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Abstract. The object of this paper is a one-dimensional generalized porous media equation
(PDE) with possibly discontinuous coefficientβ, which is well-posed as an evolution prob-
lem in L1(R). In some recent papers of Blanchard et alia and Barbu et alia, the solution
was represented by the solution of a non-linear stochastic differential equationin law if the
initial condition is a bounded integrable function. We first extend this result, at least when
β is continuous and the initial condition is only integrable with some supplementary techni-
cal assumption. The main purpose of the article consists in introducing and implementing a
stochastic particle algorithm to approach the solution to (PDE) which also fits in the case when
β is possibly irregular, to predict some long-time behavior of the solution and in comparing
with some recent numerical deterministic techniques.
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1. Introduction

The main aim of this work is to construct and implement a probabilistic algorithm
which will allow us to approximate solutions of a porous media type equation with
monotone irregular coefficient. Indeed, we are interested in the parabolic problem

{
∂tu(t, x) = 1

2∂
2
xxβ (u(t, x)) , t ∈ [0,+∞[ ,

u(0, x) = u0(dx), x ∈ R,
(1.1)

in the sense of distributions, whereu0 is an initial probability measure. Ifu0 has a
density, we will still denote it by the same letter. We look for a solution of (1.1) with
time evolution inL1(R). We formulate the following assumption:

Assumption(A)

(i) β : R → R such thatβ|R+ is monotone.

(ii) β(0) = 0 andβ continuous at zero.
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(iii) We assume the existence ofλ > 0 such that(β+ λid)(R+) = (R+), id(x) ≡ x.

A monotone functionβ0 : R → R can be completed into a graph by settingβ0(x) =
[β0(x−), β0(x+)]. An odd functionβ0 : R → R such thatβ|R+ = β0|R+ produces in
this way a maximal monotone graph.

In this introduction, howeverβ andβ0 will be considered single-valued for the sake
of simplicity. We leave more precise formulations (as in Proposition 2.1 and Theorem
2.8) for the body of the article.

We remark that ifβ fulfills Assumption(A), then the odd symmetrizedβ0 fulfills the
more natural

Assumption(A’)

(i) β0 : R → R is monotone.

(ii) β0(0) = 0 andβ0 continuous at zero.

(iii) We assume the existence ofλ > 0 such that(β0 + λid)(R) = (R), id(x) ≡ x.

We defineΦ : R → R+, setting

Φ(u) =





√
β0(u)
u if u 6= 0,

C if u = 0,

(1.2)

whereC ∈ [lim inf
u→0+

Φ(u), lim sup
u→0+

Φ(u)].

Note that whenβ(u) = u.|u|m−1, m > 1, the partial differential equation (PDE)
in (1.1) is nothing else but the classical porous media equation. In this caseΦ(u) =

|u|m−1
2 and in particularC = 0.

Our main target is to analyze the case of an irregular coefficientβ. Indeed, we are
particularly interested in the case whenβ is continuous excepted for a possible jump
at one positive point, sayuc > 0. A typical example is:

β(u) = H(u− uc).u, (1.3)

H being the Heaviside function anduc will be calledcritical valueor critical thresh-
old.

Definition 1.1. i) We will say that the PDE in (1.1), orβ is non-degenerateif there is
a constantc0 > 0 such thatΦ ≥ c0, on each compact ofR+.

ii) We will say that the PDE in (1.1), orβ is degenerateif lim
u→0+

Φ(u) = 0.

Remark 1.2. i) We remark thatβ is non-degenerate if and only if lim inf
u→0+

Φ(u) > 0.

ii) We observe thatβ may be neither degenerate nor non-degenerate.
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Of course,β in (1.3) is degenerate. Equation (1.3) constitutes a model intervening in
some self-organized criticality (often called SOC) phenomena, see [2] for a significant
monograph on the subject. We mention the interesting physical paper [16], which
makes reference to a system whose evolution is similar to theevolution of a ”snow
layer” under the influence of an ”avalanche effect” which starts whenever the top of
the layer is bigger than a critical valueuc.

We, in particular, refer to [9] (resp. [3]), which concentrates on the avalanche phase
and therefore investigates the problem (1.1) discussing existence, uniqueness and prob-
abilistic representation whenβ is non-degenerate (resp. degenerate). The authors had
in mind the singular PDE in (1.1) as a macroscopic model for which they gave a mi-
croscopic view via a probabilistic representation provided by a non-linear stochastic
differential equation (NLSDE); the stochastic equation issupposed to describe the
evolution of a single point of the layer. The analytical assumptions formulated by the
authors were Assumption(A) and the Assumption(B) below which postulates linear
growth forβ.

Assumption(B). There exists a constantc > 0 such that|β(u)| ≤ c|u|.

Obviously we have,
Assumption(B’). There exists a constantc > 0 such that|β0(u)| ≤ c|u|.

Clearly (1.3) fulfills Assumption(B).
To the best of our knowledge the first author who considered a probabilistic repre-

sentation (of the type studied in this paper) for the solutions of non linear deterministic
partial differential equations was McKean [32]. However, inhis case, the coefficients
were smooth. From then on, the literature steadily grew and nowadays there is a vast
amount of contributions to the subject. A probabilistic interpretation of (1.1) when
β(u) = u.|u|m−1, m > 1 was provided in [5]. For the sameβ, though the method
could be adapted to the case whereβ is Lipschitz, in [28], the author studied the evo-
lution problem (1.1) when the initial condition and the evolution takes values in the
class of probability distribution functions onR. He studied both the probabilistic rep-
resentation and the so-calledpropagation of chaos.

At the level of probabilistic representation, under Assumptions (A) and (B), sup-
posing thatu0 has a bounded density, [9] (resp. [3]) proves existence and uniqueness
(resp. existence) in law for the corresponding (NLSDE). In the present work we are in-
terested in some theoretical complements, but the main purpose consists in examining
numerical implementations provided by the (NLSDE), in comparison with numerical
deterministic schemes appearing in one recent paper, see [18].

Let us now describe the principle of the probabilistic representation. The stochastic
differential equation (in law) rendering the probabilistic representation is given by the
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following (NLSDE):




Yt = Y0 +
t∫

0
Φ(u(s, Ys))dWs,

u(t, ·) = Law density ofYt, ∀t > 0,

u(0, ·) = u0 Law of Y0,

(1.4)

whereW is a classical Brownian motion. The solution of that equation may be visual-
ized as a continuous processY on some filtered probability space(Ω,F , (Ft)t≥0,P)
equipped with an(Ft)t≥0-Brownian motionW .

Until now, theoretical results about well-posedness (resp. existence) for (1.4) were
established whenβ is non-degenerate (resp. possibly degenerate) and in the case when
u0 ∈

(
L1⋂L∞

)
(R).

Initially our aim was to produce an algorithm which allows tostart even with a
measure or an unbounded function as initial condition. Unfortunately, up to now, our
implementation techniques do not allow to treat this case.

However, even if the present paper concentrates on numerical experiments, two
theoretical contributions are performed whenΦ is continuous.

• A first significant theoretical contribution is Theorem 2.9 which consists in fact
in extending the probabilistic representation obtained by[3] to the case whenu0 ∈
L1(R), locally of bounded variation outside a discrete set of points, not necessarily
bounded.

• A second contribution consists in showing in the non-degenerate case that the
mollified version of PDE in (1.1) is in fact equivalent to its probabilistic representation,
even when the initial conditionu0 is a probability measure. This is done in Theorem
3.2.

The connection between (1.4) and (1.1) is indeed given by thefollowing result.

Proposition 1.3.Let us assume the existence of a solutionY for (1.4). Letu(t, ·) be
the law density ofYt, t > 0, that we suppose to exist.

Thenu : [0, T ]× R → R+ provides a solution in the sense of distributions of (1.1)
with u0 = u(0, ·).

The proof is well-known, but we recall here the basic argument for illustration pur-
poses.

Proof. Letϕ ∈ C∞
0 (R), Y be a solution of the problem (1.4). We apply Itô’s formula

toϕ(Y ) to obtain :

ϕ(Yt) = ϕ(Y0) +

∫ t

0
ϕ′(Ys)Φ(u(s, Ys))dWs +

1
2

∫ t

0
ϕ′′(Ys)Φ2(u(s, Ys))ds.

Taking the expectation we get :
∫

R

ϕ(y)u(t, y)dy =

∫

R

ϕ(y)u0(y)dy +
1
2

∫ t

0
ds

∫

R

ϕ′′(y)Φ2(u(s, y))u(s, y)dy.
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Using then integration by parts and the expression ofβ, the expected result follows.
2

In the literature there are several contributions about approximation of non-linear
PDE’s of parabolic type using a stochastic particles system, with study of the chaos
propagation. We recall that the chaos propagation takes place if the components of a
vector describing the interacting particle system become asymptotically independent,
when the number of particles goes to infinity. Note that, physically motivated applica-
tions can be found, for instance in numerical studies in hydro- or plasma-physics; [20]
and [24] are contributions expressing a heuristic or formalpoint of view.

When the non-linearity is of the first order, a significant contribution was given
by [48]; [10, 11] study a McKean-Vlasov model containing as a particular case, the
Burgers equation where, as in [28], the initial condition isa probability (cumulated)
distribution function. They performed the rate of convergence of an empirical measure
associated with a stochastic particle algorithm. [33] enlarged the model of [32] and
[48] and they established the related chaos propagation result. We also quote [17],
where authors obtained Burgers equation as a mean field limitof suitable diffusion
processes.

In the case of porous media type equation (1.1) withβ Lipschitz, [29] investigated
the probabilistic representation for (1.1) and a mollified related equation. There, the
authors provided a rigorous proof of the propagation of chaos in the case of Lipschitz
coefficients, see Proposition 2.3, Proposition 2.5 and Theorem 2.7 of [29] .

Outside the Lipschitz case, an alternative method for studying convergence was
investigated by [34, 35, 36], whose limiting PDEs concerneda class of equations in-
cluding the caseβ(u) = u+u2, u ≥ 0. In fact [36] computed the numerical solution
of a viscous porous medium equation through a particle algorithm and studied theL2-
convergence rate to the analytical solution. More recent papers concerning the chaos
propagation whenβ(u) = u2 first andβ(u) = |u|m−1u,m > 1 was proposed in [39]
and [21].

As far as the coefficientβ is discontinuous, at our knowledge, up to now, there are
no such results. As we announced, we are particularly interested in an empirical in-
vestigation of the stochastic particle algorithm approaching the solutionu of (1.1) at
some instantt, in several situations with regular or irregular coefficient. We recall
thatu(t, ·) is a probability density. That algorithm involves Euler schemes of stochas-
tic differential equations, Monte-Carlo simulations expressing the empirical law and
non-parametric density estimation ofu(t, ·) using Gaussian kernels, see [46] for an
introduction to the kernel method. This technique crucially depends on the window
width ε of the smoothing kernel. Classical statistical tools for choosing that parameter
are described for instance in [46], where the following formula for choosing the opti-
mal bandwidthε, in the sense of minimizing the asymptoticmean integrated squared
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error (MISE), is given by

εt =
(
2n

√
π‖∂2

xxu(t, ·)‖2)− 1
5 , (1.5)

where,n is the sample size and‖ · ‖ denotes the classicalL2(R) norm.
Of course, the above expression does not yield an immediately practicable method

for choosing the optimalε since (1.5) depends on the second derivative of the density
u, which we are trying indeed to estimate. Therefore, severaltechniques were pro-
posed to get through this problem. First, a natural and easy approach, often called the
rule of thumb, replaced the target densityu at timet in the functional‖∂2

xxu‖, by a
reference distribution function. For instance, [46] assumed that the unknown density
is a standard normal function and obtained the following practically used formula

ε =

(
4

3n

) 1
5

σ̂, (1.6)

σ̂ being the empirical standard deviation. A version which is more robust to outliers
in the sample, consists in replacing ˆσ by a measure of spread of the variance involving
the interquartile range. For instance, see [46] for detailed computations.

