the final steady state of the mean worm bur-
den dependence on the nutritional status and the genetic properties of the hosts being
considered.

Among the goals of any mathematical modelling in epidemiology are: (i) to pro-
vide a proper mechanistic description of the field situation and (ii) to provide a sound
basis for making practical predictions. Usually, however, a major difficulty is the prac-
tical estimation of the many parameters which are involved in the models. Controlled
laboratory experiments, which study particular aspects of the complete dynamics, while
keeping all other parts of the system under experimental control, have proved very use-
ful in this respect. The experiments described here have specifically highlighted the role
of the immune response. As a result we have been able to develop and exploit a sim-
ple but realistic mathematical model, which admits a full quantitative description of the
population dynamics in the presence of host immune response.

At this point a few cautionary remarks should be made. First, the model as it stands
does not, nor was it intended to, give a full picture of the underlying delicate biochem-
ical and biocellular processes. It does, however, provide a quantitative picture of the
macroscopic features of immune response: the per capita rate of limitation in parasite
survival can be related quantitatively to the antigenic stimulus (that is, the exposure to
infection). Second, the choice of the input function E for the immune system in (10.50)
and in particular (10.51) is, of course, not unique; it seems, however, a very plausible
one in view of the biological observations listed. In fact the qualitative features of the
experimental data are reproduced even with a linear function 7 (E) in place of the im-
mune activity function in (10.56). However, numerical simulations show that this latter
model assumption gives a more satisfactory, simultaneous fit of the four graphs corre-
sponding to the four different infection rates, (Figures 10.10(b) (a) to (d)), than a linear
version of (10.51). In summary then, the model is supported by the following facts:
(1) it is in keeping with the biological observations, (ii) it provides a quantitative fit for
the experimental data used to test it and (iii) the parameters introduced are biologically
meaningful and can be estimated.

The importance of an acquired immune response in human infection with several
species of helminth parasites has also been shown, for example, in the immunological
and epidemiological studies of Butterworth et al. (1985). They describe the immune
response of ‘resistant’ and ‘susceptible’ Kenyan school-children to infection with the
blood fluke Schistosoma mansoni. The role of human immunity in controlling other
worm infections is similarly well established. There is an urgent need for fieldwork
studies: basic mathematical models of the type described and used here can be of enor-
mous help in their design and interpretation. In addition, extension of the modelling
technique to the ‘real world’ can provide a cheap and effective way of testing the effi-
ciency of various parasite control programmes, without resort to lengthy and expensive
field trials. Further modelling on the lines described in this section have been carried
out by Berding et al. (1987) for further laboratory studies in which there is a genetically
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heterogeneous host population and in which there is natural transmission of the para-
site. As before the mice populations had different protein diets. They also discuss the
significance of the results from a real world medical viewpoint.

A direct practical (and commercial) application of the concepts and modelling tech-
niques in this section was given by Parry et al. (1992). They applied it to coccidial infec-
tion in chickens with emphasis on vaccinating the chickens by delivering oocysts (early
stage coccidia) in their feed: this induced an immune response at a much lower level of
parasite burden.

What is already abundantly clear is that in real world practical terms, the nutritional
status of the host is an important factor in the population dynamics of parasite infections,
and must not be ignored in the design of optimal health control policies.

10.9 Age-Dependent Epidemic Model and Threshold Criterion

In many diseases the chronological age of the individual is an important factor in as-
sessing their vulnerability and infectiousness. For example, the interesting data quoted
by Bernoulli (1760) on the incidence and severity of smallpox with age is a vivid il-
lustration: vulnerability and mortality go down markedly with age. A variety of age-
dependent models was discussed, for example, in the book by Hoppensteadt (1975).
Dietz (1982), for instance, proposed such a model for river blindness (onchocersiasis)
and used it to compare various possible control strategies.

Age may also be interpreted as the time from entry into a particular population
class such as the susceptibles, infectives or the removed group in a basic SIR model.
The two interpretations of age are often the same. With the specific case we analyse in
the following section, on a drug use epidemic model, age within a class, the users, is the
relevant interpretation. Another more relevant and practical example involving bovine
tuberculosis is discussed in detail in Section 10.11.

Consider the population we are interested in can reasonably be divided into suscep-
tibles, S(¢), and infectives, I (a, t), where a is the age from exposure to the disease so
we are considering an S/ age-dependent model. The number of susceptibles decreases
through exposure to the disease. The removal rate of susceptibles is taken to be

as [ f N /]

—_— = r@)l(a,t)da |S, S(0)=So. (10.66)
dt 0

That is, the removal due to infectives is weighted with an age-dependent function r(a)
which is a measure of the infectiousness of the infectives. Since the infective is only
infectious for a limited time, 7, this is the upper limit in the integral.

To get the equation for the infective population 7 (a, t) we use a conservation ap-
proach. In a time A there is an advance in chronological age and in infective class age
from (¢,a) to (t + A,a + A). Conservation then says that the change in the number
of infectives in a time A must be balanced by the number removed. We thus have, in
time A,

Ia+A,t+A) —I(at)=—r@(a,1)A,
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where A(a) is the age-dependent removal factor. In the limit as A — 0 we then get, on
expanding in a Taylor series, the partial differential equation

of | oI Ma)l 10.67
or T o0 = (@)1 (10.67)
At time t = 0 there is some given age-distributed class of infectives Iy(a). At
a = 0 there is recruitment from the susceptible class into the infectives. Since all new
infectives come from the susceptibles, the ‘birth rate’ 7 (0, ¢) is equal to —d S/dt. Thus
the boundary conditions for (10.67) are

as
I(a,0) = Ip(a), 1(0,t)= I t > 0. (10.68)
The integrodifferential equation model now consists of (10.66)—(10.68), where Iy(a)
and Sp are given. We assume the functions r(a) and A(a) are known, at least quali-
tatively, for the disease and in control procedures can be manipulated as is often the
case.

An infection will not spread if the number of susceptibles expected to be infected
by each infective drops below one. If the number exceeds one then the infection will
spread and we have an epidemic. The number y of initial susceptibles expected to be
infected by each infective is

Yy = So/r r(a) exp [— /a rah) da/:| da. (10.69)
0 0

As in (10.66), r (a) here is the infective capability of an infective. It is weighted with an
exponential function which is the probability of an initial infective surviving to age a:
A(a) is the same as in (10.67). The threshold value for an epidemic is y = 1 above which
the infection spreads. We now show how the severity of the epidemic, as measured by
the ratio S(00)/Sp, depends on y. Clearly from (10.66) since dS/dt < 0, S(t) —
S(00), where 0 < S(00) < Sp.

We solve the mathematical problem (10.66)—(10.68) using the method of charac-
teristics. (A similar procedure was used in Chapter 1, in the single population growth
model with age distribution.) The characteristics of (10.67) are the straight lines.

dt
Rt =t , t
da = a=tta, a= (10.70)

=t—ty, a<t,

where ap and f( are respectively the age of an individual at time ¢ = O in the given
original population and the time of birth of an infective; see Figure 10.15.
The characteristic form of (10.67) is

dl dt
— =—Aa)l on — =1,
da da

and so, with Figure 10.15 in mind, integrating these equations we get
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; a=1-1, a=t+a,
a <t
a>t . o
Figure 10.15. Characteristics for the
infectives equation (10.67). On ¢t = 0,
I(a, 0) = Iy(a), which is given, and on
0 a a=0,10,t)=—-dS/dt,t > 0.

I(a,t) = Ip(ag) exp |:— /a)\(a/) da'] , a>t

0

a
= 1(0, ap) exp —/ )L(a’)da/i|, a<t.
0

Thus, from (10.70),

I(a,t) = Ip(a — t) exp —/ A(a’)da’], a>t
a—t

; (10.71)
=1(0,a—t)exp [—f ra) da/i| , a<t.
0

From (10.66) the solution S(t) is

t T
S(t) = Spexp [—/0 {/0 r(a) (a, t’)da} dt/:|. (10.72)

Using (10.71) for I (a, t), in the ranges a < t and a > ¢,

T t a
/ r(a)I(a,t)da :/ r(@)I1(0,t — a)exp [— / ra) da/:| da
0 0 0

+ /T r(a)lo(a —t")exp |:— fa ra) da/i| da.
t a—t'

Since the time of infectiousness is 7, the last integral vanishes if # > 7; we can think of
itin terms of r(a) = Oif a > t. For S(¢) in (10.72) we have, using (10.68) and (10.73),

t T
/ / r@)(a,t)dadt
0 JO ,
t pt a r_
= —/ / r(a) exp [—/ A(a’)da’] Mdadl’
Ot OT 0 a dt
—i—/ / r(a)Ip(a —t') exp |:—/ A(a/)da’] dadt’ .
0 Jr a—t'

Interchanging the order of integration in the first integral on the right-hand side we get

(10.73)
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t T
/ / r(a)I (a,t)dadt
0 JO

, ) (10.74)
= —/ r(a) exp [—/ A(a’)da’] (St —a) — So)dt +m(2),
0 0

where
m(t) = /Ot /I/rr(a)lo(a —t'yexp [— /at/)u(a/)da/i| dadt’. (10.75)
Substituting (10.74) into (10.72) we then get
S(t) = Spexp {—m(t) + /(;tr(a)exp [— /Oak(a’)da’] (St —a) — So)da}.

