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Abstract

Tessellation of hypercubes or orthotopes and all their faces in any di-
mension is a nice challenge. The purpose of this paper is to describe
efficient vectorized algorithms to obtain regular tessellations made up by
simplices or orthotopes. These vectorized algorithms have been imple-
mented in array programming languages such as Matlab/Octave, Python.
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1 Definitions and notations

1.1 d-orthotope and d-hypercube
We first recall the definitions of a d-orthotope and a d-hypercube

Definition 1. In geometry, a d-orthotope (also called a hyperrectangle or a
boz) is the generalization of a rectangle for higher dimensions, formally defined
as the Cartesian product of intervals.

Definition 2. A d-orthotope with all edges of the same length is a d-hypercube.
A d-orthotope with all edges of length one is a unit d-hypercube.

The hypercube [0,1]? is called the unit d-hypercube or the unit reference
d-hypercube.

The m-orthotopes on the boundary of a d-orthotope, 0 < m < d, are called
the m-faces of the d-orthotope.
The number of m-faces of a d-orthotope is

odem [ d ay d!
Enag=2 (m where m) = 7m!(d— m)!

For example, the 2-faces of the unit 3-hypercube [0, 1]? are the sets

{0} x [0,1] x [0,1], {1} x [0,1] x [0,1],
[0,1] x {0} x [0,1], [0,1] x {1} x [0, 1],
[0,1] x [0,1] x {0}, [O,1] x [0,1] x {1}.



Its 1-faces are

and its 0-faces are

We represent in Figure [I] all the m-faces of a 3D hypercube.

Figure 1: m-faces of a 3D hypercube : 0-faces (upper left), 1-faces (upper right)

and 2-faces (bottom)

We give in Table (1| this number for d € [0,6] and 0 < m < d.

{0} x {0} x [0,1],
{1} < {0} > [0,1],
{0} < [0,1] x {0},
{1} > [0, 1] x {0},
[0, 1] x {0} x {0},
[0,1] > {1} x {0},

{0} x {0} x {0},
{0} x {1} x {0},
{1} < {1} x {0},
{0} > {1} > {1},

\
.

7T,
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#ry
#r,
Fry
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{0} x {1} x [0,1],
{1} < {1} < [0,1],
{0} < [0, 1] x {1},
{1} > [0, 1] x {13,
[0, 1] x {0} x {1},
[0, 1] > {1} x {1},

{1} x {0} x {0},
{0} x {0} x {1},
{1} x {0} x {1},
{1} < {1} > {1}.
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m | 0o | 1 | 2 [ 3 [ 4 ] 5 | 6 |

d Names 0-face | 1-face | 2-face | 3-face | 4-face | 5-face | 6-face
0 Point 1

1| Segment 2 1

2 Square 4 4 1

3 Cube 8 12 6 1

4 | Tesseract 16 32 24 8 1

5 | Penteract 32 80 80 40 10 1

6 | Hezxeract 64 192 240 160 60 12 1

Table 1: Number of m-faces of a d-hypercube

The identification/numbering of the m-faces is given in section2.4]

1.2 d-simplex

Definition 3. In geometry, a simplex (plural: simplezes or simplices) is a
generalization of the notion of a triangle or tetrahedron to arbitrary dimensions.
Specifically, a d-simplex is a d-dimensional polytope which is the convex hull of
its d 4+ 1 vertices. More formally, suppose the d + 1 points q°,...,q% € R? are
affinely independent, which means q* —q°,...,q% —q° are linearly independent.
Then, the simplex determined by them is the set of points

d
C:{eoqo++9dqd|912070<2<d,291:1}
i=0

For example, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and a
4-simplex is a 5-cell. A single point may be considered as a O-simplex and a line
segment may be considered as a 1-simplex. A simplex may be defined as the
smallest convex set containing the given vertices.

Definition 4. Let q°,...,q% € R? be the d + 1 vertices of a d-simplex K and
Dx be the (d + 1)-by-(d + 1) matriz defined by

i
I
|

b
t
:

The d-simplex K is
e degenerated if det D = 0,
e positive oriented if det Dk > 0,
e negative oriented if det D < 0.

The m-simplices on the boundary of a d-simplex, 0 < m < d, are called
the m-faces of the d-simplex. If a d-simplex is nondegenerate, its number of
m-faces is equal to the binomial coefficient <d +1 >

m+1
We give in Table [2|this number for d € [0,6] and 0 < m < d.



m | o0 | 1 [ 2 [ 3 | 4 | 5 | 6 |

d Names O-face | 1-face | 2-face | 3-face | 4-face | 5-face | 6-face
0 Point 1

1 Segment 2 1

2 triangle 3 3 1

3 | tetrahedron 4 6 4 1

4 | 4-simplex 5 10 10 5 1

5| b-simplex 6 15 20 15 6 1

6 | 6-simplex 7 21 35 35 21 7 1

Table 2: Number of m-faces of a nondegenerate d-simplex

2 Tessellation by d-orthotopes

2.1 The unit hypercube vertices

The unit d-dimensional hypercube H = [0,1]¢ has n = 2¢ vertices. A vertex
may be identified by a d-tuple 2 = (21,22, -- ,24) € [0,1]? and we denoted by
zt = (2%,...,2%)° € R? the vertex defined by

x; =1, Vie[l,d].

Let £ be the function mapping all the d-tuples 2 € [0, 1]¢ into [[1, 2] defined by

d
Lo)=1+) 2" (1)
=1

We can note that £(z) — 1 has for binary representation (2424_1---21)2. Let q
be the d-by-2¢ array containing all the vertices of H and defined by

at,j) ¥z, vje 1,29

where q(:, j) denotes the j-th column of the array q.
For example, with d = 3, the array q is given by

o &t
q_

O~
= o O
—_ O =

0
1
1

o O O
OO =
o = O
==

and it can be obtained from the more general function CARTESIANGRIDPOINTS
introduced in section and described in Appendix [B] by using command

q < CArTESIANGRIDPOINTS(ONES(1, d))



Figure 2: Vertices of the unit hypercube [0,1]¢, d = 2 (left) and d = 3 (right)
with their indices in the array q

2.2 Cartesian grid

Definition 5. A cartesian grid in R? is a tessellation where the elements are
unit d-hypercubes and the vertices are integer lattices.

Let N = (Ny,...,Ng) € (N*)%. We denote by On the cartesian grid of
[0, N1]) x --- x [0, Ngq]. The cartesian grid Qn is composed with n, grid points
and npe unit d-hypercubes where

d d
ng = [(Ni+1) and nme = [ [N (2)
=1

=1

The objective of this section is to describe the construction of the vertices
(or points) array q (section [2.2.1) and the connectivity array me associated with
this cartesian grid (section [2.2.2)). More precisely,

e q(v,j) is the v-th coordinate of the j-th vertex, v € {1,...,d}, j €
{1,...,nq}. The j-th vertex will be also denoted by q’ = q(:, j).

e me([, k) is the storage index of the S-th vertex of the k-th element (unit
hypercube), in the array ¢, for 8 € {1,...,2%} and k € {1,...,nme}. So
q(:,me(S3, k)) represents the coordinates of the S-th vertex of the k-th
cartesian grid element.