Theoversmoothingmethods rely on the fact that there is a simple upper bound for
the MISE-optimal bandwidth. In fact, [49], gave a lower boundfor the functional
‖∂2

xxu‖ and thus an upper bound forε in (1.5); it proposed to use this upper bound as
an optimal window width, see also [50] for histograms.

The two methods above seem to work well for unimodal densities. However, they
lead to arbitrarily bad estimates of the bandwidthε, when for instance, the true density
is far from being Gaussian, especially when it is a multimodal law.

Theleast squares cross validation(LSCV) method aimed to estimate the bandwidth
that minimizes the integrated squared error (ISE), based ona ”leave-one-out” kernel
density estimator, see [41, 14]. The problem is that, for thesame target distribution,
the estimated bandwidth through different samples has a bigvariance, which produces
instability.

The biased cross-validation(BCV) approach, introduced in [42] minimizes the
score function obtained by replacing the functional‖∂2

xxu‖ in the formula of the MISE
by an estimator‖∂2

xxû‖, whereû is the kernel estimator ofu. In fact, [42] proposed
the use of the minimizer of that score function as optimal bandwidth. This method
seemed to be more stable than the LSCV but still has large bias. The slow rate of
convergence of both the LSCV and BCV approaches encouraged significant research
on faster converging methods.

A popular approach, commonly calledplug-in method, makes use of an indirect
estimator of the density functional‖∂2

xxu‖ in formula (1.5). This technique comes
back to the early paper [52]; in this framework the estimatorof ‖∂2

xxu‖ requires the
computation of apilot bandwidthh, which is quite different from the window width



A probabilistic algorithm approximating a singular PDE 7

ε used for the kernel density estimate. Indeed, this optimal bandwidthh depends on
unknown density functionals involving partial derivatives greater than 2. Following an
idea of [51], one could expressh iteratively through higher order derivatives. In this
spirit, the natural associated problem consists in estimating for some positive integer
s, the quantity‖∂sxsu‖, in terms of‖∂s+ℓ

xs+ℓu‖ for some positive integerℓ; an ℓ-stage

direct plug-inapproach may consist in replacing the norm‖∂s+ℓ
xs+ℓu‖ by the norm of

the s + ℓ derivative of a Gaussian density. In the present paper we implement this
idea withs = ℓ = 2. Important contributions to that topic were [43] and [27] who
improved the method via the so-called ”solve-the-equation” plug-in method. By this
technique, the pilot bandwidthh used to estimate‖∂2

xxu‖, is written as a function
of the kernel bandwidthε. We shall describe in Section 4 in details this bandwidth
selection procedure applied in the case of our probabilistic algorithm.

We point out, that a more recent tool was developed in [12] which improved the idea
in [43, 27] in the sense that [12] did not postulate any normalreference rule. However,
the numerical experiments that we have performed using the Matlab routine developed
by the first author of [12] have not produced better results inthe case whenβ is defined
by (1.3).

In the paper we examine empirically the stochastic particlealgorithm for approach-
ing the solution to the PDE in the caseβ(u) = u3 and in the caseβ given by (1.3). For
this more peculiar case, we compare the approximation with the one obtained by one
recent analytic deterministic numerical method.

Problems of the same type as (1.1), in the case whenβ is Lipschitz but possibly
degenerate, were extensively studied from both the theoretical and numerical deter-
ministic points of view. In general, the numerical analysisof (1.1) is difficult for at
least one reason: the appearance of singularities for compactly supported solutions in
the case of an irregular initial condition. An usual technique to approximate (1.1) in-
volves implicit discretization in time: it requires, at each time step, the discretization
of a nonlinear elliptic problem. However, when dealing withnonlinear problems, one
generally tries to linearize them in order to take advantageof efficient linear solvers.
Linear approximation schemes based on the so-called non linear Chernoff’s formula
with a suitable relaxation parameter and which arises in thetheory of nonlinear semi
groups, were studied for instance in [8]. We also cite [30], where the authors approx-
imated degenerate parabolic problems including those of porous media type. In fact,
they used nonstandard semi-discretization in time and applied a Newton-like itera-
tions to solve the corresponding elliptic problems. More recently, different approaches
based on kinetic schemes for degenerate parabolic systems have been investigated in
[1]. Finally a new scheme based on the maximum principle and on the perturbation
and regularization approach was proposed in [40].

At the best of our knowledge, up to now, there are no analytical methods dealing
with the case whenβ is given by (1.3). However, we are interested in a sophisticated
approach developed in [18] and which appears to be best suited to describe the evolu-
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tion of singularities and efficient for computing discontinuous solutions. In fact, [18]
focuses onto diffusiverelaxation schemesfor the numerical approximation of nonlin-
ear parabolic equations, see [26, 25], and references therein. Those relaxed schemes
are based on a suitable semi-linear hyperbolic system with relaxation terms. Indeed,
this reduction is carried out in order to obtain schemes thatare easy to implement.
Moreover, with this approach it is possible to improve such schemes by using differ-
ent numerical approaches i.e. either finite volumes, finite differences or high order
accuracy methods.

In particular, the authors in [18] coupled ENO (EssentiallyNon Oscillatory) interpo-
lating algorithms for space discretization, see [45], in order to deal with discontinuous
solutions and prevent the onset of spurious oscillation, with IMEX (implicit explicit)
Runge-Kutta schemes for time advancement, see [37], to obtain a high order method.
We point out that [18] studied convergence and stability of the scheme only in the case
whenβ is Lipschitz but possibly degenerate andu0 ∈ L1(R).

As a byproduct of numerical experiments we can forecast the longtime behavior of
u(t, ·)where(t, x) 7→ u(t, x) is the solution of the considered PDE. We can reasonably
postulate that the closure of{u ∈ L1(R), u ≥ 0,

∫
R
u(x)dx = 1 | β(u) = 0} is a

limiting set, provided it is not empty as in the caseβ(u) = u3.
In Section 6.3, we discuss empirically the dependence of theerror on the two pa-

rameters: the number of particlesn and the time step, for the Heaviside and the porous
media cases. If we simulate a fixed static probability density (the initial condition)
with a largen, a Monte Carlo error of order 10−2 is produced. This is a sort of thresh-
old that we cannot reasonably improve for the solution at anypositive time. We have
observed, that decreasing the time step∆t one would have rapidly approached that
threshold. This suggests that to keep the algorithm performing it is not useful to use a
time step smaller than some value(∆t)0.

The paper is organized as follows. Section 2 is devoted to thestatements of existence
and uniqueness results for both the deterministic problem (1.1) and the non-linear SDE
(1.4) rendering the probabilistic representation of (1.1). We in particular, recall the
results given by authors of [9, 3] and we establish some additional theoretical results
in the case when the initial condition of (1.1) belongs toL1(R) but it is not necessarily
bounded.

In Section 3, we settle the theoretical basis for the implementation of our probabilis-
tic algorithm. We first approximate the NLSDE (1.4) by a mollified version replacing
u(t, ·), the law density ofYt, by a given smooth function. We then construct an in-
teracting particle system for which we supposed that propagation of chaos result is
verified. We drive the attention on Theorem 3.2 which links the mollified PDE (3.3)
with its probabilistic representation.

Section 4 is devoted to the numerical procedure implementing the probabilistic al-
gorithm. We first introduce an Euler scheme to obtain a discretized version of the
interacting particles system defined in Section 3. We then discuss the optimal choice
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of the window widthε.
In Section 5, we describe the numerical deterministic approach we use to simulate

solutions of (1.1). In fact, following [18], we first use finite differences and ENO
schemes for the space discretization, then we perform an explicit Runge-Kutta scheme
for time integration.

In Section 6, we proceed to the validation of the algorithms.The first numerical ex-
periments discussed in that section concern the classical porous media equation whose
exact solution, in the case when the initial condition is a delta Dirac function, is the
so-calledBarrenblatt-Pattledensity, see [4]. Then, we concentrate on the Heaviside
case, i.e. withβ of the form (1.3). In fact, we perform several test cases according
to the critical thresholduc and to the initial conditionu0. Finally, we conclude this
section by some considerations about the long time behaviorof solutions of (1.1) and
the performance of the algorithm.

2. Existence and uniqueness results

We start with some basic analytical framework. Iff : R → R is a bounded function we
will denote‖f‖∞ = sup

x∈R
|f(x)|. By S(R) we denote the space of rapidly decreasing

infinitely differentiable functionsϕ : R → R. We denote byM(R) andM+(R) the
set of finite measures and positive finite measures respectively.

2.1. The deterministic PDE

Based on some clarifications of some classical papers [6, 15,7], [9] states the following
theorem about existence and uniqueness in the sense of distributions (in a proper way).

Proposition 2.1.Let u0 ∈
(
L1⋂L∞

)
(R), u0 ≥ 0. We suppose the validity of

Assumptions (A) and (B). Then there is a unique solution in the sense of distributions
u ∈ (L1⋂L∞)([0, T ]× R) of

{
∂tu ∈ 1

2∂
2
xxβ(u),

u(0, x) = u0(x),
(2.1)

in the sense that, there exists a unique couple(u, ηu) ∈ ((L1⋂L∞)([0, T ] × R))2

such that
∫
u(t, x)ϕ(x)dx =

∫
u0(x)ϕ(x)dx+

1
2

∫ t

0
ds

∫
ηu(s, x)ϕ

′′(x)dx, ∀ϕ ∈ S(R)

and
ηu(t, x) ∈ β(u(t, x)) for dt⊗ dx-a.e. (t, x) ∈ [0, t]× R

Furthermore,||u(t, .)||∞ ≤ ||u0||∞ for everyt ∈ [0, T ] and there is a unique version
of u such thatu ∈ C([0, T ] ;L1(R)) (⊂ L1([0, T ]× R)).
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One significant difficulty of previous framework is that the coefficientβ is discon-
tinuous; this forces us to considerβ as a multivalued function even thoughu is single-
valued. Beingβ, in general, discontinuous it is difficult to imagine the level of space
regularity of the solutionu(t, ·) at timet. In fact, Proposition 4.5 of [3] says that al-
most surelyηu(t, ·) belongsdt-a.e inH1(R) if u0 ∈

(
L1⋂L∞

)
(R). This helps in

some cases to visualize the behavior ofu(t, ·). The proposition below makes some
assertions whenβ is of the type of (1.3), which constitutes our pattern situation.

Proposition 2.2.Let us supposeu0 ∈
(
L1⋂L∞

)
(R) and β defined by(1.3). For

t ≥ 0, we denote by
E0

t = {x| u(t, x) = uc}.
For almost allt > 0,

(i) E0
t has a non empty interior;

(ii) every point ofE0
t is either a local minimum or a local maximum.

Remark 2.3.The first point of the previous proposition means that at almost each time
t > 0, the functionu(t, ·) remains constant on some interval.

The second point means that if the functionu(t, ·) crosses the barrieruc, it has first
to stay constant for some time.

Proof of Proposition 2.2.For the sake of simplicity we fixt > 0 such thatηu(t, ·) ∈
H1(R) and we writeu = u(t, ·) , ηu = ηu(t, ·).

