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Abstract. The object of this paper is a one-dimensional generalized porous media equation
(PDE) with possibly discontinuous coefficiefit which is well-posed as an evolution prob-
lem in LY(R). In some recent papers of Blanchard et alia and Barbu et alia, the solution
was represented by the solution of a non-linear stochastic differential equatiaw if the

initial condition is a bounded integrable function. We first extend this result,aat lshen

S is continuous and the initial condition is only integrable with some supplementdrgitec

cal assumption. The main purpose of the article consists in introducing and ingieghe
stochastic particle algorithm to approach the solution to (PDE) which &$sia he case when

S is possibly irregular, to predict some long-time behavior of the solution and in camgpar
with some recent numerical deterministic techniques.
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1. Introduction

The main aim of this work is to construct and implement a philstic algorithm
which will allow us to approximate solutions of a porous nzetlipe equation with
monotone irregular coefficient. Indeed, we are interestate parabolic problem

{8tu(t,x) = 1028 (u(t,z)), te0,+oo,

u(0,z) = wup(dr), = €R, (1)

in the sense of distributions, whetg is an initial probability measure. lig has a
density, we will still denote it by the same letter. We look &solution of (1.1) with
time evolution inL(R). We formulate the following assumption:
Assumption(A)
(i) 8 : R — R such that3|r, is monotone.
(i) B(0) = 0 andg continuous at zero.
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(iif) We assume the existence &f> 0 such that + \id)(R,) = (Ry), id(z) = «.

A monotone functiorfy : R — R can be completed into a graph by settifygz) =
[Bo(z—), fo(x4)]. An odd functionfy : R — R such that3|r, = fo|r, produces in
this way a maximal monotone graph.

In this introduction, howeves and Sy will be considered single-valued for the sake
of simplicity. We leave more precise formulations (as ingergition 2.1 and Theorem
2.8) for the body of the article.

We remark that if5 fulfills Assumption(A), then the odd symmetrizgd fulfills the
more natural

Assumption(A’)

() Bo : R — R is monotone.
(i) Bo(0) = 0 andsy continuous at zero.
(iii) We assume the existence &f> 0 such tha{p + \id)(R) = (R), id(x) = x.
We defined : R — R, setting
Bolw) it 2 0,
D(u) = (1.2)
C if u=0,
whereC' € [liminf ®(u), limsup®(u)].

u—0" u—s0t
Note that whem3(u) = u.|u|™"1, m > 1, the partial differential equation (PDE)
in (1.1) is nothing else but the classical porous media éguatn this caseb(u) =
lu|™" and in particulaC' = 0.
Our main target is to analyze the case of an irregular coeffi¢i. Indeed, we are

particularly interested in the case whe@rs continuous excepted for a possible jump
at one positive point, say. > 0. A typical example is:

B(u) = H(u — u).u, (1.3)

H being the Heaviside function and will be calledcritical value or critical thresh-
old.

Definition 1.1. i) We will say that the PDE in (1.1), of is non-degenerat# there is
a constantg > 0 such thatb > ¢g, on each compact &, .

i) We will say that the PDE in (1.1), of is degeneratéf Iirr?J+ ®(u) =0.
u—r

Remark 1.2. i) We remark thaps is non-degenerate if and only if Iign idf(u) > 0.
u—0t

i) We observe that may be neither degenerate nor non-degenerate.
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Of coursegin (1.3) is degenerate. Equation (1.3) constitutes a modiehiening in
some self-organized criticality (often called SOC) pheram see [2] for a significant
monograph on the subject. We mention the interesting palygiaper [16], which
makes reference to a system whose evolution is similar tevbtution of a "snow
layer” under the influence of an "avalanche effect” whichrtstavhenever the top of
the layer is bigger than a critical valug.

We, in particular, refer to [9] (resp. [3]), which concenéson the avalanche phase
and therefore investigates the problem (1.1) discussiisgezice, uniqueness and prob-
abilistic representation whehis non-degenerate (resp. degenerate). The authors had
in mind the singular PDE in (1.1) as a macroscopic model fockkhey gave a mi-
croscopic view via a probabilistic representation prodithy a non-linear stochastic
differential equation (NLSDE); the stochastic equatiorsigpposed to describe the
evolution of a single point of the layer. The analytical asptions formulated by the
authors were Assumption(A) and the Assumption(B) belowchipostulates linear
growth for .

Assumption(B). There exists a constaat> 0 such that3(u)| < c|ul.

Obviously we have,
Assumption(B’). There exists a constant> 0 such thatSo(u)| < c|ul.

Clearly (1.3) fulfills Assumption(B).

To the best of our knowledge the first author who considerebahbilistic repre-
sentation (of the type studied in this paper) for the sohstiof non linear deterministic
partial differential equations was McKean [32]. Howeverhis case, the coefficients
were smooth. From then on, the literature steadily grew anhdays there is a vast
amount of contributions to the subject. A probabilisticeiretation of (1.1) when
B(u) = u.Ju|™"1, m > 1 was provided in [5]. For the sanf& though the method
could be adapted to the case whéris Lipschitz, in [28], the author studied the evo-
lution problem (1.1) when the initial condition and the exan takes values in the
class of probability distribution functions d&. He studied both the probabilistic rep-
resentation and the so-callptbpagation of chaas

At the level of probabilistic representation, under Asstions (A) and (B), sup-
posing thatup has a bounded density, [9] (resp. [3]) proves existence aiglianess
(resp. existence) in law for the corresponding (NLSDE)himpresent work we are in-
terested in some theoretical complements, but the mairoparponsists in examining
numerical implementations provided by the (NLSDE), in camgon with numerical
deterministic schemes appearing in one recent paper, 8ke [1

Let us now describe the principle of the probabilistic reprgation. The stochastic
differential equation (in law) rendering the probabilistepresentation is given by the
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following (NLSDE):

t
Y = Yo+ [®(u(s,Ys))dWs,
N (1.4)
u(t,-) = Law density ofY;, Vt >0, '
u(0,-) = wp Law ofYp,

wherelV is a classical Brownian motion. The solution of that equatiay be visual-
ized as a continuous processon some filtered probability spa¢®, 7, (F;):>o0, P)
equipped with ar{.F;),>o-Brownian motioni¥'.

Until now, theoretical results about well-posedness (resgstence) for (1.4) were
established whef is non-degenerate (resp. possibly degenerate) and inskendeen
up € (L*N L) (R).

Initially our aim was to produce an algorithm which allowsstart even with a
measure or an unbounded function as initial condition. dofately, up to now, our
implementation techniques do not allow to treat this case.

However, even if the present paper concentrates on nurhespariments, two
theoretical contributions are performed whgis continuous.

e A first significant theoretical contribution is Theorem 2.8igh consists in fact
in extending the probabilistic representation obtained3jyto the case wheng €
LY(R), locally of bounded variation outside a discrete set of {spinot necessarily
bounded.

e A second contribution consists in showing in the non-deggrecase that the
mollified version of PDE in (1.1) is in fact equivalent to itopabilistic representation,
even when the initial conditiong is a probability measure. This is done in Theorem
3.2.

The connection between (1.4) and (1.1) is indeed given bfoll@ving result.

Proposition 1.3.Let us assume the existence of a solutiofor (1.4). Letu(t,-) be
the law density o, t > 0, that we suppose to exist.

Thenu : [0,7] x R — R, provides a solution in the sense of distributions of (1.1)
with ug = u(0, -).

The proof is well-known, but we recall here the basic argunfiemillustration pur-
poses.

Proof. Lety € Cg°(R), Y be a solution of the problem (1.4). We appl§’stformula
to p(Y) to obtain :

P) = () + [ (VBu(s, Y)W, + 5 [ (V@2 u(s, Vo) ds.

Taking the expectation we get :

/Rw(y)U(tvy)dyz/RsO(y)uO(y)dy+;/O ds/RsO”(y)CDZ(U(s,y))u(&y)dy-
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Using then integration by parts and the expressiofi,ahe expected result follows.
O

In the literature there are several contributions about@pmation of non-linear
PDE'’s of parabolic type using a stochastic particles systeitih study of the chaos
propagation. We recall that the chaos propagation takee plahe components of a
vector describing the interacting particle system becosyenatotically independent,
when the number of particles goes to infinity. Note that, paly motivated applica-
tions can be found, for instance in numerical studies in tydr plasma-physics; [20]
and [24] are contributions expressing a heuristic or forpuéht of view.

When the non-linearity is of the first order, a significant tritrution was given
by [48]; [10, 11] study a McKean-Vlasov model containing asastipular case, the
Burgers equation where, as in [28], the initial conditioraiprobability (cumulated)
distribution function. They performed the rate of converggof an empirical measure
associated with a stochastic particle algorithm. [33] eyde the model of [32] and
[48] and they established the related chaos propagatiait.réd/e also quote [17],
where authors obtained Burgers equation as a mean field dinsitiitable diffusion
processes.

In the case of porous media type equation (1.1) withipschitz, [29] investigated
the probabilistic representation for (1.1) and a mollifiethted equation. There, the
authors provided a rigorous proof of the propagation of shiadhe case of Lipschitz
coefficients, see Proposition 2.3, Proposition 2.5 and fidre@.7 of [29].

Outside the Lipschitz case, an alternative method for stgdgonvergence was
investigated by [34, 35, 36], whose limiting PDEs conceraatass of equations in-
cluding the cas@(u) = u+u?, u > 0. Infact[36] computed the numerical solution
of a viscous porous medium equation through a particle glgorand studied thé&?-
convergence rate to the analytical solution. More recengEaponcerning the chaos
propagation whem(u) = u? firstandf(u) = |u|™ *u, m > 1 was proposed in [39]
and [21].