(10.76)

If we now let t — oo, remembering that r(a) = 0 for a > t, we get, using y defined
in (10.69),

F = meoty#-n 50 (10.77)
: s,

We are interested in the severity of the epidemic as measured by F, that is, the
fraction of the susceptible population that survives the epidemic, and how it varies with
y. For given r(a), Ip(a) and A(a), (10.75) gives m(t) and hence m(00). If 0 < m(oc0) =
& < 1, Figure 10.16 shows how F varies with y. For each value of y there are two
roots for F but, since S(co) < Sp, only the root F = S(00)/Sp < 1 is relevant. Note
how the severity of the epidemic is small for ¢ small as long as y < 1 but it increases
dramatically; that is, S(c0)/So decreases (from S(00)/Sp = 1) quickly for y > 1. For
example, if 0 < ¢ < 1 and y &~ 1.85, S(0c0)/So =~ 0.25.

Suppose a single infective is introduced into a susceptible population of size Sp.
We can approximate this by writing Ip(a) = &(a), the Dirac delta function, then

_ S
e Y
Unrealistic domam
e>0
1 e=10
0.5¢ e

e=10

0 1 2 7

Figure 10.16. Dependence of the epidemic severity F = S(00)/Sy, that is, the fraction of the susceptible
population who survive the epidemic, on the threshold parameter y from (10.77), namely, F = exp[—¢ +
y (F — 1)]. The only realistic values, of course, are F' = S(c0)/Sy < 1.
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/ Ip(a)da = 1.
0

In this case, from (10.75),

t T a
m(t) = / / r(a)lp(a —t") exp [—/ k(a/)da’] dadt
0 Jr a—t'

t T a
=/ f r(a)d(a —t') exp [—/ )»(a’)da’:| dadt’
0 Jr a—t'
00 t
/ r(t')exp [— / A(a’)da’] dt’
0 0

r
So

from (10.69). Thus (10.77) becomes

_ LAY [ TGS
F =exp |:y (F —1- SO>:|’ F = S (10.78)

Since 1/Sp < 1 in general the solutions for F in terms of y are typically as given in
Figure 10.16. Thus y > 1 need not be large for a severe epidemic to occur. Therefore,
it is the estimation of the parameter y in (10.69) that is critical in the epidemiology
of age-dependent models. This we do in the following section for a very simple and
primitive model of drug use.

10.10 Simple Drug Use Epidemic Model and Threshold Analysis

The spread of the use of self-administered drugs, therapeutic and illicit, is in some cases
aresult of the enthusiastic proselytising by a user in the initial stages of use. We describe
here a simple illustrative model discussed by Hoppensteadt and Murray (1981) for the
etiology of such a drug and show how to determine the threshold parameter y. This
entails the evaluation of the infectiousness which we relate to the response of the user
to the drug. The novel feature of the epidemic model studied here is the inclusion of the
user’s personal response to the drug. The model is a pedagogical one: we do not have a
specific drug in mind.

Suppose the drug is introduced into the blood stream in dosages d(¢) and let it be
removed at a rate proportional to ¢(t), the drug concentration in the blood; that is, a
first-order kinetics removal. The governing equation for the blood concentration c(¢) is
then

‘;—j —d() — ke, c(0) =0, (10.79)

where k > 0 is constant and # = 0 is the time the individual is first recruited as a user.
In drug abuse, the dosage d(¢) tends to be oscillatory or approximately periodic with a
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progressively decreasing period. The solution of (10.79) is
¢ ’
c(t)y =eN f Mdydr. (10.80)
0

For many drugs the body has specific sites and it is the binding of these sites which
evokes a response in the user. Denote the number of free sites, that is, active or unbound,
by A(t), the number of bound, that is, inactive, sites by B(¢) and the total number by N.
We assume that no new sites are being created so A(¢) + B(t) = N. We take as a site
binding model the very simple system

dA
EE =oaB —BcA, AQ0)=N,

dB
85 = BcA—aB, B(0) =0,

(10.81)

where «, B and ¢ are positive constants: the inclusion of ¢ here is for later algebraic
convenience when we take it to be small. We are thus assuming that the rate of binding
of active sites is proportional to the amount of the drug c(¢) in the body and the number
of active sites available: that is, BcA/e. There is also a replenishment of the active sites
proportional to the number of bound sites: that is, « B/¢. With A + B = N the equation
for B is then given by the second of (10.81).

Suppose now that the reaction, r(f), to the drug is proportional to the blood con-
centration and the number of free sites. We thus take it to be

r(t) = Re(t) A1), (10.82)

where R > 0 is a measure of the individual’s response to the drug.

If the rate of binding is very fast, that is, « and 8 are O(1) and 0 < ¢ K 1
in (10.81), the number of free and bound receptors reaches equilibrium very quickly.
Then, using A+ B = N,

A N N
_ A 4@ p— PNe (10.83)

B ) = )
o+ Bc o+ Be

and the individual’s response is

_ RaNc

r = . (10.84)
o+ Bc
which is a Michaelis—Menten (cf. Chapter 6, Section 6.2) type of response which satu-
rates to rmax = Ra N/ for large blood concentration levels c. Note that with B as in
(10.83) the response r = Ra B/ B; that is, the response is proportional to the number of
bound sites.
If ¢ in (10.81) is O(1) we can incorporate it into the o and g; this is equivalent to
setting ¢ = 1. Now with B = N — A the equation for A(¢) from (10.81), with ¢ = 1, is
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dA
o =aN —A(e+Bc), AO0)=N

which has solution

t
A(t) = N exp [—/ (o + /Sc(t/)}dt’i|
0
t t
+osz exp |:—/ {a +,8c(r)}d1:] dt’,
0 t
with ¢(¢) from (10.80).

If d(¢) is known we can carry out the integrations explicitly to get c(¢) and A(¢): it
is algebraically rather complicated for even a simple periodic d(¢). Since the algebraic
details in such a case initially tend to obscure the key elements we consider here the
special case d(t) = d, a constant, and assume that the recovery rate of active sites from
their bound state is very small: that is, « =~ 0. Then, from (10.80) giving c(¢) and the
last equation giving A(¢), we have

(10.85)

c(t) = %(1 — e,

(10.86)
A(t) = N exp [—ﬁk—d {t + %(e_k’ — 1)”
and the response r(¢) from (10.82) is
) = Rea = X000 ey exp [—% {t et 1)” .08

Figure 10.17 illustrates the form of c¢(¢) and r(¢) from (10.86) and (10.87).

It is interesting to note that even with this very simple illustrative model, the re-
sponse of an individual does not just increase with dosage: after an initial stage of in-
creasing response it actually decreases with time.

c(t) 7(t)

rmax

0 0 7
(a) (b)
Figure 10.17. (a) The blood concentration c(¢) of the drug: from (10.86) it saturates to d/ k after a long time.

(b) The body’s response to the drug from (10.87). Note the initial increase before it tails off with continuous
drug use.
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Now consider the possibility of an epidemic of drug use appearing in a population
So of nonusers after the introduction of a single user. We assume 1/Sy <« 1, as is
reasonable, and so F = S(00)/Sp is given by the solution F' < 1 in Figure 10.16 for
the appropriate y, which we now evaluate.

Here age is measured from the first time of using the drug. There is no time limit for
infectiousness so in the definition (10.69) for y we set T = co. From Figure 10.17(b)
the response 7(f) — 0 as t — 00; that is, the infectiousness, or proselytising fervour,
becomes less effective with time. For simplicity we assume the probability factor in
(10.69) has A constant and so

o0
y z‘a)/a r(t)e ™ dr. (10.88)
0

We can now evaluate y for various limiting situations in terms of the parameters «, 3,
y and k in the user model (10.79)-(10.82).

In the case d(¢) = d, a constant, we get Table 10.1 after some elementary algebra. It
gives the user’s response r(¢) and the corresponding epidemiological threshold param-
eter y. For example, in the case 0 < ¢ < 1, (10.84) holds if ¢« < B, r(t) ® RNa/B,
a constant, and (10.88) gives y &~ SyRNa/(Af). On the other hand if 0 < ¢ <« 1 and
B > o then, from (10.83), r(#) = RNc(¢) and, with c(¢) from (10.86), y is given, from
(10.88), by

© RNd(l—e X SoRN d
y:s()/ RNdA=e ) - 4y _ SORND
k A+ k)

A similar type of asymptotic approach results in the other forms in Table 10.1.

In the case of most self-administered drugs 0 < ¢ < 1; that is, the response is very
fast. The possibility of an epidemic depends on the relative magnitude of the various
parameters in a simple way. This case is covered by (i)—(iv) in Table 10.1. For example if
the rate of freeing of bound sites is much slower than the binding rate, 8 >> o (case (ii))
then, since most sites will be bound, the user’s reaction is small. This reduces the user’s
‘infectiousness’ and hence the epidemic risk.

If we increase the cure rate, that is, increase A, there is a reduction in y. Decreasing
the individual’s response, such as by education or chemotherapy, also reduces y and

Table 10.1. The case d(¢) = d, a constant. Here r(¢) is a measure of the drug user’s response and y is the
epidemic infectious (or recruitment) rate. (Table from Hoppensteadt and Murray 1981)

Case r(t) v/So
@) ek l,a kB RNa/B RNa/A8
(i) e, B>a RNc(t) RN d/[A(A+ k)]
(ii) e ,k>»1 RNd/k RN d/kx
(iv) ek Lk, a/pd k1 RN dt/[14+(Bdt/a)]~RNa/B RNa/Br
V) e=1lk«1 N dRtexp[—2dpt] RNd/Q2dB + 1)?