(i) Sinceηu ∈ H1(R) it is continuous, then the setD0 = {x ∈ R| ηu(x) ∈]0, uc[}
is open. Ifηu(x) ∈]0, uc[ necessarily we haveu(x) = uc; in fact, if u(x) < uc
thenηu(x) = 0 and ifu(x) > uc thenηu(x) = u(x) > uc. SinceD0 is open
and it is included inE0

t the result is established.

(ii) Suppose the existence of sequences(xn) and (yn) such thatxn → x with
u(xn) < uc andyn → y with u(yn) > uc. By continuity ofηu we have

ηu(xn) = 0 →
n→∞

0 = ηu(x)

u(yn) = ηu(yn) →
n→∞

ηu(x) = 0,

this is not possible becauseu(yn) > uc for everyn.

2

If u0 ∈ M(R), we do not know any existence or uniqueness theorem for (1.1). Our
first target consisted in providing some generalization to Proposition 2.1 in the case
whenu0 is a finite measure. A solution in that case would be,u : ]0, T ]×R → L1(R)
continuous and such that

lim
t→0

u(t, dx) = u0(dx),
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weakly and whereu(t, dx) denotesu(t, x)dx. This is still an object of further tech-
nical investigations. For the moment, we are only able to consider the caseu0 having
aL1(R) density still denoted byu0, not necessarily bounded as in Proposition 2.1, at
least whenΦ characterized by (1.2) is continuous. In particularβ is also continuous,
but possibly degenerate. In that case, we can prove existence of a distributional solu-
tion to (1.1). Even though this is not a very deep observation, this will settle the basis of
the corresponding probabilistic representation, completely unknown in the literature.
In fact, we provide the following result.

Proposition 2.4.Let u0 ∈ L1(R). Furthermore, we suppose that Assumption(A) and
Assumption(B) are fulfilled. We assume thatΦ is continuous onR+.

(1) There is a solutionu, in the sense of distributions, to the problem
{
∂tu(t, x) = 1

2∂
2
xxβ(u(t, x)), t ∈ [0,∞[ ,

u(0, x) = u0(dx), x ∈ R,
(2.2)

in the sense that for everyα ∈ S(R)

∫

R

u(t, x)α(x)dx =

∫

R

u0(x)α(x)dx+
1
2

∫ t

0
ds

∫

R

α′′(x)β(u(s, x))dx. (2.3)

(2) If u0 is locally of bounded variation except eventually on a discrete number
of pointsD0, thenΦ(u(t, ·)) has at most countable discontinuities for every
t ∈ [0, T ].

Proof. (1) Letu0 ∈ L1(R), uN0 = u0∗φ 1
N
, N ∈ N∗, whereφ is a kernel with compact

support andφ 1
N
(x) = Nφ(Nx), x ∈ R. SouN0 is of classC1, therefore locally

with bounded variation. Since‖uN0 ‖∞ ≤ ‖φ 1
N
‖∞‖u0‖L1 thenuN0 ∈ (L1⋂L∞)(R).

Moreover, we have
∫

R

|uN0 (x)− u0(x)|dx→ 0, as N → +∞.

On one hand, according to Proposition 2.1, there is a unique solutionuN of (2.3), i.e.
for everyα ∈ S(R)

∫

R

uN (t, x)α(x)dx =

∫

R

uN0 (x)α(x)dx+
1
2

∫ t

0
ds

∫

R

α′′(x)β(uN (s, x))dx. (2.4)

On the other hand, according to Corollary 8.2 in Chap IV of [44], we have

sup
t≤T

∫

R

|uN (t, x)− u(t, x)|dx→ 0, asN → +∞. (2.5)
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Therefore, there is a subsequence(Nk)k∈N such that

uNk(t, x) → u(t, x) dt⊗ dx-a.e., as k → +∞.

Sinceβ is continuous, it follows that

β(uNk(t, x)) → β(u(t, x)) dt⊗ dx-a.e., as k → +∞.

Consequently, (2.4) implies
∫

R

u(t, x)α(x)dx =

∫

R

u0(x)α(x)dx+ lim
k→+∞

1
2

∫ t

0
ds

∫

R

α′′(x)β(uNk(s, x))dx.

(2.6)
In order to show thatu solves (2.3), we verify

lim
N→∞

∫ t

0
ds

∫

R

α′′(x)β(uN (s, x))dx =

∫ t

0
ds

∫

R

α′′(x)β(u(s, x))dx, (2.7)

where for notational simplicity we have replacedNk with N . So, we can suppose that

uN → u, β(uN ) → β(u), dt⊗ dx-a.e. asN → +∞. (2.8)

Since|β(uN )| ≤ c|uN | anduN → u in L1([0, T ]×R), it follows thatβ(uN ) are equi-
integrable. Consequently, by (2.8),β(uN ) → β(u) in L1([0, T ] × R), and therefore
(2.7) follows. Finally,u solves equation (2.3).

(2) For this purpose we state a lemma concerning an elliptic equation whose first
statement item constitutes the kernel of the proof of Proposition 2.1.

Givenf : R → R, for h ∈ R, we denote

fh(x) = f(x+ h)− f(x).

Lemma 2.5.Letf ∈ L1, λ > 0.

(i) There is a unique solution in the sense of distributions of

u− λ(β(u))′′ = f.

(ii) Let χ be a smooth function with compact support. Then for eachh
∫

R

χ(x)|uh(x)|dx ≤
∫

R

χ(x)|fh(x)|dx+ Cλ|h|‖u‖L1, (2.9)

whereC is a constant depending onβ andχ.

Proof of Lemma 2.5. (i)is stated in Theorem 4.1 of [6] and Theorem 1 of [7].
(ii) The statement appears in Lemma 3.6 of [3] in the case whenf ∈ L1⋂L∞ but

the proof remains the same forf ∈ L1. 2
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We go on with the proof of Proposition 2.4, point (2). Letχ be a smooth nonnegative
function with compact support onR\D0. We prove in fact

lim sup
h→0

1
h

∫

R

χ(x)|uh(t, x)|dx ≤ ‖u0χ‖var+ C

∫

[0,T ]×R

|u(s, x)|dsdx, (2.10)

where‖ · ‖var denotes the total variation andC is a generic universal constant. For
this purpose, we proceed exactly as in the proof of Proposition 4.20 of [3] making
use of Lemma 2.5. Inequality (2.10) allows, similarly as in [3] to show thatu(t, ·)
restricted to any compact interval ofR\D0 has bounded variation. Therefore it has at
most countable discontinuities. Consequently,Φ(u(t, ·)) has the same property since
Φ is supposed to be continuous. 2

2.2. The non-linear stochastic differential equation (NLSDE)

Definition 2.6.We say that a processY is a solution to the NLSDE associated to
problem (1.1), if there existsχ belonging toL∞([0, T ]× R) such that;





Yt = Y0 +
∫ t

0 χ(s, Ys)dWs ,

χ(t, x) ∈ Φ(u(t, x)), for dt⊗ dx− a.e.(t, x) ∈ [0, T ]× R,

u(t, x) = Law density ofYt, t > 0,

u(0, ·) = u0,

(2.11)

whereW is a Brownian motion on some suitable filtered probability space(Ω,F , (Ft)t≥0,P).
In particular, the first identity of (2.11) holds in law. We introduce a notion appearing
in [3].

Definition 2.7.We say thatβ is strictly increasing after some zeroif there is a constant
c > 0, such that
i) β|[0,c] = 0.

ii) β is strictly increasing on[c,+∞[.

Up to now, two results are available concerning existence and uniqueness of solu-
tions to (2.11). In fact, the first one is stated in the case whereβ is not degenerate and
the second one in the case whenβ is degenerate, see respectively [9, 3]. We summarize
these two results in the following theorem for easy reference later on.

Theorem 2.8.Letu0 ∈ L1⋂L∞ such thatu0 ≥ 0and
∫
R
u0(x)dx = 1. Furthermore,

we suppose that Assumptions (A) and (B) are fulfilled.

(i) If β is non-degenerate then it exists a solutionY to (2.11), unique in law.

(ii) Supposeβ is degenerate and eitherβ is strictly increasing after some zero oru0

has locally bounded variation. Then there is a solutionY not necessarily unique
to (2.11).
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A step forward is constituted by the proposition below. Thisprovides an existence
result for the NLSDE, whenu0 is not necessarily bounded at least wheneverΦ is
continuous. This does not require a non-degenerate hypothesis onβ.

Theorem 2.9.Letu0 ∈ L1(R) having locally bounded variation except on a discrete
set of pointsD0. Furthermore we suppose that Assumption(A) and Assumption(B) are
fulfilled. We assume thatΦ is continuous onR+.

The probabilistic representation related to(1.1) holds, i.e. there is a processY
solving(1.4) in law.

Proof. Let uN0 be the function considered at the beginning of the proof of Proposition
2.4. According to Theorem 2.8, letY N

0 be the solution to




Y N
t = Y N

0 +
∫ t

0 Φ(uN (s, Y N
s ))dWs,

uN (t, ·) = Law density ofY N
t , ∀ t ≥ 0,

uN (0, ·) = uN0 .

(2.12)

SinceΦ is bounded, using Burkholder-Davies-Gundy inequality oneobtains

E
(
Y N
t − Y N

s

)4 ≤ const(t− s)2.

This implies (see for instance Problem 4.11, Section 2.4 of [31]) that the laws of
Y N , N ≥ 1 are tight. Consequently, there is a subsequenceY k := Y Nk converging
in law (asC([0, T ])-valued random elements) to some processY . We setuk = uNk ,
where we recall thatuk(t, ·) is the law ofY k

t . We also setXk
t = Y k

t − Y k
0 . Since

[Xk]t =
t∫

0
Φ2(uk(s, Y k

s ))ds andΦ is bounded, the continuous local martingalesXk

are indeed martingales.
By Skorokhod’s theorem there is a new probability space(Ω̃, F̃ , P̃ ) and processes

Ỹ k, with the same distribution asY k so thatỸ k convergesP̃ -a.s. to some process
Ỹ , of course distributed asY , asC([0, T ])-valued random element. In particular, the
processes̃Xk

t = Ỹ k
t − Ỹ k

0 remain martingales with respect to the filtration generated
by Ỹ k. We denote the sequencẽY k (resp.Ỹ ), again byY k (resp. Y).

We now aim to prove that

Yt = Y0 +

∫ t

0
Φ(u(s, Ys))dWs, (2.13)

for some standard Brownian motionW with respect with some filtration(Ft).
We consider the stochastic processX (vanishing at zero) defined byXt = Yt − Y0.

We also set againXk
t = Y k

t −Y k
0 . Taking into account Theorem 4.2 in Chap 3 of [31],

to establish (2.13), it will be enough to prove thatX is anY-martingale with quadratic
variation[X]t =

∫ t
0 Φ2(u(s, Ys))ds, whereY is the canonical filtration associated with

Y .
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Let s, t ∈ [0, T ], with t > s andψ a bounded continuous function fromC([0, s]) to
R. In order to prove the martingale property forX, we need to show that

E [(Xt −Xs)ψ(Yr, r ≤ s)] = 0. (2.14)

SinceY k are martingales, we have

E
[
(Xk

t −Xk
s )ψ(Y

k
r , r ≤ s)

]
= 0. (2.15)

Consequently (2.14) follows from (2.15) and the fact thatY k → Y a.s. (Xk → X
a.s.) asC([0, T ])-valued random process. In fact for eacht ≥ 0, Xk

t → Xt in L1(Ω)
since(Xk

t , k ∈ N) is bounded inL2(Ω).
It remains to show thatX2

t−
∫ t

0 Φ2(u(s, Ys))ds, t ∈ [0, T ], defines anY-martingale,
that is, we need to verify

E

[(
X2

t −X2
s −

∫ t

s
Φ2(u(r, Yr))dr

)
ψ(Yr, r ≤ s)

]
= 0.

