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Abstract

Exact integral computation over a d-simplex in Rn for products of
powers of its barycentric coordinates is done in [9] by using mathematical
induction and coordinate mappings. In this note we give a new proof
using Laplace transformations without mathematical induction.
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Local shape functions of a large variety of �nite element on a d-simplex
K Ă Rn can be expressed in function of the barycentric coordinates tλ0, . . . , λdu

of K and their derivatives (see [1] for examples).
In [9], the authors give a proof of the magic formula: let ννν “ pν0, . . . , νdq P

Nd`1, then

ż

K

d
ź

i“0

λνii pqqqqdqqq “ d!|K|

d
ś

i“0

νi!

pd`
d
ř

l“0

νiq!

(1)

where |K| is the volume of K. In their proof, mathematical induction and co-
ordinate mappings are mainly used. In this note we give a new proof of this
formula using Laplace transformations without mathematical induction.

Firstly we recall de�nitions of a d-simplex in Rn and of its barycentric co-
ordinates. Therafter we introduce Laplace transforms to compute the volume
of the unit d-simplex K̂ Ă Rd and the magic formula (1) over K̂. In the last
section, we propose to compute the gradients of the barycentric coordinates
by solving linear systems. We also present the mapping of an integral over a
d-simplex in Rn to the reference unit d-simplex, allowing to proove (1).

1 Notations and de�nitions

Let n P N˚ be the space dimension and d P v0, nw. We recall the de�nition of a
d-simplex in Rn as well as its barycentric coordinates.

De�nition 1 (d-simplex) A d-simplex K Ă Rn is the convex hull of pd ` 1q
points qqqqqqqqq0, . . . ,qqqqqqqqqd of Rn which form the vertices of K.

K “

#

qqq P Rn | qqq “
d
ÿ

i“0

θiqqqqqqqqq
i, with @i P v0,dw, θi ě 0, and

d
ÿ

i“0

θi “ 1

+

. (2)

For example, a 2-simplex is a triangle and a 3-simplex is a tetrahedron. It will
be always assumed that a d-simplex is not degenerated, i.e., the set of vectors
tqqqqqqqqqi ´qqqqqqqqq0udi“1 is linearly independent.

De�nition 2 (Barycentric coordinates) Let K Ă Rn be a non-degenerate

d-simplex and tqqqqqqqqqiudi“0 its vertices. The parametrization of K with a convex

combination of the vertices reads as follows

K “

#

qqq P Rn | qqq “
d
ÿ

i“0

λipqqqqqqqqqqqqq
i, with @i P v0,dw, λipqqqq ě 0, and

d
ÿ

i“0

λipqqqq “ 1

+

.

(3)
The coe�cients λ0pqqqq, . . . , λdpqqqq are called the barycentric coordinates on K of

qqq.

As immediat property, the barycentric coordinates on K satisfy

λipqqqqqqqqq
jq “ δi,j , @pi, jq P v0,dw. (4)
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2 Some results on the unit d-simplex

The unit d-simplex K̂d Ă Rd is de�ned by the d` 1 vertices
 

q̂qq̂qqq̂qqq0,q̂qq̂qqq̂qqq1, ¨ ¨ ¨ ,q̂qq̂qqq̂qqqd
(

“
 

000, ê̂êe1, ¨ ¨ ¨ , ê̂êed
(

where
 

ê̂êe1, . . . , ê̂êed
(

is the standard basis of Rd. We have

K̂d “

#

q̂qq P Rd | q̂qq “
d
ÿ

i“0

λ̂ipq̂qqqq̂qq̂qqq̂qqq
i, with λ̂ipq̂qqq ě 0, and

d
ÿ

i“0

λ̂ipq̂qqq “ 1

+

. (5)

As immediat property, the barycentric coordinates pλ̂iq
d
i“0 on K̂d satisfy

λ̂ipq̂qq̂qqq̂qqq
jq “ δi,j , @pi, jq P v0,dw. (6)

and are explicitly given with q̂qq “ px1, ¨ ¨ ¨ , xdq
t
P K̂d by

λ̂0pq̂qqq “ 1´
d
ÿ

i“1

xi and @i P v1,dw, λ̂ipq̂qqq “ xi. (7)