(vi) e=1k>1 Rd expl—dpt/k]/k RNd/kA
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hence reduces the possibility of a severe epidemic. The results are in line with a heuristic
common sense approach.
If we define the critical population S, by

00 a -1
S, = {f r(a) exp [—/ ra) da’] da} , (10.89)
0 0

then if So > S, which implies y > 1, an epidemic occurs, whereas if So < S, it does
not. The sensitivity of S, to the parameters can only really be determined if r and y are
known with some confidence.

The type of drug use models we have described and analysed here, but without age
dependence, have been very useful in their application to certain aspects of chronic alco-
hol misuse and even in trying to come up with a better breathalyser. Ethanol metabolism,
associated with alcohol eradication in the body, is very different in normal subjects as
compared to alcoholics. Smith et al. (1993) used such a model for the study of ethanol
metabolism to try to understand the difference between normal users and abusers of
alcohol and compared the results and predictions with subject data. An even simpler
model, essentially dc/dt = d(t) — k where c(¢) is the blood alcohol level, d(¢) is the
alcohol intake and k is the metabolic decay rate, was used by Lubkin et al. (1996) in a
study to try and determine whether it was possible to have a more sophisticated model
for alcohol breath exhalation which would make roadside breathalysers more accurate:
basically the answer was ‘no.’!!

10.11 Bovine Tuberculosis Infection in Badgers and Cattle

Bovine tuberculosis infection is an insidious disease, which often does not become ap-
parent until it has reached an advanced stage in cattle, badgers and also swine. Inves-
tigations carried out suggest that in the southwest of England, for example, badgers
constitute a significant reservoir of the bovine Tb, Mycobacterium bovis (M. bovis) and
that badgers, because of their population density, could be a major factor in its spread.
Conditions in these affected areas, and as mentioned, the social organisation of bad-
gers, not only favour the transmission of the disease from one infected badger group to
another but also from badgers to cattle and vice versa.

Within specific regions in England and Wales, badger habitats are usually inti-
mately intermeshed with intensively used cattle pastures (Neal 1986, MAFF Report
1987; see also 1994). Field studies conducted over a period of about 10 years in such
regions confirm that the foraging activities of badgers on cattle pasture with their pre-

UWhen Washington State Trooper Sgt. Rod Gullberg, a co-author on the paper, first phoned me to see if he
could come and talk about the problem, he volunteered to come to the campus. I naively said, ‘Yes, of course,
but the parking problem on the campus is absolutely horrendous’ to which he calmly replied ‘T don’t think I'11
have a problem.” He arrived in his enormous police car and parked it right in front of the main entrance to the
building beside what I had always taken to be the equivalent of about 10 solid yellow lines with your car and
you being whisked off in a matter of seconds. He then came into the building, in uniform, bristling with all
the police accoutrements of baton, gun and so on, and asked, “Where can I find Professor Murray?” He was
followed upstairs with intense curiosity. People felt I must have another very different secret life.
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ferred food items (earthworms, insects and fruits), which are exploited alternatively be-
cause they show marked seasonal fluctuations, cause a high frequency of urination and
defecation as a direct consequence of their eating habits (MAFF Report 1987). There-
fore, diseased badgers tend to contaminate the environment heavily with bacilli, through
their feeding habits and suppurating bite wounds, for prolonged periods. Even though a
majority of bacilli may be killed early by exposure to direct sunlight, some do survive
in the microhabitat for periods of several weeks depending on the prevailing climatic
conditions. Studies by MacDonald (1984) indicate that in the wild, the risk of infection
depends partly on the viability of the bacilli. In bronchial pus, these survive in apprecia-
ble numbers for up to four weeks in winter and one week in summer, in urine for seven
days and three days respectively, and in cattle dung for five months and two months re-
spectively. In general, warm, dark, moist locations appear optimal for bacterial survival
on the soil surface (MacDonald 1984).

Cattle are most likely to become infected in several ways: they might inhale bacilli
during an encounter with badgers with severe pulmonary and kidney lesions or they
might graze or sniff at grass contaminated with infectious badger products (sputum,
pus from lungs and bite wounds, faeces and urine). Thus a criss-cross infection may
arise when cattle come into contact with the bacilli either directly from the environ-
ment or indirectly from infectious badgers. Certain farm practices, namely, allowing
badgers access to cattle sheds, salt licks and water troughs could also contribute to dis-
ease transmission. There is therefore a significant probability for badger-to-cattle and
cattle-to-badger disease transmission.

In this section we describe a criss-cross epidemic model for bovine tuberculosis
infection between badgers and cattle that Dr. D.E. Bentil and I developed in the mid-
1990’s and deduce some analytical results. The main objective is to use these results in
the following section to study the dynamics of immunization programmes and suggest
how certain practical control measures could be adopted with the ultimate aim of mini-
mizing the spread of infection from badgers to cattle and vice versa, should an epidemic
occur.

Criss-Cross Model System for Bovine Th

When dealing with two populations—here badgers and cattle—we require an epidemic
system for each population and then couple the systems through infection of suscep-
tible cattle by infected badgers and susceptible badgers via infected cattle. With an
SEIR model such as discussed in detail by Bentil and Murray (1993) this would result
in a model with 8 coupled partial differential equations if we include age structure as
we should. In principle models should be developed from the simple to the complex.
Here we have to choose between considering only time-dependent populations, with-
out age structure, or consider fewer subpopulations and include age structure. Here we
adopt the latter strategy and consider two subpopulations in each of the badgers and
the cattle, that is, an SI-type age-structured criss-cross epidemic model to study the
disease transmission dynamics between them. So, we consider a model involving two
distinct populations (badgers and cattle) and an infection which is communicated be-
tween them. We investigate a simple, age-structured, criss-cross model which describes
the rate at which cub and adult badgers and cattle go through two different—susceptible
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and infectious—states. Here, one of the basic assumptions is that badgers endure a pro-
longed illness once infected: for example, 12 naturally infected badgers held in captivity
survived for between 165 and 1305 days (MacDonald 1984). It is during this prolonged
illness that it is assumed they contaminate cattle pasture with bacilli. The mortality due
to M. bovis infection in both badgers and cattle is low (Cheeseman et al. 1988) so it is
not unreasonable to assume that disease-induced death is negligible as compared with
normal death. We also assume constant death rates for both badgers and cattle. Other
forms of death rates could be used but at this stage add unnecessarily to the complexity
of the analysis. It is useful and important to get in the first instance some general guide-
lines. The contraction of M. bovis infection does not confer immunity so we assume
that infected badgers either die or recover temporarily and become susceptible again.
We assume a similar disease transmission dynamics for cattle. The flow diagram of
the disease transmission dynamics in terms of the two distinct interacting populations,
namely, badgers and cattle, is schematically shown in Figure 10.18.

We take the total number of cub and adult badgers and cattle at risk of infection
to be constant and equal to N and N respectively. We have also assumed that infected
cattle recover at a rate 7 which is proportional to W the infected cattle, and infected
badgers recover at a rate r proportional to W, the infected badger population. Cattle
appear to develop symptoms much more readily so we assume 7 >> r. Cattle are newly
infected at rates B1, B> which are proportional to the product of the number of suscep-
tible cattle, U, and the sum of infectious cattle, W, and badgers, W. Similarly, newly
infected badgers occur at rates f1, B2 which are proportional to the product of the num-
ber of susceptible badgers, U, and the sum of infected cattle and badgers, namely, w
and W. The parameters 81, 8> and B1, B> are the disease transmission coefficients for
badgers and cattle respectively.

Figure 10.18 is certainly basic and contains many simplifying assumptions. With
these caveats we write the model system as

birth

y /"\

susceptible badgers U ——> infected badgers W

W n
¢ . l Figure 10.18. Diagrammatic flow chart of a
death B2 death criss-cross model for an infection between
badgers and cattle. Each class is a disease
birth B, host for the other. Here we have divided the
. badger population into susceptibles, U, and
¢ infectious, W. The cattle population is treated

. . similarly with the susceptible and infectious
susceptible cattle U ———® infected cattle W cattle population denoted by U and W. The

ﬁi \’i——/ I contraction of M. bovis infection does not
= confer immunity and so an infected animal

death death becomes susceptible again after recovery.
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where the force of infection for the respective populations is given by
o o0 ~
(B) r() =B / W(t,a)da + /32/ W(t,a)da, (10.91)
0 0
- - o - - o
)  m@ =4 f W(t,a)da + /32/ W(t,a)da (10.92)
0 0

which are partial contributions from both badgers (B) and cattle (C). The initial age
distribution of the respective classes at r = 0 is given by

U(0,a) = Up(a), U(0,a)=Uy(a),

- - (10.93)
W(0,a) = Wo(a), W(0,a) = Wy(a),
and the renewal (boundary) conditions
o0
N(,0) = y/ N(t,a)da =yN(), t >0,
0 (10.94)

N, 0) =y /OO N(t,a)da = yN(1), t > 0.
0

The absence of a birth term in the model equations is because the only input into the
host population is into the class of age zero and so appears as a boundary condition. If
we hold to the assumption that all newborn badgers and cattle are susceptible in constant
populations where the birth rates, y, y are set equal to the death rates, u, ji, for badgers
and cattle respectively, then the boundary conditions in (10.94) for the various groups
are

U, 00=N(t,0=yN(), Wk,0) =0,

5 3 . 3 (10.95)
U(t,0) = N, 0)=yN(@), W(t,0) = 0.

