3 % Validation
function for MassAssembling P1 functions.
5 % The Mass Matrix, `\Masse`, is given by
6 % ``\Masse_{i,j}=\int_\DOMH \FoncBase_i(\q) \FoncBase_j(\q) d\q,\ \forall (i,j)\in\ENS{1}{\nq}^2``
7 % where `\FoncBase_i` are `P_1`-Lagrange basis functions.
8 % This Matrix is computed by functions MassAssemblingP1{Version} where {Version} is one of
9 %
'base',
'OptV0',
'OptV1' and
'OptV2'.
10 % - Test 1: compute Mass Matrix using previous functions and give errors and cputimes
11 % - Test 2: compute ``\int_\DOM u(x,y) v(x,y) dxdy \approx \DOT{\Masse \vecb{U}}{\vecb{V}}``
12 % where `\vecb{U}_i=u(\q^i)` and `\vecb{V}_i=v(\q^i)`. Use fonctions `u` and `v` defined in #
valid_FEMmatrices.
13 % - Test 3: retrieve order 2 of `P_1`-Lagrange integration ``|\int_\DOM uv -\Pi_h(u)\Pi_h(v)d\DOM| \leq C h^2``
16 % #MassAssemblingP1base, #MassAssemblingP1OptV0, #MassAssemblingP1OptV1, #MassAssemblingP1OptV2
18 % @author Francois Cuvelier @date 2012-11-26
20 disp('******************************************')
21 disp('* Mass Assembling P1 validations *')
22 disp('******************************************')
27 disp(
'-----------------------------------------')
28 disp(' Test 1: Matrices errors and CPU times ')
29 disp('-----------------------------------------')
36 Test1.error(1)=norm(Mbase-MOptV0,Inf);
37 Test1.name{1}=
'MassAssemblingP1OptV0';
38 fprintf(
' Error P1base vs OptV0 : %e\n',Test1.error(1))
42 Test1.error(2)=norm(Mbase-MOptV1,Inf);
43 Test1.name{2}=
'MassAssemblingP1OptV1';
44 fprintf(
' Error P1base vs OptV1 : %e\n',Test1.error(2))
48 Test1.error(3)=norm(Mbase-MOptV2,Inf);
49 Test1.name{3}=
'MassAssemblingP1OptV2';
50 fprintf(
' Error P1base vs OptV2 : %e\n',Test1.error(3))
52 fprintf(
' CPU times base (ref) : %3.4f (s)\n',T(1))
53 fprintf(
' CPU times OptV0 : %3.4f (s) - Speed Up X%3.3f\n',T(2),T(1)/T(2))
54 fprintf(
' CPU times OptV1 : %3.4f (s) - Speed Up X%3.3f\n',T(3),T(1)/T(3))
55 fprintf(
' CPU times OptV2 : %3.4f (s) - Speed Up X%3.3f\n',T(4),T(1)/T(4))
61 disp('-----------------------------------------------------')
62 disp(' Test 2: Validations by integration on [0,1]x[0,1] ')
63 disp('-----------------------------------------------------')
66 U=Test(kk).u(Th.q(1,:),Th.q(2,:));
67 V=Test(kk).v(Th.q(1,:),Th.q(2,:));
68 Test(kk).error=abs(Test(kk).Mass-U*M*V');
69 fprintf(' function %d : u(x,y)=%s, v(x,y)=%s,\n -> Mass error=%e\n',kk,Test(kk).cu,Test(kk).cv,abs(Test(kk).Mass-U*M*V'));
74 disp('--------------------------------')
75 disp(' Test 3: Validations by order ')
76 disp('--------------------------------')
84 fprintf(' Matrix size : %d\n',Th.nq);
89 U=u(Th.q(1,:),Th.q(2,:));
90 V=v(Th.q(1,:),Th.q(2,:));
91 Error(k)=abs(ExSol-U*M*V');
93 fprintf(' Error : %e\n',Error(k));
96 loglog(h,Error,'+-k',h,h*1.1*Error(1)/h(1),'-.k',h,1.1*Error(1)*(h/h(1)).^2,'k:')
97 legend('Error','O(h)','O(h^2)')
99 title('Test 3 : Mass Matrix')
103 function checkTest1(Test)
104 I=find(Test.error>1e-14);
106 disp('------------------------')
107 disp(' Test 1 (results): OK')
108 disp('------------------------')
110 disp('----------------------------')
111 disp(' Test 1 (results): FAILED')
112 disp('----------------------------')
116 function checkTest2(Test)
120 if (Test(k).degree<=1)
121 if (Test(k).error>1e-14)
127 disp('------------------------')
128 disp(' Test 2 (results): OK')
129 disp('------------------------')
131 disp('----------------------------')
132 disp(' Test 2 (results): FAILED')
133 disp('----------------------------')
137 function checkTest3(h,error)
139 P=polyfit(log(h),log(error),1);
141 disp('------------------------')
142 disp(' Test 3 (results): OK')
143 fprintf(' -> found numerical order %f. Must be 2\n',P(1))
144 disp('------------------------')
146 disp('----------------------------')
147 disp(' Test 3 (results): FAILED')
148 fprintf(' -> found numerical order %f. Must be 2\n',P(1))
149 disp('----------------------------')