Indeed, as q̂qq̂qqq̂qqq0 “ 000, we have

q̂qq “
d
ÿ

i“0

λ̂ipq̂qqqq̂qq̂qqq̂qqq
i “

d
ÿ

i“1

q̂qq̂qqq̂qqqiλ̂ipq̂qqq

From q̂qq̂qqq̂qqqi “ ê̂êei, @i P v1,dw, we obtain

d
ÿ

i“1

q̂qq̂qqq̂qqqiλ̂ipq̂qqq “

¨

˝ q̂qq̂qqq̂qqq1 ¨ ¨ ¨ q̂qq̂qqq̂qqqd

˛

‚

¨

˚

˝

λ̂1pq̂qqq
...

λ̂dpq̂qqq

˛

‹

‚

“ Id

¨

˚

˝

λ̂1pq̂qqq
...

λ̂dpq̂qqq

˛

‹

‚

“

¨

˚

˝

λ̂1pq̂qqq
...

λ̂dpq̂qqq

˛

‹

‚

and thus

q̂qq “

¨

˚

˝

x1

...
xd

˛

‹

‚

“

¨

˚

˝

λ̂1pq̂qqq
...

λ̂dpq̂qqq

˛

‹

‚

.

From (5), we have
d
ÿ

i“0

λ̂ipq̂qqq “ 1

and thus

λ̂0pq̂qqq “ 1´
d
ÿ

i“1

λ̂ipq̂qqq “ 1´
d
ÿ

i“1

xi.

2.1 unit d-simplex volume

There are several ways to compute the volume |K̂| of the d-simplex K̂ Ă Rd

which is given by the following integral:

|K̂| “

ż

K̂

1dq̂qq “

ż 1

0

ż 1´x1

0

ż 1´x1´x2

0

. . .

ż 1´px1`...`xd´1q

0

1dxd . . . dx3dx2dx1.
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An elegant way to perform this integration is explained in [6], section 18.10, and
uses a Laplace transform. To use this method, we note that

K̂ “ Rd
` X t1´ px1 ` . . .` xdq ě 0u. (8)

So we also have

|K̂| “

ż

Rd
`
Xt1´px1`...`xdqě0u

1dxd . . . dx1.

By using a dirac function and extending the integration domain to Rd`1
` , we

also have

|K̂| “

ż

R
d`1
`

δpx1 ` . . .` xd ` xd`1 ´ 1qdxd`1dxd . . . dx1

To use the Laplace transform theory, we de�ne the function f by

fptq “

ż

R
d`1
`

δpx1 ` . . .` xd ` xd`1 ´ tqdxd`1dxd . . . dx1

so that |K̂| “ fp1q. The Laplace transform of f is given by

Lpfqpsq “
ż 8

0

fptqe´stdt

“

ż

R
d`1
`

ˆ
ż 8

0

δpx1 ` . . .` xd ` xd`1 ´ tqe
´stdt

˙

dxd`1dxd . . . dx1

“

ż

R
d`1
`

expp´s
d`1
ÿ

i“1

xiqdxd`1dxd . . . dx1

“

d`1
ź

i“1

ż 8

0

expp´sxiqdxi

“
1

sd`1
.

By using the inverse Laplace transform table (see [8] for example), we have

L-1ps ÞÑ
d!

sd`1
qptq “ td.

As f “ L-1 ˝ Lpfq and by linearity of the inverse Laplace transform we obtain

fptq “
td

d!
.

So the volume of the unit d-simplex is

|K̂| “
1

d!
(9)
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2.2 Magic formula

Let ννν “ pν0, . . . , νdq P N
d`1. The magic formula is given by

ż

K̂

d
ź

i“0

λ̂νii pq̂qqqdq̂qq “

śd
i“0 νi!

pd`
řd
i“0 νiq!

