Travaux pratiques - Rattrapage du 11 avril 2022 (3H00)

Sans documents, sans calculatrice, sans portable, ...

Le barême est donné à titre indicatif

EXERCICE 1 (7 POINTS)

On souhaite résoudre numériquement l'E.D.P. suivante

$$\frac{\partial u}{\partial t}(t,x) - \nu \frac{\partial^2 u}{\partial x^2}(t,x) = f(t,x), \ \forall (t,x) \in]t_0; t_0 + T] \times]a; b[, \tag{1}$$

$$u(t_0, x) = u_0(x), \ \forall x \in [a; b],$$
 (2)

$$u(t,a) = u_a(t), \ \forall t \in [t_0; t_0 + T],$$
 (3)

$$u(t,b) = u_b(t), \ \forall t \in [t_0; t_0 + T].$$
 (4)

avec ν un réel strictement positif, $t_0 \in \mathbb{R}$, T > 0, $(a, b) \in \mathbb{R}^2$, a < b.

On note t^n , $n \in [0, N_t]$ et x_i , $i \in [0, N_x]$ les discrétisations régulières des intervalles $[t_0; t_0 + T]$ et [a; b] avec N_t pas de discrétisation en temps et N_x pas de discrétisation en espace.

On propose le schéma numérique suivant :

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} - \nu \frac{u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1}}{\Delta x^2} = f_i^{n+1}.$$
 (5)

- Q. 1 a. Ecrire de manière détaillée, la façon dont le schéma (5) a été obtenu à partir de (1).
 - $oldsymbol{b}$. Expliquer $oldsymbol{en}$ détails comment utiliser ce schéma pour résoudre numériquement le problème (1) à (4).
- Q. 2 (Matlab) Ecrire un programme Matlab permettant de :
 - résoudre le problème précédent avec des données judicieusement choisies (pour avoir une solution exacte),
 - $\bullet \ représenter \ graphiquement \ la \ solution \ exacte \ et \ la \ solution \ approchée \ au \ cours \ du \ temps.$

EXERCICE 2 (2 POINTS)

Soit $A \in \mathcal{M}_d(\mathbb{R})$ la matrice tridiagonale définit par

$$\mathbb{A} = \begin{pmatrix} v_1 & w_1 & 0 & \cdots & \cdots & 0 \\ u_1 & v_2 & w_2 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & v_{d-1} & w_{d-1} \\ 0 & \cdots & \cdots & 0 & u_{d-1} & v_d \end{pmatrix}$$
 (1)

avec $\boldsymbol{u} \in \mathbb{R}^{d-1}$, $\boldsymbol{v} \in \mathbb{R}^d$ et $\boldsymbol{w} \in \mathbb{R}^{d-1}$.

On rappelle une des manières d'utiliser la fonction sparse de Matlab/Octave :

$$M = \mathbf{sparse}(I,J,K,m,n);$$

Cette commande génère une matrice creuse m par n telle que M(I(k),J(k))=K(k). Les vecteurs I, J et K ont la même longueur. Il faut noter que tous les éléments nuls de K sont ignorés et que tous les éléments de K ayant les mêmes indices dans I et J sont sommés.

La commande $M = \mathbf{sparse}(m,n)$; permet, quant à elle, de créer une matrice creuse nulle de dimension m par n.

Q. 1 (Matlab) Ecrire la fonction spMTD permettant à partir des vecteurs \mathbf{u} , \mathbf{v} et \mathbf{w} de retourner la matrice creuse \mathbb{A} définie en (1). Pour celà on va tout d'abord créer une matrice creuse de $\mathcal{M}_d(\mathbb{R})$ puis on va la «remplir», composante par composante, à l'aide d'une ou plusieurs boucle for.