We represent in Figure [3| two cartesian grids with the numbering of the
Nme unit d-hypercubes. For example, on the left figure (d = 2), the 5-th unit
hypercube is given by the vertices of numbers 6,7,10,11 and so me(:,5) =
(6,7,10,11) and on the right figure (d = 3), for the 9-th hypercube, we have
me(:,9) = (16,17,19, 20, 28,29, 31, 32).



Figure 3: In blue, vertices of cartesian Grid in R%, d = 2 with N; = 3, N, = 4
(left) and d = 3 with (N1, Na, N3) = (2,3,3) (right). The red numbers are the
indices of unit hypercubes in the array me

2.2.1 Points of the cartesian grid

The grid points may be identified by a d-tuple ¢ = (iy,i2, -+ ,iq) € [0, N1] X
-+ x [0, Ng] and the corresponding grid point denoted by z*, which has integer
coordinates, is given by

d
gt = el = (iy, i, ig)" =1 (3)
=1

where {e[l], e ,e[d]} denote the standard basis of RY.

We want to store all the grid points in a 2D-array q of size d-by-nq. To define
an order of storage in the array q, we will use the bijective function G mapping
the tuple points set [0, N7] x - -+ x [0, Ng4] in the global points index set [1,n4]
defined by

d
Ga) =1+ Y B =1+.B)y, Vac[0,N]x--x[0,Ng] (4)

=1
where 8 = (B1,...,34) € N* and

-1

Br=[]@;+1), vie[1d]. (5)

j=1
From this mapping function, we define the vertex array q as

q(:,G()) =x* =1, Yae[0,N1] x --- x [0, N4] (6)



According to the numbering choice G, we give in Algorithm [I] the vectorized
function CarTeEsSIANGRIDPOINTS which returns the array q. In Appendix [B] we
explain how this function was written

Algorithm 1 Function CARTESIANGRIDPOINTS : compute the d-by-n, array q
which contains all the points of the cartesian grid Oy (vectorized version)

Input

N : array of d integers, N (i) = N;.
Output

q : array of d-by-n, integers.

Function q < CARTESIANGRIDPOINTS (N)
B — CGBETA(N)
for r —1toddo
A «— ResHAPE(REPTILE([0 : N()], 57, 1), 1, (N (r) + 1)5;)
q(r,:) < RePTILE(A, 1,PrROD(N(r+1:d) + 1))
end for
end Function

From this array q, we can now construct the tessellation by unit d-hypercubes
of the cartesian grid On.

2.2.2 Connectivity array of a cartesian grid

The d-dimensional cartesian grid On contains n,e unit d-hypercubes having
for vertices the cartesian grid points. All these unit hypercubes can be only
identified by their vertex of minimal coordinates. Let ¢ € [0, Ny[x --- x [0, Nq[.

We denote by H, the hypercube with z* as vertex of minimal coordinates.
The 2¢ vertices of H, are the vertices 2**P, ¥p e [0, 1]<.

We want to build the connectivity array me of dimensions 2%by-n,. such
that me(l, k) is the index in array q of the I-th vertex of the k-th hypercube :
this vertex is q(:,me(l, k)).

To define an order of storage in the array me, we will use the bijective
function H mapping the tuple points set [0, Ni[x --- x [0, Ng[ in the global
points index set [1,nme] such that k& = H(2) and defined by

d -1
M) =1+ Y i [ [N, 2€ [0, Na[x-- x [0, Na] (7)
=1 j=1

The inverse function H! can be easily built. Indeed, if we define the d-by-
Nme array Hinv by

Hinv < CARTESIANGRIDPOINTS(N — 1).
then by construction we have
H (k) =Hinv(:, k), Yk € [1,nme]

Let k € [1,nme] and 2 = H*(k). The k-th hypercube is H, and has for vertex
of minimal coordinates z*. By construction of array q we have

' =q(;G(2)



From vector B defined in , we have G(2) = 1 + (1, 8). Using matricial opera-
tions we can define the 1-by-n., array iBase by

iBase — 3" « Hinv + 1

such that
G(2) = GoH (k) = iBase(k). (8)

Let 2 € [0, N1[x --- x [0, Ng[ and k = H(2) then we take
a(sme(l, 1) = 2' +(.1) = oA
where q is defined in section So we obtain
me(l, k) = G2 +4(:,1)) (9)
Lemma 6. Let1 e Qy and p € Z¢, such that 1+ p e Qn. We have
Ge+p)=G0)+@B) (10)
where B is defined in .

Proof. We have

s—1
def

d
(i+p) =1+ Z (is + 1) H(Nj—s—l)
el

d <
N +1) Z HN +1)
+Zpsﬁs-
s=1

1

»
|

||:]

From Lemma |§| and definition of 8 in , we obtain

d
G +q(:,1 (@) + > d(s,1)Bs

s=1

From ([9)), we have, for all [ € [1,d],
me(l, k) < iBase(k) + <q(:,1), 8)
or in a vectorized form
me(l,:) < iBase + (q(:,1),8)

We can now easily write the function CGTrssHyP in Algorithm [2] which com-
putes the arrays q and me.



Algorithm 2 Function CGTEssHYP
Input
N . array of d integers, N (i) = N;.

Output
q : array of d-by-nq array of integers.
me : 2-dimensional connectivity array of sizes 2¢-by-N,. me(l, k) is the

index in array q of the [-th vertex of the k-th hypercube : this
vertex is q(:, me(l, k)).

Function [q,me] — CGTrssHyp (N)
q < CARTESIANGRIDPOINTS(N)
Hinv < CARTESIANGRIDPOINTS(N — 1)
q < CarTeSIANGRIDPOINTS(ONES(1, d))
B — CGBETA(N)
iBase < * * Hinv + 1
for [ < 1 to 2¢ do
me(l,:) < iBase + (B,q(:,1))
end for
end Function

Now we can generalize to the tessellation by d-orthotopes of a d-orthotope.

2.3 Tessellation of a d-orthotope by d-orthotopes

Let O4 be the d-orthotope [a1,b1] X - - - X [ag, bg]- To construct a regular grid on
04 with N; +1 points in el?! direction, i € [1, d], we use an affine transformation
of the cartesian grid On = [0, N1] x - -+ x [0, Ng] to Oq4. Let a = (ay,...,aq),
b= (by,...,bq) and h = (hq,...,hyq) with h; = (b; — a;)/N; be three vectors of
R?. Let He M4(R) be the diagonal matrix with h as diagonal. Then the affine
transformation is given by

A O — Oy
x — y=a+Hzx

Let N < [Ny,..., Ng]. The tessellation of the cartesian grid O is obtained by
[q,me] — CGTEssHYP(N)

To obtain the tessellation of the orthotope O4 we only have to apply the affine
transformation A to array q. In a vectorized form, one can write for all ¢ € [1, d]

q(i,:) —a(i) + (b(i) — a(i))/N (i) = q(i,:)

This operation is done by the function BoxMarpriNG given in Algorithm [3]
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Algorithm 3 Function BoxMAPPING : mapping unit d-hypercube [0, 1]% to the
d-orthotope [a1,b1] x « -+ X [ag, b4]

Input

q : d-by-n array of reals in [0, 1]¢

a,b : arrays of d reals, a(i) = a;, b(i) = b; with a; < b;
Output

q : array of d-by-n array of reals in the orthotope.