We proceed similarly as in the proof of Theorem 4.3 in [9] but even with some simpli-
fication. For the comfort of the reader we give a complete proof.

The left-hand side decomposes intoI1(k) + I2(k) + I3(k), where

I1(k) = E

[(
X2

t −X2
s −

∫ t

s
Φ2(u(r, Yr))dr

)
ψ(Yr, r ≤ s)

]

− E

[(
(Xk

t )
2 − (Xk

s )
2 −

∫ t

s
Φ2(u(r, Y k

r ))dr

)
ψ(Y k

r , r ≤ s)

]
,

I2(k) = E

[(
(Xk

t )
2 − (Xk

s )
2 −

∫ t

s
Φ2(uk(r, Y k

r ))dr

)
ψ(Y k

r , r ≤ s)

]
,

I3(k) = E

[(∫ t

s
(Φ2(uk(r, Y k

r ))− Φ2(u(r, Y k
r )))dr

)
ψ(Y k

r , r ≤ s)

]
.

We start by showing the convergence ofI3(k). Now,ψ(Y k
r , r ≤ s) is dominated by a

constantC. Clearly we have

I3(k) ≤ C

∫ t

s
dr

∫

R

|Φ2(uk(r, y))− Φ2(u(r, y))|uk(r, y)dy.

The right hand side of this inequality is equal toC[J1(k) + J2(k)], where

J1(k) =

∫ t

s
dr

∫

R

|Φ2(uk(r, y))− Φ2(u(r, y))|
(
uk(r, y)− u(r, y)

)
dy,

J2(k) =

∫ t

s
dr

∫

R

|Φ2(uk(r, y))− Φ2(u(r, y))|u(r, y)dy.
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Sinceuk → u in C([0, T ];L1) andΦ2 is bounded then lim
k→+∞

J1(k) = 0.

Furthermore, there is a subsequence(kn)n∈N such that

ukn(r, y) → u(r, y) dr ⊗ dy − a.e. asn→ +∞.

SinceΦ2 is continuous, it follows that

Φ2
(
ukn(r, y)

)
→ Φ2 (u(r, y)) dr ⊗ dy − a.e.,N → +∞

On the other hand, since

|Φ2
(
ukn(r, y)

)
− Φ2 (u(r, y)) | ≤ 2 sup

u∈R
Φ2(u)|u(r, y)|,

Lebesgue’s dominated convergence Theorem implies that lim
k→+∞

J2(k) = 0.

Now we go on with the analysis ofI2(k) andI1(k). I2(k) equals zero sinceXk is

a martingale with quadratic variation given by[X]t =
t∫

0
Φ2(uk(r, Y k

r ))dr.

Finally, we treatI1(k). We recall thatXk → X a.s. as a random element in
C([0, T ]) and that the sequenceE((Xk

t )
4) is bounded, so(Xk

t )
2 are uniformly inte-

grable.
Therefore, we have

E
[(
(Xt)

2 − (Xs)
2)ψ(Yr, r ≤ s)

]
− E

[(
(Xk

t )
2 − (Xk

s )
2
)
ψ(Y k

r , r ≤ s)
]
→ 0

whenk goes to infinity. It remains to prove that

∫ t

s
E
[(

Φ2(u(r, Yr))− Φ2(u(r, Y k
r ))
)
ψ (Yr, r ≤ s) dr

]
→ 0. (2.16)

Now, for fixed dr-a.e.,r ∈ [0, T ], the setS(r) of discontinuities ofΦ(u(r, .)) is
countable because of Proposition 2.4, point (2). The law ofYr has a density and it is
therefore non-atomic. LetN(r) be the event of allω ∈ Ω such thatYr(ω) belongs to
S(r). The probability ofN(r) equalsE(1S(r)(Yr)) =

∫
R

1S(r)(y)dv(y) = 0, wherev
is the law ofYr. ConsequentlyN(r) is a negligible set.

For ω /∈ N(r), we have lim
k→+∞

Φ2
(
u(r, Y k

r (ω))
)
= Φ2 (u(r, Yr(ω))). SinceΦ is

bounded, Lebesgue’s dominated convergence theorem implies (2.16).
Concerning the question whetheru(t, .) is the law ofYt, we recall that for all t,Y k

t

converges (even in probability) toYt anduk(t, .), which is the law density ofY k
t , goes

to u(t, .) in L1(R). By the uniqueness of the limit in (2.3), this obviously implies that
u(t, .) is the law density ofYt. 2
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3. Some complements related to the NLSDE

3.1. A mollified version

We suppose here thatu0(dx) is a probability measure. LetY0 be a random variable
distributed according tou0(dx) and independent of the Brownian motionW .

In preparation to numerical probability simulations, we defineKε for everyε > 0,
as a smooth regularization kernel obtained from a fixed probability density functionK
by the scaling :

Kε(x) =
1
ε
K
(x
ε

)
, x ∈ R. (3.1)

We suppose in this section thatΦ is single valued, therefore continuous. This hypoth-
esis will not be in force in Sections 4 and 6.

In this subsection we wish to comment about the mollified version of the NLSDE
(1.4), given by





Y ε
t = Y0 +

t∫
0

Φ ((Kε ∗ vε)(s, Y ε
s )) dWs,

vε(t, ·) = Law of Y ε
t , ∀ t > 0,

vε(0, ·) = u0

(3.2)

and its relation to the nonlinear integro-differential PDE
{
∂tv

ε(t, x) = 1
2∂

2
xx

(
Φ2(Kε ∗ vε(t, x))vε(t, x)

)
, (t, x) ∈ ]0,+∞[× R,

vε(0, ·) = u0.
(3.3)

where,t 7→ vε(t, ·) may be measure-valued.

Remark 3.1. (i) When Φ is Lipschitz, the authors of [29] proved in Proposition
2.2, that the problem (3.2) is well-posed. Their proof is based on a fixed point
theorem with respect to the Kantorovitch-Rubinstein metric.

(ii) At our knowledge, there are no existence and uniquenessresults for (3.3) at least
whenΦ is not smooth.

(iii) By It ô’s formula, similarly to the proof of Proposition 1.3, it iseasy to see that a
solutionY ε of (3.2) provides a solutionvε of (3.3), in the sense of distributions.

Whenβ is non-degenerate it is possible to show that formulations (3.3) and (3.2)
are equivalent. In particular we have the following result.

Theorem 3.2.We suppose thatβ is non-degenerate andε > 0 is fixed.
(1) If Y ε is a solution of(3.2) thenvε : [0, T ] → M(R), wherevε(t, ·) is the law

of Y ε
t , is a solution of(3.3)and fulfills the following property

(P) vε has a density, still denotedvε such that:(t, x) 7→ vε(t, x) ∈ L2([0, T ]×R).
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(2) If vε is a solution to(3.3) fulfilling (P) then there is a processY = Y ε solving
(3.2).

Proof. (1) If Y ε is a solution to (3.2) by Remark 3.1.(iii) it follows thatvε fulfills (3.3).
On the other hand, sinceKε ∗ vε is bounded andΦ is lower bounded by a constant

Cε on [− infKε ∗ vε, supKε ∗ vε] it follows thata(t, x) = Φ2 (Kε ∗ vε(t, x)) is lower
bounded byCε.

Using then Exercise 7.3.3 of [47], i.e., Krylov estimates, it follows that for every
smooth functionf : [0, T ]× R → R with compact support, we have

E

(∫ T

0
f(Y ε

s )ds

)
≤ const‖f‖L2([0,T ]×R).

Then, developing the left hand side to obtain

∫ T

0
ds

∫

R

f(y)vε(s, y)dy ≤ const‖f‖L2([0,T ]×R).

we deduce that (P) is verified.

(2) We retrieve here some arguments used in the proof of Proposition 4.2 of [9].
Givenv = vε, by Remark 4.3 of [9], see also Exercise 7.3.2-7.3.4 of [47],we can

construct a unique solutionY = Y ε in law to the SDE constituted by

Yt = Y0 +

t∫

0

√
a(s, Ys)dWs, (3.4)

where herea(t, x) = Φ2 (Kε ∗ v(t, x)) . Indeed, this is possible again becausea is
Borel bounded and lower bounded by a strictly positive constant.

A further use of It̂o’s formula says that the lawz(t, dx) of Yt solves

{
∂tz(t, .) = 1

2∂
2
xx (a(t, .)z(t, .)) ,

z(0, .) = u0,
(3.5)

in the sense of distributions.
Using again Krylov estimates as in the second part of the proof of point (1), it

follows thatz admits a density(t, y) 7→ pt(y) which verifiesp ∈ L2([0, T ] × R).
This shows that Hypothesis 3.4 in Theorem 3.3 below is fulfilled, which implies that
v ≡ z. 2

Theorem 3.3 was stated and proved in [9], see Theorem 3.8.
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Theorem 3.3.Leta be a Borel nonnegative bounded function on[0, T ]× R.
Letzi : [0, T ] → M+(R), i = 1, 2, be continuous with respect to the weak topology

on finite measures onM(R).
Let z0 be an element ofM+(R). Suppose that bothz1 and z2 solve the problem

∂tz = ∂2
xx(az) in the sense of distributions with initial conditionz(0, ·) = z0.

More precisely
∫

R

φ(x)z(t, dx) =

∫

R

φ(x)z0(dx) +

∫ t

0
ds

∫

R

φ′′(x)a(s, x)z(s, dx)

for everyt ∈ [0, T ] and anyφ ∈ C∞
0 (R).

Then(z1 − z2)(t, ·) is identically zero for every t, ifz := z1 − z2, satisfies the
following:

Hypothesis 3.4.There isρ : [0, T ] × R → R belonging toL2([κ, T ] × R) for every
κ > 0 such thatρ(t, ·) is the density ofz(t, ·) for almost allt ∈]0, T ].

3.2. The interacting particles system

We recall that in this paper, we want to approximate solutions of problem (1.1). For
this purpose we will concentrate on a probabilistic particles system of the same nature
as in [29] when the coefficients are Lipschitz.

In general, the particles probabilistic algorithms for nonlinear PDEs are based on
the simulation of particles trajectories animated by a random motion. The solution
of the PDE is approximated through the smoothing of the empirical measure of the
particles, which is a linear combination of Dirac masses centered on particles positions.
This procedure is heuristically justified by the chaos propagation phenomenon which
will be explained in the sequel.

The dynamics of the particles is described by the following stochastic differential
system:

Y i,ε,n
t = Y i

0 +

∫ t

0
Φ


1
n

n∑

j=1

Kε(Y
i,ε,n
s − Y j,ε,n

s )


 dW i

s , i = 1, . . . , n (3.6)

whereW = (W 1, . . . ,Wn) is an n-dimensional Brownian motion,(Y i
0 )1≤i≤n is a

sequence of independent random variables with law densityu0 and independent of the
Brownian motionW andKε is the same kernel as in Subsection 3.1.

Remark 3.5.If Φ in the system of ordinary SDEs (3.6) were not continuous but only
measurable, that problem would not have necessarily a solution, even ifβ were non-
degenerate. In fact, contrarily to (3.4), heren ≥ 2. SinceΦ is continuous, then (3.6)
has at least a solution; ifΦ is non-degenerate even uniqueness holds, see Chapter 6
and 7 of [47].
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Now, owing to the interacting kernelKε, the particles motions are a priori depen-
dent. For a given integern, we consider(Y 1,ε,n

t , . . . , Y n,ε,n
t ) as the solution of the

interacting particle system (3.6). Propagation of chaos for the mollified equation hap-
pens if for any integerm, the vector(Y 1,ε,n

t , . . . , Y m,ε,n
t )n≥m converges in law to

µt⊗m whereµt is the law ofY ε
t the solution of (3.2).