Here, for example, y N (t) is the number of births of badgers at age O for all ¢, and N (¢)
is the total badger population. At any time ¢, the age distribution of both badgers and
cattle can be expressed as

N(t,a) = yN(t)exp (— /a M(S)dS> =yN{@)m(a),
0 (10.96)

N(t,a) = 7 N(t) exp (— / ﬂ(s)ds> = pN(t)i(a),
0
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which define the survival probability m(a) and m(a) functions. For example, m(a) is
the probability that a badger will live to age a.

We now rescale the problem to make the system nondimensional. This introduces
dimensionless groupings which highlight certain ecological facts. We first factor out the
death rate in the model system (10.90) by making the substitutions

U(t,a) W(tva)
u(t,a) = , w(t,a) = ,

N(t,a) N(t,a)

U(t,a) W(t,a) (1097)
i(t,a) = . 0 (t,a) = .

= — , W(t,a) = = :
N(t,a) N(z,a)

If we choose reference scales for u(t, a), w(t, a), u(t,a), w(t,a), a and t and scale
these variables by the maximum values they can realistically obtain (the maximum value
for u(a) occurs at #(0)) and we scale the time and chronological age by setting r = rt,
o = ra we obtain the nondimensional system

du  Jdu o+
- w
or e T
Jw n Jw lk
—+ — = -lu—uw,
T do
ou N ou 1)~L i (10.98)
— 4+ —=—zMu+w,
ot a7
ow oJdw 1. _
— 4+ — =AU —W
at Ja r
The boundary conditions become
u(t,0) =1, w(r,0 =0, u(r,0) =1, w(r,0) =0, (10.99)
and initial conditions are given by
u(0, ) = ug(a), w0, a) = wo(x),
~( ) ~o( ) ~( ) ~o( ) (10.100)
u(0, @) = ito(@), w(0, o) = wo(w).
The force of infection for the respective populations is given by
B [ B [ . -
(B) A(r)=— w(t,)N(t,a)doa + —= w(r,a)N(t,a)da,
r r
0 0 (10.101)

(C) A1) = %/m w(t, @)N(z, a)da+%/oow(r,a)N(r,a)da.
0 0

The force of infection determines whether or not an epidemic will occur. We saw in
the simple models we discussed in earlier sections that there are threshold conditions
which must be obtained if the number of infected animals is going to increase. So, the
evaluation of the A’s is an essential part of the study of the spread of a disease. In its
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simplest form if the force of infection is greater than 1 it means that more than one
susceptible will be infected by one infective. In the case of the SEIR age-dependent
model discussed by Bentil and Murray (1993) the conditions for an epidemic were
reduced to determining whether or not a function of X, obtained from the expression for
the force of infection analogous to (10.101) had a solution A > 1. With this, threshold
values of parameters and populations for an epidemic to ensue were obtained.

The mathematical problem posed by (10.98)—(10.101) is not easy to solve in gen-
eral. At an equilibrium state, however, we can obtain solutions relatively easily. Af-
ter a long time we assume an equilibrium is reached, that is, where all 9/dt terms
are set equal to zero and the various classes are only functions of age a. The A’s in
(10.101) are constants since the integrals do not involve T (t — oo at equilibrium).
The equations in (10.98) are then a set of 4 linear ordinary differential equations un-
coupled into two pairs, one for u(«) and w(x) and the other set for #(«) and w(w).
The respective fractions of infective and susceptible badgers and cattle at equilibrium
are easily derived. For example, with the first two equations in (10.98), on adding and
using the boundary conditions #(0) = 1, w(0) = 0, we get a linear first-order equa-
tion in u(«) which is trivially solved. With these solutions we then have, after some
elementary algebra, the equilibrium forces of infection, denoted by A, and A, (we
use the subscript 2 to distinguish them from the time-dependent forces of infection)
as

_ PrayN = ol e (222
(B) = rOa 1) o m(a) _1 exp< 1) ] da
+ 7:82}2)7]2] - m(a) | 1 —exp ( ) a:| do,
F(h2 +7) Jo
s o - (10.102)
©)  Ga= PRYN T 1—exp<———l)ai| da
F(x2+7) Jo i
BarayN [ A
+ 7}’()\2 g A m(a) |:1 — exp (—7 — 1> ai| da,

where m(«) and m(«), the survival probabilities, are defined by (10.96). We can go no
further with the analysis until we specifiy these functions. If we assume the death rate
w(a) is a constant, then m(a) = e~ ** and 7 () = e "¢ and we can then easily evalu-
ate the integrals in (10.102). We then get coupled transcendental equations to determine
the forces of infection in the badgers and the cattle. In general these have to be solved
numerically for given parameter values.

By way of illustration let us assume that the contributions from within the respec-
tive animal populations are negligible and only a cross-type of infection prevails; that
is, 1 =0 = ,51 and the death rates are constant. In this situation, after some algebra,
we get
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MyNT1 . 1 2o
(B) Ay = ﬂ%iN |:T(1 _ e_“L) _ i(l _ e—(k+r+u)L)i| 7
M+r LU M+r+on
. Byray N 1 1
© 5=l [—(1 —e ) - —— —e“ﬁ”m)],
M+r [ AM+r+pu

(10.103)

where L is the life expectancy and (B) and (C) refer to badgers and cattle respectively.
In both cases as L — 0, .o — 0 and A, — 0 as they should.
For large L, from (10.103) we have for the badgers and cattle respectively

A yN ) By N
b _ ~/32V~ b __PyN (10.104)
A an+iF+p) A2 o ptr+w
and the following inverse proportionality relation is obtained
3y NN
___ PPyyNN (10.105)
up(ho +r + w)(ho +7 + 1)
or
N 3,7 N B
Py _| PN (10.106)
pwo +r+p) f(hp + 7 + ji)

These are closely related to the conditions we found for epidemics to exist in the discus-
sion on venereal disease models in Section 10.3. To interpret the results we must now
determine parameter estimates.

Parameter Estimation

We know some of the key parameters that influence the demography of badgers and
cattle in the absence of M. bovis infection; see, for example, Anderson and Trewhella
(1985) and Brown et al. (1994). However, it is extremely difficult to get convincing field
data for criss-cross disease spread between badgers and cattle: those available are some-
what inconsistent and address specific epidemiological parameters while other relevant
parameters are chosen arbitrarily. This lack of adequate information and inconsistent
data estimates make it difficult to obtain reliable disease transmission rates from the ex-
pressions in (10.102). From a modelling point of view, the choice of parameter values is
a crucial factor in determining the level of prevalence of the disease. We therefore used
numerical techniques, and particularly the Logical Parameter Search (LPS) Method de-
veloped by Bentil and Murray (1993) to generate appropriate parameter values to mimic
the observed trend when no field data were available. The LPS method is an online
search procedure that scans given parameter ranges and generates parameter sets that
satisfy some given logical conditions. To apply it to this criss-cross model, for example,
we partly used field data obtained from the literature (see Table 10.2) to set up realis-
tic parameter ranges. The procedure then scanned consecutively the various parameter
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Table 10.2. Parameter values used for the basic criss-cross model of bovine tuberculosis between badgers
and cattle. LPS estimates were found as described in the text. (From Anderson and Trewhella 1985, BTEC

1987)

Parameter Symbol Value LPS Estimates
Total population (Cattle) N — 10 cattle km 2
Total population (Badgers) N 2-5 badgers km -2 3 badgers km~2
Death rate (Cattle) n — 0.25 year_1
Death rate (Badgers) " 0.25 year*1 0.125 year*1
Birth rate (Cattle) y — 0.05 year_1
Birth rate (Badgers) y 0.125 year_l 0.02 year_l
Average removal rate (Cattle) 71 — 2 year_l
Avererage removal rate (Badgers) r 2 year*l 1 year*1
Disease transm. coef. (Cattle—cattle) ,51 — 2.0 km? year_]
Disease transm. coef. (Cattle-badgers) B — 1.0 km? year_1
Disease transm. coef. (Badgers—badgers) B 1.54 km? year_1 1.54 km? yea.lr_1
Disease transm. coef. (Badgers—cattle) B — 3.5 km? year*1
Average life expectancy (Cattle) L — 10 years
Average life expectancy (Badgers) L 3.5-5.5 years 10 years

ranges for suitable parameter sets, which satisfied some given logical conditions (for
example, criteria for disease prevalence that was obtained from the model analysis). We
cross-checked the generated parameter sets with the threshold conditions (that is, the
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Figure 10.19. Graphical representation of the force of infection corresponding to the disease transmission
dynamics for badgers and cattle. Here, a primary assumption is that most of the badger groups sleep in
communal huddles in the setts with the environmental conditions that greatly enhance the spread of Tb among
them, which in part accounts for an increasingly higher force of infection for badgers; it stabilises after some
time.
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disease incidence increases after the introduction of an infected group) to make sure
that all other requirements, namely, conditions for disease incidence and prevalence had
been satisfied. The model equations (10.90) were solved by finite difference schemes
with parameter values as in Table 10.2. The initial conditions were set by solving the or-
dinary differential equations obtained by dropping the time derivatives from which we
obtained stable age distributions determined by the age-specific birth and death rates
and perturbing the whole system by shifting 10% of susceptible badgers and 5% of
susceptible cattle into the infective classes.