As far as the coefficient is discontinuous, at our knowledge, up to now, there are
no such results. As we announced, we are particularly isttedein an empirical in-
vestigation of the stochastic particle algorithm appraaghhe solutionu of (1.1) at
some instant, in several situations with regular or irregular coefficieiVe recall
thatu(t, -) is a probability density. That algorithm involves Euler sotes of stochas-
tic differential equations, Monte-Carlo simulations exgziag the empirical law and
non-parametric density estimation oft, -) using Gaussian kernels, see [46] for an
introduction to the kernel method. This technique crugidpends on the window
width ¢ of the smoothing kernel. Classical statistical tools fova@$ing that parameter
are described for instance in [46], where the following fatanfor choosing the opti-
mal bandwidthe, in the sense of minimizing the asymptoticean integrated squared
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error (MISE), is given by

1
5

e = (2nvV/m| 2 u(t,)|?) ", (1.5)

where,n is the sample size arjf || denotes the classicaf(R) norm.

Of course, the above expression does not yield an immeyliptatticable method
for choosing the optimal since (1.5) depends on the second derivative of the density
u, which we are trying indeed to estimate. Therefore, sewerdniques were pro-
posed to get through this problem. First, a natural and eaggroach, often called the
rule of thumb replaced the target densityat time¢ in the functional||92,u/|, by a
reference distribution function. For instance, [46] assdrthat the unknown density
is a standard normal function and obtained the followingfcally used formula

e = <3‘:L> %’ 5, (1.6)

o being the empirical standard deviation. A version which @erobust to outliers
in the sample, consists in replaciady a measure of spread of the variance involving
the interquartile range. For instance, see [46] for deda@mputations.

The oversmoothingnethods rely on the fact that there is a simple upper bound for
the MISE-optimal bandwidth. In fact, [49], gave a lower bouod the functional
|02, and thus an upper bound fein (1.5); it proposed to use this upper bound as
an optimal window width, see also [50] for histograms.

The two methods above seem to work well for unimodal derssititowever, they
lead to arbitrarily bad estimates of the bandwidtiwhen for instance, the true density
is far from being Gaussian, especially when it is a multinidela.

Theleast squares cross validatighSCV) method aimed to estimate the bandwidth
that minimizes the integrated squared error (ISE), basea beave-one-out” kernel
density estimator, see [41, 14]. The problem is that, forstume target distribution,
the estimated bandwidth through different samples has wavignce, which produces
instability.

The biased cross-validatiofBCV) approach, introduced in [42] minimizes the
score function obtained by replacing the functiofd, «|| in the formula of the MISE
by an estimatof|92 4|, whereu is the kernel estimator af. In fact, [42] proposed
the use of the minimizer of that score function as optimaldvédth. This method
seemed to be more stable than the LSCV but still has large Gibs slow rate of
convergence of both the LSCV and BCV approaches encourageifiant research
on faster converging methods.

A popular approach, commonly callgdug-in method, makes use of an indirect
estimator of the density functiongb?, || in formula (1.5). This technique comes
back to the early paper [52]; in this framework the estimato}to2, u|| requires the
computation of gilot bandwidthh, which is quite different from the window width
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¢ used for the kernel density estimate. Indeed, this optiraablvidth/ depends on
unknown density functionals involving partial derivativgreater than 2. Following an
idea of [51], one could expregsiteratively through higher order derivatives. In this
spirit, the natural associated problem consists in esingdibr some positive integer
s, the quantity||05.ul|, in terms of||8;jfgu|| for some positive integef; an ¢-stage
direct plug-inapproach may consist in replacing the nqtﬁijflu\| by the norm of
the s + ¢ derivative of a Gaussian density. In the present paper wéeimmgnt this
idea withs = ¢ = 2. Important contributions to that topic were [43] and [2Hav
improved the method via the so-called "solve-the-equatng-in method. By this
technique, the pilot bandwidth used to estimatdo2, u|, is written as a function
of the kernel bandwidtl. We shall describe in Section 4 in details this bandwidth
selection procedure applied in the case of our probalgiléggorithm.

We point out, that a more recent tool was developed in [12¢tvihproved the idea
in [43, 27] in the sense that [12] did not postulate any nomafgrence rule. However,
the numerical experiments that we have performed using thaMeoutine developed
by the first author of [12] have not produced better resulteécase whefi is defined
by (1.3).

In the paper we examine empirically the stochastic parétderithm for approach-
ing the solution to the PDE in the caséu) = «2 and in the casg given by (1.3). For
this more peculiar case, we compare the approximation Wwetlohe obtained by one
recent analytic deterministic numerical method.

Problems of the same type as (1.1), in the case whenLipschitz but possibly
degenerate, were extensively studied from both the theatetnd numerical deter-
ministic points of view. In general, the numerical analysig1.1) is difficult for at
least one reason: the appearance of singularities for cotiyEpported solutions in
the case of an irregular initial condition. An usual teclugdo approximate (1.1) in-
volves implicit discretization in time: it requires, at éatime step, the discretization
of a nonlinear elliptic problem. However, when dealing wittnlinear problems, one
generally tries to linearize them in order to take advantgefficient linear solvers.
Linear approximation schemes based on the so-called nearli@hernoff’'s formula
with a suitable relaxation parameter and which arises irttitery of nonlinear semi
groups, were studied for instance in [8]. We also cite [30]eve the authors approx-
imated degenerate parabolic problems including those fysomedia type. In fact,
they used nonstandard semi-discretization in time andiegpl Newton-like itera-
tions to solve the corresponding elliptic problems. Moreergly, different approaches
based on kinetic schemes for degenerate parabolic sysi@mdleen investigated in
[1]. Finally a new scheme based on the maximum principle anthe perturbation
and regularization approach was proposed in [40].

At the best of our knowledge, up to now, there are no analyiiegthods dealing
with the case wheg is given by (1.3). However, we are interested in a sophitgtta
approach developed in [18] and which appears to be bestidoidescribe the evolu-
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tion of singularities and efficient for computing discontius solutions. In fact, [18]

focuses onto diffusiveelaxation scheme®r the numerical approximation of nonlin-
ear parabolic equations, see [26, 25], and referencesihérbose relaxed schemes
are based on a suitable semi-linear hyperbolic system wigixation terms. Indeed,
this reduction is carried out in order to obtain schemes &hateasy to implement.

Moreover, with this approach it is possible to improve sudiestes by using differ-

ent numerical approaches i.e. either finite volumes, finitierénces or high order

accuracy methods.

In particular, the authors in [18] coupled ENO (Essentibln Oscillatory) interpo-
lating algorithms for space discretization, see [45], idesrto deal with discontinuous
solutions and prevent the onset of spurious oscillatioith WIEX (implicit explicit)
Runge-Kutta schemes for time advancement, see [37], tanodbtaigh order method.
We point out that [18] studied convergence and stabilitthef¢cheme only in the case
when is Lipschitz but possibly degenerate angle L(R).

As a byproduct of numerical experiments we can forecastahgtime behavior of
u(t,-) where(t, x) — u(t, z) is the solution of the considered PDE. We can reasonably
postulate that the closure ¢f: € L*(R), u > 0, [pu(z)dz = 1| B(u) = O} isa
limiting set, provided it is not empty as in the casfe:) = u°.

In Section 6.3, we discuss empirically the dependence oétha on the two pa-
rameters: the number of particlesand the time step, for the Heaviside and the porous
media cases. If we simulate a fixed static probability dgnkte initial condition)
with a largen, a Monte Carlo error of order 18 is produced. This is a sort of thresh-
old that we cannot reasonably improve for the solution at@ositive time. We have
observed, that decreasing the time sfg¢pone would have rapidly approached that
threshold. This suggests that to keep the algorithm peifagihis not useful to use a
time step smaller than some val(z&)o.

The paper is organized as follows. Section 2 is devoted tstiements of existence
and uniqueness results for both the deterministic problefr) &nd the non-linear SDE
(1.4) rendering the probabilistic representation of (1.\Je in particular, recall the
results given by authors of [9, 3] and we establish some iatdit theoretical results
in the case when the initial condition of (1.1) belongg.tg¢R) but it is not necessarily
bounded.

In Section 3, we settle the theoretical basis for the implaatéon of our probabilis-
tic algorithm. We first approximate the NLSDE (1.4) by a nfali version replacing
u(t, ), the law density oft;, by a given smooth function. We then construct an in-
teracting particle system for which we supposed that prafag of chaos result is
verified. We drive the attention on Theorem 3.2 which links thollified PDE (3.3)
with its probabilistic representation.

Section 4 is devoted to the numerical procedure implemgrttia probabilistic al-
gorithm. We first introduce an Euler scheme to obtain a diz&e version of the
interacting particles system defined in Section 3. We theaudis the optimal choice
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of the window widthe.

In Section 5, we describe the numerical deterministic aggitove use to simulate
solutions of (1.1). In fact, following [18], we first use figidifferences and ENO
schemes for the space discretization, then we perform diciédunge-Kutta scheme
for time integration.

In Section 6, we proceed to the validation of the algorithifitee first numerical ex-
periments discussed in that section concern the classicalip media equation whose
exact solution, in the case when the initial condition is BadBirac function, is the
so-calledBarrenblatt-Pattledensity, see [4]. Then, we concentrate on the Heaviside
case, i.e. withg of the form (1.3). In fact, we perform several test cases raiocg
to the critical threshold:.. and to the initial condition.o. Finally, we conclude this
section by some considerations about the long time beha¥&gwlutions of (1.1) and
the performance of the algorithm.

2. Existence and uniqueness results

We start with some basic analytical frameworkf If R — R is a bounded function we
will denote || f|l.c = sup|f(x)|. By S(R) we denote the space of rapidly decreasing
R

xe
infinitely differentiable functiong : R — R. We denote byM (R) and M (R) the
set of finite measures and positive finite measures respgctiv

2.1. The deterministic PDE

Based on some clarifications of some classical papers [@].19] states the following
theorem about existence and uniqueness in the sense dfuisins (in a proper way).