Function q « BoxMarrinG (q,a,b)
for i <— 1 to d do
b (b() — a(i))/N (i)
a(i,:) < a(i) + h+qi,:)
end for
end Function

We write in Algorithm [} the function OrraTEssOrTH which returns the
arrays q and me corresponding to the regular tessellation of Oy by d-orthotopes.

Algorithm 4 Function OrtaTEssOrTH : d-orthotope regular tessellation by
orthotopes

Input

N  : array of d integers, N(i) = N;.

a,b : arrays of d reals, a(i) = a;, b(i) = b; with a; < b;
Output

q : array of d-by-nq reals.

me : array of 2%-by-n,,. integers.

Function [q,me] «— OrruTEssOrTH (N, a,b)
[q,me] < CGTEssHYP(N)
q — BoxMarriNG(q,a,b)

end Function

2.4 Numbering of the m-faces of the unit d-hypercube

Let m € [0,d]. As introduced in section |1} the m-faces of the unit d-hypercube
[0,1]? are unit m-hypercubes in R? where d —m dimensions are reduced to the
singleton {0} or {1}.

We have n. = (7?1) possible choices to select the index of the d —m reduced

dimensions (combination of d elements taken d — m at a time) and for each
selected dimension 2 choices : {0} or {1}.
So if I € [1,d] is the index of a reduced dimension then vertices z*(= 2 =
(i1,...,1q)) is such that 4; = 0 (minimum value) or 4; = 1 (maximum value).
Let L[4 be the set of all the combinations of [1,d] taken d —m at a time :

Lldm] CoMBS([[L dﬂv d— m).

Then the length of array L™ is n.-by-(d — m). Each row of LI*™ contains
the index of the d — m reduced dimensions of an m-face.

11



Let Sl?=™l be the (d —m)-by-29=" array containing all the possible choices
of the constants for the d — m reduced dimensions (2 choices per dimension) :
values are 0 for constant minimal value or 1 for maximal value. This array can
be built by using function CarresianGribPoinTs defined in Algorithm [1] and
we have

sld=ml  CarrEsiaNGrIDPOINTS(ONES(1,d — m))

Let [ € [1,n.], r € [1,2¢7™] and k = 2¢=™(1 — 1) + r. We define the k-th
m-faces of the unit d-hypercube as
{z € [0,1]¢ such that z(L[“™ (1, 5)) = Sl (s ), Vs e [1,d - mﬂ}
or in a vectorized form
{x e [0,1]% such that (L[4 (1,:)) = s[d—ml(:,r)t} (11)

For example, to obtain the ordered 2-faces of the unit 3-hypercube we com-
pute

1
LB2 = (2] and Sl =(0 1)
3

and then we have

2-face number Set

1 3 such that z; =
3 such that z; =
3 such that £, = 0
3 such that x5 = 1}
3 such that z3 = i

)

b

x
x
x
{xe
xe
§xe

To obtain the ordered 1-faces of the unit 3-hypercube we compute

bl

)

€ [0,1]
€ [0,1]
€ [0,1]
[0,1]
[0,1]
[0,1]

ST W N

3 such that z3 =

)

1 2
LB _ (1 3| and s = 01 0 1
9 3 0 0 1 1

and then we have

1-face number Set
1 z € [0,1]° such that ; = 0, x5 =
2 x €[0,1]3 such that £; = 1, £ =0
3 z € [0,1]? such that ; =0, 23 = 1
4 z €[0,1]® such that z; = 1, x5 =
5 z € [0,1]3 such that ; = 0, 23 =
6 x €[0,1]3 such that z; = 1, x3 =
7 z €[0,1]3 such that £; =0, x3 =
8 z €[0,1]® such that z; = 1, x3 =
9 z € [0,1]3 such that £ = 0, z3 =
10 z € [0,1]3 such that &, = 1, 3 =0
11 x € [0,1]3 such that £ =0, x3 =
12 z €[0,1]® such that o = 1, 23 = 1

—
[\



To obtain the ordered 0-faces of the unit 3-hypercube we compute

01 010 1 01
LB =1 2 3) and SB'=10 0 1 1 0 0 1 1
00 0 0 1 1 11
and then we have
1-face number Set
1 {z €[0,1]® such that ¢; = 0, zo = 0, z3 = 0}
2 {z €[0,1]% such that & =1, zo =0, x3 =
3 z €[0,1]3 such that 1 =0, z, =1, £3 =0
4 z€[0,1]° such that &1 = 1, &, = 1, o3 =
5 x €[0,1]3 such that £; =0, £ =0, 3 = 1
6 {z €[0,1]% such that &y =1, z, =0, z3 = 1}
7 z€[0,1]3 such that £ =0, zo =1, z3 = 1
8 Em €[0,1]® such that z; = 1, 2 = 1, T3 = i

2.5 m-faces tessellations of a cartesian grid

Let On be the d-dimensional cartesian grid defined in section[2.2] Not to confuse
the notations, we denote by On.q and On.me respectively the vertices and
connectivity arrays of the tessellation by unit hypercubes of the cartesian grid

ON.
Let m € [0,d[ and k € [1, E}, q]. We want to determine O (k) the tessel-
lation obtained from the restriction of the cartesian grid Oy to its k-th m-face
where the numbering of the m-faces is specified in section We denote by

o O (k).q, the (local) vertex array
o OF(k).me, the (local) connectivity array
o O (k).toGlobal, the global indices such that

oy (k).q = 9On.q(:, OF (k).toGlobal).

By construction, Qy'(k) is the tessellation by unit m-hypercubes of an m-
hypercube in R%.

Let [ € [1,n.], r € [1,2¢7™] and k = 29~ (I—1)+7. The cartesian grid point
z = (21,...,24)" is on the k-th m-face QR (k) if and only if for all s € [1,d — m]
and with j = L(I, s) we have

0 if Sl¢=ml(s,r) == 0, (minimum value)
1

N, [d—m] -
xj = Njx$S (s,7) {N ,  (maximum value)

;o if Sld=ml(s, 1) ==

or in a vectorized form using element-wise multiplication operator .*:

t

z(L(1,:)) = N(L(l,:)) .+ S )" (12)

Let [ € [1,n.], r € [1,2¢7™] and k = 297 (1 — 1) + r. We define the k-th
m-faces of the cartesian grid On as

{a: € Qn such that z(LI4™(1,:)) = N(L(1,:)) .* s[d—ml(:m)t} (13)
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2.5.1 Case m = 0.