Numerical Results and Predicitions

The time-dependent forces of infection in the badger and cattle populations are given
by (10.101) which can be evaluated only by solving the full system. This was done with
the parameter values given in Table 10.2 and the results are shown in Figure 10.19. As
we saw earlier, we could evaluate the integrals and obtain algebraic relations, namely,
(10.104)—(10.106), between the two forces of infection for the equilibrium state where
life expectancy, L, is long, the death rate a constant (giving an exponential survival
probability) and a criss-cross type of infection is the main route by which infection may
occur. These imply that the ratio of the force of infection of badgers to cattle is inversely
proportional to the ratio of the force of infection of cattle to badgers. The implication
here is that if the spread of bovine tuberculosis remains unchecked it may be possible
to predict the dynamics of disease spread within badgers for different age groups by
studying that for cattle alone (and vice versa).

The model predictions, as illustrated in Figure 10.20 indicate that the number of
susceptible badgers and cattle declines while there is a gradual increase in the number of
infected badgers and cattle, and much more so within badger populations. This suggests
that should a criss-cross type of infection occur the impact of the disease could be
felt much more within badger populations. This confirms our assumption that badgers
endure a prolonged illness once infected and that it is during this prolonged period of
illness that they contaminate cattle pasture with bacilli.

The basic age-structured criss-cross model we have discussed here is based on the
assumption of horizontal transmission by bite wounding, aerosol infection, infection
contracted through grazing on pastures and so on. Vertical transmission (mother to cub)
may be important but we did not take this into account. Broadly speaking, cattle cannot
be regarded as a reliable sentinel for the prevalence of infection in badgers everywhere
because of the variation in the degree of contact. The proposed models therefore re-
flect the epidemiology of the disease in areas with good habitats where both species
coexist.

As we have mentioned, it is difficult to establish the actual force of infection espe-
cially within various badger groups where, for instance, age is determined by weight,
size and dental structure as opposed to precise observed trends in cattle. In any event,
with the implementation of the LPS method, we were able to make various predic-
tions using the model equations. We speculate that cattle are more or less kept under
more hygienic conditions in farms and thus the tendency of high levels of infection is
markedly reduced. There is no oscillatory trend in disease incidence between the two
distinct groups but, among badgers, some observations indicate a possible cyclic trend
in disease incidence (see Cheeseman et al. 1989 and Bentil and Murray 1993). This
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Figure 10.20. Numerical solution of the criss-cross model showing patterns for susceptible and infectious
badgers and susceptible and infectious cattle with respect to age and time (horizontal axis) after an initial
infection. The vertical axis denotes the corresponding fractions of the various subpopulations. For the chosen
parameter values (using LPS estimates in Table 10.2) the number of infectious badgers (b) increases to about
60% while the number of infectious cattle (d) increases to about 30% before stabilizing.

may seem to be the case from our model predictions and makes the study of a possible
(hypothetical) criss-cross type of infection all the more relevant.

Results of this study indicate that it is possible to estimate the age-specific equi-
librium values of the force of infection knowing which survival functions to use. A
constant death rate for badgers and cattle gives, for example, an inverse proportion-
ality relationship which makes it easier to predict the disease transmission dynamics
within different age groups. It may be possible to analyse the model behaviour for a
step function death rate but the results will be much more difficult to obtain, other than

numerically.

A major motivation for the comparative study of an age-structured model for this
recurrent disease is the evaluation of control measures for the eradication of the disease
as pointed out, for example, by Dietz and Schenzle (1985), Anderson and May (1985)
and Murray et al. (1986). The main objective of the above modelling is to use the results
to study the dynamics of immunization programmes and suggest how certain control
measures could be adopted with the ultimate objective of minimizing the spread of
infection from badgers to cattle and vice versa, should an epidemic occur. We discuss

this in the following section.
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10.12 Modelling Control Strategies for Bovine Tuberculosis in
Badgers and Cattle

Bentil and Murray (1993) developed and analysed models for the dynamics of bovine
tuberculosis (Mycobacterium bovis) infection in the wild badger population. Because
of the possibility (I believe, high probability) of badgers being the reservoir for the dis-
ease in cattle in the southwest of England in the last section we proposed and analysed
a simple criss-cross model. As pointed out, the eradication of the disease when there
is a feral infected animal population, such as in the southwest of England and in New
Zealand, has not yet been successful in spite of the implementation of an intensive na-
tional tuberculosis eradication campaign. The eradication, or rather acceptable control,
of bovine tuberculosis by testing and slaughtering programmes has been successful in
many countries, as we have said, but total elimination has not been achieved. In the
U.S.A,, all cattle are systematically tested and those reactors are slaughtered. As a re-
sult, reactor rate was reduced from about 5% to 0.03% (USDA Report 1982a,b).

Badgers occupy a variety of habitats, especially woodland areas interspersed with
arable and pasture land (Clements et al. 1978, Kruuk 1988). Such habitats are usually
intimately intermeshed with intensively used cattle pastures which makes the likelihood
for badger-to-cattle and cattle-to badger disease transmission all the more possible. The
analysis of the model in the last section for the dynamics of a hypothetical criss-cross
infection provides some guidelines concerning the likely impact of the disease between
the two distinct populations. Results from that criss-cross model suggest that it may be
possible to predict the disease transmission dynamics for one group, namely, cattle, if
we know that for badgers and vice versa.

In Britain, for example, programmes for the control of bovine tuberculosis in ar-
eas of frequent herd infection have been centred on the reduction of badger density by
removal of entire groups of badgers (usually by gassing, which particularly incenses
the English) where one or more individuals were thought to be infected. The MAFF
control policy (MAFF report 1987) assumed, wrongly as it turned out, that a single in-
tensive intervention to remove all infected groups of animals would suffice to eliminate
infection from contaminated areas for long periods of time. As mentioned above the
MAFF (1994) control was more selective and probably no more effective. In this sec-
tion we discuss a new approach that Dr. D.E. Bentil and I developed in the mid-1990’s.
We model the dynamics of specific immunization programmes and suggest how certain
control measures could be adopted with the ultimate objective of minimizing the spread
of infection from badgers to cattle and vice versa should an infection occur. We compare
several vaccination strategies and deduce a cost benefit criteria for them. The model is
in effect a spatial one in that we present a discrete approach to the study of the problem.
The discrete approach uses a cellular automaton model which could easily be under-
stood by nonspecialists. We shall also show how a characteristic empirical response to
the vaccination policies could be achieved.

Criss-Cross Model with Immunization

Based on the age-dependent criss-cross model in the last section we examine two as-
pects of the impact of immunization which we expect will reduce the net rate of disease
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transmission between the two populations by decreasing the per capita force of infec-
tion. In particular we consider the following aspects of immunization:

(i) its effect on the steady state or equilibrium conditions, that is, the state towards
which a population may converge in the long term under the influence of an im-
munization programme;

(i) its effect in the short term on the temporal dynamics of the infection within the
various groupings as they move to a new steady state following the initiation of an
immunization programme.

Suppose the age-specific rates of immunization are c(a) and ¢(a) for badger and
cattle populations respectively. This introduces a further removal term in the criss-
cross model for the susceptible population dynamics. We modify the model (10.90)
for badger—cattle disease transmission dynamics to read

104 U

—+ —=—[M+c@]U+rW —puU,
ot da

ow ow

—+ — =MU —rW —uW,

at da

8Z+8Z (@)U V4
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Py 30 ~ ~ ~ ~ (10.107)
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where we have introduced another subpopulation in both the badgers and cattle, namely,
the immune classes Z and Z respectively. As before U and W are respectively the
susceptible and infectious badgers with similar definitions for U and W. The force of
infection for the respective populations are again given by (10.91) and (10.92). The
initial age distribution of the respective classes is given by (10.93) but with the addition
of initial conditions for the immune classes, so

U(0,a) = Us(@), U(0.a)=Uo(a),
W(0,a) = Wola), W(0,a) = Wo(a), (10.108)
2(0,a) = Zo(a), Z(0,a) = Zo(a),
and represent the preimmunization equilibrium distributions. The renewal (boundary)
conditions for the various groups are given by (10.95) with the addition of those for the
immune classes, namely,
U@,00=N(,00=yN(@), W0 =Z(0) =0,

~ ~ . ; ~ (10.109)
Ut,0)=N(t,0) = yN@), W(t,0)=Z(,0) =0,
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where again y N(¢) is the number of births of badgers at age O for all ¢, with the birth
rate y assumed constant and N () the total badger population. So, at any time ¢, the age
distribution of both badgers and cattle is again given by (10.96).

We again rescale the problem in the same way as we did in the last section by
writing

R U 0 N U S ()
I/t ’a - k w 7a . 9 1a e 9
N, a) Nt a) © N, a)

. " - (10.110)
- U,a) . W, a) . Z(t,a)
u(t,a) = = ,w(t,a) = = , 2(t,a) = = ,
N(t, a) N(t,a) N(t, a)

and again rescaling the time and chronological age by setting T = rt, « = ra (badgers)
a = Fa (cattle) we get the nondimensional system
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Now let vaccination be given so that fractions f, f,g.8of susceptible badgers and
cattle become immune at ages 77 and 7> > T, say. Then the conditions at ages 77 and
T, depicting the relationship at the points of discontinuity of « and u take the form

(T +0) =1 = Hu(T —0); u(T2+0)=1-gu(l—0),

~ (10.112)

w(Th +0) =1 = fHu(hi —0);  a(T2+0) =1 —gu(T> - 0).
In such circumstances we can deduce the susceptible populations consecutively for the
specified ‘immunization age intervals’ (see, for example, Hethcote 1983) to get the
susceptible fractions (in nondimensional terms) for the badger and cattle populations
at equilibrium in the age intervals [0, T1), [T, T2), [T», 00). To do this we need the
equilibrium solutions.