A consequence of chaos propagation is that one expects that the empirical measure

of the particles, i.e. the linear combination of Dirac masses denotedµnt = 1
n

n∑
j=1

δ
Y j,ε,n
t

converges in law as a random measure to the deterministic solution vε(t, .) of the reg-
ularized PDE (3.3) which in fact depends onε. This fact was established for instance
whenβ is Lipschitz, in Proposition 2.2 of [29]. On the other hand when ε goes to
zero, the same authors show thatvε converge to the solutionu of (1.1). They prove
the existence of a sequence(ε(n)) slowly converging to zero whenn goes to infinity

such that the empirical measure1n
n∑

j=1
δ
Y

j,ε(n),n
t

, converges in law tou, see Theorem

2.7 of [29]. One consequence of the slow convergence is that the regularized empirical
measure

1
n

n∑

j=1

Kε(n)(· − Y
j,ε(n),n
t )

also converges tou. Consequently, this probabilistic interpretation provides an algo-
rithm allowing to solve numerically (1.1).

We recall however that one of the significant objects of this paper is the numerical
implementation related to the case when,β is possibly discontinuous; for the moment
we do not have convergence results but we implement the same type of algorithm and
we compare with some existing deterministic schemes.

4. About probabilistic numerical implementations

In this section we will try to construct an approximation method for solutionsu of
(1.1), based upon the time discretization of the system (3.6). For now on, the number
n of particles is fixed.

In fact, to get a simulation procedure for a trajectory of each (Y i,ε,n
t ), i = 1, . . . , n,

we discretize in time: for fixedT > 0, we choose a time step∆t > 0 andN ∈ N, such
thatT = N∆t. We denote bytk = k∆t, the discretization times fork = 0, . . . , N .

The Euler explicit scheme of order one, leads then to the following discrete time
system, i.e., for everyi = 1, . . . , n

X i
tk+1

= X i
tk
+ Φ


1
n

n∑

j=1

Kε(X
i
tk
−Xj

tk
)



(
W i

tk+1
−W i

tk

)
, (4.1)
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where at each time steptk, we approximateu(tk, .) by the smoothed empirical measure
of the particles :

uε,n(tk, x) =
1
n

n∑

j=1

Kε(x−Xj
tk
), k = 1, . . . , N, x ∈ R, (4.2)

at each time step and for everyi = 1, . . . , n, the Brownian increment
(
W i

tk+1
−W i

tk

)

is given by the simulation of the realization of a Gaussian random variable of law
N (0,∆t).

One difficult issue concerns the smoothing parameterε related to the kernelKε. It
will be chosen according to thekernel density estimation.

From now on, we will assume thatK, as defined in (3.1), is a Gaussian probability
density function with mean 0 and unit standard deviation. Inthis case, in (4.2), the
functionuε,n(tk, ·) becomes the so-called Gaussian kernel density estimator ofu(tk, ·)
for every time steptk with k = 1, . . . , N .

Finally, the only unknown parameter in (4.2), isε; most of the authors refer to it as
thebandwidthor thewindow width.

The optimal choice ofε was the object of an enormous amount of research, because
its value strongly determines the performance ofuε,n as an estimator ofu, see, e.g.
[46] and references therein. The most widely used criterionof performance for the
estimator (4.2) is theMean Integrated Squared Error(MISE), defined by

MISE{uε,n(t, x)} = Eu

∫
[uε,n(t, y)− u(t, y)]2 dy

=

∫

Eu [u

ε,n(t, y)]− u(t, y)︸ ︷︷ ︸
point-wise bias




2

dy +

∫
Vu [u

ε,n(t, y)] dy,

︸ ︷︷ ︸
integrated point-wise variance

where,Eu andVu are respectively the expectation and the variance ofXj
t , j = 1, .., n

under the assumption that they are independent and distributed asu(t, ·).
We emphasize that the MISE expression is the sum of two components: the inte-

grated bias and variance.
The asymptotic properties of (4.2) under the MISE criterion are well-known (see[46],[12]),

but we summarize them below for convenience of the reader.

Theorem 4.1.(Properties of the Gaussian kernel estimator)
Under the assumption thatε depends onn such that lim

n→+∞
ε = 0, lim

n→+∞
nε = +∞

and∂2
xxu is a continuous square integrable function, the estimator (4.2) has integrated



22 Nadia Belaribi, François Cuvelier and Francesco Russo

squared bias and integrated variance given by

‖Eu [u
ε,n(t, .)− u(t, .)] ‖2 =

1
4
ε4‖∂2

xxu‖2 + o(ε2), n→ +∞, (4.3)
∫
Vu [u

ε,n(t, y)] dy =
1

2εn
√
π
+ o((nε)−1), n→ +∞. (4.4)

Remark 4.2. (i) Here‖.‖ denotes the standardL2 norm. The first order asymptotic
approximation of MISE, denoted AMISE, is thus given by

AMISE{uε,n(t, x)} =
1
4
ε4‖∂2

xxu(t, x)‖2 + (2εn
√
π)−1. (4.5)

(ii) The asymptotically optimal value ofε is the minimizer of AMISE and by simple
calculus it can be shown (see [38], Lemma 4A) to be equal toεoptt defined in
formula (1.5).

As argued in the introduction, we have chosen to use the ”solve-the-equation” band-
width selection plug-in procedure developed in [43, 27], toperform the optimal win-
dow width of the Gaussian kernel density estimatoruε,n of u, defined in (4.2).

Remark 4.3.According to [43], for every positive integers, the identity

‖∂sxsu(t, .)‖2 = (−1)s
∫

R

∂2s
x2su(t, x).u(t, x)dx,

suggests the following estimator for that density functional:

‖∂sxsuε,n(t, x)‖2 =
(−1)s

n2ε2s+1

n∑

i=1

n∑

j=1

K(2s)

(
X i

t −Xj
t

ε

)
(4.6)

where,K(r) is therth derivative of the Gaussian kernelK and∂rxru is therth partial
spacial derivative ofu.

Inspired by (1.5), the authors of [43, 27] look for an approached optimal bandwidth
for the AMISE as the solution of the equation

ε := εt =
(

2n
√
π‖∂2

xxu
γ(εt),n(t, x)‖2

)−1/5
(4.7)

where,‖∂2
xxu

γ(ε),n‖2 is an estimate of‖∂2
xxu‖2 using (4.6), fors = 2, and the pilot

bandwidthγ(ε), which depends on the kernel bandwidthε. The pilot bandwidthγ(ε)
is then chosen through an intermediate step which consists in obtaining a quantityht
minimizing the asymptotic mean squared error (AMSE) for the estimation of‖∂2

xxu‖2.
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AMSE is in fact some approximation via Taylor expansion of theMSE which is de-
fined as follows:

MSE{‖∂2
xxu

h,n‖2} = Eu

[
‖∂2

xxu
h,n‖2 − ‖∂2

xxu‖2
]2
. (4.8)

Similarly one can define an analogous quantity for the third derivative

MSE{‖∂3
x3u

h,n‖2} = Eu

[
‖∂3

x3u
h,n‖2 − ‖∂3

x3u‖2
]2
. (4.9)

and related AMSE. Exhaustive details concerning those computations are given in
[51]. In fact, the authors in [51] computed those minimizersand provided the follow-
ing explicit formulae

ht =

[
2K(4)(0)

n‖∂3
x3u(t, x)‖2

]1/7

, h∗t =

[
−2K(6)(0)

n‖∂4
x4u(t, x)‖2

]1/9

, (4.10)

whereht andh∗t minimize the AMSE corresponding respectively to (4.8) and (4.9).
Solving (1.5), with respect ton and replacingn in the first equality of (4.10), gives

the following expression ofht in term ofεt

ht =

[
4
√
πK(4)(0)‖∂2

xxu(t, x)‖2

‖∂3
x3u(t, x)‖2

]1/7

ε
5/7
t .

This suggests to define

γ(εt) =

[
4
√
πK(4)(0)‖∂2

xxu
h1
t,n(t, x)‖2

‖∂3
x3u

h2
t,n(t, x)‖2

]1/7

ε
5/7
t , (4.11)

where,‖∂2
xxu

h1
t,n‖2 and ‖∂3

x3u
h2
t,n‖2 are estimators of‖∂2

xxu‖2 and ‖∂3
x3u‖2 using

formula (4.6) and pilot bandwidthsh1
t andh2

t given by

h1
t =


 2K(4)(0)

n ̂‖∂3
x3u(t, x)‖2




1/7

h2
t =


 −2K(6)(0)

n ̂‖∂4
x4u(t, x)‖2




1/9

;

̂‖∂3
x3u(t, x)‖2 and ̂‖∂4

x4u(t, x)‖2 will be suitably defined below. Indeed,h1
t andh2

t

estimateht andh∗t defined in (4.10).
According to the strategy in [43, 51], we will first suppose that ∂3

x3u(t, x) and
∂4
x4u(t, x) are the third and fourth partial space derivatives of a Gaussian density with

standard deviationσt ofXt. In a second step we replaceσt with the empirical standard
deviationσ̂t of the sampleX1

t , . . . , X
n
t . This leads naturally to

̂‖∂3
x3u(t, x)‖2 =

15

16
√
π
σ̂−7
t , ̂‖∂4

x4u(t, x)‖2 =
105

32
√
π
σ̂−9
t .
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Coming back to (4.7), whereγ(εt) is defined through (4.11), it suffices then to perform
a root-finding algorithm for it at each discrete time steptk, in order to obtain the
approached optimal bandwidthεtk .

5. Deterministic numerical approach

We recall that the final aim of our work is to approximate solutions of a nonlinear
problem given by

{
∂tu(t, x) ∈ 1

2∂
2
xxβ (u(t, x)) , t ∈ [0,+∞[ ,

u(0, x) = u0(x), x ∈ R,
(5.1)

in the case whereβ is given by (1.3). Despite the fact that, up to now at our knowledge,
there are no analytical approaches dealing such issues, we got interested into a recent
method, proposed in [18]. Actually, we are heavily inspiredby [18] to implement a
deterministic procedure simulating solutions of (5.1) which will be compared to the
probabilistic one. [18] handles with the propagation of a discontinuous solution, even
though coefficientβ is Lipschitz. It seems to us that in the numerical analysis literature,
[18] is the closest one to our spirit. We describe now the fully discrete scheme we will
use for this purpose.

5.1. Relaxation approximation

The schemes proposed in [18] follow the same idea as the well-known relaxation
schemes for hyperbolic conservation laws, see [26] for a review of the subject. For
the convenience of the reader, we retrieve here some arguments of [18], where we
recall that the coefficientβ is Lipschitz. In that case∈, of course, becomes=.

The equation (5.1) can be formally expressed by the first order system onR+ ×R :
{
∂tu+ ∂xv = 0,

v + 1
2∂xβ(u) = 0.

(5.2)

(5.2), is relaxed with the help of a parameterε > 0, in order to obtain the following
scheme {

∂tu+ ∂xv = 0,

∂tv +
1
2ε∂xβ(u) = −1

εv.
(5.3)

Then, another functionw : R+ × R → R is introduced in order to remove the non-
linear term in the second line of system (5.3). So, we obtain





∂tu+ ∂xv = 0,

∂tv +
1
2ε∂xw = −1

εv,

∂tw + ∂xv = −1
ε (w − β(u)).