If m = 0, the m-faces are the 2¢ corner points of the cartesian grid. We also
have L0 = 1: d and Sl¥ a d-by-2¢ array
From ([3)), we obtain that Vk € [1,2¢] the k-th O-face of Qy is reduced to
the point
z=N.#S9 k)

and it is also the k-th column of the array @ of dimensions d-by-2? given by

N 0 ... ... 0

Q— 0 Ny . | gldl
S . . 0
0 0 Ny

So we obtain
OX (k).me = 1
O (k).toGlobal = (B, Q(:, k)) + 1

2.5.2 Casem >0

Let [ € [1,n.], r € [1,2¢"™] and k = 29=™(l — 1) + r. To construct QR (k) we
first set a tessellation without constant dimensions ide = L(Z,:) (i.e. only with
nonconstant dimensions idnc = [[1, d]\ide):

[q*,me"] — CGTrssHyr(N (idnc))

The dimension of the array q* is d—by—nﬁl where nf:1 = H (N; + 1). Then the

i€idnc
nonconstant rows are

Of (k).alidne(i), ;) — q“(i,:), Vie [1,m]
and the constants rows
OF (k).q(ide(i), :) < N(ide(i)) * SI=™)(4,7) » Oxes(1,n)), Vie[1,d—m]
In a vectorized way, we have
n (k)-q(idne, ;) —q"
Off (k)-qlide, ) « (N (ide)* xS (:,r) ) x Ones(1,m)
We immediately have the connectivity array
Ox (k). me = me®.

It remains us to compute QO (k).toGlobal. For that we use the mapping
function G defined in section and more particularly (6). Indeed, for all
je [[Lnfl]], we can identify the point O (k).q(:,7) by the d-tuple 2 and use it
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with the mapping function G to obtain the index in array On.q of the point
oR (k).q(:, ). So we have

1= Q¥ (k).q(:,7) = Ona(:,G(2))

and then
Ox (k).toGlobal(j) = G(Qx (k).a(:, 7))

In a vectorized way, we set
O (k).toGlobal < 1 + B* + Qf(k).q

with the vector B defined in ().

One can also compute the connectivity array of O (k) associated with global
vertices array On.q which is given by O (k).toGlobal(me™).

We give in Algorithm the function CGTEssFaces which computes QF (k),
Yk e [1,297mn,].
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Algorithm 5 Function CGTEssFaces : compute all the m-face tessellations
by m-hypercubes of the cartesian grid On.

Input :
N : 1-by-d array of integers, N (i) = N;.
m : integer, 0 < m <d
Output
ON : array of the tessellations of each m-faces of the cartesian grid On.
. d—m [ @
Its length is E,, g = 2 <m> .

Function sQn <« CGTEessFaces (N, m)
B — CGBETA(N)
if m == 0 then
Q < D1ag(N) # CarTESIANGRIDPOINTS(ONES(1, d))
for k — 1 to 2¢ do
O (k). < QG k)
Of (k) me — 1
O (k).toGlobal «— 1 +(B,Q(:, k))

end for
else
d
Ne «—
m

L — Cowmss([1,d],d —m)
S « CARrESIANGRIDPOINTS(ONES(1,d — m))
k<1
for | — 1 to n. do
ide < L(I,:)
idnc < [1,d]\ide
[q*,me"] «— CGTessHyr(N (idnc))

nl — [T, (N (idnc(s)) + 1) = or length of q¥

for r — 1 to 297 do
O (k).a(idne, ) — q*
ou(k).q(ide,:) < (N(ide)® .x S(:,r)) » Ones(1, nl)
o (k) me — me"
OR(k).toGlobal < 1 + B« QR (k).q
E—k+1

end for

end for
end if

end Function

2.6 m-faces tessellations of a d-orthotope

As seen in section [2.3] we only have to apply the function BoxMarriNG to each
array Oy (k).q of the tessellations of the m-faces of the cartesian grid On. This
is the object of the function OrTuTEssFaces given in Algorithm [6]
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Algorithm 6 Function OrruTrEssFaces : compute the conforming tessellations
of all the m-faces of the d-orthotope [a1,b1] X - -+ X [aq, bd]

Input
N  : array of d integers, N(i) = N;.
a,b : arrays of d reals, a(i) = a;, b(i) = b;
m : integer, 0 < m < d
Output
sOp : array of the tessellations of each m-faces of the orthotope.
. d—m [ @
Its length is E,, g = 2 (m) .

Function sOp, < OrruTEssFaces (N,a,b, m)
sOp, < CGTessFaces(N,m)
for k — 1 to Lex(sOp) do
sOp(k).q < BoxMaprprING(sOy(k).q,a,b)
end for
end Function

3 Tessellation by d-simplices

The goal of this section is to obtain a conforming triangulation (or tessellation)
of a d-orthotope named Oy by d-simplices.

The basic principle selected here is to start from a regular grid of O, obtained
via a d-orthotope tessellation. on each d-polytope of the regular grid to obtain
a conforming triangulation of Q4. Then, using affine transformations, one can
use of the regular grid
to obtain a conforming triangulation of Og.

3.1 Kuhn’s decomposition of a d-hypercube

Kuhn’s subdivision (see [I, 4, [5]) is a good way to divide a d-hypercube into
d-simplices (d = 2). We recall that a d-simplex is made of (d + 1) vertices.

Definition 7. Let H = [0, 1]¢ be the unit d-hypercube in R?. Let el'l ... el be
the standard unit basis vectors of R? and denote by Sq the group of permutation
of [1,d]. For all w € Sy, the simplex K, has for vertices {xLO], ... ,mﬁrd]} defined
by

2l = (0,...,0), 2Vl =zl 4 701 vje[1,4]. (14)

The set IK(H) defined by
K(H) = {Kx | m€ Sa} (15)
is called the Kuhn’s subdivision of H and its cardinality is d!.

As sample, we give in Figure [f] the Kuhn’subdivision of an d-hypercube with
d = 2 and d = 3. We choose the positive orientation for all the d simplices.
The corresponding vertex array q and the connectivity array me are given by
(préciser comment me est ordonné):
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e for d =2,

1 4
e for d = 3,

601010101 Ls s 118

5 3 5 3 2 2
q=10 0 1 1 0 0 1 1|, me=

00001111 rr6d6d

8 1.1 8 8 1
Bl Bl

Figure 4: Kuhn’s subdivision

Let Ko be the base simplex or reference simplexr with vertices denoted by
{2, .. zl]} and such that

2l = (0,...,0), W =2l= L ell vje[1,4d]. (16)

Let 7 € S,, and 7(z) indicate the application of permutation 7 to the coordinates
of vertex . The vertices of the simplex K, defined in can be derived from
the reference simplex K¢ by

zUl — w2l vjeo,d]. (17)

Let 7(Ker) denote the application of permutation to each vertex of Kct. Then
we have

T(Kyet) = Kn (18)

Lemma 8 ([I], Lemma 4.1). The Kuhn’s subdivision KC(H) of the unit d-
hypercube H has the following properties:

1. 0% and 1% are common vertices of all elements K, € IC(H).