Proposition 2.1.Letug € (L*( L) (R), wuo > 0. We suppose the validity of
Assumptions (A) and (B). Then there is a unique solutioneérstmse of distributions
u € (LY L>)([0,T] x R) of

{ ou € 392.8(u), 2.1)

u(ov x) = UO(x)v

in the sense that, there exists a unique coupley,) € ((L*()L>®)([0,T] x R))?
such that

/u(t,x)g@(m)da: = /uo(x)go(x)dx+;/o ds/nu(s,x)@”(x)dx,wo € S(R)
and
nu(t, ) € (t,x)) fordt ® dz-a.e. (t,z) € [0,t] x R

Blu
Furthermore,||u(t,.)||c < ||uo||Oo for everyt € [0, 7] and there is a unique version
of u such thatu € C([0, T]; LY(R)) (c L*([0, T] x R)).
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One significant difficulty of previous framework is that theefficient 5 is discon-
tinuous; this forces us to considéras a multivalued function even thoughs single-
valued. Beingg, in general, discontinuous it is difficult to imagine thedeof space
regularity of the solution:(¢, -) at timet. In fact, Proposition 4.5 of [3] says that al-
most surelyn, (¢, -) belongsdt-a.e inH(R) if up € (L*() L) (R). This helps in
some cases to visualize the behavioruf,-). The proposition below makes some
assertions when is of the type of (1.3), which constitutes our pattern situat

Proposition 2.2.Let us supposeg € (L' L>) (R) and 3 defined by(1.3). For
t > 0, we denote by
E? = {a] u(t,) = uc}.

For almost allt > 0O,
(i) E? has a non empty interior;
(i) every point ofE? is either a local minimum or a local maximum.

Remark 2.3.The first point of the previous proposition means that at alreach time
t > 0, the functionu(t, -) remains constant on some interval.

The second point means that if the functiaft, -) crosses the barrier,, it has first
to stay constant for some time.

Proof of Proposition 2.2 For the sake of simplicity we fix > 0 such that,(¢,-) €
HY(R) and we writew = u(t,-) , 0y = nu(t, ).

(i) Sincen, € HY(R) itis continuous, then the s = {z € R| 7,(z) €]0, u.[}
is open. Ifn,(z) €]0, u.[ necessarily we have(z) = u,; in fact, if u(z) < u.
thenn, (z) = 0 and ifu(z) > u. thenn,(z) = u(x) > u.. SinceDy is open
and it is included inE? the result is established.

(i) Suppose the existence of sequen¢es) and (y,,) such thatz, — = with
u(zy) < ue andy, — y with u(y,) > u.. By continuity ofn,, we have

Nu(zn) =0 — 0=mn,(x)

n—oo
u(yn) = Tlu(yn)njwnu(w) =0,

this is not possible becausgy,,) > u. for everyn.
O

If up € M(R), we do not know any existence or uniqueness theorem for. (O
first target consisted in providing some generalizationr@pBsition 2.1 in the case
whenug is a finite measure. A solution in that case wouldbe]0, 7] x R — LY(R)
continuous and such that

lim u(t, dx) = ug(dz),
t—0
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weakly and whereu(t, dx) denotesu(t, z)dx. This is still an object of further tech-
nical investigations. For the moment, we are only able tsiar the caseg having

a L*(R) density still denoted byio, not necessarily bounded as in Proposition 2.1, at
least whend characterized by (1.2) is continuous. In particufas also continuous,
but possibly degenerate. In that case, we can prove exesterec distributional solu-
tionto (1.1). Even though this is not a very deep observattaa will settle the basis of
the corresponding probabilistic representation, comepainknown in the literature.

In fact, we provide the following result.

Proposition 2.4.Letug € L*(R). Furthermore, we suppose that Assumption(A) and
Assumption(B) are fulfilled. We assume tpais continuous orR . .

(1) There is a solutiom, in the sense of distributions, to the problem

{@u(t,x) — 192 B(u(t,x)), t€[0,00[, 22)

w(0,z) = wo(dz), = €R,

in the sense that for every € S(R)

/R u(t, 2)al(z)dz = /]R uo(:v)oz(:t:)dx—i-% /O s /R o (2)B(u(s, 2))dz. (2.3)

(2) If ugp is locally of bounded variation except eventually on a disernumber
of points Dy, then®(u(t,-)) has at most countable discontinuities for every
t € 10,77.

Proof. (1) Letug € LY(R), ud = u0*¢%, N € N*, whereg is a kernel with compact
support andgb%(x) = N¢(Nz), = € R. Sou)) is of classC?, therefore locally

with bounded variation. Sindeu) ||« < 19 1 lloo|uoll 2 thenul) € (L*( L>®°)(R).
Moreover, we have

/ |ud () — uo(x)|dz — 0, as N — +oo.
R

On one hand, according to Proposition 2.1, there is a uniglugien v of (2.3), i.e.
for everya € S(R)

t
/ uM (t, x)a(z)dr = / ud (z)a(z)dx + 1 / dS/ o' () B(u? (s, x))dx. (2.4)
R R 2 Jo R
On the other hand, according to Corollary 8.2 in Chap IV of| [4 have

sup [ |u(t,z) — u(t,z)|dz — 0, asN — +ooc. (2.5)
t<T JR
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Therefore, there is a subsequelidg,);cn such that
Nk (t, z) — u(t,z) dt ® de-a.e, as k — +oo.
Sinceg is continuous, it follows that
BN (t,z)) = B(u(t,z)) dt ® dz-a.e, ask — +oo.
Consequently, (2.4) implies
; 1 " N
u(t,x)a(z)dr = | vo(x)a(z)de+ lim = [ ds [ &"(x)B(u"*(s,z))dz.
R R k 2 Jo R

—+o00
(2.6)
In order to show that solves (2.3), we verify

N—o0

t t
lim / ds/ o' (x)B(uN (s, x))dx = / ds/ o’ (z)B(u(s, z))dz, (2.7

0 R 0 R
where for notational simplicity we have replach@ with N. So, we can suppose that
uN s u, BWN) = B(u), dt ®dz-a.e. asN — +oo. (2.8)

Since|B(uM)| < cfu| andu’¥ — win L1([0, T] x R), it follows that3(u" ) are equi-
integrable. Consequently, by (2.8)(u") — B(u) in L*([0,T] x R), and therefore
(2.7) follows. Finally,u solves equation (2.3).

(2) For this purpose we state a lemma concerning an elligti@gon whose first
statement item constitutes the kernel of the proof of Pritipos2.1.

Givenf : R — R, for h € R, we denote

) = fe+h) = f(@).
Lemma 2.5.Let f € L1, A > 0.
(i) There is a unique solution in the sense of distributiohs o

= ABw)" = f.

(i) Let y be a smooth function with compact support. Then for dach

/x(:v)luh(x)ldl'</X(m)lfh(w)lderCAIhIIIUIILu (2.9)
R R

where(' is a constant depending ghandy.

Proof of Lemma 2.5. (iis stated in Theorem 4.1 of [6] and Theorem 1 of [7].
(ii) The statement appears in Lemma 3.6 of [3] in the case when.* () L> but
the proof remains the same fére L. a
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We go on with the proof of Proposition 2.4, point (2). Lelbe a smooth nonnegative
function with compact support dR\ Dy. We prove in fact

lim supl x(@)|ul(t, z)|dx < |Juox||var + C/ lu(s, z)|dsdx, (2.10)
h—o N Jr 0,T]xR

where|| - ||var denotes the total variation arfd is a generic universal constant. For
this purpose, we proceed exactly as in the proof of Proposii20 of [3] making
use of Lemma 2.5. Inequality (2.10) allows, similarly as 3} fo show thatu(, -)
restricted to any compact interval Bf\ Dy has bounded variation. Therefore it has at
most countable discontinuities. Consequerttly(¢,-)) has the same property since
@ is supposed to be continuous. d

2.2. The non-linear stochastic differential equation (NL®E)

Definition 2.6.We say that a process is a solution to the NLSDE associated to
problem (1.1), if there existg belonging to.>° ([0, T'] x R) such that;

Yi = Yo+ fyx(s Ye)dWs,
x(t,z) € D(u(t,z)), fordt @ de —a.e.(t,z) € [0,T] x R, (2.11)
u(t,xz) = LawdensityofY;, ¢ >0,
u(0,-) = o,

wherelV is a Brownian motion on some suitable filtered probabilitgsgd Q, 7, (F;):>0, P).
In particular, the first identity of (2.11) holds in law. Wetri@duce a notion appearing
in [3].

Definition 2.7. We say thafs is strictly increasing after some zeiithere is a constant
¢ > 0, such that

i) B, = O.
ii) 3 is strictly increasing offc, +o0.

Up to now, two results are available concerning existenckusniqueness of solu-
tions to (2.11). In fact, the first one is stated in the casere/igs not degenerate and
the second one in the case wheis degenerate, see respectively [9, 3]. We summarize
these two results in the following theorem for easy refeedater on.

Theorem 2.8.Letug € L*( L™ such thatug > 0and [, ug(x)dz = 1. Furthermore,
we suppose that Assumptions (A) and (B) are fulfilled.

() If 8is non-degenerate then it exists a solutiério (2.11), unique in law.

(i) Suppose3 is degenerate and eithgris strictly increasing after some zero o

has locally bounded variation. Then there is a solutionot necessarily unique
to (2.11)
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A step forward is constituted by the proposition below. Tmigvides an existence
result for the NLSDE, wheng is not necessarily bounded at least whenebeis
continuous. This does not require a non-degenerate hygistbieS.

Theorem 2.9.Letug € LY(R) having locally bounded variation except on a discrete
set of pointsDg. Furthermore we suppose that Assumption(A) and Assun{pliamne
fulfilled. We assume tha is continuous orR , .

The probabilistic representation related {@.1) holds, i.e. there is a process
solving(1.4)in law.

Proof. Letu)’ be the function considered at the beginning of the proof opBsition
2.4. According to Theorem 2.8, I&}" be the solution to

YN = ¥ [ (s Y,
uN(t,-) = Law denS|ty of Y;N, Vt>0, (2.12)
u™(0,:) = u.