(5.4)
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Note that (5.4) is a particular case of the BGK system previously studied in [13]. In
fact, authors of [13] proved thatw (resp.v) converges toβ(u) (resp.−1

2∂xβ(u)), as
ε → 0+. Furthermore, they showed the convergence of solutions of (5.4) to those of
PDE (5.1), inL1(R), asε goes to zero.

Finally, we introduce a supplementary parameterϕ > 0, according to usual nu-
merical analysis techniques; while preserving the hyperbolic character of the system.
Therefore, we get





∂tu+ ∂xv = 0,

∂tv + ϕ2∂xw = −1
εv + (ϕ2 − 1

2ε)∂xw,

∂tw + ∂xv = −1
ε (w − β(u)).

(5.5)

Now, setting

z =




u

v

w


 , F(z) = Az, A =




0 1 0

0 0 ϕ2

0 1 0


 and g(z) =




0

−v + (ϕ2ε− 1
2)∂xw

β(u)− w


 ,

the system (5.5) is rewritten in matrix form as follows

∂tz + ∂xF(z) =
1
ε
g(z). (5.6)

Using the change of variableZ = P−1z, where

P
−1 =




0 1
2ϕ

1
2

0 −1
2ϕ

1
2

1 0 −1


 and P

−1
AP = D =




ϕ 0 0

0 −ϕ 0

0 0 0


 ,

we obtain

Z =




U
V
W


 , with U =

v + ϕw

2ϕ
, V =

−v + ϕw

2ϕ
, W = u− w, (5.7)

where, U , V, W are called characteristic variables.
Sincez = PZ, equation (5.6) leads to

∂tZ + D∂xZ =
1
ε
P
−1g(PZ). (5.8)
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By rewriting the system (5.8) in terms of the characteristicvariables, we obtain




∂tU + ϕ∂xU

∂tV − ϕ∂xV

∂tW




=
1
ε
P
−1g(PZ). (5.9)

Finally, solving (5.5) is equivalent to the resolution of a three advection equations
system, (5.9), with respectively a positive, a negative anda zero advection velocity.

Remark 5.1.Note that we can deduce from (5.7) the following relation

u = U + V +W. (5.10)

5.2. Space discretization

In the sequel of this chapter and in Annex 7, given two integers i < j, [[ i, j ]] , will
denote the integer interval{i, i+1, . . . , j}. We will now provide a space discretization
scheme for system (5.9). Let us introduce a uniform grid on[a, b] ⊂ R.

We denotexi = a− ∆x
2 + i∆x , i ∈ [[ 1, Nx ]] and xi+1/2 = a+ i∆x , i ∈ [[ 0, Nx ]] ,

where∆x = b− a
Nx

is the grid spacing andNx the number of cells. Note thatxi is the

center of the interval[xi−1/2, xi+1/2]. Moreover, we denote the boundary conditions
by u(t, a) = ua(t) andu(t, b) = ub(t), for everyt > 0.

Then, we evaluate (5.9) on the grid of discrete points(xi) getting,




dU
dt

(t, xi) + ϕdU
dx

(t, xi) = G1(t, xi), ∀t > 0, ∀i ∈ [[ 1, Nx ]] ,

dV
dt

(t, xi)− ϕdV
dx

(t, xi) = G2(t, xi), ∀t > 0, ∀i ∈ [[ 1, Nx ]] ,

dW
dt

(t, xi) = G3(t, xi), ∀t > 0, ∀i ∈ [[ 1, Nx ]] ,

(5.11)

where,

(G1, G2, G3)
t =

1
ε
P
−1g(PZ). (5.12)

Remark 5.2.We can easily deduce from (5.12), that for everyt ∈]0,+∞[ and every

i ∈ [[ 1, Nx ]] , we have :
3∑

j=1
Gj(t, xi) = 0.

In order to ensure the convergence of the semi-discrete scheme (5.11) it is necessary
to write it in a conservative form. To this aim, following [18], we suppose the existence
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of functionsÛ andV̂ such that




U(t, x) = 1
∆x

x+∆x/2∫
x−∆x/2

Û(t, y)dy, ∀x ∈]a, b[, ∀t > 0,

V(t, x) = 1
∆x

x+∆x/2∫
x−∆x/2

V̂(t, y)dy, ∀x ∈]a, b[, ∀t > 0.

Substituting in (5.11), we obtain for everyt > 0 and everyi ∈ [[ 1, Nx ]] ,




dU
dt

(t, xi) +
ϕ

∆x
(
Û(t, xi+1/2)− Û(t, xi−1/2)

)
= G1(t, xi),

dV
dt

(t, xi)− ϕ
∆x
(
V̂(t, xi+1/2)− V̂(t, xi−1/2)

)
= G2(t, xi),

dW
dt

(t, xi) = G3(t, xi).

(5.13)

Let us now denote bỹUi+1/2(t) and Ṽi+1/2(t) the so-calledsemi-discrete numerical

fluxesthat approximate respectivelŷU(t, xi+1/2) and V̂(t, xi+1/2). For the sake of
simplicity, we chose to expose only the calculations necessary to obtain the first semi-
discrete flux Ũi+1/2(t), the same procedure being applied for the other one.

In order to compute the numerical flux̃Ui+1/2(t), we reconstruct boundary extrap-
olated data U±

i+1/2(t), from the point valuesUi(t) = U(t, xi) of the variables at
the center of the cells, with an essentially non oscillatoryinterpolation (ENO) method.
The ENO technique allows to better localize discontinuities and fronts that may appear
whenβ is possibly degenerate; see [23, 45] for an extensive presentation of the subject.
In fact, U+

i+1/2(t) (resp. U−
i+1/2(t)) is calculated from an interpolating polynomial of

degreed, on the interval[xi+1/2, xi+3/2] (resp.[xi−1/2, xi+1/2]) using a so-calledENO
stencil, see [45] and formula (7.5) in Annex 7.1.

Next, we shall apply a numerical flux to these boundary extrapolated data. In order
to minimize the numerical viscosity and according to authors of [18], we choose the
so-calledGodunov flux, FG, associated to the advection equation

∂tU + ∂xf(U) = 0,

and defined as follows

FG[α, γ] =





min
α≤ξ≤γ

f(ξ), if α ≤ γ,

max
γ≤ξ≤α

f(ξ), if γ ≤ α.

wheref(ξ) = ϕξ, with ϕ > 0. So we have,FG[α, γ] = ϕα.
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In fact, we set

∀t > 0, Ũi+1/2(t) = FG[U−
i+1/2(t),U

+
i+1/2(t)]. (5.14)

Therefore, we obtain the following semi-discrete flux

∀t > 0, Ũi+1/2(t) = ϕU−
i+1/2(t). (5.15)

Applying the previous procedure to computeṼi+1/2(t) and replacing in (5.13), we get
for everyt > 0 and everyi ∈ [[ 1, Nx ]] ,





dU
dt

(t, xi) +
ϕ

∆x
(
U−
i+1/2(t)− U−

i−1/2(t)
)

= G1(t, xi),

dV
dt

(t, xi)− ϕ
∆x
(
V+
i+1/2(t)− V+

i−1/2(t)
)

= G2(t, xi),

dW
dt

(t, xi) = G3(t, xi).

(5.16)

Consequently summing up the three equation lines in (5.16) and using Remarks 5.1
and 5.2, we obtain

du

dt
(t, xi) +

ϕ

∆x

(
U−
i+1/2(t)− U−

i−1/2(t)−
(
V+
i+1/2(t)− V+

i−1/2(t)
))

= 0.

Now, coming back to the conservative variables, we obtain for everyi ∈ [[ 1, Nx ]] and
everyt > 0,




du
dt

(t, xi) = − 1
2∆x

(
v−i+1/2(t)− v−i−1/2(t) + ϕ(w−

i+1/2(t)− w−
i−1/2(t))

)

+ 1
2∆x

(
v+i−1/2(t)− v+i+1/2(t) + ϕ(w+

i+1/2(t)− w+
i−1/2(t))

)
,

u(0, xi) = u0(xi),

u(t, a) = ua(t),

u(t, b) = ub(t).

(5.17)

We recall that by formally settingε = 0 in the scheme (5.5), we havev = −1
2∂xw

andw = β(u). Therefore we can compute

v±i+1/2 = −1
2
(∂xw)

±
i+1/2 and w±

i+1/2 = β(u±i+1/2),

where,w±
i+1/2, are performed using again an ENO reconstruction, see formulae (7.4)-

(7.5) in Annex 7.1; while the derivatives ofw±
i+1/2 are approximated using a recon-

struction polynomial with a centered stencil, see formula (7.10)-(7.12) in Annex 7.2.
We wish to emphasize that the scheme of system (5.9) reduces to the time advance-

ment of the single variableu solution of (5.1).
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5.3. Time discretization

In order to have a fully discrete scheme, we still need to specify the time discretization.
According to [18], we use a discretization based on an explicit Runge-Kutta scheme,
see [37], for instance.

We start discretizing the system (5.17) using, for simplicity, a uniform time step∆t.
For everyi ∈ [[ 1, Nx ]], we denote byumi the numerical approximation ofu(tm, xi)
with tm = m∆t, m = 0, . . . , Nt, whereNt is the number of time steps.

Theν-stage explicit Runge-Kutta scheme withν ≥ 1, associated to (5.17) can be
written for everyi ∈ [[ 1, Nx ]], as follows,

um+1
i = umi − λ

2

ν∑

k=1

b̃kF
(k)
i , (5.18)

where,λ = ∆t
∆x and the stage values are computed at each time steptm and for every

k ∈ [[ 1, ν ]], as





F
(k)
i = v

(k)−
i+1/2 − v

(k)−
i−1/2 + ϕ(w

(k)−
i+1/2 − w

(k)−
i−1/2)− v

(k)+
i−1/2 + v

(k)+
i+1/2 − ϕ(w

(k)+
i+1/2 − w

(k)+
i−1/2),

u
(k)
i = umi − λ

2

k−1∑
l=1

ãklF
(l)
i , v

(l)±
i+1/2 = −1

2(∂xw
(l))±i+1/2, w

(l)±
i+1/2 = β(u

(l)±
i+1/2).

(5.19)

Here(ãkl, b̃k) is a pair of Butcher’s tableaux [22], of diagonally explicitRunge-Kutta
schemes. This finally completes the description of the deterministic numerical method.

Remark 5.3.In the case whenβ is Lipschitz but possibly degenerate, the authors
of [18], showed theL1-convergence of a semi-discrete in time relaxed scheme, see
Theorem 1, Section 3 in [18]. In fact, they extended the proofof [8] to the case of aν-
stages Runge-Kutta scheme. Moreover, [18] provided the following stability condition
of parabolic type,

∆t ≤ C∆x2, (5.20)

where, C is a constant depending onβ. At the best of our knowledge, no such results
are available in the case whereβ is not Lipschitz.

6. Numerical experiments

We use a Matlab implementation to simulate both the deterministic and probabilistic
solutions. Concerning the plug-in bandwidth selection procedure described in Section
4 and based on [43], we have improved the code produced by J. S.Marron and available
on http://www.stat.unc.edu/faculty/marron/marron_software.
html, by speeding up the root-finding algorithm used to solve (4.7). Furthermore, the
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deterministic numerical solutions are performed using theENO spatial reconstruction
of order 3 and a third order explicit Runge-Kutta scheme for time stepping. We point
out that the deterministic time step, denoted from now on by∆tdet, is chosen with
respect to the stability condition (5.20).