The initial values u(0, @) = u(w), (0, @) = u() represent the preimmunization
fractional equilibrium distributions given by the time-independent solutions of the set
of ordinary differential equations given by (10.112) excluding the immunization terms
and with all (9/9¢)-terms set equal to zero. These are routinely found to be
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where the forces of infection A» and A, are those for the equilibrium state and given,
respectively, by

ula) =

B [ Bt [ -
(B) Ay = — w(@)N(x)doa + — w(a)N(x)da,
r r
2 2 (10.114)
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Using these solutions (10.113) we get, from (10.112),
o [r + A exp(—22 — Dal, 0<a<rli;
u(@) = { =L + aexp(—22 — Dal, rTy <a < rTs; (10.115)

U=D0D (4 g exp(~2 — Dal, rT <a,

with a similar relation for susceptible cattle when f, g, r, A are replaced by f , &, 7 and
X in (10.115).

At equilibrium the basic reproductive rate o is related to the total susceptible frac-
tion, u,, by

potte = 1. (10.116)

In this context, the equilibrium disease incidence can then be determined from the rela-
tion

00 /mu(a)N(a)da =1, (10.117)
0

with a similar relation holding for the cattle population. For example, if we assume a
constant death rate, u, as we did in the previous section, we have

poy [

r2 0

u(@)e WM go =1 (10.118)

which on integrating, using (10.115), gives

00 r _ _
- - {;[1 — et — (1 f)ge 2]
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Suppose that vaccination takes place only at one age, 77 say; then g = 0 and we
get, from the last equation

poy |r _uT, A2 —Gatr+wTiq | _
— -7 4 —= J1 - 2 1t =1. 10.120
A2+r{ll«[ ¢ ] )L2+r+u[ fe ] ( )

The disease incidence in cattle satisfies the relation

POV {2[1 ey 2 - fe“ﬁ”f‘m]] — 1. (10.121)
AM+r | M M+

From the last two equations, A> and %, corresponding to the equilibrium forces of in-
fection within badgers and cattle after the initiation of an immunization programme can
be determined by estimating pp, and pp from prevaccination epidemiological data and
using (10.120) and (10.121) to calculate A, and X2 in terms of f and T7, which char-
acterise the immunization programme. The effective reproductive rate, p, (that is, the
generation of secondary cases where a proportion is immune) under the mass action
assumption of disease spread and transmission, p is related to pg by

p = poue = po(l — f), (10.122)

where u, is the fraction of susceptibles and f is the proportion that is temporarily im-
mune.

To be able to eradicate the disease by adopting an appropriate vaccination or treat-
ment coverage, it is necessary to create a level of herd immunity such that the effective
reproductive rate, p, is reduced to a value less than unity. Herd immunity means that
the fraction of the population that is susceptible is sufficiently small that an outbreak
would not result if one animal suddenly became infective or if an imported infective
were introduced into the environment. It can also be considered as an indirect protec-
tion of unvaccinated susceptibles by high levels of vaccination amongst the remaining
segments of the population. This protection is a consequence of the reduction in disease
transmission brought about by the removal of vaccinated animals from the susceptible
class. It is through the effects of herd immunity that it is possible to eradicate a disease
without vaccinating every single susceptible (Fox et al. 1971). Formally, the critical
level of vaccination coverage corresponds to the limit A — 0, ):2 — 01in (10.120) and
(10.121). In this way, each primary case will generate less than one secondary case as
is evident from the ensuing relation

poll — fexp(—uT)] = 1. (10.123)

This means, therefore, that we require the immune proportion of badgers and cattle to
exceed a critical value

_ 1 T\ z 1 T,
fC_ 1 —% eXp f s fC_ 1 —% eXp f . (10124)
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Table 10.3.
Technical
Demographic Epidemiological Operational (Efficacy)
Population Growth Prevalence level in Population coverage Clinical
(birth/death rates) initial situation
Implementation intensity Effective contact rate Waning

Eligibility criteria

So, a proportion greater than f,. of each new cohort of cub (calves) at or near birth, or at
age T} should be immunized. If vaccination is given to very young cubs (calves) only,
then 77 & 0 and po(1 — f) < 1. Eradication is easier if animals are vaccinated at the
earliest feasible age, 77, and essentially impossible if at a later stage.

Case notification records show that generally, there has been a very low level of M.
bovis infection over several decades (MAFF report 1987, 1994, Cheeseman et al. 1988,
1989). An important question concerns the level of coverage that should be aimed at
to eradicate an infection should it occur. In the attempt to choose or adopt an effective
strategy for the eradication of the disease, we should note that control measures differ in
their effectiveness according to different situations. In Table 10.3 we list some aspects
which exert different influences on the relative effectiveness of adopted measures.

Control Programme and Its Implementation

We make the following clinical assumptions.

(i) The development of M. bovis in infected badgers and cattle is purely an endoge-
nous process.

(ii) The protective efficacy of vaccines is assumed to wane at a constant rate of 5%
per annum and gives 66% protection (Waaler et al. 1969). This means that a vac-
cination coverage of about 95% amounts to transferring 66% of the noninfected
group into a vaccine-protected group.

Studies by Stuart et al. (1988) on the development of diagnostic tests for, and vac-
cination against, tuberculosis in badgers suggest that badgers mount a weak antibody
response to conventional antigens when compared with laboratory rabbits. However, it
was found that cell-mediated immunity seems to be enhanced by vaccination and leads
to prolonged survival of badgers and delayed excretion of tubercle bacilli.

As a means of reducing the force of infection and hence the number of infectives,
in our approach we adopt chemotherapy in the form of oral vaccination to control M.
bovis infection within badgers and suggest vaccination as a method to fight the disease
in cattle. A combination of both strategies where vaccines are administered in mixed
food items as well as actual vaccination of groups of animals may be helpful, although
this will only really be effective for cattle since badgers, unlike cattle, are not confined to
specific areas and sometimes move about randomly within, and sometimes away from,
their neighbourhoods (see, for example, Rogers et al. 1998).
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We divide the population into two, that is, cubs (calves) and adults. Considering
badgers, for example, the fraction of cubs becoming immune at age 77 (1 year) is f
and the fraction of adults becoming immune at age 7> (5 years) is g. If pou, < 1,
then the disease will eventually die out and herd immunity achieved. From a practical
point of view, we may conclude that a policy of 66% vaccination at age one will reduce
the yearly incidence of M. bovis infection for approximately five years. Thereafter the
yearly incidence will be higher if we adopt a no-vaccination policy at all. It is reasonable
to suggest a two-66% vaccination policy: one at the beginning, or more precisely, a year
after birth and the other after 5 years. This double campaign could reduce M. bovis
infection for about nine years before any possible epidemic ensues.

An alternate, and we believe better, method is a modification of a vaccination pol-
icy which was proposed by Frerichs and Prawda (1975) and adopted for the control of
rabies in Colombia. We call it the Preferred Vaccination Policy (PVP). Here, assum-
ing there is a potential outbreak within neighbouring regions, each targeted subregion
should be ranked according to the potential contribution it would make to the incidence
of M. bovis infection. From case notification records, the risk, R; ;, of badger/cattle con-
tributing to new infection cases is calculated for each subregion within the specified area
as

1 5
Ri;=CU;+ g ;Ci(j)Ui(j),;, (10.125)

where

R;; is the index for M. bovis risk for subregion i at time z. It is calculated from case
notification records;
C; is the proportion of badger/cattle in subregion i relative to that of neighbouring
subregions;
U;; is the number of susceptible badger/cattle in subregion i at time ¢;
i(j) is asubscript denoting neighbouring subregions j, j = 1, 5 surrounding i.

Since there is the possibility for infection from neighbouring subregions, an as-
sumption is made that the sum of the values C;(;)U;(;),, in each of the five neighbouring
subregions or social groups is equally as important to the subsequent generation of M.
bovis infection as the value of C; U, ; in subregion i itself. All values of R; ; are ranked
from highest to lowest. This control policy continuously employs vaccinating teams
who are sent to the highest ranked subregion and they remain there until the required
proportion of susceptibles is vaccinated. Thereafter, they are sent to the next highest
ranked subregion at different time periods and information updated as they visit various
subregions.

Cellular Automaton Model for Practical Implementation

We present a discrete approach to the implementation of the PVP using cellular au-
tomaton models. Such models have the advantage of providing a visual representation
of the main qualitative features of the processes and the results of simulations for vari-
ous parameter sets. The cellular automaton models are as follows. First, we model the
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disease incidence and spread within badger and cattle populations (Rule A) and second,
we consider a situation where a proportion becomes immune due to the introduction of
a vaccination policy, namely, the Preferred Vaccination Policy (PVP) (Rule B).

The first model consists of a rectilinear grid of cells which represent the conta-
gion of the disease between badgers and cattle (Rule A below). The model includes
parameters D, and Dy, for the duration of disease in cattle and badgers respectively. We
consider v as a status variable which increases by one unit for each time-step until a
maximum of D steps is reached after which v reverts to 0, that is, the animal becomes
susceptible again. Here, we have assumed that there is no immune class. The status of
the animal changes with time depending on the status of the animal itself and the status
of its four contiguous neighbouring cells in accordance with a set of rules for simulating
the contagion of the disease within badger populations. The rules are:

Rule A

An animal can become infected if it is in a susceptible state and if it comes into contact
with an infected animal; that is, at least one of its four neighbours is infected. When con-
tact occurs, the probability of a susceptible individual becoming infected depends on the
parameters P., Pcp, Ppp and Pp.. These are the probabilities of disease transmission per
unit time from infected cow to susceptible cow, from infected cow to susceptible badger,
from infected badger to susceptible badger, and from infected badger to susceptible cow
respectively. At each time-step, each cell in the array is evaluated. If the cell contains
an infected animal, we determine whether each of its four neighbours is in a susceptible
state. If a neighbour is susceptible or exposed and has little or no resistance to infection,
it becomes infected with probability p. Once infected the animal remains infective for
a specified number of time-steps after which time it dies or becomes susceptible again.