Since® is bounded, using Burkholder-Davies-Gundy inequality ob&ins
E (VN = vM)* < constt — s)2.

This implies (see for instance Problem 4.11, Section 2.43@&})[that the laws of
YN, N > 1 are tight. Consequently, there is a subsequéffce= YVt converging
in law (asC([0, T])-valued random elements) to some procEssie setu® = u!V,

where we recall that*(¢,-) is the law of Y;¥. We also setX} = Y}* — Y. Since

t
X, = [®?(u*(s,YF))ds and® is bounded, the continuous local martingale®

are indegd martingales.

By Skorokhod's theorem there is a new probability sp@@e}', P) and processes
Y’€ with the same distribution ag* so thatY* convergesP-a.s. to some process
Y, of course distributed ag, asC([0, 77)-valued random element. In particular, the
processe§(t = Yt YO remain martingales with respect to the filtration generated
by Y*. We denote the sequent@ (resp.Y), again byY'” (resp. Y).

We now aim to prove that

vi=vor | D (u(s, Y2))dWs. 2.13)

for some standard Brownian motid#i with respect with some fiItratitht)

We consider the stochastic procéés{vanlshmg at zero) defined by, = Y; — Yo
We also set agaiX}* = Y;* — Y. Taking into account Theorem 4.2 in Chap 3 of [31],
to establish (2.13), it will be enough to prove tBais an)-martingale with quadratic
variation[X]; = fot ®2(u(s,Y;))ds, where) is the canonical filtration associated with
Y.
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Lets,t € [0, 7], with ¢t > s and+ a bounded continuous function frofi( [0, s|) to
R. In order to prove the martingale property f&ir, we need to show that

E[(X¢ — X )(Yy,r < 5)] = 0. (2.14)
SinceY* are martingales, we have
E|(x} - Xbuktr<s) =o. (2.15)

Consequently (2.14) follows from (2.15) and the fact that — Y a.s. (X* — X
a.s.) ax’([0, T)-valued random process. In fact for edgch 0, X} — X, in L1(Q)
since(X}, k € N) is bounded in.?(Q).

It remains to show thak ?— [ ®?(u(s, Y;))ds, t € [0,T], defines a@-martingale,
that is, we need to verify

p|(xt-x2- [ t S (u(r Y ) w(Yi,r < )| =0

S

We proceed similarly as in the proof of Theorem 4.3 in [9] bvgrewith some simpli-
fication. For the comfort of the reader we give a complete fproo
The left-hand side decomposes irtdk) + I%(k) + I3(k), where

k) = E :<Xt2 - X2 /: cbz(u(r,m)dr> V(Y r < s)}

- B (- ot [ ey v <)

S

2w = B0k - k- [ @b viar) v <))

S

Fw = e /:<¢2<u’f<r,s¢’“>>—¢2<u<r,Yf>>>dr)wm’ar<s>}.

We start by showing the convergencelétk). Now, ¢)(Y,*,r < s) is dominated by a
constanC. Clearly we have

3 t'l" Zukr — 2U7" ukr .
I<k>sc/sd/R|¢< (r.)) — D2(u(r, ) (1 y)dy

The right hand side of this inequality is equak®®J(k) + J2(k)], where

/ ar [ 192 ) = @t () = )

TH(k)

J2(k) / dr /R ©2(u (1, ) — P2 (u(r, y))lu(r, y)dy.
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Sinceu* — win C([0,T7; L) and®? is bounded then_ lim JY(k) = 0.

—+00

Furthermore, there is a subsequefcg),,cn such that
ubn (r,y) = u(r,y) dr @ dy —a.e. asn — +oc.
Since®? is continuous, it follows that
»? (uk” (r, y)) — @2 (u(r,y)) dr®dy—a.e.,N — +oo
On the other hand, since

(2 (u(r,)) = ® (u(r,y)) | < 2 sup®2(w)]u(r, )]
u€R

Lebesgue’s dominated convergence Theorem impIies;fthat Jifgk) = 0.
—+00
Now we go on with the analysis df (k) andI*(k). I%(k) equals zero sinc&” is
t
a martingale with quadratic variation given py|; = [ ®2(u®(r, Y;¥))dr.
0

Finally, we treat/*(k). We recall thatX* — X a.s. as a random element in
C([0,T)) and that the sequendg((X)*) is bounded, s§X})? are uniformly inte-
grable.

Therefore, we have

B [((X0? = (X)) (Yyr < 9)] = B (XD = (X)) w(vfr < 5)| = 0

whenk goes to infinity. It remains to prove that

/: B[ (9P(u(r, ;) — 0(ur, Y1) ¥ (.r < 5)dr] 0. (2.16)

Now, for fixed dr-a.e.,r € [0,T], the setS(r) of discontinuities of®(u(r,.)) is
countable because of Proposition 2.4, point (2). The law,dfias a density and it is
therefore non-atomic. LeV(r) be the event of alb € Q such thaty, (w) belongs to
S(r). The probability of N (r) equalsE (1 (Yr)) = [g s (y)dv(y) = 0, wherev
is the law ofY,.. ConsequentlyV (r) is a negligible set.

Forw ¢ N(r), we havekJLrgo P2 (u(r, Y (w))) = @2 (u(r, Y, (w))). Sinced is
bounded, Lebesgue’s dominated convergence theorem Br{@liE6).

Concerning the question whethet, .) is the law ofY;, we recall that for all ty;*
converges (even in probability) G andu* (¢, .), which is the law density of %, goes
tou(t,.) in LY(R). By the uniqueness of the limit in (2.3), this obviously iresl that
u(t, .) is the law density of;. O



A probabilistic algorithm approximating a singular PDE 17

3. Some complements related to the NLSDE

3.1. A mollified version

We suppose here thab(dz) is a probability measure. Léf be a random variable
distributed according teg(dz) and independent of the Brownian motitin.

In preparation to numerical probability simulations, wéie K. for everye > 0,
as a smooth regularization kernel obtained from a fixed foitihbadensity functionk’
by the scaling :

K.(z) = %K (g) , z€R. (3.1)

We suppose in this section thétis single valued, therefore continuous. This hypoth-
esis will not be in force in Sections 4 and 6.

In this subsection we wish to comment about the mollified ieersf the NLSDE
(1.4), given by

¢
YF = Yo+ [D((K:x0°)(s,YE))dWs,

’ (3.2)
ve(t,-) = LawofYg, V>0, '
v5(0,:) = wg

and its relation to the nonlinear integro-differential PDE
ovE(t,z) = %8535 (<132(K6 *v°(t,2))v%(t, x)), (t,z) €]0,400] X R,
v?(0,:) = wp.
(3.3)

where,t — v°(t, -) may be measure-valued.

Remark 3.1. (i) When @ is Lipschitz, the authors of [29] proved in Proposition
2.2, that the problem (3.2) is well-posed. Their proof isduhen a fixed point
theorem with respect to the Kantorovitch-Rubinstein noetri

(i) Atour knowledge, there are no existence and uniqueresssts for (3.3) at least
when® is not smooth.

(iii) By It &'s formula, similarly to the proof of Proposition 1.3, itéssy to see that a
solutionY© of (3.2) provides a solution® of (3.3), in the sense of distributions.

When 3 is non-degenerate it is possible to show that formulati®@3)(and (3.2)
are equivalent. In particular we have the following result.

Theorem 3.2.We suppose thét is non-degenerate and> 0is fixed.
(1) If Y#is a solution of(3.2)thenv® : [0, 7] — M(R), wherev®(t, -) is the law
of Y;%, is a solution of(3.3) and fulfills the following property

(P) v* has a density, still denoted such that(t, z) — v°(t,z) € L*([0, T] xR).
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(2) If v¢ is a solution to(3.3) fulfilling (P) then there is a process = Y solving
(3.2).

Proof. (1) If Y¢ is a solution to (3.2) by Remark 3.1.(iii) it follows theft fulfills (3.3).
On the other hand, sind&. * v° is bounded ane is lower bounded by a constant
C. on|[—inf K. % v°, supK_ * v°] it follows thata(t, z) = ®? (K. * v¥(t,z)) is lower
bounded byCe.
Using then Exercise 7.3.3 of [47], i.e., Krylov estimata@dpllows that for every
smooth functionf : [0, 7] x R — R with compact support, we have

T
E (/o f(Yf)d8> < const| fl| L2(jo, 1] x®)-

Then, developing the left hand side to obtain

T
/0 ds /R £ (5, 9)dy < const] ]| 2oz,

we deduce that (P) is verified.

(2) We retrieve here some arguments used in the proof of Bitimo4.2 of [9].
Givenv = v¢, by Remark 4.3 of [9], see also Exercise 7.3.2-7.3.4 of [@#can
construct a unique solutioi = Y¢ in law to the SDE constituted by

t
Yi = Yo+ / Va(s, Yo)dW, (3.4)
0

where hereu(t,z) = ®? (K. *v(t,z)). Indeed, this is possible again becausks
Borel bounded and lower bounded by a strictly positive camist
A further use of 18's formula says that the law(¢, dx) of Y; solves

Qz(t,) = 302, (alt,)z(t,.), (3.5)
2(0,.) = o, |

in the sense of distributions.

Using again Krylov estimates as in the second part of the fppbgoint (1), it
follows thatz admits a density¢,y) + p;(y) which verifiesp € L?([0,T] x R).
This shows that Hypothesis 3.4 in Theorem 3.3 below is fatfillwhich implies that
U=z, 0O

Theorem 3.3 was stated and proved in [9], see Theorem 3.8.
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Theorem 3.3.Leta be a Borel nonnegative bounded function[0ril’] x R.

Letz : [0,7] — M4 (R), i = 1, 2, be continuous with respect to the weak topology
on finite measures aM (R).

Let z° be an element oM, (R). Suppose that botky and z, solve the problem
Orz = 02, (az) in the sense of distributions with initial conditiar0, -) = 2°.