6.1. The Classical porous media equation

We recall that whenβ(u) = u.|u|m−1, m > 1, the PDE in (1.1) is nothing else but
the classical porous media equation (PME). The first numerical experiments discussed
here, will be for the mentionedβ. Indeed, in the case when the initial conditionu0 is
a delta Dirac function at zero, we have an exact solution provided in [4], known as the
density of Barenblatt-Pattleand given by the following explicit formula,

U(t, x) = t−β(C − κx2t−2β)
1

m−1
+ , x ∈ R, t > 0, (6.1)

where

β =
1

m+ 1
, κ =

m− 1
2(m+ 1)m

, C =

(√
κ

γm

) 2(m−1)
m+1

, γm =

∫ π
2

−π
2

[cos(x)]
m+1
m−1 .

We would now compare the exact solution (6.1) to an approximated probabilistic solu-
tion. However, up to now, we are not able to perform an efficient bandwidth selection
procedure in the case when the initial condition is the law ofa deterministic random
variable. Since we are nevertheless interested in exploiting (6.1), we considered a time
translation of the exact solutionU defined as follows

v(t, x) = U(t+ 1, x), ∀x ∈ R, ∀t ≥ 0. (6.2)

Note that one can immediately deduce from (6.2), thatv still solves the PME but now
with a smooth initial condition given by

v0(x) = U(1, x), ∀x ∈ R. (6.3)

In fact, in the case when the exponentm is equal to 3, the exact solutionv of the PME
with initial conditionv0(x) = U(1, x) is given by the following explicit formula,

v(t, x) =





(t+ 1)−
1
4

√
1

π
√

3
− x2

12
√
t+ 1

if |x| ≤ (t+ 1)
1
4

√
2
π ,

0 otherwise.

(6.4)

Simulation experiments:we first compute both the deterministic and probabilistic
numerical solutions over the time-space grid[0, 1.5] × [−2.5, 2.5], with space step
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∆x = 0.02. We set∆tdet = 4× 10−6, while, we usen = 50000 particles and a time
step∆t = 2× 10−4, for the probabilistic simulation. Figures 1.(a)-(b)-(c)-(d), display
the exact and the numerical (deterministic and probabilistic) solutions at timest = 0,
t = 0.5, t = 1 andt = T = 1.5 respectively. The exact solution of the PME, defined
in (6.4), is depicted by solid lines.

Besides, Figure 1.(e) describes the time evolution of both the discreteL2 determin-
istic and probabilistic errors on the time interval[0, 1.5].

−2 −1 0 1 2
0
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−2 −1 0 1 2
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Figure 1. - Deterministic (doted line), probabilistic (dashed line) and exact solutions
(solid line) values at t=0 (a), t=0.5 (b), t=1 (c) and t=1.5 (d). The evolution of theL2 deter-
ministic (doted line) and probabilistic (dashed line) errors over the time interval [0, 1.5]
(e).

TheL1 errors behave very similarly as well in the present case as inthe Heaviside
case, treated in subsection 6.2.
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6.2. The Heaviside case

The second family of numerical experiments discussed here,concernsβ defined by
(1.3). Since we do not have an exact solution of the diffusionproblem (1.1), for the
mentionedβ, we decided to compare the probabilistic solution to the approximation
obtained via the deterministic algorithm described in Section 5. Indeed, we shall simu-
late both solutions according to several types of initial datau0 and with different values
of the critical thresholduc.

Empirically, after various experiments, it appears that for a fixed thresholduc, the
numerical solution approaches some limit function which seems to belong to the ”at-
tracting” set

J = {f ∈ L1(R)|
∫
f(x)dx = 1, |f | ≤ uc}; (6.5)

in factJ is the closure inL1 of J0 = {f : R → R+| β(f) = 0}. At this point, the
following theoretical questions arise.

(1) Does indeedu(t, ·) have a limitu∞ whent→ ∞?

(2) If yes doesu∞ belong toJ ?

(3) If (2) holds, do we haveu(t, ·) = u∞ for t larger than a finite timeτ?

A similar behavior was observed for differentβ which are strictly increasing after
some zero.

6.2.1. Trimodal initial condition

For theβ given by (1.3), we consider an initial condition being a mixture of three
Gaussian densities with three modes at some distance from each other, i.e.

u0(x) =
1
3
(p(x, µ1, σ1) + p(x, µ2, σ2) + p(x, µ3, σ3)) , (6.6)

where,

p(x, µ, σ) =
1√
2πσ

exp(−(x− µ)2

2σ2 ). (6.7)

Simulation experiments: for this specific type of initial conditionu0, we consider
two test cases depending on the value taken by the critical thresholduc. We set, for
instance,µ1 = −µ3 = −4,µ2 = 0 andσ1 = 0.1,σ2 = 0.2,σ3 = 0.3.

Test case 1: we start withuc = 0.15, and a time-space grid[0, 0.6]× [−7, 7], with a
space step∆x = 0.02. For the deterministic approximation, we set∆tdet = 4× 10−6.
The probabilistic simulation usesn = 50000 particles and a time step∆t = 2× 10−4.
Figures 2.(a)-(b)-(c), display both the deterministic andprobabilistic numerical solu-
tions at timest = 0, t = 0.3 andt = T = 0.6, respectively. On the other hand, the
time evolution of theL2-norm of the difference between the two numerical solutions
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is depicted in Figure 2.(d).

Test case 2: we choose now as critical valueuc = 0.08 and a time-space grid
[0, 4] × [−8.5, 8.5], with a space step∆x = 0.02. We set∆tdet = 4 × 10−6 and
the probabilistic approximation is performed usingn = 50000 particles and a time
step∆t = 5× 10−4. Figures 3.(a)-(b)-(c) and 3.(d), show respectively the numerical
(probabilistic and deterministic) solutions and theL2-norm of the difference between
the two.

6.2.2. Uniform and Normal densities mixture initial condition

We proceed withβ given by (1.3). We are now interested in an initial conditionu0,
being a mixture of a Normal and an Uniform density, i.e.,

u0(x) =
1
2

(
p(x,−1, 0.2) + 1[0,1](x)

)
, (6.8)

where,p is defined in (6.7).

Simulation experiments:

Test case 3: we perform both the approximated deterministic and probabilistic
solutions in the case whereuc = 0.3, on the time-space grid[0, 0.5]× [−2.5, 2], with
a space step∆x = 0.02. We usen = 50000 particles and a time step∆t = 2× 10−4,
for the probabilistic simulation. Moreover, we set∆tdet = 4 × 10−6. Figures 4.(a)-
(b)-(c) illustrate those approximated solutions at timest = 0, t = 0.1 andt = T =
0.5. Furthermore, we compute theL2-norm of the difference between the numerical
deterministic solution and the probabilistic one. Values of this error, are displayed in
Figure 4.(d), at each probabilistic time step.

6.2.3. Uniform densities mixture initial condition

Now, with β given by (1.3), we consider an initial conditionu0 being a mixture of
Uniform densities, i.e.,

u0(x) =
1
5
1[0,1](x) +

3
4
1[− 1

5 ,
1
5 ]
(x) +

5
8
1[ 6

5 ,2]
(x), (6.9)

Simulation experiments:

Test case 4: we approximate the deterministic and probabilistic solutions in the
case whereuc = 0.3, on the time-space grid[0, 0.6] × [−1.5, 3.5], with a space step
∆x = 0.02. The deterministic time step∆tdet = 4 × 10−6, while the probabilistic
solution is computed usingn = 50000 particles and a time step∆t = 2 × 10−4.



34 Nadia Belaribi, François Cuvelier and Francesco Russo

We illustrate in Figure 5.(a)-(b)-(c), both the deterministic and probabilistic numerical
solutions at timest = 0, t = 0.1 andt = T = 0.6, respectively; while the time
evolution of theL2-norm of the difference between them, is shown in Figure 5.(d).

6.2.4. Square root initial condition

Finally, the last test case concerns an initial conditionu0 defined as follows :

u0(x) =
3
4

√
|x|1[−1,1](x). (6.10)

Simulation experiments:

Test case 5: we simulate the probabilistic and deterministic solutions over the time-
space grid[0, 0.45] × [−2, 2], using a space step∆x = 0.02 and setting the critical
thresholduc = 0.35. Moreover, the deterministic time step∆tdet = 4× 10−6. On the
other hand, we usen = 50000 particles and a time step∆t = 2× 10−4 to compute the
probabilistic approximation.

Figures 6.(a)-(b)-(c), show both the deterministic and probabilistic numerical solu-
tions at timest = 0, t = 0.04 andt = T = 0.45, respectively.

The evolution of theL2-norm of the difference between these two solutions, over
the time interval[0, 0.45], is depicted in Figure 6.(d).

6.2.5. Long-time behavior of the solutions

As it was mentioned previously, we are interested in the empirical behavior of solutions
to (1.1), in the Heaviside case.

For this, we first provide Figure 8, which displays the time evolution of theL1-
norm of the difference between two successive (in time) numerical solutions. That
quantity was computed for both deterministic and probabilistic numerical solutions
and in the different test cases 1 to 5. In fact, Figure 8, showsthat the numerical
solutions approach some limit function ˆu∞. Indeed, they seem to reach ˆu∞, after a
finite timeτ .

In addition, according to Figure 9, this suggests the existence of a limit functionu∞,
which of course depends on the initial conditionu0, such thatu(t, ·) = u∞, for t ≥ τ .
Moreover,u∞, is expected to belong to the ”attracting set”J , since‖β(u(t, ·))‖L1(R)

equals zero when t is larger thanτ , for both numerical solutions.
Besides, Figure 7, displays a single trajectory of the corresponding stochastic pro-

cess, for each one of the test cases described above. In fact,we observe that, in all
cases, the process trajectory stops not later than the instant of stabilization of the
macroscopic distribution.
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Figure 2. - Test case 1: Deterministic (solid line) and probabilistic (doted line) solution values at t=0
(a), t=0.3 (b), t=0.6 (c). The evolution of theL2-norm of the difference over the time interval [0, 0.6] (d).
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Figure 3. - Test case 2: Deterministic (solid line) and probabilistic (doted line) solution values at t=0
(a), t=2 (b), t=4 (c). The evolution of theL2-norm of the difference over the time interval [0, 4] (d).
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(a), t=0.1 (b), t=0.5 (c). The evolution of theL2-norm of the difference over the time interval [0, 0.5] (d).
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6.3. Performance of the probabilistic algorithm

If u is the solution to (1.1), we are now interested in the dependence of the error
‖u(T, ·) − uε,n(T, ·)‖L2(R), on the two parameters of the algorithm: the number of
particlesn and the time step∆t. For this, we perform numerical experiments for two
test cases: the classical porous media (PME) and the Heaviside case with trimodal ini-
tial condition (see Section 6.2.1). For the PME case, we haveu(T, ·) = v(T, ·), where
v is given by (6.4). Since we do not know an exact solution in theHeaviside case, we
setu(T, ·) = ûdet(T, ·), whereûdet denotes the numerical deterministic solution.

6.3.1. Dependence onn

First, we provide in Table 1 the numerical initial error,E0 = ‖u(0, ·)−uε,n(0, ·)‖L2(R),
in both cases and for the different values ofn.

Table 2 shows the estimates of theL2 norm of the error. In order to study the
dependence onn, we will proceed as follows: we fix∆t = 2.10−4, expecting that
this value will be small enough to only observe the effect ofn on the error and we
provide the results corresponding ton = 3125, 6250, 12500, 25000, 50000. Figure 10
represents the evolution of the error in terms ofn, in a logarithmic scale.

In the Heaviside case and in the PME case, we remark that the error is not of order
O(n−

1
2 ). Actually, it seems to be of orderO(n−

1
3 ), at least for regular initial condi-

tions; we emphasize that this happens for two radically differentβ.