Q. 2 (Matlab) Ecrire la fonction spMTDvec permettant à partir des vecteurs \mathbf{u} , \mathbf{v} et \mathbf{w} de retourner la matrice creuse \mathbb{A} en créant (sans boucle) les tableaux I, J et K puis en générant la matrice \mathbb{A} à l'aide de la commande $\mathbf{A} = \mathbf{sparse}(I,J,K,d,d)$;

EXERCICE 3 (11 POINTS)

Soient $\Omega =]a, b[\times]c, d[\subset \mathbb{R}^2$ et $\Gamma = \partial \Omega$ la frontière du domaine Ω . On note $(x_i)_{i=0}^{N_x}$ et $(y_j)_{j=0}^{N_y}$ les discrétisation régulières, respectivement, des intervalles [a, b] et [c, d] défines par

$$x_i = a + ih_x, \ \forall i \in [0, N_x] \quad \text{et} \quad y_j = c + jh_y, \ \forall j \in [0, N_y]$$

$$\tag{1}$$

avec $h_x = (b-a)/N_x$ et $h_y = (d-c)/N_y$. On note aussi

$$n_x = N_x + 1, \quad n_y = N_y + 1 \quad \text{et} \quad N = n_x \times n_y$$
 (2)

Soient $f: \bar{\Omega} \longrightarrow \mathbb{R}$, $g: \Gamma \longrightarrow \mathbb{R}$ et $\kappa \in \mathbb{R}^+$ donnés. On veut résoudre le problème suivant

$$-\Delta u + \kappa u = f, \quad \text{dans } \Omega, \tag{3}$$

$$u = q$$
, sur Γ , (4)

en utilisant le schéma différence finie d'ordre 2 suivant :

$$-\frac{U_{i+1,j} - 2U_{i,j} + U_{i-1,j}}{h_x^2} - \frac{U_{i,j+1} - 2U_{i,j} + U_{i,j-1}}{h_y^2} + \kappa U_{i,j} = f(x_i, y_j), \qquad \forall (i, j) \in]0, N_x[[\times]0, N_y[[, \dots]0]]$$
(5)

$$U_{0,j} = g(a, y_j), \qquad \forall j \in]0, N_y[], \qquad (6)$$

$$U_{N_x,j} = g(b, y_j), \qquad \forall j \in]0, N_y[], \qquad (7)$$

$$U_{i,0} = g(x_i, c),$$
 $\forall i \in [0, N_x],$ (8)

$$U_{i,N_u} = g(x_i, d), \qquad \forall i \in [0, N_x], \qquad (9)$$

avec $U_{i,j} \approx u(x_i, y_j)$.

Pour tout $i \in [0, N_x]$, on note $U_{i,:}$ le vecteur de \mathbb{R}^{n_y} définit par

$$m{U}_{i,:} = egin{pmatrix} U_{i,0} \\ \vdots \\ U_{i,N_y} \end{pmatrix}.$$

On note $\mathbf{V} = (V_1, \dots V_N)^t \in \mathbb{R}^N$ le vecteur bloc

Dans le cas de la numérotation en $(i, j) \in [0, N_x] \times [0, N_y]$ on parlera de **numérotation 2D** et pour la numérotation en $k \in [1, N]$ on parlera de **numérotation globale**.

Attention, ici, la numérotation globale est différente de celle utilisée en TP

Dans cet exercice, lorsqu'un code Matlab est demandé sous forme **vectorisée**, celà sous-entend qu'il faut «supprimer» au maximum les boucles (dans la mesure du possible).

Q. 1 Explicitez la bijection $\mathcal{G}: [0, N_x] \times [0, N_y] \longrightarrow [1, N]$ telle que

$$\forall (i,j) \in [0, N_x] \times [0, N_y], \quad V_k = U_{i,j}, \quad avec \ k = \mathcal{G}(i,j).$$

- Q. 2 (Matlab) a. Ecrire la fonction k=bijG(i,j ,...) correspondant à la bijection G (numerotation 2D vers numerotation globale). Ici ,... peut correspondre à des paramètres supplémentaires nécessaires.
 - b. Ecrire la fonction réciproque [i,j]=bijRecG(k,...) correspondant à \mathcal{G}^{-1} (numerotation globale vers numerotation 2D). On pourra utiliser la fonction rem(x,y) qui retourne le reste de la division entière de x par y. Ici ,... peut correspondre à des paramètres supplémentaires nécessaires.