More precisely

/ﬂg(b(x)z(t, dm):/Rqﬁ(m)zo(dx)+/Otds/R¢"(x)a(s,x)z(s,dx)

for everyt € [0, 7] and anyp € Cg°(R).
Then(z1 — z2)(t,-) is identically zero for every t, it := 21 — 2, satisfies the
following:

Hypothesis 3.4There isp : [0,7] x R — R belonging toL?([x, T] x R) for every
x > 0 such thap(t, -) is the density ot (¢, -) for almost allt €]0, 7).

3.2. The interacting particles system

We recall that in this paper, we want to approximate solgtiohproblem (1.1). For
this purpose we will concentrate on a probabilistic paegdystem of the same nature
as in [29] when the coefficients are Lipschitz.

In general, the particles probabilistic algorithms for dimear PDEs are based on
the simulation of particles trajectories animated by a camanotion. The solution
of the PDE is approximated through the smoothing of the doglimeasure of the
particles, which is a linear combination of Dirac massesarewl on particles positions.
This procedure is heuristically justified by the chaos pgap@n phenomenon which
will be explained in the sequel.

The dynamics of the particles is described by the followituglsastic differential
system:

. A t 1< A A ,
Yo" =Yy +/0 ® - ZKE(Y;’E’“ =Y | dWe, i=1,...,n (3.6)
j=1

whereW = (W1 ... . W")is an n-dimensional Brownian motiofYs)i<i<, is a
sequence of independent random variables with law dengigyd independent of the
Brownian motioni/” and K is the same kernel as in Subsection 3.1.

Remark 3.5.If @ in the system of ordinary SDEs (3.6) were not continuous hiyt o
measurable, that problem would not have necessarily aicojwgven if 5 were non-
degenerate. In fact, contrarily to (3.4), here> 2. Since® is continuous, then (3.6)

has at least a solution; b is non-degenerate even uniqueness holds, see Chapter 6
and 7 of [47].
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Now, owing to the interacting kerné{., the particles motions are a priori depen-
dent. For a given integer, we consideY,"*", ..., Y,"*™) as the solution of the
interacting particle system (3.6). Propagation of chaoshfe mollified equation hap-
pens if for any integern, the vector(Y,"*", ..., Y,"*"),>,, converges in law to
1@ wherey, is the law ofY;? the solution of (3.2).

A consequence of chaos propagation is that one expecththatripirical measure
n
of the particles, i.e. the linear combination of Dirac masenoteq;’ = % > Oyiem
=1t

converges in law as a random measure to the deterministiti@ob. (¢, .) of the reg-
ularized PDE (3.3) which in fact depends @nThis fact was established for instance
when 3 is Lipschitz, in Proposition 2.2 of [29]. On the other handenlr goes to
zero, the same authors show thatconverge to the solution of (1.1). They prove
the existence of a sequenggn)) slowly converging to zero when goes to infinity

n
such that the empirical measu%ez énj,5<7z>,n, converges in law ta, see Theorem
j=1
2.7 of [29]. One consequence of the slow convergence istikatgularized empirical
measure

1¢ :
E Z Ke(n)( - thjﬁ(n),n)
j=1

also converges ta. Consequently, this probabilistic interpretation pr@sddan algo-
rithm allowing to solve numerically (1.1).

We recall however that one of the significant objects of tlipgy is the numerical
implementation related to the case whgns possibly discontinuous; for the moment
we do not have convergence results but we implement the sgreet algorithm and
we compare with some existing deterministic schemes.

4. About probabilistic numerical implementations

In this section we will try to construct an approximation hed for solutionsu of
(1.1), based upon the time discretization of the systen).(8& now on, the number
n of particles is fixed. .

In fact, to get a simulation procedure for a trajectory ofre@¢"="), i =1,...,n,
we discretize in time: for fixed > 0, we choose atime stég > 0 andN € N, such
thatT = NAt. We denote by, = kAt, the discretization times fagr =0, ..., N.

The Euler explicit scheme of order one, leads then to thewatlg discrete time
system, i.e., forevery=1,...,n

i i 1¢ i j i i
Xi, = Xi 0| D3R - X)) (Wi, - W) (4.1)
j=1
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where at each time step, we approximate(t, .) by the smoothed empirical measure
of the particles :

1 .
uE’”(tk,x):EZKE(as—ng), k=1...,N, z€eR, (4.2)

at each time step and for every= 1, ..., n, the Brownian incremer(tW;'k+1 — Wfk
is given by the simulation of the realization of a Gaussiamcan variable of law
N(0,At).

One difficult issue concerns the smoothing parametefated to the kernek’.. It
will be chosen according to tHesrnel density estimation

From now on, we will assume thaf, as defined in (3.1), is a Gaussian probability
density function with mean 0 and unit standard deviationthia case, in (4.2), the
functionu®"(t, -) becomes the so-called Gaussian kernel density estimaidt;of )
for every time step, with k. =1,..., N.

Finally, the only unknown parameter in (4.2) sismost of the authors refer to it as
thebandwidthor thewindow width

The optimal choice of was the object of an enormous amount of research, because
its value strongly determines the performance:of as an estimator of, see, e.g.
[46] and references therein. The most widely used criteobperformance for the
estimator (4.2) is th&lean Integrated Squared ErrdMISE), defined by

MISE{u*"(t,z)} = E, / [ (t,y) — ult, y)] dy
2

/ E, [ (t,y)] - u(t.y) | dy+ / Y, [t y)] dy,

point-wise bias

integrated point-wise variance

where E,, andV,, are respectively the expectation and the variancﬁtbf i=1.,n
under the assumption that they are independent and distdilasu (¢, -).

We emphasize that the MISE expression is the sum of two conmt&nghe inte-
grated bias and variance.

The asymptotic properties of (4.2) under the MISE criterieneell-known (see[46],[12]),
but we summarize them below for convenience of the reader.

Theorem 4.1.(Properties of the Gaussian kernel estimator)
Under the assumption thatdepends om such that lim ¢ =0, lim ne =400

n—+oo n—-+o0o

andd?, u is a continuous square integrable function, the estimata?)(has integrated
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squared bias and integrated variance given by
1Bl (6, (e, )P = 5802l + (), n—+oo,  (43)

/ Vi [ (1, )] dy

25711\/77 +o((ne)™), n— +oo.  (4.4)

Remark 4.2. (i) Here||.|| denotes the standafc norm. The first order asymptotic
approximation of MISE, denoted AMISE, is thus given by

AMISE{us"(t,z)} = %64||8§xu(t, z)||? + (2eny/m) 7L (4.5)

(i) The asymptotically optimal value afis the minimizer of AMISE and by simple
calculus it can be shown (see [38], Lemma 4A) to be equaf%defined in
formula (1.5).

As argued in the introduction, we have chosen to use theésthlg-equation” band-
width selection plug-in procedure developed in [43, 27]péoform the optimal win-
dow width of the Gaussian kernel density estimaitof of «, defined in (4.2).

Remark 4.3.According to [43], for every positive integar the identity

|5t )% = (—1)° / 0%, ut, x).ult, x)dr,

suggests the following estimator for that density funciion

X]
H@;‘;sus’ ( ”2 2 25+1 ZZKZS () (4-6)

i=1 j=1

where, K" is thert" derivative of the Gaussian kernkl andd’.u is ther!" partial
spacial derivative of;.

Inspired by (1.5), the authors of [43, 27] look for an applretoptimal bandwidth
for the AMISE as the solution of the equation

-1/5
e = e = (20VF| 020 CO" (1, 2) |2) 4.7)

2 w772 is an estimate ofl92,ul|? using (4.6), fors = 2, and the pilot
bandWIdth’y( ), which depends on the kernel bandwidthThe pilot bandwidthy(e)
is then chosen through an intermediate step which consigibtaining a quantity,;
minimizing the asymptotic mean squared error (AMSE) for tstéwation of{|92,.u||.
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AMSE is in fact some approximation via Taylor expansion of M8E which is de-
fined as follows:

2
MSE([[02,u"" 2} = B, [|02,0"" |2 ~ 02,u]2] . (4.8)
Similarly one can define an analogous quantity for the thedvative

2
MSE 0% 2} = B, [0% 12 — 10%u)?] (4.9)

xT x

and related AMSE. Exhaustive details concerning those ctatipns are given in
[51]. In fact, the authors in [51] computed those minimizansl provided the follow-
ing explicit formulae

) _[ 2K (0) r/? h*—[ —2K®)(0)
e T

1/9
_ , 4.10
n||8§3u(t, x K ||21 ( )

nl|0%u(t, )

whereh, andh; minimize the AMSE corresponding respectively to (4.8) an@)4
Solving (1.5), with respect ta and replacing: in the first equality of (4.10), gives
the following expression of; in term ofe;

1/7
b — | AFEC OO ut )| s
|05su(t, 2)]? L

This suggests to define

1/7
4/T K@ (0)]92,u"" (¢, )|
) = l VKOO0 (t2) ] s

2
103" (¢, 2) |12

, (4.11)

where, |92 4|2 and |\ajj3uhf:n||2 are estimators of92,u/|* and [|0%ul|* using
formula (4.6) and pilot bandwidths andh? given by
@ 1/7
2K
e |20 h? =
n]|0%u(t, z)||?

1/9
—2K©)(0) ]

]| %u(t, z)|2

|03;u(t, z)||> and [|0%,u(t, z)||> will be suitably defined below. Indeed; and h?
estimateh, andh; defined in (4.10).

According to the strategy in [43, 51], we will first supposatt@;u(t,x) and
8§4u(t, x) are the third and fourth partial space derivatives of a Gaosensity with
standard deviation; of X;. In a second step we replaggwith the empirical standard
deviations’; of the sampleX}, ..., X/'. This leads naturally to

105 . 4
—F0 .
27 !

—_— 15 o —
%t )2 = 775, lofutt, )| =
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Coming back to (4.7), wherg(¢,) is defined through (4.11), it suffices then to perform
a root-finding algorithm for it at each discrete time stgpin order to obtain the
approached optimal bandwidtl, .