(10)

This formula is often used in P1-Lagrange �nite element methods because P1-
Lagrange basis functions on a d-simplex are the associated barycentic coordi-
nates. For example, one can refer to [7] (section 8.2.1, page 179, formula p8.3q),
[9], [4] section 7.3.3 page 126, [3] for d P v1, 3w, [2] as exercise for d “ 2 and
d “ 3. In this section, we propose a proof of this formula using Laplace trans-
form theory. Let Îpνq denote the integral of (10). The barycentic coordinates

λ̂i are given in (7) and so with q̂qq “ px1, . . . , xdq and using (8) we obtain

Îpνq “

ż

K̂

p1´
d
ÿ

i“1

xiq
ν0

d
ź

i“1

xνii dxd . . . dx1

“

ż

Rd
`
Xt1´px1`...`xdqě0u

p1´
d
ÿ

i“1

xiq
ν0

d
ź

i“1

xνii dxd . . . dx1

From section 2.1, by using a dirac function and by extending the integration
domain to Rd`1

` we obtain with νd`1 “ ν0

Îpνq “

ż

R
d`1
`

δpx1 ` . . .` xd ` xd`1 ´ 1qxν0d`1

d
ź

i“1

xνii dxd`1dxd . . . dx1

“

ż

R
d`1
`

δpx1 ` . . .` xd ` xd`1 ´ 1q
d`1
ź

i“1

xνii dxd`1dxd . . . dx1

To use the Laplace transform theory, we de�ne the function fννν by

fνννptq “

ż

R
d`1
`

δpx1 ` . . .` xd ` xd`1 ´ tq
d`1
ź

i“1

xνii dxd`1dxd . . . dx1

so that Îpνq “ fνννp1q. The Laplace transform of fννν is given by

Lpfνννqpsq “
ż 8

0

fνννptqe
´stdt

“

ż

R
d`1
`

ˆ
ż 8

0

δpx1 ` . . .` xd ` xd`1 ´ tqe
´stdt

˙ d`1
ź

i“1

xνii dxd`1dxd . . . dx1

“

ż

R
d`1
`

expp´s
d`1
ÿ

i“1

xiq
d`1
ź

i“1

xνii dxd`1dxd . . . dx1

“

d`1
ź

i“1

ż 8

0

xνii expp´sxiqdxi

“

d`1
ź

i“1

Lpt ÞÑ tνiqpsq
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In a classical Laplace transform table (see [8] for example), we have

Lpt ÞÑ tk

k!
qpsq “

1

sk`1

and by linearity of the Laplace transform

Lpt ÞÑ tkqpsq “
k!

sk`1
.

So we obtain

Lpfνννqpsq “
d`1
ź

i“1

νi!

sνi`1
“

śd`1
i“1 νi!

sd`1`
řd`1

i“1 νi

By using the inverse Laplace transform table, we have

L-1ps ÞÑ
1

sk
qptq “

tk´1

k ´ 1
.

With the linearity of the inverse Laplace transform we obtain

fνννptq “ L-1pLpfνννqpsqqptq

“

śd`1
i“1 νi!

pd`
řd`1
i“1 νiq!

td`
řd`1

i“1 νi .

As Îpνq “ fνννp1q and νd`1 “ ν0, the equation (10) is proved.

3 Some results on a d-simplex in Rn

3.1 Gradients of Barycentric coordinates on a d-simplex

Lemma 3 Let K Ă Rn be a non-degenerate d-simplex and and tqqqqqqqqqiudi“0 its

vertices. The barycentric coordinates pλipqqqqq
d
i“0 are solution of the linear system

¨

˚

˚

˚

˝

1 1 ¨ ¨ ¨ 1
0
... At

KAK
0

˛

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

λ0pqqqq

λ1pqqqq
...

λdpqqqq

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˝

1

AKpqqq´qqqqqqqqq0q

˛

‹

‹

‚

(11)

where AK PMn,dpRq is de�ned by

AK “

¨

˝ qqqqqqqqq1 ´qqqqqqqqq0 ¨ ¨ ¨ qqqqqqqqqd ´qqqqqqqqq0

˛

‚ (12)

The barycentric coordinates are multivariate polynomials of �rst degree and their

gradients are given by

`

∇∇∇λ1pqqqq ¨ ¨ ¨ ∇∇∇λdpqqqq
˘

“ AKpA
t

KAKq
-1

(13)

and

∇∇∇λ0pqqqq “ ´
d
ÿ

i“1

∇∇∇λipqqqq. (14)
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Proof: As
řd
i“0 λipqqqq “ 1, we have

qqq “
d
ÿ

i“0

λipqqqqqqqqqqqqq
i ùñ qqq´qqqqqqqqq0 “

d
ÿ

i“1

pqqqqqqqqqi ´qqqqqqqqq0qλipqqqq “ AK

¨

˚

˝

λ1pqqqq
...