The second model simulates the disease incidence and prevalence in which an im-
mune class has been introduced (Rule B below). An immune class is introduced by
sending vaccination teams to highest ranked subregions. This is the Preferred Vaccina-
tion Programme (PVP).

Rule B

Using a sparsely populated rectilinear grid, we consider an extension of Rule A to in-
clude an immune state for the status variable v. After remaining infected for D time
units, an animal may become immune in a subregion with a certain probability. An
animal in the immune state remains immune for a specified number of time-steps and
dies.

Results and Control Implementation

A direct vaccination coverage to specific age groups is difficult in the case of badgers so
oral vaccination could be administered by way of sprinkling food mixed with vaccine.
(This method is remarkably efficient in dispensing vaccine to foxes in the case of rabies.)
Vaccination is assumed to be given randomly to all badgers while with cattle those in
the same age group or those found by a serological test to be susceptible could be
vaccinated. The proposed strategy for vaccination should be one year after birth and
four years afterwards.
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To obtain some measure for the cost, C, of such a programme we exploit (10.120)
and (10.121) to propose a cost—benefit criterion. One measure of the effort for a partic-
ular strategy to be implemented is

C = fe "1 4 e W2tITi] 4 go7hT2[] 4 ¢~ G2t T2] (10.126)

and similarly for the cattle population
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Figure 10.21. Cellular automaton simulation for disease spread between badgers and cattle. We consider a
sparsely populated region (white regions imply uninhabited regions). Parameter values: normalised badger
density = 0.60, cattle density = 0.40, duration of disease = 3 months. Transmission probabilities: infected
cow to susceptible cow = 0.25, infected cow to susceptible badger = 0.1, infected badger to susceptible cow
= 0.75. No development of immunity. (a) One infected badger introduced in the sett at # = 0. (b), (¢) and (d)
depict patterns of infection at # = 20 months, ¢ = 40 months, # = 60 months. Initial condition: one infected
badger was introduced at the centre of the array.
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Figure 10.22. Empirical response to a vaccination policy. In comparison with the spread of infection between
badgers and cattle (Figure 10.21), with the conferment of immunity due to the introduction of the PVP,
the simulations suggest a possible reduction in disease incidence and prevalence. Parameter values: badger
density = 0.60, cattle density = 0.40, duration of disease = 3 months. Transmission probabilities: infected
cow to susceptible cow = 0.25, infected cow to susceptible badger = 0.1, infected badger to susceptible cow
= 0.75. Immunity is 6 months. (a) One infected badger introduced in the sett at # = 0. (b), (¢) and (d) depict
patterns of infection at # = 20 months, t = 40 months, ¢ = 60 months. Initial condition: one infected badger
was introduced at the centre of the array.

C = fe Pl 4 ¢~ P2t 4 Go=AT2[] 4 =2t (10.127)
where in each case we consider the force of infection in cattle, say, has an influence on
the disease transmission dynamics of badgers and vice versa. Even though the Preferred
Vaccination Policy could cost more than the other vaccination policies, the cumulative
number of mean infected cattle over a 10-year planning period would be reduced to a
significantly lower level. The indicator for the programme’s success should therefore not
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be cost-per-badger or cattle vaccinated but cost-per-infected badger or cattle prevented
from becoming infected.

The cellular automaton models provide a visual representation of the main qual-
itative features of disease prevalence in badgers and cattle and the impact of a Pre-
ferred Vaccination Policy. Figure 10.21 shows a cellular automaton model for a typical
criss-cross infection involving two distinct populations, that is, cattle and badgers. Fig-
ure 10.22 shows the characteristic empirical response to the described PVP for sparsely
populated unit cells of badgers and cattle and an infection between them.

We are interested in the long term effect on the disease prevalence as a consequence
of implementing a vaccination policy. So, by way of example, we used similar cellular
automaton models to study the disease prevalence in badgers for the following control
policies: (i) no vaccination, (ii) approximately 66% initial vaccination, and (iii) 66%
initial + 66% revaccination (after five years). The vaccination was assumed to be ad-
ministered by sprinkling food mixed with vaccines. Figure 10.23 compares results of
the possible control experiments with that for the Preferred Vaccination Policy over a

10-year period.

As mentioned at the beginning of this section the MAFF control policy in Britain
assumed that such a single and intensive intervention to remove all infected groups of
animals would suffice to eliminate infection from contaminated areas for long periods
of time (MAFF Report 1987). The MAFF (1994) report resulted in a more selective
culling: badgers in Britain are now legally protected. The USDA eradication policy at-
tempted to liquidate all infected animals in the herd with indemnities paid, as available,
to help compensate owners for their losses, or hold herds under quarantine and tested
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Figure 10.23. Computer simulation of possible scenarios for fractions of infected badgers over a 10-year
period under various control strategies. The graphs show an empirical response to the control strategies de-
scribed above namely: (i) no vaccination, (ii) 66% vaccination, (iii) two 66% vaccination campaigns, one at
the beginning and the other after 5 years, (iv) PVP. It is evident that the fraction of infected badgers will be
much lower for the PVP, giving an indication that the disease prevalence will be minimal in cattle too.
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until all evidence of infection was eliminated (USDA Report 1982a,b) may not be the
only approaches to take, from our model predictions. We note that chemotherapy in the
form of oral vaccination (sprinkling of food mixed with vaccine) could be an effective
way of controlling the spread of the disease in badgers as opposed to gassing, trapping
and killing, since badgers, unlike cattle, are not confined to specific regions and move
about randomly within and sometimes away from their setts. Again as already men-
tioned such a procedure has been very successful in the control of fox rabies in parts of
Europe. We have also shown that eradication of the disease is easier if animals are vac-
cinated at the earliest feasible year (one year) rather than wait until there is an infection,
in which case it would be almost impossible to eradicate the disease.

Early mass vaccination programmes predict a reduction of the effective reproduc-
tion rate of infection within communities, and hence raise the average age at infection
amongst those animals which experience the disease. If, however, the force of infection
changes with age, the tendency of mass immunization to increase the average age at
infection may mean that the rate of exposure of susceptibles to infection in older classes
may well differ from the rates acting in the age classes in which the susceptibles would
have typically acquired infection prior to immunization. The potential consequence of
such a change is to reduce the predicted level of vaccination coverage required to erad-
icate the infection below a certain level.

It seems that of the three vaccination strategies considered, leaving aside the cost—
benefit criteria, the Preferred Vaccination Policy which targets highest ranked ‘infec-
tious’ regions and vaccinates susceptibles is the best of the control programmes for
bovine tuberculosis infection between badgers and cattle if an epidemic occurs. It should
be noted, however, that the models we have discussed in this section and the previous
one are still fairly basic. Not only that, we have not taken into account the spatial move-
ment of the badgers. Relevant data on badger movement is given by Rogers et al. (1998)
for 36 social groups in Gloucestershire in England over a period of 18 years. They show
that the movement of badgers within groups varies and with this variation there is a
variation in the incidence of bovine tuberculosis. The spatial aspects of disease spread
are extremely important. We discuss an example of this later in Chapter 13, Volume 11
when we discuss the spatial spread of a rabies epidemic.

An interesting and very different new approach to the control of bovine tuberculosis
is given by Kao et al. (1997). They develop a herd-based model which involves ‘test
and slaughter’ combined with herd isolation and vaccination and they apply it to the
situation in New Zealand. The model system consists of ordinary differential equations,
relating movement from one state to another (such as from latent to infected) and an
integral equation which gives the number of infected herds.

The question as to what is the best strategy for control is highly complex and clearly
species-(and geographically) dependent. In the HIV modelling above we could incor-
porate two drugs into the models and thereby compare the efficacies of the different
treatments. In the case of badgers and Tb, vaccination is now the preferred method of
control in England. Rabies, the vector for which is the red fox (Vulpes vulpes) in the
present epidemic in western Europe and, as mentioned, is controlled by vaccination,
does not (yet) exist in Britain where domestic animals are not vaccinated for the dis-
ease. (Fox hunting in England is an amazingly inefficient way of keeping down the fox
population.) It would be interesting to construct a model which included various meth-
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ods of control and to compare the consequences of vaccination, culling, contraception
and so on. From the point of culling a new selective culling was introduced in 1994
(MAFF Report 1994): without more knowledge which could come from further stud-
ies and realistic modelling it simply fuels the controversy. Hancox (1995) presents the
various arguments in the debate. He concludes that there may be cattle reservoirs of
bovine TB and so it is the cattle who are continually infecting the badger, a much more
appealing scenario for the British with their sentimental view of badgers and who view
the slaughtering of badgers with much indignation. The vaccination scenario we discuss
in this section does not distinguish which of the badgers or cattle is the reservoir.

BSE (Bovine Spongiform Encephalopathy) and Creutzfeldt—Jacob (CJ) Disease

Although we do not do any modelling it is important to briefly mention bovine spongi-
form encephalopathy (BSE), or ‘mad cow’ disease. It was first diagnosed in England
in 1986 and by the summer of 1997 there were around 167,000 cases confirmed with
undoubtedly many more undetected.'> The epidemic was severe in both size and in
particular the human consequences since it is has given rise to the emergence of a new
human disease, namely, a variant of Creutzfeldt—Jacob (CJ) disease.