Table 1. Dependence onn of the initial errorE0

Number of particlesn 3125 6250 12500 25000 50000

Heaviside case 0,062301 0,049737 0,028496 0,021775 0,016778

PME case 0,033808 0,030369 0,022378 0,019164 0,015543

Table 2. Dependence onn of the error;T = 1
Number of particlesn 3125 6250 12500 25000 50000

Heaviside case 0,057249 0,047548 0,038643 0,033445 0,026366

PME case 0,026296 0,020959 0,016516 0,014389 0,011471

Table 3. Dependence onn of CPU time (sec)
Number of particlesn 3125 6250 12500 25000 50000

Heaviside case 1171,3 2955,1 8381,1 26555 75344

PME case 1722,4 3452,4 9917,9 23506 80201
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Figure 10. Evolution of the error in terms of n, in the PME (left) and the Heaviside case (right),
in logarithmic scale.

6.3.2. Dependence on∆t

We apply the same procedure as previously, but this time we fixn = 50000 and we
estimate the error for∆t = 2−i, i = 4, . . . , 14. The obtained results are summarized,
for both cases, in Table 4. Figure 11 displays, in a logarithmic scale, the error versus
∆t.

When β is given by (1.3), we observe that the logarithm of the error seems to
be affine from∆t = 1/16 to ∆t = 1/1024 and then more or less constant, for
∆t < 1/1024. In the PME case, the error seems to be more or less constant for all
the values of∆t that we have considered.

Our impression is that there could be a value(∆t)0 for which the error remains
more or less constant (close toE0), for ∆t < (∆t)0. We cannot exclude that the error
increases for very small∆t.

Moreover, Table 4, seems to indicate that for the PME case one reaches more rapidly
the errorE0 than for the Heaviside case, being the solutions more regular in space.
This shows that in the PME case, where the coefficients are regular, ∆t may be chosen
quite big; this would allow us to approximate efficiently thesolutions for a large time
T > 0.

In the Heaviside case, the method becomes performing when∆t is quite smaller; in
that case however, the solution reaches the ”absorbing set”relatively fast.
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Table 4. Dependence on∆t of the error;T = 1
∆t Error Error CPU time(sec) CPU time(sec)

(PME) (Heav) (PME) (Heav)

1/16 0,013729 0,15085 380,75 285,57

1/32 0,012537 0,11963 783,55 609,61

1/64 0,012578 0,10513 1437 1301,9

1/128 0,011653 0,079444 2748,4 2655,1

1/256 0,011978 0,060906 5449,8 8028,8

1/512 0,010659 0,042826 10930 13285

2−10 0,011009 0,032785 21839 32394

2−11 0,011592 0,027595 44070 54152

2−12 0,010549 0,026366 89346 75344

2−13 0,011753 0,0259 1,7355e+005 1,6456e+005

2−14 0,010651 0,026166 3,6805e+005 3,7103e+005
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6.4. Long-time behavior of the probabilistic algorithm

Now, we inquire about the long time behavior of the probabilistic particle algorithm.
In fact, we are interested in the dependence of the error overthe time. For this, we
have simulated the solution of the PME withT = 50, ∆t = 0.02 andm = 3. Figure
12 displays the time evolution of theL2-norm of the error.

In particular, Figure 12 shows (in the PME case) that the probabilistic algorithm
seems to remain stable for a large timeT .

0 5 10 15 20 25 30 35 40 45 50
0.006

0.008

0.01

0.012

0.014

0.016

0.018

Figure 12. Evolution of the L2-norm of the error over the time interval [0, 50], in the PME case .

Remark 6.1.

(i) It appears trough Table 4 that the CPU time and∆t are inversely proportional.
On the other hand, according to Table 3, the CPU time seems to be proportional
to the number of particlesn.

(ii) The probabilistic algorithm can be parallelized on a Graphical Processor Unit
(GPU), such that we can speed-up its time machine execution;on the other hand,
for the deterministic algorithm, this transformation is far from being obvious,
see [19].
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7. Annexes

Let V ∈ RNx such thatVi = v(xi), ∀i ∈ [[ 1, Nx ]], wherev is a function defined on
[a, b]. Note that the points(xi) are still defined as in Section 5. Moreover,Mm,n(R)
denotes the linear space of real matrices withm rows andn columns.

7.1. Interpolating polynomial of a function

We aim to approximatev(xi+1/2) andv(xi−1/2) for everyi ∈ [[ 1, Nx ]] . In order to do
this, we use properly chosen Lagrange interpolation polynomials of degreek − 1 .

On every interval (or cell)Ii = [xi−1/2, xi+1/2], with i ∈ [[ 1, Nx ]] , we construct
an interpolation polynomialPk,i by selectingk consecutive points containingxi : the
so-calledstencildenoted by

S(i) ≡ {Ii−r, . . . , Ii+s}
and defined by{xi−r, xi−r+1, . . . , xi+s−1, xi+s}, wherer, s are positive integers and
r + s + 1 = k. We denote byR(i), the value taken byr for the intervalIi with an
ENO stencil, see [45].

The Lagrange interpolation polynomial of degreek−1, on the intervalIi, associated
to the stencilS(i) is then given by :

P
[r]
k,i(x) =

k−1∑

j=0

Vi−r+jL
[r]
j (x), ∀x ∈ Ii, (7.1)

where,

L
[r]
j (x) =

k−1∏

l=0
l 6=j

x− xi−r+l

xi−r+j − xi−r+l
. (7.2)

Now, we need to compute the polynomial defined in (7.2) at the points xi−1/2 and

xi+1/2. In fact, since the points are equidistant, we have for every(r, j) ∈ [[ 0, k − 1 ]]2 ,





L
[r]
j (xi−1/2) =

k−1∏
l=0
l 6=j

r − l − 1/2
j − l

,

L
[r]
j (xi+1/2) =

k−1∏
l=0
l 6=j

r − l + 1/2
j − l

.

Then, we defineC ∈ Mk+1,k(R), as follows

Cr+1,j+1 =

k−1∏

l=0
l 6=j

r − l − 1/2
j − l

, ∀(r, j) ∈ [[ 0, k ]]× [[ 0, k − 1 ]] . (7.3)
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Substituting (7.3) in (7.1) and using the ENO stencil, we get∀i ∈ [[ 1, Nx ]],

v(xi−1/2) ≈ v+i−1/2 = P
[R(i)]
k,i (xi−1/2) =

k−1∑

j=0

Vi−R(i)+jCR(i)+1,j+1, (7.4)

v(xi+1/2) ≈ v−i+1/2 = P
[R(i)]
k,i (xi+1/2) =

k−1∑

j=0

Vi−R(i)+jCR(i)+2,j+1. (7.5)

7.2. Interpolation polynomial for the derivative of a function

Now, we would like to approximatedv
dx

(xi), dvdx(xi−1/2) and dv
dx

(xi+1/2), for every
i ∈ [[ 1, Nx ]] . In fact, deriving equation (7.1), implies

dP
[r]
k,i

dx
(x) =

k−1∑

j=0

Vi−r+j

dL
[r]
j

dx
(x), ∀x ∈ Ii. (7.6)

On the other hand, for everyj ∈ [[ 0, l − 1 ]] , we have

dL
[r]
j

dx
(x) =

k−1∑

m=0
m 6=j

k−1∏

l=0
l 6=j,m

(x− xi−r+l)

k−1∏

l=0
l 6=j

(xi−r+j − xi−r+l)

, ∀x ∈ Ii. (7.7)

Since the points are equidistant, we get

dL
[r]
j

dx
(xi) =

k−1∑

m=0
m 6=j

k−1∏

l=0
l 6=j,m

(r − l)

∆x
k−1∏

l=0
l 6=j

(j − l)

and

dL
[r]
j

dx
(xi−1/2) =

k−1∑

m=0
m 6=j

k−1∏

l=0
l 6=j,m

(r − l − 1/2)

∆x
k−1∏

l=0
l 6=j

(j − l)

,
dL

[r]
j

dx
(xi+1/2) =

k−1∑

m=0
m 6=j

k−1∏

l=0
l 6=j,m

(r − l + 1/2)

∆x
k−1∏

l=0
l 6=j

(j − l)

.
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Then, we defineD ∈ Mk,k(R) by

Dr+1,j+1 =

k−1∑

m=0
m 6=j

k−1∏

l=0
l 6=j,m

(r − l)

∆x
k−1∏

l=0
l 6=j

(j − l)

, ∀(r, j) ∈ [[ 0, k − 1 ]]2 , (7.8)

andD ∈ Mk+1,k(R) as follows

Dr+1,j+1 =

k−1∑

m=0
m 6=j

k−1∏

l=0
l 6=j,m

(r − l − 1/2)

∆x
k−1∏

l=0
l 6=j

(j − l)

, ∀(r, j) ∈ [[ 0, k ]]× [[ 0, k − 1 ]] . (7.9)

Therefore, replacing (7.8) and (7.9) in (7.6), for everyi ∈ [[ 1, Nx ]] , we obtain :

dv

dx
(xi) ≈ dvi =

dP
[r]
k,i

dx
(xi) =

k−1∑

j=0

Vi−r+jDr+1,j+1, (7.10)

dv

dx
(xi−1/2) ≈ dv+i−1/2 =

dP
[r]
k,i

dx
(xi−1/2) =

k−1∑

j=0

Vi−r+jDr+1,j+1, (7.11)

dv

dx
(xi+1/2) ≈ dv−i+1/2 =

dP
[r]
k,i

dx
(xi+1/2) =

k−1∑

j=0

Vi−r+jDr+2,j+1. (7.12)
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Poincaŕe Sect. A (N.S.) 39 (1983), pp. 85–97.

18. F. Cavalli, G. Naldi, G. Puppo and M. Semplice,High-order relaxation schemes for non-
linear degenerate diffusion problems, SIAM J. Numer. Anal. 45 (2007), pp. 2098–2119
(electronic).

19. F. Cuvelier,Implementing Kernel Density Estimation on GPU: application to a proba-
bilistic algorithm for PDEs of porous media type, Technical report. In preparation.

20. J. M. Dawson,Particle simulation of plasmas, Rev. Modern Phys. 55 (1983), pp. 403–447.

21. A. Figalli and R. Philipowski,Convergence to the viscous porous medium equation and
propagation of chaos, ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008), pp. 185–203.

22. E. Hairer, S. P. Nørsett and G. Wanner,Solving ordinary differential equations. I, sec-
ond ed, Springer Series in Computational Mathematics 8. Springer-Verlag, Berlin, 1993,
Nonstiff problems.



A probabilistic algorithm approximating a singular PDE 47

23. A. Harten and S. Osher,Uniformly high-order accurate nonoscillatory schemes. I, SIAM
J. Numer. Anal. 24 (1987), pp. 279–309.

24. R. W. Hockney and J. W. Eastwood,Computer simulation using particles. McGraw-Hill,
New York, 1981.

25. S. Jin and C. D. Levermore,Numerical schemes for hyperbolic conservation laws with
stiff relaxation terms, J. Comput. Phys. 126 (1996), pp. 449–467.

26. S. Jin and Z. P. Xin,The relaxation schemes for systems of conservation laws in arbitrary
space dimensions, Comm. Pure Appl. Math. 48 (1995), pp. 235–276.

27. M. C. Jones, J. S. Marron and S. J. Sheather,A brief survey of bandwidth selection for
density estimation, J. Amer. Statist. Assoc. 91 (1996), pp. 401–407.

28. B. Jourdain,Probabilistic approximation for a porous medium equation, Stochastic Pro-
cess. Appl. 89 (2000), pp. 81–99.
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