OptFEM2DP1 Toolbox  V1.2
Matlab/Octave Optimized P1-Lagrange Finite Element Method in 2D
base/Compute_Lame.m
Go to the documentation of this file.
00001 function [lambda,mu]=Compute_Lame(E,nu,alpha)
00002 % function [lambda,mu]=Compute_Lame(E,nu,alpha)
00003 %  Computation of Lame coefficients from Young''s modulus and Poisson''s ratio
00004 %
00005 %
00006 % Parameters:
00007 %  E: Young's modulus
00008 %  nu: Poisson's ratio
00009 %  alpha: parameter such that alpha=1 <=> plane strain, alpha=0 <=> plane stress
00010 %
00011 % Return values:
00012 %  lambda: First Lame coefficient in Hooke's law
00013 %  mu: Second Lame coefficient in Hooke's law
00014 %
00015 % Example:
00016 %  We consider the example of steel with plane strain hypothesis.
00017 %  @verbatim 
00018 %    Th=SquareMesh(10);
00019 %    E=2.1*1e11; nu=0.27; alpha=1;
00020 %    [lambda,mu]=Compute_Lame(E,nu,alpha);
00021 %    Num=0;
00022 %    K=StiffElasAssemblingP1base(Th.nq,Th.nme,Th.q,Th.me,Th.areas,lambda,mu,Num);
00023 %  @endverbatim
00024 %
00025 % See also:
00026 %   #SquareMesh, StiffElasAssemblingP1base
00027 % Copyright:
00028 %   See \ref license
00029 if(alpha==0)
00030     disp('Plane stress');
00031 else
00032     disp('Plane strain');
00033 end
00034 lambda=E*nu/((1+nu)*(1-(1+alpha)*nu));
00035 mu=E/(2*(1+nu));
00036 end
 All Files Functions