2. K(H) is a consistent/conforming triangulation of H.
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3. K(H) is compatible with translation, i.e., for each vector v € [0,1]¢ the
union of K(H) and K(v + H) is a consistent/conforming triangulation of
the set Hu (v + H).

4. For any affine transformation F, the Kuhn's triangulation of F(H) is
defined by K(F(H)) ¥ F(K(H)).

To explicitly obtain a Kuhn’s triangulation JC(H) of the unit d-hypercube H
we must build the connectivity array, denoted by me, associated with the vertex
array q. The dimension of the array me is (d + 1)-by-d!.

Let q** be the d-by-(d+ 1) array of vertex coordinates of reference d-simplex
Kref .

01 1

L | o

qcf = | o gl gl | = 0
I I I R . . :
- ' 00 ... 0 1

Let P be the d-by-d! array of all permutations of the set [1,d] and = = P(:, k)
the k-th permutation. We use and to build the vertices of K. So the
j-th vertices of K is given by

2y — (P (:, k), )

To find which column in array q corresponding to a:LJ U e use the mapping

function £ defined in and we set
20

me(j, k) — L(a"* (P(:, k), j)) = < Q" (P, k)vj))> +1

2d.—1

If the k-th d-simplex have a negative orientation, one can permute the index
of the first and the last points to obtain a positive orientation:

me(1, k) < me(d + 1, k).

In Algorithm [} we give the function KuanTriaxcuLaTiON which returns the
points array q and the connectivity array me where all the d-simplices have a
positive orientation.
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Algorithm 7 Kuhn’s triangulation of the unit d-hypercube [0, 1] with d! sim-
plices (positive orientation)

1: Function [q,me] « KuuNTRrIANGULATION (d)
2:  q < CARTESIANGRIDPOINTS(ONES(1, d))

0 i I |
ref : 0
3: Q' — ! > a d-by-(d + 1) array
010 ... 0 1
4: P« perMS(1 : d) > perMS(V) generate all permutations of V. One

column per permutation.
5 me <« Ogi1a
6:  a <« [20,21,..., 202 2d-1]
7. for k<1 tod do
8 for j—1 tod+1do
9: me(j, k) < por(a,q" (P(:, k), 7)) + 1
10: end for

11: if per([q(:,me(:, k));ones(l,d + 1)]) < 0 then
12: t —me(l,k), me(1,k) — me(d + 1,k), me(d + 1,k) « ¢
13: end if

14: end for
15: end Function

3.2 Cartesian grid triangulation

Let On be the d-dimensional cartesian grid defined in section Not to confuse
the notations, we denote by On.q and On.me respectively the vertices and
connectivity arrays of the cartesian grid Qn. There are N} = H?=1 N; unit
hypercubes in this tessellation.

Let Z = [0, N1[%x ... x [0, N4[. We have

on = JH
1€L

where H, is the unit hypercube with 2* as vertex of minimal coordinates.
From Lemma [8] the triangulation

731 = U IC(H’L)
1€l
is a conforming triangulation of Qn with n,. = d! x N, d-simplices and by
construction the vertices of Ty are the vertices of On:
Tng=9n4g

It thus remains us to calculate the connectivity array me of 7y also denoted
by Tn.me. This is a (d + 1)-by-nny array. For a given hypercube H, we store
consecutively in the array me, the d! simplices given by IC(H,)

The Kuhn'’s triangulation for the reference hypercube [0, 1] can be obtained
from the function KUENTRIANGULATION :

[ax, mex ] < KUHNTRIANGULATION(d)
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Let 2 € Z and k = H(2) where H is defined by (7). Let [ € [1,d!]. We choose
to store the [-th simplex of K(H,) in me(:,d!(k — 1) +I).
Let j € [1,d]. The j-th vertices of the [-th simplex of C(H,) is q(:, me(j, d!(k—
1) + 1)) but it’s also given by
' + qy (:;mex (5,1)) = 2 + qyc (:; mex (5, 1))
So we want to determine the index me(j, d!(k — 1) + ). From (6], we obtain
me(j,dl(k—1) +1) = G(» + q, (:,mex(5,1))).
By using Lemma [6] we deduce that
me(j,d!(k —1) + 1) = G2) + {qy (- mex (5, 1)), B)
and with (8) we obtain
me(j,d!(k — 1) + 1) = iBase(k) + {q, (:,;mex (4,1)), B), Vk € [1, N3]
This formula can be vectorized in k: with Idx « d![0 : N, — 1] + 1 then
me(j,Idx) < iBase + {(q, (:,mex(j,1)),5) .

We give in Algorithm [§] the function CGTrianGuLATION Which compute the
triangulation of the cartesian grid On.

Algorithm 8 Function CGTRIANGULATION : compute the triangulation of the
cartesian grid On

Input :
N : array of d integers, N(i) = N;.
Output
q 1 vertices array of the triangulation of O.
d-by-nq, array of reals (integer in fact) where ng = H?zl(Ni +1).
me : connectivity array of the triangulation of O.

(d + 1)-by-nme array of integers where ny = d! H?:l N;. .

Function [q,me] « CGTriaNGULATION (N)
q < CARTESIANGRIDPOINTS(INV)
Hinv < CARTESIANGRIDPOINTS(N — 1)
[Qy , mey | «— KUHRNTRIANGULATION(d)
B — CGBETA(N)
iBase — 3* « Hinv + 1
Idx — d!'=[0: (N, —1)]
for | — 1tod! do
Idx « Idx + 1
for j —1tod+1do
me(]71dx) — iBase + <qK(:’meK (.]’ l))a.B>
end for
end for
end Function

21



3.3 d-orthotope triangulation

Let Oq4 be the d-orthotope [a1,b1] X -+ X [ag, bd]-
The mechanism is similar to that seen in section [2.3] while taking as a starting
point the cartesian grid triangulation.

Algorithm 9 Function OrRTHTRIANGULATION : d-orthotope regular tessellation
by orthotopes

Input

N  : array of d integers, N(i) = N;.

a,b : arrays of d reals, a(i) = a;, b(i) = b;
Output

q : array of d-by-nq array of reals.

me

Function [q,me] «— OrruTriaNcuLATION (N, a,b)
[q,me] — CGTRIANGULATION(NN)
q < BoxMarprinG(q, a,b)

end Function

3.4 m-faces triangulations of a cartesian grid

Let On be the d-dimensional cartesian grid defined in section Not to con-
fuse the notations, we denote by Tn.q and 7y .me respectively the vertices and
connectivity arrays of the triangulation of the cartesian grid On.