λdpqqqq

˛

‹

‚

Due to linear independence of tqqqqqqqqqi ´qqqqqqqqq0udi“1,

HK
def

“ AtKAK PMd,dpRq (15)

is a regular matrix and the barycentric coordinates are solution of the linear
system

AtKAK

¨

˚

˝

λ1pqqqq
...

λdpqqqq

˛

‹

‚

“ AtKpqqq´qqqqqqqqq0q and
d
ÿ

i“0

λipqqqq “ 1.

In matrix form these equations can be written as (11) and we deduce that the
barycentric coordinates λi are multivariate polynomials of �rst degree. So their
gradients are constants on K.

The a�ne map/transformation FK from the unit d-simplex K̂ Ă Rd to
K Ă Rn is given by

qqq “ AKq̂qq`qqqqqqqqq0 “ FKpq̂qqq. (16)

So we have

At

Kpqqq´qqqqqqqqq0q “ At

KAKq̂qq “ HKq̂qq

and thus F-1

K : K Ă Rn ÝÑ K̂ Ă Rd is de�ned by

q̂qq “ H-1

KAt

Kpqqq´qqqqqqqqq0q “ F-1

K pqqqq. (17)

So we have

λipqqqq “ pλ̂i ˝ F-1

K qpqqqq and λ̂ipq̂qqq “ pλi ˝ FKqpq̂qqq (18)

One can remark that if d “ n then AK is a regular square matrix and H-1

KAt

K “

A-1

K .
Now, we may compute partial derivative of λi and @i P v0,dw, @j P v1, nw,

we obtain with q̂qq “ px̂1, . . . , x̂dq and qqq “ px1, . . . , xnq

Bλi
Bxj

pqqqq “
d
ÿ

l“1

Bλ̂i
Bx̂j

pF-1

K pqqqqq
BF-1

K,l

Bxj
pqqqq

From (17), denoting BK “ H-1

KAt

K P Md,mpRq gives
BF-1

K,l

Bxj
pqqqq “ pBKql,j . The

barycentric coordinates are polynomials of �rst degree, so their gradients are
constants and we obtain

∇∇∇λi “ Bt

K∇̂∇∇λ̂i
(in fact BK is the Jacobian matrix of F-1

K ). The matrix HK is regular and
symmetric, so Bt

K “ AKH-1

K and we obtain

∇∇∇λi “ AKH-1

K∇̂∇∇λ̂i. (19)
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From (7), we deduced that
´

∇̂∇∇λ̂1 ¨ ¨ ¨ ∇̂∇∇λ̂d

¯

“ Id (20)

and thus
`

∇∇∇λ1pqqqq ¨ ¨ ¨ ∇∇∇λdpqqqq
˘

“ AKH-1

K

´

∇̂∇∇λ̂1 ¨ ¨ ¨ ∇̂∇∇λ̂d

¯

“ AKH-1

K .

As
řd
i“0 λipqqqq “ 1, we immediately have

∇∇∇λ0pqqqq “ ´
d
ÿ

i“1

∇∇∇λipqqqq.

˝

From (13) and (14), we immediatly have:

Remark 4 The gradients of the barycentric coordinates are linear combinations

of tqqqqqqqqq1 ´qqqqqqqqq0, . . . ,qqqqqqqqqd ´qqqqqqqqq0u.

3.2 Integration over a d-simplex

If K is a non-degenerated d-simplex in Rd, from (16) we have JFK
pq̂qqq “ AK .

Then AK is a regular square matrix and we have the classical formula:
ż

K

fpqqqqdqqq “ |detpAKq|
ż

K̂

f ˝ FKpq̂qqqdq̂qq (21)

The following theorem extend this result to d-simplex in Rn, with 1 ď d ď n.

Theorem 5 Let K Ă Rn be a non-degenerated d-simplex and f : K ÝÑ R.

