![]() |
OptFEM2DP1 Toolbox
V1.2
Matlab/Octave Optimized P1-Lagrange Finite Element Method in 2D
|
00001 function M=MassAssembling2DP1base(nq,nme,me,areas) 00002 % function M=MassAssembling2DP1base(nq,nme,me,areas) 00003 % Assembly of the Mass Matrix by `P_1`-Lagrange finite elements 00004 % - Basic version (see report). 00005 % 00006 % The Mass Matrix `\Masse` is given by 00007 % ``\Masse_{i,j}=\int_\DOMH \FoncBase_i(\q)\, \FoncBase_j(\q)\, d\q,\ \forall (i,j)\in{\ENS{1}{\nq}}^2`` 00008 % where `\FoncBase_i` are `P_1`-Lagrange basis functions. 00009 % Parameters: 00010 % nq: total number of nodes of the mesh, also denoted by `\nq`, 00011 % nme: total number of triangles, also denoted by `\nme`, 00012 % me: Connectivity array, `3\times\nme` array. <br/> 00013 % `\me(\jl,k)` is the storage index of the 00014 % `\jl`-th vertex of the `k`-th triangle in the array `\q`, `\jl\in\{1,2,3\}` and 00015 % `k\in{\ENS{1}{\nme}}`. 00016 % areas: Array of areas, `1\times\nme` array. areas(k) is the area of the `k`-th triangle. 00017 % 00018 % Return values: 00019 % M: Global mass matrix, `\nq\times\nq` sparse matrix. 00020 % 00021 % Example: 00022 % @verbatim 00023 % Th=SquareMesh(10); 00024 % M=MassAssembling2DP1base(Th.nq,Th.nme,Th.me,Th.areas); 00025 % @endverbatim 00026 % 00027 % See also: 00028 % #ElemMassMat2DP1 00029 % Copyright: 00030 % See \ref license 00031 M=sparse(nq,nq); 00032 for k=1:nme 00033 E=ElemMassMat2DP1(areas(k)); 00034 for il=1:3 00035 i=me(il,k); 00036 for jl=1:3 00037 j=me(jl,k); 00038 M(i,j)=M(i,j)+E(il,jl); 00039 end 00040 end 00041 end