Let m € [0,d] and k € [1, E,, 4. We want to determine 7" (k) the triangula-
tion obtained from the restriction of Ty to its k-th m-face where the numbering
of the m-faces is specified in section 2.4 We denote by

o 75 (k).q, the (local) vertex array
o 757 (k).me, the (local) connectivity array
o 757 (k).toGlobal, the global indices such that

T (k).a=Tn.a(:, Ta'(k).toGlobal).

By cgnstruction, Tx' (k) is the triangulation by m-simplices of an m-hypercube
" IRT}'le only difference with the construction of Qf (k) given in section is
on the array me™. For Qf (k), we took

[q*,me"] — CGTessHYP(N(R(I,:)))
whereas for 73" (k) we must take instead

[@¥, me"] — CGTrianauLaTION(N (R(1,:)))

So only one line changes in the Algorithm [5] to obtain the new one given in
Algorithm [10| where the function CGTriFaces computes Ty (k), Vk € 2¢-™n,..
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Algorithm 10 Function CGTriFaces : compute all the m-face triangulations
by m-simplices of the cartesian grid triangulation 7.

Input
N : array of d integers, N (i) = N;.
m : integer, 0 < m <d
Output
sTn : array of the triangulations of all the m-faces comming from

the cartesian grid triangulation Ty .

The length of sTy is Ep, g = 24°™ (i) (number of m-faces).

Function s7y < CGTriFaces (N, m)
B — CGBETA(N)
d
m
L — Cowmss([1,d],d —m)
R(l,:) < [1,d]\L(l,:), Vi€ [1,n]
S «— CARTESIANGRIDPOINTS(ONES(1,d — m))
k1
for [ — 1 to n. do
[@*,me"] «— CGTriancuLaTiON(N(R(I,:)))
nl — [T (N(R(l,s)) + 1) > or length of q*
for r — 1 to 2¢7™ do

STN( ) ( (17:)7:)qu

Ne <

ST (k)L (L), ) — (N(L(L:))" o+ S, 7)) * Oxes(1, )
sTn (k). me «— me®
sTn (k).toGlobal « 1 + 8%  sTn (k).q
k—k+1
end for
end for

end Function

4 Efficiency of the algorithms

Based on previous algorithms, a Matlab toolbox, an Octave package and a
python package were developped. They contains a simple class object OrthMesh
which permits, in any dimension d > 1, to obtain a simplicial mesh or orthotope
mesh with all their m-faces, 0 < m < d. It is also possible with the method
function plot of the class object OrthMesh to represent a mesh or its m-faces
for d < 3.

In the folowing section, the class object OrthMesh is presented. Thereafter
some warning statements on the memory used by these objects in high dimen-
sion are given. Finally computation times for orthotope meshes and simplicial
meshes are given in dimension d € [1, 5].

4.1 Class object OrthMesh

The aim of the class object OrthMesh is to use previous algorithms for creating
an object which contains a mesh of a d-orthotope and all its m-face meshes. An
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elementary mesh class object E1tMesh is used to store only one mesh, the main
mesh as well as any of the m-face meshes. This class E1tMesh also simplify the
codes writing. Its fields are the following:

e d, space dimension

e m, kind of mesh (m = d for the main mesh)

e type, 0 for simplicial mesh or 1 for orthotope mesh
e ng, number of vertices

e q, vertices array of dimension d-by-nq

® Ne, number of mesh elements

e me, connectivity array of dimension (d + 1)-by-ny for simplices elements
or 2%4-by-ne for orthotopes elements

e toGlobal, index array linking local array q to the one of the main mesh
e label, name/number of this elementary mesh
e color, color of this elementary mesh (for plotting purpose)

Let the d-orthotope defined by [a1,b1] % -+ x [aq,bq]. The class object
OrthMesh corresponding to this d-orthotope contains the main mesh and all its
m-face meshes, 0 < m < d. Its Fields are the following

e d: space dimension
e type: string ’simplicial’ or ’orthotope’ mesh
e Mesh: main mesh as an E1tMesh object

e Faces: list of arrays of EltMesh objects such that Faces(1) is an array
of all the (d — 1)-face meshes, Faces(2) is an array of all the (d — 2)-face
meshes, and so on

e box: a d-by-2 array such that box(i,1) = a; and box(7,2) = b;.
The OrthMesh constructor is
Oh < OrruMesu(d,N, < box >, < type >)

where N is either a 1-by-d array such that N(7) is the number of discretization
for [a;,b;] or either an integer if the the number of discretization is the same
in all space directions. The optional parameter box previously described as for
default value a; = 0 and b; = 1. The default value for optional parameter type
is ’simplicial’, otherwise ’orthotope’ can be used.

In Listing [I} an OrthMesh object is built under Octave for the orthotope
[-1,1] x [0,1] x [0,2] with simplicial elements and N = (10,5, 10). The main
mesh and all the m-face meshes of the resulting object are plotted. In Listing[2]
similar operations are done under Python with orthotope elements.
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Listing 1: 3D simplicial OrthMesh object with Octave 4.2.0, main mesh
(upper left), 2-face meshes (upper right), 1-face meshes (bottom left) and
0-face meshes (bottom right)

Oh=OrthMesh (3,[10,5,10],’box? ,[—-1,1;0,1;0,2])

% plot the main mesh

figure (1)

Oh.plot (’legend’,truec)

axis equalj;xlabel(’x?);ylabel(’y’);zlabel(’z?)

% plot the 2—face meshes

figure (2)

Oh.plot(’m?,2,’legend’ ,true)

axis equal;xlabel(’x?);ylabel(’y?);zlabel(’2z?)

% plot the 1—face meshes

figure (3)

Oh.plot(’m’,2,%color’ ,[0.8,0.8,0.8],’EdgeAlpha’ 0.2,
’FaceColor’ ,’none’)

hold on

Oh.plot (’m?>,1,’Linewidth’,2,’legend’ ,fruec)

axis equal;xlabel(’x?);ylabel(’y?);zlabel(’2z?)

% plot the 0—face meshes

figure (4)

Oh.plot(’m?,1,%color’,’k?)

hold on

Oh.plot (’m?,0,’legend’ ,truc)

axis equal;xlabel(’x?);ylabel(’y?);zlabel(’2z?)
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Listing 2: 3D orthotope OrthMesh object with Python 3.5.1, main mesh
(upper left), 2-face meshes (upper right), 1-face meshes (bottom left) and
0O-face meshes (bottom right)

import matplotlib.pyplot as plt
from pyHyperMesh.OrthMesh import OrthMesh

0Th=OrthMesh (3 ,[10,5,10] ,type=’orthotope’,
bOXZ[[ -1 31] 7[0 71] 7[0 72]])

# plot the main mesh

plt.ion ()

plt.figure (1)

plt.clf()

oTh. plot (legend=True)

# plot the 2—face meshes

plt.figure (2)

plt.clf()

oTh. plot (m=2,legend=True, edgecolor =[0,0,0])

# plot the 1—face meshes

plt.figure (3)

plt.clf()

oTh. plot (m=2,edgecolor =[0.9,0.9,0.9], facecolor=None)

oTh. plot (m=1,legend=True, linewidth=2)

# plot the O0—face meshes

plt.figure (4)

plt.clf()

oTh. plot (m=1,color="black’)

oTh. plot (m=0,legend=True, s=55)

Of course, the plot method doesn’t work in dimension d > 3.
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4.2 Memory consuming

Take care when using theses codes with memory consuming : the number of
points nq and the number of elements increases quickly according to the space
dimension d. If (N + 1) points are taken in each space direction, we have

nq = (N +1)%, for both tessellation and triangulation

and
Nme = N9, for tessellation by orthotopes

nme = dIN®  for tessellation by simplices.