ż

K

fpqqqqdqqq “
ˇ

ˇdetpAt

KAKq
ˇ

ˇ

1{2
ż

K̂

f ˝ FKpq̂qqqdq̂qq (22)

where K is the unit d-simplex in Rn, AK PMd,npRq is de�ned by

AK “
´

qqqqqqqqq1 ´qqqqqqqqq0 qqqqqqqqq2 ´qqqqqqqqq0 ¨ ¨ ¨ qqqqqqqqqd ´qqqqqqqqq0
¯

(23)

and FK : K̂ ÝÑ K is given by

FKpq̂qqq “ AKq̂qq`qqqqqqqqq0 (24)

Proof: The set
 

vvv1, . . . , vvvd
(

is linearly independent so we can extend it to a

basis
 

vvv1, . . . , vvvn
(

. We denote by A P Mn,npRq the matrix such that the i-th
column is the vector vvvi for all i P v1, nw. So we have

A “
´

AK vvvd`1 ¨ ¨ ¨ vvvn
¯

(25)

By the QR-factorization theorem apply to the matrix A P MnpRq, there is
an orthogonal matrix Q P MnpRq and a regular upper triangular matrix R P

MnpRq such that
A “ QR
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So we have
QtA “ R

and we de�ne the matrix Ā PMn,dpRq to be the �rst d columns of R:

Ā “ QtAK .

We can also note that

Ā “
´

q̄qq̄qqq̄qqq1 ´ q̄qq̄qqq̄qqq0 q̄qq̄qqq̄qqq2 ´ q̄qq̄qqq̄qqq0 ¨ ¨ ¨ q̄qq̄qqq̄qqqd ´ q̄qq̄qqq̄qqq0
¯

“

´

q̄qq̄qqq̄qqq1 q̄qq̄qqq̄qqq2 ¨ ¨ ¨ q̄qq̄qqq̄qqqd
¯

.

Let F̄ : Rn ÝÑ Rn be the bijective function de�ned by

F̄pxxxq “ Qtpxxx´qqqqqqqqq0q “ x̄xx (26)

and
q̄qq̄qqq̄qqqi “ F̄pqqqqqqqqqiq “ Qtpqqqqqqqqqi ´qqqqqqqqq0q, @i P v0,dw.

By construction q̄qq̄qqq̄qqq0 “ 000 and, @i P v1, dw, q̄qq̄qqq̄qqqi is the i-th column of the upper
triangular matrix R. So we have

@i P v0,dw, q̄qq̄qqq̄qqqi P Vectpeee1, . . . , eeedq

where
 

eee1, . . . , eeen
(

is the standard basis of Rn. The set
 

q̄qq̄qqq̄qqq0, . . . ,q̄qq̄qqq̄qqqd
(

are the
vertices of the d-simplex K̄ “ F̄pKq and we deduce

K̄ Ă Vectpeee1, . . . , eeedq. (27)

By change of variables, we obtain
ż

K

fpqqqqdqqq “

ż

K̄

f ˝ F̄-1pq̄qqq|detpJF̄-1pq̄qqqq|dq̄qq

where JF̄-1 is the Jacobian matrix of F̄-1. From (26), we have JF̄-1pq̄qqq “ Q and
as Q is an orthogonal matrix, detpJF̄-1pq̄qqqq “ 1. So we obtain

ż

K

fpqqqqdqqq “

ż

K̄

f ˝ F̄-1pq̄qqqdq̄qq. (28)

Let P PMd,npRq de�ned by

P “
`

Id Od,n´d
˘

and
@i P v0,dw, ¯̄qqq̄̄qqq̄̄qqqi “ Pq̄qq̄qqq̄qqqi P Rd.

From (27), we deduce

@i P v0,dw, q̄qq̄qqq̄qqqi “ Pt¯̄qqq̄̄qqq̄̄qqqi “

ˆ

¯̄qqq̄̄qqq̄̄qqqi

000

˙

.

