OptFEM2D Toolbox for Matlab  V1.2b1
Matlab/Octave Optimized P1-Lagrange Finite Element Method in 2D
 All Files Functions Pages
valid_StiffElas.m
Go to the documentation of this file.
1 function Test=valid_StiffElas()
2 %
3 % OptFEM2DP1 [V1.2b1] - Copyright (C) 2013 CJS (LAGA)
4 %
5 % This file is part of OptFEM2DP1.
6 % OptFEM2DP1 is free software: you can redistribute it and/or modify
7 % it under the terms of the GNU General Public License as published by
8 % the Free Software Foundation, either version 3 of the License, or
9 % (at your option) any later version.
10 %
11 % OptFEM2DP1 is distributed in the hope that it will be useful,
12 % but WITHOUT ANY WARRANTY; without even the implied warranty of
13 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 % GNU General Public License for more details.
15 %
16 % You should have received a copy of the GNU General Public License
17 % along with this program. If not, see <http://www.gnu.org/licenses/>.
18 i=1;
19 Test(i).u={@(x,y) x - 2.*y, @(x,y) x + y};
20 Test(i).cu={'x - 2*y','x + y'};
21 Test(i).v={@(x,y) x + 2.*y, @(x,y) 2.*x - y};
22 Test(i).cv={'x + 2*y','2*x - y'};
23 Test(i).Mass=-5/12;
24 Test(i).Stiff=-8;
25 Test(i).lambda=1;
26 Test(i).mu=2;
27 Test(i).degree=2;
28 i=2;
29 Test(i).u={@(x,y) x.^2 - 2.*x.*y, @(x,y) y.^2 + x};
30 Test(i).cu={'x^2 - 2*x*y','y^2 + x'};
31 Test(i).v={@(x,y) x.^2 + 2.*y.^2, @(x,y) 2.*x.^2 - x.*y};
32 Test(i).cv={'x^2 + 2*y^2','2*x^2 - x*y'};
33 Test(i).Mass=37/360;
34 Test(i).Stiff=-4/3;
35 Test(i).lambda=1;
36 Test(i).mu=2;
37 Test(i).degree=2;
38 i=3;
39 Test(i).u={@(x,y) x.^2 - y.^2, @(x,y) x.^3 - y.^3};
40 Test(i).cu={'x^2 - y^2','x^3 - y^3'};
41 Test(i).v={@(x,y) 2.*y.^3 + x, @(x,y) 2.*x.^2 - x.*y};
42 Test(i).cv={'2*y^3 + x','2*x^2 - x*y'};
43 Test(i).Mass=1/12;
44 Test(i).Stiff=3;
45 Test(i).lambda=1;
46 Test(i).mu=1;
47 Test(i).degree=2;
48 i=4;
49 Test(i).u={@(x,y) x.^2 - y.^4, @(x,y) x.^4 - y.^3};
50 Test(i).cu={'x^2 - y^4','x^4 - y^3'};
51 Test(i).v={@(x,y) x.^2.*y.^2 + 2.*y.^3, @(x,y) 2.*x.^2 - x.*y};
52 Test(i).cv={'x^2*y^2 + 2*y^3','2*x^2 - x*y'};
53 Test(i).Mass=1/14;
54 Test(i).Stiff=5/9;
55 Test(i).lambda=3;
56 Test(i).mu=1;
57 Test(i).degree=2;
58 i=5;
59 Test(i).u={@(x,y) x.^3.*y.^2 - x.^2 - y.^4, @(x,y) x.^4 - 2.*y.^5 - y.^3};
60 Test(i).cu={'x^3*y^2 - x^2 - y^4','x^4 - 2*y^5 - y^3'};
61 Test(i).v={@(x,y) x.^2.*y.^3 + 2.*y.^3, @(x,y) -x.^4.*y + 2.*x.^2};
62 Test(i).cv={'x^2*y^3 + 2*y^3','-x^4*y + 2*x^2'};
63 Test(i).Mass=-1927/4200;
64 Test(i).Stiff=101/35;
65 Test(i).lambda=1;
66 Test(i).mu=3;
67 Test(i).degree=2;
68 i=6;
69 Test(i).u={@(x,y) x.^6 + x.^3.*y.^2 - x.^2 - y.^4, @(x,y) -2.*x.*y.^5 + x.^5 - y.^3};
70 Test(i).cu={'x^6 + x^3*y^2 - x^2 - y^4','-2*x*y^5 + x^5 - y^3'};
71 Test(i).v={@(x,y) x.^3.*y.^3 + 2.*y.^3, @(x,y) -x.^4.*y.^2 + 2.*x.^2};
72 Test(i).cv={'x^3*y^3 + 2*y^3','-x^4*y^2 + 2*x^2'};
73 Test(i).Mass=-367/1120;
74 Test(i).Stiff=1073/504;
75 Test(i).lambda=1;
76 Test(i).mu=2;
77 Test(i).degree=2;