If the array q is stored as double (8 octets) then
mem. size of q = d x ng x 8 octets
and if the array me as int (4 octets) then

29 % N % 4 octets (tessellation by orthotopes)

. si f = . . .
fnem. size ot me { (d+1) X nme x 4 octets  (tessellation by simplices)

For N = 10 and d € [1, 8], the values of nq and ny. are given in Table
The memory usage for the corresponding array q and array me is available in
Table [l

d ng=(N+1)7 nye = N? (orthotopes) nmye = d'N? (simplices)

1 11 10 10
2 121 100 200
3 1 331 1 000 6 000
4 14 641 10 000 240 000
5 161 051 100 000 12 000 000
6 1 771 561 1 000 000 720 000 000
7 19 487 171 10 000 000 50 400 000 000
8 214 358 881 100 000 000 4 032 000 000 000

Table 3: Number of vertices nq and number of elements ny,. for the tessellation
of an orthotope by orthotopes and by simplices according to the space dimension
d and with N = 10.

d q me (orthotopes) me (simplices)
1 88 o 80 o 80 o
2 1 ko 1 ko 2 ko
3 31 ko 32 ko 96 ko
4 468 ko 640 ko 4 Mo
) 6 Mo 12 Mo 288 Mo
6 85 Mo 256 Mo 20 Go
7 1 Go 5 Go 1 612 Go
8 13 Go 102 Go 145 152 Go

Table 4: Memory usage of the array q and the array me for the tessellation of
an orthotope by orthotopes and by simplices according to the space dimension
d and with N = 10.
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In the following pages, computational costs of the OrthMesh constructor will
be presented.

4.3 Computational times

For all the following tables, the computational costs of the OrthMesh construc-
tor are given for the orthotope [—1,1]¢ under Matlab R2016b, Octave 4.2.0 and
Python 3.5.1. The computations were done on a laptop with Core i7-4800MQ
processor and 16Go of RAM under Ubuntu 14.04 LTS (64bits). The details of
Octave and Python installations for this Linux distribution are given respec-
tively in [2] and [3].

In Table 5, some computational costs of the OrthMesh constructor

Oh <« OrruMesHu(d, N, [—1;1]¢, 'orthotope’)

are given for d € [2,5]. Computational costs for tessellation with simplices are
presented in Table [] for d € [2,5]. In Appendix [C] more detailed tables are
given.

d N N nme Python Matlab Octave
2 4000 16 008 001 16 000 000 0.725 0.678 1.077
3 250 15 813 251 15 625 000 1.151 1.616 2.415
4 62 15 752 961 14 776 336 1.803 3.188 5.142
5 27 17 210 368 14 348 907 3.167 6.032 10.559

Table 5: Tessellation of [—1, 1]¢ by orthotopes with approximatively 15 millions
elements. Computational times in seconds for Python 3.5.1, Matlab R2016b
and Octave 4.2.0.

d N Ng nme Python Matlab Octave
2 5000 25 010 001 50 000 000 1.831 2.428 3.834
3 180 5 929 741 34 992 000 1.881 2.583 4.488
4 40 2 825 761 61 440 000 4.855 5.411 8.992
5 12 371 293 29 859 840 2.914 3.091 6.726

Table 6: Tessellation of [—1,1]¢ with tens of millions of simplices. Compu-
tational times in seconds for Python 3.5.1, Matlab R2016b and Octave 4.2.0.

We can note that Octave is

A Vectorized algorithmic language

A.1 Common operators and functions

We also provide below some common functions and operators of the vectorized
algorithmic language used in this article which generalize the operations on
scalars to higher dimensional arrays, matrices and vectors:
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A<B Assignment

A=B matrix multiplication,

A.xB element-wise multiplication,

A./B element-wise division,

A(:) all the elements of A, regarded as a single column.
[,] Horizontal concatenation,

[] Vertical concatenation,

A, J) J-th column of A,

A(L,:) I-th row of A,

Sum(A, dim) sums along the dimension dim,

Probp(A, dim) product along the dimension dim,

I, n-by-n identity matrix,

Tpxn (or 1) m-by-n (or n-by-n) matrix or sparse matrix of ones,
O.uxn (or Oy) m-by-n (or n-by-n) matrix or sparse matrix of zeros,
Ones(m,n) m-by-n array/matrix of ones,

Zeros(m,n) m-by-n array/matrix of zeros,

RepPTiLE(A,m,n)  tiles the p-by-g array/matrix A to produce the (m x p)-
by-(n x q) array composed of copies of A,

REesHAPE(A,m,n)  returns the m-by-n array/matrix whose elements are
taken columnwise from A.

A.2 Combinatorial functions

Perms(V) where V is an array of length n. Returns a n!-by-n array
containing all the permutations of V' elements.
The lexicographical order is choosen.

Comss(V, k) where V' is an array of length n and k € [1, n].
Returns a ﬁik)l—by—k array containing all the combi-
nations of
n elements taken k at a time. The lexicographical order

is choosen.

B Function CARTESIANGRIDPOINTS

The objective is to explain how to obtain the vectorized function CARTESIAN-
GripPoinTs given in Algorithm [I section [2.2.1] This function returns the
vertex array q of the cartesian grid On. The dimension of q is d-by-n, with
ng =TT, (N; +1).

According to the numbering choice describe in section [2.2.1]the Algorithm [TT]
give the most simple presentation of q computation
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Algorithm 11 Building q the d-by-n, array of cartesian grid points
k<1
for iy — 0 to N do
for i4_1 < 0 to Ng_q do

for i5 «— 0 to Ny do
for i; «<— 0 to N7 do
q(:, k) < [i1,i2, ... g1, 1a]
k—k+1
end for
end for

end for
end for

An other way to write this algorithm, with the coordinates for loop written,
is given in Algorithm

Algorithm 12 Building q the d-by-n, array of cartesian grid points
k<1
for iy — 0 to N do
for i4_1 < 0 to Ny_; do

for is < 0 to Ny do
for i; «<— 0 to N7 do
for r — 1 to d do
q(r,k) < ir
end for
k—k+1
end for
end for

end for
end for

Let r € [1,d]. From Algorithm we deduce the Algorithm (13| which only
computes the component r of the cartesian grid point C.
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Algorithm 13 Setting component r € [1,d] of cartesian grid points in q the
d-by-nq array

k<1,

for iy — 0 to N do

for i, — 0 to N, do
for i,_1 < 0 to N,_; do

for i; < 0 to N7 do
q(rak)ﬁir
k—k+1

end for

end for
end for

end for

One can replace the for loops i; to i,_; by a for loop in j with number
of iterations equal to (N; + 1) x -+ x (N,_1 + 1) = B,_1. This is done in
Algorithm [14]

Algorithm 14 Setting component r € [1,d] of cartesian grid points in q the
d-by-nq array

k<1,

for iy — 0 to N, do

for i, — 0 to N, do
for j — 1 to . do
q(r, k) < i,
k—k+1
end for
end for

end for

We can replace the for loops in i, and j by a call to the function BuiLpPA
given in Algorithm The modified code using this function is given in
Algorithm
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Algorithm 15 blabla

Input :
N . array of d integers, N (i) = N;.
r: re[ld]

Output :

A : array of 8,41 = (N, + 1)5, integers.