Let ḡ “ f ˝ F̄-1 and ¯̄K be the d-simplex in Rd with vertices ¯̄qqq̄̄qqq̄̄qqqi, i P v0,dw. We

denote by P : ¯̄K Ă Rd ÝÑ K̄ Ă Rn the application de�ned by Pp¯̄qqqq “ Pt¯̄qqq. We

denote by ¯̄g : ¯̄K ÝÑ R the application de�ned by

¯̄gp¯̄qqqq “ ḡ ˝ Pp¯̄qqqq “ ḡ

ˆ

¯̄qqq
000

˙

.
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So we obtain
ż

K̄

ḡpq̄qqqdq̄qq “

ż

¯̄K

¯̄gp¯̄qqqqd¯̄qqq (29)

Let ¯̄A PMdpRq be the matrix de�ned by

¯̄A “
´

¯̄qqq̄̄qqq̄̄qqq1 ´ ¯̄qqq̄̄qqq̄̄qqq0 ¯̄qqq̄̄qqq̄̄qqq2 ´ ¯̄qqq̄̄qqq̄̄qqq0 ¨ ¨ ¨ ¯̄qqq̄̄qqq̄̄qqqd ´ ¯̄qqq̄̄qqq̄̄qqq0
¯

. (30)

We can remark that
¯̄A “ PĀ and Ā “ Pt ¯̄A.

Let ¯̄F : K̂ ÝÑ ¯̄K the bijective function de�ned by

¯̄Fpq̂qqq “ ¯̄Aq̂qq` ¯̄qqq̄̄qqq̄̄qqq0

We can now apply the classical change of variables
ż

¯̄K

¯̄gp¯̄qqqqd¯̄qqq “

ż

K̂

¯̄g ˝ ¯̄Fpq̂qqq| detpJ ¯̄F pq̂qqqq|dq̂qq

“|detp¯̄Aq|
ż

K̂

¯̄g ˝ ¯̄Fpq̂qqqdq̂qq

To resume from (22) and (29), we have
ż

K

fpqqqqdqqq “ |detp¯̄Aq|
ż

K̂

¯̄g ˝ ¯̄Fpq̂qqqdq̂qq (31)

We can note that

¯̄g ˝ ¯̄F “ f ˝ F̄-1 ˝ P ˝ ¯̄F

Let FK “ F̄-1 ˝ P ˝ ¯̄F , we have as expected

FKpq̂qqq “ F̄-1 ˝ P ˝ ¯̄Fpq̂qqq

“ F̄-1pPtp¯̄Aq̂qqqq

“ F̄-1pĀq̂qqq

“ QĀq̂qq`qqqqqqqqq0

“ AKq̂qq`qqqqqqqqq0.

and we obtain
ż

K

fpqqqqdqqq “ |detp¯̄Aq|
ż

K̂

f ˝ FKpq̂qqqdq̂qq (32)

To obtain formula (22), it remains to prove that |detp¯̄Aq| “ | detpAt

KAKq|1{2.
We have

At

KAK “ At

KQQtAK as AK “ QĀ

“ ĀtĀ as Q is an orthogonal matrix

“ ¯̄A
t

PPt ¯̄A as Ā “ Pt ¯̄A

“ ¯̄A
t ¯̄A as PPt “ Id

As ¯̄A is a square matrix, we have detp¯̄A
t ¯̄Aq “ detp¯̄Aq2 and thus

|detp¯̄Aq| “ |detpAt

KAKq|
1{2.

˝
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3.3 Volume of a d-simplex

The volume/measure of the d-simplex K Ă Rn is given by

|K| “

ż

K

1dqqq (33)

Using formula (22) with f ” 1 gives

|K| “ |detpAt

KAKq|
1{2

ż

K̂

1dq̂qq “ |detpAt

KAKq|
1{2
|K̂|.

From (9), we �nally obtain

|K| “
|detpAt

KAKq|
1{2

d!
. (34)

In [5] this formula is proved with geometrical arguments. We can also remark
that if d ” n then AK is a square matrix and we obtain the classical formula

|K| “
|detpAKq|

d!
. (35)

3.4 Magic formula

In this section an exact computation of the integral over a d-simplex K Ă Rn

for products of power of its barycentric coordinates given by (1) is proved by
using previous results obtained by Laplace transforms.

Using formula (22) with fpqqqq “
śd
i“0 λ

νi
i pqqqq gives

ż

K

d
ź

i“0

λνii pqqqqdqqq “ |detpAt

KAKq|
1{2

ż

K̂

d
ź

i“0

pλi ˝ FKpq̂qqqqνidq̂qq

From (18) and (34), we obtain

ż

K

d
ź

i“0

λνii pqqqqdqqq “ d!|K|

ż

K̂

d
ź

i“0

λ̂νii pq̂qqqdq̂qq

Using formula (10) gives (1)
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