CJ disease is a particularly horrifying neurodegenerative disease that affects the
brain and is always fatal. It is caused by prions, which are very small particles—badly
folded proteins—that are particularly tenacious; they cannot be broken down nor killed
easily. Unlike viruses they contain no genetic material and so provoke no immune re-
sponse. These prions accumulate in the brain and make spongelike holes. Prior to death
the victims suffer from insomnia, depression, anxiety, memory loss, loss of bodily func-
tion control, coordination and blindness. Since prions are only in infected tissue they can
easily be missed in an autopsy, which is why CJ is difficult to detect. It is becoming clear
that BSE in the cattle was a result of contaminated feed associated with the equivalent
disease in sheep and is directly the cause of variant CJ in humans. BSE comes under the
category of a transmissable spongiform encephalopathy or TSE.

By the end of 2000 only 87 cases in Britain have been found since 1994. Compared
with malaria or HIV it is negligible. There are several rather frightening reasons for the
panic, particularly in France, because of the chilling list of facts about BSE and how
easily it is passed from one infected animal to another. The pathogen is very tenacious
and is resistant to heat, boiling, alcohol, ionizing radiation and so on. Surgical instru-
ments which were in contact with the infected tissue can remain contaminated even
after normal sterilisation. The pathogen can survive being buried for years, could end
up in landfills and possibly passed on to grazing animals. BSE can be passed on by a
cow ingesting as little as a few grammes of infected tissue. An animal can harbour the
disease wihout showing any symptoms but it can pass it on to another animal. With the
variant CJ disease it may be possible for one human, who has it but shows no symp-

12The story of how the U.K. government dealt with the problem is an example of astonishing incompetence
if not irresponsibility. As of 2000 the question of the export of British beef—now reputed to be free of BSE—
was a matter of litigation between France on one side and Britain and the European Union on the other. The
French felt that the evidence that the British beef was now safe was not unequivocal. As of the end of 2000
an epidemic in France, and other European countries, is causing serious concern and not just in view of the
connection to Creutzfeldt-Jacob disease.
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toms, to pass it on to another.!3 The disease, in many ways is like being bitten by a dog
that was possibly rabid but without the benefit of any subsequent vaccine, with a gesta-
tion period that could last for years with the knowledge that the disease can be passed
(possibly trivially) on to others without any knowledge of having done so.

Another concern about infected animals is that most of a slaughtered animal is used
for purposes other than beef for human consumption. It is frequently used in cosmetics,
pet chow, beauty preparations and so on; the choreographer, George Balanchine, who
died of CJ disease is believed to have contracted it from using a bovine glandular prod-
uct to preserve youthful looks. The first French case was of a bodybuilder who used a
muscle-boosting preparation. One of these currently (2000) available, according to Dr.
Michael Hansen of the U.S. Consumers’ Union, contains dried bovine brain, spleen, pi-
tuitary glands and eye tissue. Another possibility of contracting the disease comes from
vaccines which are cultivated in bovine serum as was the case in Britain until 1993; the
vaccines were only withdrawn from use in November 2000.

Since it is unknown how easy or difficult it is to contract CJ in humans, how long
the gestation period is and so on, it is very difficult at this stage to come up with a model
that has any credence as regards prediction. Nevertheless it is important to try and get
some idea of the progress of both BSE in cattle and CJ disease in humans. Estimates
range from several hundred thousand to (according to Dominique Gillot, the French
Minister of Health) several dozen: the latter is clearly ridiculous. The increase in CJ
disease in Britain is becoming alarming. Although the numbers are still small, it is the
rate of increase that is crucial as we know from the material in this chapter. For example,
14 people died in 1999 and 14 contracted it in the first six and a half months of 2000
by when a total of 74 had died. By the end of 2000, a further 13 had died. The long
incubation period of the human form of the disease and the fact that it is probable that
several million people were exposed to contaminated beef in the 1980’s imply that over
the next 25 to 35 years several hundred thousand people could die of CJ disease.

Some modelling has been carried out by Donnelly et al. (1997), who set the demo-
graphic scene and discussed control strategies while Ferguson et al. (1997) presented
and analysed an age-structured model for the transmission dynamics: unfortunately
these have had to be based on the very limited available data about the etiology of the
disease. The model includes infection obtained from feed, the primary source of BSE
in cattle, as well as from direct horizontal and maternal transmission. They estimate pa-
rameters from the data and use back-calculation to reconstruct the past temporal pattern
infection. Such back-calculation was used by Murray et al. (1986) in their study of the
spatial spread of rabies. A review of this back-calculation methodology associated with
parameter estimation in HIV-infection rates has been given by Bacchetti et al. (1993).
Ferguson et al. (1997) carried out a sensitivity analysis of the parameters, gave estimates
and predictions and discussed some of the implications. As mentioned, with the large
number of unknowns any model predictions must be treated with considerable reserve.

In the case of any disease, the ultimate aim of epidemiologists is to eradicate it,
or in other words make the virus, bacterium or whatever, become extinct. On the other

13Long before the BSE epidemic and the variant CJ disease, corneal transplantation was implicated in one
case of human-to-human transmission of Creutzfeldt—Jacob disease (Duffy et al. 1974).
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hand ecologists view extinction of a species, decline of their habitat, in fact generally
a decline in biodiversity as a disaster. Although epidemiologists and ecologists have
opposite goals the mathematical model equations share similar forms and analytical
analyses. The paper by Earn et al. (1998) reviews some of the differences and similari-
ties between these two important fields and discusses some of the recent work on their
spatial aspects, chaotic behaviour and synchrony.

Exercises

1 Consider the dynamics of a directly transmitted viral microparasite to be modelled
by the system

dX _pn—pxy—bx. Yo pxy—winy. Z oy bz
dr Car T D T ’

where b, B and r are positive constants and X, Y and Z are the number of suscep-
tibles, infectives and immune populations respectively. Here the population is kept
constant by births and deaths (with a contribution from each class) balancing. Show
that there is a threshold population size, N, such that if N < N, = (b +r)/B
the parasite cannot maintain itself in the population and both the infectives and the
immune class eventually die out. The quantity BN /(b + r) is the basic reproductive
rate of the infection.

2 Consider an epidemic outbreak of a lethal disease in which the infectious period and
the incubation period of the disease are different. Denote the number of susceptibles
by S(t), those incubating the disease by E(¢), the population who are infectious by
1 () and those that have died by R(#). During the epidemic assume the population is
constant, equal to N. If a susceptible can be infected by someone who is incubating
the disease but less easily than by an infected person, justify the following SEIR
model,

as ﬂS(1+ E) dE ﬂS(1+ E)—bE
_ = —— r _= r —
dt N T dt N ’
dl dR

— =bE —cl, — =cl,

dt dt

where B, r, b and c are positive constants. What does each of these parameters mea-
sure?

Suppose that in the early stages of the epidemic only a few (relative to the
total population) individuals, Eg, become infected all at the same time and so are
incubating the disease: they do not become infectious for a time of the order of 1/b.
Is this a reasonable presumption? During this time S(#) =~ N. Use this to solve for
E(¢) as a function of 7.

With the full system examine the stability of the disease-free steady state
and hence determine the conditions for it to be unstable. Hence deduce that the basic
reproductive rate Ry = (8/bc)(b + cr).
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3 In a criss-cross venereal infection model, with the removed class permanently im-
mune, the infection dynamics is represented by
S— I — R
S"—1I' — R.

with the usual notation for the susceptibles, infectives and the removed class. Briefly
describe the assumptions made for its model system to be

ds ds’

— =—rSI', — =51,

g A

— =rSIl'—al, —=7¢S1-4dTI,
dt t

dR dR' 'y

—— =al, = s

dt dt

where the parameters are all positive. The initial values for S, I, R, S’, I’ and R’ are
So. Io, 0 and S, I, O respectively.

Show that the female and male populations are constant. Hence show that

S(t) = Soexp [—rR’/a’]; deduce that S(co) > 0 and I (00) = 0 with similar results

for S" and I’. Obtain the transcendental equations which determine S(c0) and S’ (00).

Show that the threshold condition for an epidemic to occur is at least one of

! ! /

S()IO - a SO Iy a

’

— > .
Iy r Iy r

What single condition would ensure an epidemic?

4 Consider a population of haemophiliacs who were given infected blood and so were
all infected with HIV at the same time ¢+ = 0. Denote by y(¢) the fraction of the
population who have AIDS at time ¢, and by x(¢) the fraction who are HIV-positive
but do not yet have AIDS. Let v(¢) be the rate of conversion from infection to AIDS.
Show that a simple model for the dynamics with relevant initial conditions is then

dx dy
E = —v(t)x, E = U([)X,
x(0)=1, y(0)=0.

Assume that the patient’s immune system is progressively impaired from the time
of infection and so v(¢) is an increasing function of time. Examine the system when
v(t) varies: (i) linearly with time and sketch the rate of change in the population who
develop AIDS and (ii) faster than linearly.

[Peterman et al. (1985) present data on 194 cases of blood transfusion-
associated AIDS. With v(r) = at the solution of the model system with a =
0.237yr~! applied to these data gives the rate of increase, dy/dt, in AIDS patients
which compares very well (depressingly so) with the data.]

5 For the drug use epidemic model in Section 10.9 show that the values given for the
threshold parameter y /Sp in cases (iii) and (iv) in Table 10.1 are as given.