5. Deterministic numerical approach

We recall that the final aim of our work is to approximate siolus of a nonlinear
problem given by

{atu(t,x) e 3028 (ut,x)), tel0,+oo, 6.1)

u(0,2) = wo(x), z€R,

in the case wherg is given by (1.3). Despite the fact that, up to now at our krezigk,
there are no analytical approaches dealing such issuesptietgrested into a recent
method, proposed in [18]. Actually, we are heavily inspibgd[18] to implement a
deterministic procedure simulating solutions of (5.1) ethwill be compared to the
probabilistic one. [18] handles with the propagation of scdntinuous solution, even
though coefficieng is Lipschitz. It seems to us that in the numerical analyssdiure,
[18] is the closest one to our spirit. We describe now the/fdiscrete scheme we will
use for this purpose.

5.1. Relaxation approximation

The schemes proposed in [18] follow the same idea as thekwelin relaxation
schemes for hyperbolic conservation laws, see [26] for &wewf the subject. For
the convenience of the reader, we retrieve here some argsiroefiL8], where we
recall that the coefficient is Lipschitz. In that case, of course, becomes.

The equation (5.1) can be formally expressed by the firstraygitem oriR . x R :

{&tu + 0y,v =0,

v+ %&cﬁ(u) =0. (52)

(5.2), is relaxed with the help of a parameter- 0, in order to obtain the following
scheme

0 0xv = 0,
{tu+ v (5.3)

O + Z—Jéaxﬁ(u) = f%v.

Then, another functiomw : Ry x R — R is introduced in order to remove the non-
linear term in the second line of system (5.3). So, we obtain

O+ Ozv =0,
O + 2-0pw = — 20, (5.4)
drw + v = —(w — B(w)).
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Note that (5.4) is a particular case of the BGK system prashostudied in [13]. In
fact, authors of [13] proved that (resp.v) converges t@(u) (resp. —%&Uﬁ(u)), as
e — 0'. Furthermore, they showed the convergence of solutionS.4j o those of
PDE (5.1), inLY(R), ase goes to zero.

Finally, we introduce a supplementary parameter- 0, according to usual nu-
merical analysis techniques; while preserving the hyperlebaracter of the system.
Therefore, we get

Ou + 0zv =0,
O + 0w = —Lv + (9% — L)d,w, (5.5)
Brw + v = —(w — Bu)).
Now, setting
U 01 O
z=| v |, F(z)=Az, A= 0 0 ¢? | andg(z) = —v+(g02€—%)3xw
w 01 0 Bu) —w

the system (5.5) is rewritten in matrix form as follows
1
Oz + 0, F(2) = gg(z) (5.6)

Using the change of variablé = P12, where

1 1
20 2 o 0 O
-1 _ -1 1 -1 _) —
P"=10 2 2 andP"AP=D=| 0 —¢ 0 |,
1 0 -1 0 0 0
we obtain
u
Z=| v |, with u=2F20 y_ZUEOU Ny w, (5.7)
W 2p 2p

where, U, V, W are called characteristic variables.
Sincez = PZ, equation (5.6) leads to

Z + D0, 7 = :ELIP’*lg(IP’Z). (5.8)
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By rewriting the system (5.8) in terms of the characterigidables, we obtain

(9,51/{ + cpaxbl
1 -1
OV — 0V | =P Y(P2). (5.9)

oW

Finally, solving (5.5) is equivalent to the resolution oftage advection equations
system, (5.9), with respectively a positive, a negativeamdro advection velocity.

Remark 5.1.Note that we can deduce from (5.7) the following relation

u=U+V+W. (5.10)

5.2. Space discretization

In the sequel of this chapter and in Annex 7, given two integex. 7, [[, j], will
denote the integer interv@d, i+ 1, ..., j}. We will now provide a space discretization

scheme for system (5.9). Let us introduce a uniform gridaoh] C R.

We denoter; = a — A—Z"T +ilx i €[[1, N,]] and z;,1/» = a + bz , i € [0, N, ],

whereAzr = b]g @ s the grid spacing and/,, the number of cells. Note that is the

center of the ingfervaﬂxi,l/z,xi+l/2}. Moreover, we denote the boundary conditions
by u(t,a) = u,(t) andu(t, b) = uy(t), for everyt > 0.
Then, we evaluate (5.9) on the grid of discrete point3 getting,

(1, 2) + U (t,0) = Galt,2), V>0, Vi €[[1,N,],

%(t,mi)—¢%(t,xi) = Got,x;), Vt>0, Vie[l,N,], (5.11)

%(tvxl) = G3(t,$i), vt > 07 Vi€ [[17 N:C]])

where, L
(G1,Ga,G3) = gﬂrlg@Z). (5.12)

Remark 5.2.We can easily deduce from (5.12), that for every]0, +oo[ and every

3
i €1, N, ], we have : 3" G;(t,z;) = 0.
j=1

In order to ensure the convergence of the semi-discretersef11) it is necessary
to write itin a conservative form. To this aim, following [[1.8ve suppose the existence



A probabilistic algorithm approximating a singular PDE 27

of functionsZ/ andY such that

T+lx/2

Ut,e)= 2= [ Uty)dy, Yz €la,b], ¥t >0,
x—Ax/2
o+l /2

V(t,x) = A—];U | V(t,y)dy, Vx €la,b], Vt> 0.
x—Ax/2

Substituting in (5.11), we obtain for evety> 0 and everyi €[ 1, N,],

%(t7$i) + % (a(tvxi+l/2) - Z/A[(tvl"z;l/z)) = Gu(t, ),

%(tal‘i) - = (9(t7xi+1/2) - ]7(75736‘@'—1/2)) = Ga(t, @), (5.13)

DYV (t,01) = Galt, ).

Let us now denote bﬁiﬂ/z(t) and 17i+1/2(t) the so-calledemi-discrete numerical

fluxesthat approximate respectivelg;?(t,a:iﬂ/z) and 17(t,a:i+1/2). For the sake of
simplicity, we chose to expose only the calculations nergs® obtain the first semi-

discrete quij{Hl/z(t), the same procedure being applied for the other one.

In order to compute the numerical flLélle/z(t), we reconstruct boundary extrap-
olated datauzil/z(t), from the point valuesi/;(t) = U(t,z;) of the variables at
the center of the cells, with an essentially non oscillatntgrpolation (ENO) method.
The ENO technique allows to better localize discontingiiad fronts that may appear
wheng is possibly degenerate; see [23, 45] for an extensive pratsemof the subject.
In fact, Z/{Z.il/z(t) (resp. b{l.jrl/z(t)) is calculated from an interpolating polynomial of
degreel, on the intervalz; 1o, v;y3/2] (resp.[x;_1/2, 7;,1/2]) using a so-calle@&NO
stenci| see [45] and formula (7.5) in Annex 7.1.

Next, we shall apply a numerical flux to these boundary extetpd data. In order
to minimize the numerical viscosity and according to authafr[18], we choose the

so-calledGodunov flux§gs, associated to the advection equation
U + 0, f(U) =0,
and defined as follows

agggvf(& if a<~,
SIG[O@’Y] =
SO, W o<e

wheref(€) = ¢, with ¢ > 0. So we have§g[a, 7] = pa.
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In fact, we set

vt > 07 Z/~{i+l/2( ) SG[ l+1/2( ) u;_]_/z(t)}~ (5-14)

Therefore, we obtain the following semi-discrete flux
Wt >0, Uiiaya(t) = GUpy p(t). (5.15)

Applying the previous procedure to compdvgql/z(t) and replacing in (5.13), we get
for everyt > 0 and everyi €[[1, N, ],

W 1,0) + 8 (UsapoV) U1 p1) = Galtm),

%(t’xi) -5 (Vitl/z(t) - Vitl/z(t)> = Gat,zi), (5.16)

DYV (t,01) = Galtw).

Consequently summing up the three equation lines in (5.46)using Remarks 5.1
and 5.2, we obtain

%(t,xz) (U;l/z( ) = Uy (1) = (Viil/z(t) - Vz‘tl/Z(t))) =0

Now, coming back to the conservative variables, we obtaireferyi € [1, NV, ] and
everyt > 0,

Bt 00) = =g (V28) = 07 10(0) + (W], 1(0) = w7 1 5(1)))

o (U 10®) = 010 + 9wy D) = w4 5(1))
u(0, ;) = wup(w;
u(t.a) = ua(t),
u(t,b) = up(t).

(5.17)

-

We recall that by formally setting = 0 in the scheme (5.5), we have= —%&Ew
andw = (u). Therefore we can compute

+ +
Vit12 = (8 w7, i11/2 and w;, 12 = BU1),
where,w™ are performed using again an ENO reconstruction, see fae{id.4)-

i+1/27
(7.5) in Annex 7.1; while the derivatives mfil , are approximated using a recon-
struction polynomial with a centered stencil, see formu@ld©)-(7.12) in Annex 7.2.
We wish to emphasize that the scheme of system (5.9) redoities time advance-
ment of the single variable solution of (5.1).
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5.3. Time discretization

In order to have a fully discrete scheme, we still need toi§ptee time discretization.
According to [18], we use a discretization based on an explicnge-Kutta scheme,
see [37], for instance.

We start discretizing the system (5.17) using, for simpli@ uniform time stept.
For every: € [1, N,], we denote by.!" the numerical approximation af(¢t™, z;)
with t"™ = mAt, m =0,..., Ny, whereN, is the number of time steps.

The v-stage explicit Runge-Kutta scheme with> 1, associated to (5.17) can be
written for everyi € [[1, N, ]} as follows,

wtl =g A b ) 5.18
7 7 2 (3 ’
k=1

where,\ = % and the stage values are computed at each time'stepd for every
k €[1,v] as

(k) _ (k)= (k)— (k)— (k)— (k)+ (k)+ (k)+ (k)+
Fy =000 = v H (Wi o — Wity p) = 07y + 000 — (W0 — w0 ),
o (5.19)
k) _ om_ A5~ p)  OF _ 1 + O+ _ g, (OF
Ut =u =5 ; ar by vy, = _i(azw(l))i+1/zv Wit1y2 = Blugy))-

Here(ay,, Bk) is a pair of Butcher’s tableaux [22], of diagonally expliBitinge-Kutta
schemes. This finally completes the description of the detéstic numerical method.