Q. 3 (Matlab) Soient X et Y dans \mathbb{R}^N les vecteurs (bloc) en numéroration globale tels que

$$\forall k \in [1, N], (i, j) = \mathcal{G}^{-1}(k), \ X_k = x_i \ et \ Y_k = y_j.$$

Ecrire une fonction vectorisée [X,Y] = Grille(x,y) où $\mathbf{x} = (x_0, \dots, x_{N_x})$ et $\mathbf{y} = (y_0, \dots, y_{N_y})$ correspondent, respectivement, aux discrétisations en \mathbf{x} et en \mathbf{y} . On pourra, pour celà, utiliser les fonctions écrites dans \mathbf{Q} . 2.

- **Q.** 4 (Matlab) Soit h une fonction définie sur $\bar{\Omega}$ à valeurs réelles et Soit $\mathbf{H} \in \mathbb{R}^N$ le vecteur (bloc) en numéroration globale correspondant au stockage de tous les $h(x_i, y_j)$, $\forall (i, j) \in [0, N_x] \times [0, N_y]$.
 - a. Ecrire une fonction vectorisée EvalFun2D permettant à partir d'une fonction h donnée, définie de $\bar{\Omega}$ et à valeurs réelles, et des discrétisations x et y de retourner le vecteur H associé.
 - **b.** Ecrire un programme complet **vectorisé** permettant de représenter la fonction $h:(x,y)\mapsto\cos(x^2+y^2)$ sur $[-2,2]\times[-3,3]$. On utilisera la fonction graphique Matlab/Octave $\operatorname{surf}(\boldsymbol{x},\boldsymbol{y},\mathbb{Z})$ avec $\mathbb{Z}\in\mathcal{M}_{n_y,n_x}(\mathbb{R})$ et $\mathbb{Z}_{j,i}=h(x_{i-1},y_{j-1}), \ \forall (i,j)\in[1,n_x]\times[1,n_y]$. On pourra utiliser les fonctions déjà écrites.

Chacune des équations du problème discret (5) à (9) correspond à une discrétisation en un point (x_i, y_j) . Nous choisissons d'écrire ces équations en utilisant la même numérotation que lors de la construction du vecteur \mathbf{V} : l'équation écrite au point (x_i, y_j) sera écrite en ligne $k = \mathcal{G}(i, j)$ du système.

Q. 5 Expliquer en détails que le problème discret (5) à (9) peut s'écrire sous la forme du système linéaire bloc (N équations)

$$\begin{pmatrix}
\mathbb{E} & \mathbb{O} & \cdots & \cdots & \mathbb{O} & \mathbb{O} \\
\mathbb{M} & \mathbb{D} & \mathbb{M} & \mathbb{O} & \cdots & \mathbb{O} & \mathbb{O} \\
\mathbb{O} & \mathbb{M} & \ddots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \mathbb{O} & \ddots & \ddots & \ddots & \mathbb{M} & \mathbb{O} \\
\mathbb{O} & \mathbb{O} & \cdots & \mathbb{O} & \mathbb{M} & \mathbb{D} & \mathbb{M} \\
\mathbb{O} & \mathbb{O} & \cdots & \cdots & \cdots & \mathbb{O} & \mathbb{E}
\end{pmatrix}$$

$$V = \begin{pmatrix}
B_{0,:} \\
\overline{B}_{1,:} \\
\vdots \\
\vdots \\
\overline{B}_{N_x,:}
\end{pmatrix}$$
(10)

où chaque bloc de la matrice est une matrice de $\mathcal{M}_{n_y}(\mathbb{R})$. La matrice $\mathbb{O} \in \mathcal{M}_{n_y}(\mathbb{R})$ est la matrice nulle. Les matrices creuses \mathbb{D} , \mathbb{M} et \mathbb{E} ainsi que les vecteurs $\mathbf{B}_{i,:} \in \mathbb{R}^{n_y}$, pour tout $i \in [0, N_x]$, devront être donnés explicitement.

Q. 6 (Matlab) Ecrire la fonction $\mathbb{A} = \text{Assemble2D}(N, N_x, \mathbb{D}, \mathbb{E}, \mathbb{M})$ retournant la matrice creuse (bloc) du système linéaire (10) où les matrices creuses \mathbb{D} , \mathbb{E} , et \mathbb{M} sont supposées connues et passées en paramètre.