Remark 5.3.In the case whert is Lipschitz but possibly degenerate, the authors
of [18], showed theL!-convergence of a semi-discrete in time relaxed scheme, see
Theorem 1, Section 3 in [18]. In fact, they extended the pod§8] to the case of &-
stages Runge-Kutta scheme. Moreover, [18] provided thevfiatig stability condition
of parabolic type,

At < Cha?, (5.20)

where, C is a constant depending @nAt the best of our knowledge, no such results
are available in the case whefteas not Lipschitz.

6. Numerical experiments

We use a Matlab implementation to simulate both the detestigrénd probabilistic
solutions. Concerning the plug-in bandwidth selectiorcpoure described in Section
4 and based on [43], we have improved the code produced biargn and available
onhttp://ww. stat.unc. edu/ facul ty/ marron/ marron_sof tware.

ht m , by speeding up the root-finding algorithm used to solve)(&drthermore, the
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deterministic numerical solutions are performed usingg@N®© spatial reconstruction
of order 3 and a third order explicit Runge-Kutta schemeifoetstepping. We point
out that the deterministic time step, denoted from now om\hy;, is chosen with

respect to the stability condition (5.20).

6.1. The Classical porous media equation

We recall that wherB(u) = u.|u|™"t, m > 1, the PDE in (1.1) is nothing else but
the classical porous media equation (PME). The first numleziqeeriments discussed
here, will be for the mentioned. Indeed, in the case when the initial conditiofis

a delta Dirac function at zero, we have an exact solutionigealin [4], known as the
density of Barenblatt-Pattland given by the following explicit formula,

1
Ut,z) =t 5 (C — m:zt_zﬁ)r’l, xeR, t>0, (6.1)

where

2(m—1) -

1 m — 1 \/E m+1 2 m+l

= - = — = _ = m—1
P m+1 © 2(m + 1)m’ ¢ ('ym ) > Im / [cos(z)] '

We would now compare the exact solution (6.1) to an approtaéchprobabilistic solu-
tion. However, up to now, we are not able to perform an effidmdwidth selection
procedure in the case when the initial condition is the lava deterministic random
variable. Since we are nevertheless interested in expip(é.1), we considered a time
translation of the exact solutidii defined as follows

v(t,2) =U(t+1,z), VreR, Vt>0. (6.2)

Note that one can immediately deduce from (6.2), thsiill solves the PME but now
with a smooth initial condition given by

vo(z) =U(Lz), VreR (6.3)

In fact, in the case when the exponemnis equal to 3, the exact solutianof the PME
with initial conditionvg(z) = U (1, z) is given by the following explicit formula,

R R N
v Lo o F o <Dy,
u(t,z) = (6.4)

0 otherwise

Simulation experiments: we first compute both the deterministic and probabilistic
numerical solutions over the time-space gjdd1.5] x [—2.5,2.5], with space step
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Az = 0.02. We sei\ty., = 4 x 10°6, while, we usen = 50000 particles and a time
stepAt = 2 x 104, for the probabilistic simulation. Figures 1.(a)-(b)(d), display
the exact and the numerical (deterministic and probaigijisblutions at timeg = 0,
t =05, =1andt = T = 1.5 respectively. The exact solution of the PME, defined
in (6.4), is depicted by solid lines.

Besides, Figure 1.(e) describes the time evolution of Hwtdiscretd.? determin-
istic and probabilistic errors on the time intery@J 1.5].
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Figure 1. - Deterministic (doted line), probabilistic (dashed line) and exact lutions
(solid line) values at t=0 (a), t=0.5 (b), t=1 (c) and t=1.5 (d). fie evolution of the L? deter-
ministic (doted line) and probabilistic (dashed line) errors over tre time interval [0, 1.5]

(e).

The L errors behave very similarly as well in the present case #seitleaviside
case, treated in subsection 6.2.
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6.2. The Heaviside case

The second family of numerical experiments discussed lwamrcernss defined by
(1.3). Since we do not have an exact solution of the diffugimblem (1.1), for the
mentioneds, we decided to compare the probabilistic solution to ther@ayamation
obtained via the deterministic algorithm described in ®ads. Indeed, we shall simu-
late both solutions according to several types of initiadhdag and with different values
of the critical threshold.,..

Empirically, after various experiments, it appears thatafdixed threshold.., the
numerical solution approaches some limit function whicknse to belong to the "at-
tracting” set

T =1{f e IN®)| / f@)de =1, [f] < u); (6.5)

in fact 7 is the closure in.t of 7o = {f : R — R| 3(f) = 0}. At this point, the
following theoretical questions arise.
(1) Does indeed:(t, -) have a limitus, whent — co?

(2) If yes doesu, belong to7?
(3) If (2) holds, do we have(t, -) = us for ¢ larger than a finite time?

A similar behavior was observed for differefitwhich are strictly increasing after
some zero.

6.2.1 Trimodal initial condition

For the s given by (1.3), we consider an initial condition being a miet of three
Gaussian densities with three modes at some distance froimodiaer, i.e.

1

up(z) = 3 (p(x, p1, 01) + p(x, p2,02) + p(x, p3,03)) , (6.6)

where,
2

exp(—(xz_af) ). (6.7)

(.11.0) = =
plz, p,o) =

V2ro
Simulation experiments: for this specific type of initial conditiom, we consider

two test cases depending on the value taken by the critioashioldu.. We set, for
instanceu; = —pu3 = —4, u2 = 0ando; = 0.1,02, = 0.2,03 = 0.3.

Test case 1 we start withu, = 0.15, and a time-space grj@, 0.6 x [—7, 7], with a
space stepz = 0.02. For the deterministic approximation, we Aéf.; = 4 x 1075,
The probabilistic simulation uses= 50000 particles and a time stép = 2 x 104,
Figures 2.(a)-(b)-(c), display both the deterministic @nobabilistic numerical solu-
tions at timeg = 0,¢ = 0.3 andt = T = 0.6, respectively. On the other hand, the
time evolution of theL?-norm of the difference between the two numerical solutions
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is depicted in Figure 2.(d).

Test case 2 we choose now as critical value. = 0.08 and a time-space grid
[0,4] x [-8.5,8.5], with a space stepz = 0.02. We setdty; = 4 x 1076 and
the probabilistic approximation is performed using= 50000 particles and a time
stepAt = 5 x 1074, Figures 3.(a)-(b)-(c) and 3.(d), show respectively thmerical
(probabilistic and deterministic) solutions and th&norm of the difference between
the two.

6.2.2 Uniform and Normal densities mixture initial condition

We proceed withs given by (1.3). We are now interested in an initial conditigy
being a mixture of a Normal and an Uniform density, i.e.,

up(x) = % (p(z,—1,0.2) + Loy(x)), (6.8)

where,p is defined in (6.7).
Simulation experiments:

Test case 3 we perform both the approximated deterministic and proiséib
solutions in the case whete = 0.3, on the time-space gri@), 0.5] x [-2.5, 2], with
a space stefiz = 0.02. We user = 50000 particles and a time sté&p = 2 x 1074,
for the probabilistic simulation. Moreover, we g®t;., = 4 x 10°. Figures 4.(a)-
(b)-(c) illustrate those approximated solutions at times 0,¢t = 0.1 andt = T =
0.5. Furthermore, we compute tti&-norm of the difference between the numerical
deterministic solution and the probabilistic one. Valuéthis error, are displayed in
Figure 4.(d), at each probabilistic time step.

6.2.3 Uniform densities mixture initial condition

Now, with 5 given by (1.3), we consider an initial conditiary being a mixture of
Uniform densities, i.e.,

1 3 5
uo(x) = gﬂ[o,l] (z) + Z]l[—%,%](x) + é]l[g,z} (), (6.9)

Simulation experiments:

Test case 4 we approximate the deterministic and probabilistic Sohg in the
case where,, = 0.3, on the time-space gri@, 0.6] x [—1.5, 3.5], with a space step
Az = 0.02. The deterministic time stefty.; = 4 x 10°, while the probabilistic
solution is computed using = 50000 particles and a time stép = 2 x 1074
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We illustrate in Figure 5.(a)-(b)-(c), both the determiigcisind probabilistic numerical
solutions at timeg = 0,¢ = 0.1 andt = T = 0.6, respectively; while the time
evolution of theZL?-norm of the difference between them, is shown in Figure)5.(d

6.2.4 Square root initial condition

Finally, the last test case concerns an initial conditigrlefined as follows :

uo(a) = S/ _(x). (6.10)

Simulation experiments:

Test case 5 we simulate the probabilistic and deterministic solusiomer the time-
space grid0,0.45 x [—2,2], using a space stepr = 0.02 and setting the critical
thresholdu, = 0.35. Moreover, the deterministic time stAp;.; = 4 x 1078. On the
other hand, we use = 50000 particles and a time st&p = 2 x 10~ to compute the
probabilistic approximation.

Figures 6.(a)-(b)-(c), show both the deterministic andptmlistic numerical solu-
tions attimeg = 0,¢ = 0.04 andt = T = 0.45, respectively.

The evolution of thel2-norm of the difference between these two solutions, over
the time interval0, 0.45, is depicted in Figure 6.(d).

6.2.5 Long-time behavior of the solutions

As it was mentioned previously, we are interested in the gogbbehavior of solutions
to (1.1), in the Heaviside case.

For this, we first provide Figure 8, which displays the timelation of the L*-
norm of the difference between two successive (in time) migaksolutions. That
quantity was computed for both deterministic and probstiglinumerical solutions
and in the different test cases 1 to 5. In fact, Figure 8, shihas the numerical
solutions approach some limit function,. Indeed, they seem to reaah,, after a
finite time .

In addition, according to Figure 9, this suggests the extg@f a limit functionu..,
which of course depends on the initial conditiaf) such that(t, -) = ue, fort > 7.
Moreover,u, is expected to belong to the "attracting set; since||3(u(t, )| 1)
equals zero when tis larger thanfor both numerical solutions.

Besides, Figure 7, displays a single trajectory of the epwading stochastic pro-
cess, for each one of the test cases described above. IwkRadbserve that, in all
cases, the process trajectory stops not later than thentnstastabilization of the
macroscopic distribution.
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6.3. Performance of the probabilistic algorithm

If « is the solution to (1.1), we are now interested in the depecel®f the error
[w(T,-) — u=™(T, )|l 2w), ON the two parameters of the algorithm: the number of
particlesn and the time stet. For this, we perform numerical experiments for two
test cases: the classical porous media (PME) and the Heaxgiag: with trimodal ini-
tial condition (see Section 6.2.). For the PME case, we h&¥e-) = v(T, ), where

v is given by (6.4). Since we do not know an exact solution inHleaviside case, we
setu(T, ) = g4 (T, ), Whereuy.; denotes the numerical deterministic solution.

6.3.1 Dependence on

First, we provide in Table 1 the numerical initial erréi, = [|u(0, -) —u*"(0, )| L2(w),
in both cases and for the different values:wof

Table 2 shows the estimates of tfié norm of the error. In order to study the
dependence on, we will proceed as follows: we fiAt = 2.10°4, expecting that
this value will be small enough to only observe the effechain the error and we
provide the results correspondingrtc= 3125 6250 12500 2500Q 50000. Figure 10
represents the evolution of the error in termsipin a logarithmic scale.

In trlme Heaviside case and in the PME case, we remark that thiei€mot of order
O(n™2). Actually, it seems to be of ord&?(n™3), at least for regular initial condi-
tions; we emphasize that this happens for two radicall\edfits.

Table 1. Dependence on of the initial errorE,
Number of particles: | 3125 6250 | 12500 | 25000 | 50000

Heaviside case | 0,062301| 0,049737| 0,028496| 0,021775| 0,016778
PME case 0,033808| 0,030369| 0,022378| 0,019164| 0,015543

Table 2. Dependence on of the error;T" = 1
Number of particles: 3125 6250 12500 25000 50000

Heaviside case | 0,057249| 0,047548| 0,038643| 0,033445| 0,026366
PME case 0,026296| 0,020959| 0,016516| 0,014389| 0,011471

Table 3. Dependence on of CPU time (sec)

Number of particles | 3125 | 6250 | 12500 | 25000| 50000
Heaviside case 1171,3| 2955,1| 8381,1| 26555| 75344
PME case 1722,4| 3452,4| 9917,9| 23506 | 80201
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Figure 10. Evolution of the error in terms of n, in the PME (left) and the Heaviside case (right),
in logarithmic scale.

6.3.2 Dependence oAt

We apply the same procedure as previously, but this time we fix 50000 and we
estimate the error fokt = 277, 7 = 4, ..., 14. The obtained results are summarized,
for both cases, in Table 4. Figure 11 displays, in a logaiittsnale, the error versus
At.

When 3 is given by (1.3), we observe that the logarithm of the ereenss to
be affine fromAt = 1/16 to At = 1/1024 and then more or less constant, for
At < 1/1024. In the PME case, the error seems to be more or less cofwtatl
the values o\t that we have considered.

Our impression is that there could be a valdg), for which the error remains
more or less constant (close &), for At < (At),. We cannot exclude that the error
increases for very smafit.

Moreover, Table 4, seems to indicate that for the PME case acbes more rapidly
the errorEy than for the Heaviside case, being the solutions more regulspace.
This shows that in the PME case, where the coefficients ardaregu may be chosen
quite big; this would allow us to approximate efficiently thautions for a large time
T > 0.

In the Heaviside case, the method becomes performing henquite smaller; in
that case however, the solution reaches the "absorbingedatively fast.
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Figure 11. Evolution of the error in terms of At, in the PME and the Heaviside cases,
in logarithmic scale.

Table 4. Dependence oAt of the error;T’ = 1

At Error Error CPU time(sec) CPU time(sec)
(PME) (Heav) (PME) (Heav)
1/16 | 0,013729| 0,15085 380,75 285,57
1/32 | 0,012537| 0,11963 783,55 609,61
1/64 | 0,012578| 0,10513 1437 1301,9
1/128 | 0,011653| 0,079444 2748,4 2655,1
1/256 | 0,011978| 0,060906 5449,8 8028,8
1/512 | 0,010659| 0,042826 10930 13285
2710 1 0,011009| 0,032785 21839 32394
2711 1 0,011592| 0,027595 44070 54152
2712 1 0,010549| 0,026366 89346 75344
2713 1 0,011753| 0,0259 | 1,7355e+005| 1,6456e+005
2714 1 0,010651| 0,026166| 3,6805e+005| 3,7103e+005
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6.4. Long-time behavior of the probabilistic algorithm

Now, we inquire about the long time behavior of the probabdiparticle algorithm.
In fact, we are interested in the dependence of the errortbectime. For this, we
have simulated the solution of the PME with= 50, At = 0.02 andm = 3. Figure
12 displays the time evolution of the?-norm of the error.

In particular, Figure 12 shows (in the PME case) that the gritisic algorithm
seems to remain stable for a large tiffie

0.018

0.016 |- —

0.014

0.012

0.008

0.006 L L L L L L L L L
o 5 10 15 20 25 30 35 40 45 50

Figure 12. Evolution of the L?-norm of the error over the time interval [0, 50], in the PME case .

Remark 6.1.

(i) It appears trough Table 4 that the CPU time dxtchre inversely proportional.
On the other hand, according to Table 3, the CPU time seensspodportional
to the number of particles.

(i) The probabilistic algorithm can be parallelized on aa@hmical Processor Unit
(GPU), such that we can speed-up its time machine executiotiite other hand,
for the deterministic algorithm, this transformation is feom being obvious,
see [19].
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7. Annexes

LetV € R such thatl; = v(z;), Vi € [[1, N, ], wherev is a function defined on
[a,b]. Note that the pointéz;) are still defined as in Section 5. Moreovg,,, ,,(R)
denotes the linear space of real matrices withows andn columns.

7.1. Interpolating polynomial of a function

We aim to approximate(z;,1/,) andv(z;_y,) for everyi € [1, N, ] . In order to do
this, we use properly chosen Lagrange interpolation paotyats of degreé: — 1 .

On every interval (or celly; = [v;_1/2,7;41/0], With i € [1, N, ]|, we construct
an interpolation polynomidP;, ; by selectingk consecutive points containing : the
so-calledstencildenoted by

S(Z) = {[ifr, Ce ,Ii+s}

and defined by{x;_,, 2,11, ..., Tits—1, Tits }, Wherer, s are positive integers and
r+ s+ 1= k. We denote byR(i), the value taken by for the intervall; with an
ENO stencil, see [45].

The Lagrange interpolation polynomial of degkeel, on the interval;, associated
to the stencilS(7) is then given by :

k-1
Plh(x) = Vi L (@), Vo€l (7.1)
7=0
where,
k—1 o
Lgﬂ () = J] LTl (7.2)
1o Ti—r+j = Ti—r+l
I#]

Now, we need to compute the polynomial defined in (7.2) at thietpz;_4,, and
x;.1/2. In fact, since the points are equidistant, we have for epery) €0, k — 1JF,

klr —1-1/2
(e, — r=t=1z
J ( 1/2) ll;% J— l
I#3
kly —141/2
i (Tiv2) zl;[o =1
I#]
Then, we defin€€ € M1 ,(R), as follows
k—1
r—1—-1/2 )
Crongia= [] 2 vy elor]x[0 k-1 (73)

= 1= !
I#37
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Substituting (7.3) in (7.1) and using the ENO stencil, wejet [1, N, ],

k-1
R(i
V(wi-172) 2 U7y = Pos (wi-172) = Z% ri+Crisrgen (7.4)
—0
k-1
0(Ti412) RV = P[ $z+1/2 Z Vi rR())+jiCRi)1+2,j11- (7.5)

J=

7.2. Interpolation polynomial for the derivative of a function

Now we would like to approxmatéL (), gx( T;_1/2) and g—z(:gﬂl/z), for every
€1, N;]. In fact, deriving equatlon (7.1), implies

eyl Al drl’
: = i—r — I;. 7.
() ]Z_jov i (x), Vo€ (7.6)

On the other hand, for everye 0,1 — 1], we have

k—1 k—1
H L= Tj— r+l
dL[-T] m=0 =
j _ m#ﬂ _
= (z) = ) , Vo e ;. (7.7)
(Timrtj — Timpi1)
1=0
I#j
Since the points are equidistant, we get
k—1 k-1
(r—1)
arfl - pe0b,
d (i) = k-1
A G -1
1=0
I#]
and
k=1 k-1 k=1 k-1
(r—1-1/2) (r—141/2)
[r] m=0 (=0 [r] m=0 (=0
dL; _mAj LA dL; _ m#jlEm
W(l’i—l/z) = 1 " (%H/Z) = 1
A:EH(]—Z) A.’L'H(j—l)
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Then, we defin® € M, .(R) by

_ f, v(r,j) €[[0,k — 1JF, (7.8)

Dyt o1 = sty m V() €[0k]x [0,k —1].  (7.9)

Therefore, replacing (7.8) and (7.9) in (7.6), for every[1, N, ], we obtain :

[r] k-1
dv d]P’k
%(%) ~ dv = Wz Z Vier+iDrya 41, (7.10)
7=0
[r] k—1
dv d]P)k i .
%(%—1/2) ~ dvitl/Z = Tx’(%—l/z) => ViorjiDryaj1,  (7.11)
=0
dv B apl’ k-1 _
o Tit1j2) A dvngp = S (@i12) = ) ViersiDrizjia. (7.12)
=0
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