Function A «— Bui.oPA (N, r)

r—1
Br— [TON@ +1), k<1,
l

for i, <—10 to N, do
for j — 1 to (3. do
A(k) « i
k—k+1
end for
end for
end Function

Algorithm 16 Setting component r € [1,d] of
cartesian grid points in q the d-by-nq array

I—1:84
for iq < 0 to N(d) do

for i,11 < 0 to N(r +1) do
q(r,I) < BuibPA(N,r)
IT—TI+pB11

end for

end for

As we can see, the BuipPA call in Algorithm [16] does not depend on the
for loops 44 to 7,4 1. Using this property and replacing the for loops i4 to 7,1 by
a for loop in ¢ with a number of iterations equal to (Ng+ 1) x -+ x (N1 + 1)
gives the first writeable code in Algorithm [I7}

Algorithm 17 Setting component r € [1,d] of cartesian grid points in the

d-by-nq array q

I—1:p641
A — BuipPA(N, r)

fori—1to(N(d)+1)x---x(N(r+1)+1)do

q(r,I) < A
I—1+041
end for

We can now write a complete nonvectorized function
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Algorithm 18 Function CARTESIANGRIDPOINTSVO : compute the d-by-ng array
q which contains all the points of the cartesian grid C' (none vectorized version)

Input

N : array of d integers, N (i) = N;.
Output

q : array of d-by-nq array of integers.

Function q « CARTESIANGRIDPOINTSVO (N)
B — CGBETA(N)
for r —1toddo
I—1:841
A — BuipPA(N, r)
fori—1to(N(d)+1)x---x(N(r+1)+1)do
q(r,I) < A
I —1T+p1
end for
end for
end Function

To obtain a vectorized function, we must work on the i for loop and on the
construction of the array A.

We first vectorize the computation of array A. Let us define the S3,.-by-
(N, + 1) array

0 1 ... N(r)

0 1 N(r)
A=1. . :

6 1 N.(r)

obtained by copying array [0 : N(r)] on each row of A from
A — RepTwe([0: N(r)], By, 1)
So array A can be obtained with the command
A <« Resuapre(A; 1, (N(r) + 1)3,)
or directly by
A — Resuare(RepTiLe([0 : N(r)], B, 1),1,(N(r) + 1)8,)

We can easily vectorize the for loop i in function CARTESIANGRIDPOINTSVO
by using the RepTiLE function as follows

q(r,:) < REPTILE(A, 1,PROD(N(r +1:d) + 1))

With these two vectorizations we obtain the function CARTESIANGRIDP OINTS
given in Algorithm [f}
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C Computational costs

C.0.1 Tessellation by d-orthotopes

N Ng Nme Python Matlab Octave
1000 1 002 001 1 000 000 0.143 0.33 0.192
2000 4 004 001 4 000 000 0.253 0.219 0.36
3000 9 006 001 9 000 000 0.444 0.41 0.656
4000 16 008 001 16 000 000 0.725 0.678 1.077
5000 25 010 001 25 000 000 1.075 1.03 1.622

Table 8: Tessellation of [—1,1]? by orthotopes

N Ng nme Python Matlab Octave

50 132 651 125 000 0.175 0.383 0.261
100 1 030 301 1 000 000 0.254 0.204 0.378
150 3 442 951 3 375 000 0.379 0.421 0.709
200 8 120 601 8 000 000 0.658 0.882 1.348
250 15 813 251 15 625 000 1.151 1.616 2.415
300 27 270 901 27 000 000 2.013 2.688 3.983
350 43 243 551 42 875 000 3.1 4.239 6.173

Table 9: Tessellation of [—1,1]® by orthotopes
N Ng nme Python Matlab Octave
10 14 641 10 000 0.27 0.448 0.531
20 194 481 160 000 0.268 0.146 0.565
30 923 521 810 000 0.338 0.269 0.783
40 2 825 761 2 560 000 0.532 0.604 1.338
50 6 765 201 6 250 000 0.921 1.337 2.551
62 15 752 961 14 776 336 1.803 3.188 5.142

Table 10: Tessellation of [—1,1]* by orthotopes

N Ng nme Python Matlab Octave

5 7 776 3 125 0.478 0.474 1.404

10 161 051 100 000 0.469 0.227 1.453

15 1 048 576 759 375 0.614 0.517 1.907

20 4 084 101 3 200 000 1.071 1.538 3.563

25 11 881 376 9 765 625 2.316 4.212 7.669

27 17 210 368 14 348 907 3.167 6.032 10.559

Table 11: Tessellation of [—1,1]° by orthotopes
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C.0.2 Tessellation by d-simplices

N Ng nme Python Matlab Octave

1000 1 002 001 2 000 000 0.174 0.439 0.287
2000 4 004 o001 8 000 000 0.378 0.448 0.727
3000 9 006 001 18 000 000 0.721 0.92 1.46
4000 16 008 001 32 000 000 1.216 1.577 2.512
5000 25 010 001 50 000 000 1.831 2.428 3.834

Table 12: Triangulation of [—1,1]? by simplices

N Ng nme Python Matlab Octave
40 68 921 384 000 0.205 0.43 0.303

60 226 981 1 296 000 0.242 0.18 0.404
80 531 441 3 072 000 0.331 0.301 0.634

100 1 030 301 6 000 000 0.468 0.481 0.993
120 1 771 561 10 368 000 0.669 0.827 1.529
140 2 803 221 16 464 000 0.955 1.266 2.259
160 4 173 281 24 576 000 1.381 1.853 3.223
180 5 929 741 34 992 000 1.881 2.583 4.488
Table 13: Triangulation of [—1, 1] by simplices
N Ng nme Python Matlab Octave
10 14 641 240 000 0.333 0.456 0.581

20 194 481 3 840 000 0.561 0.443 1.059
25 456 976 9 375 000 0.977 0.904 1.844
30 923 521 19 440 000 1.749 1.775 3.252
35 1 679 616 36 015 000 3.001 3.169 5.558

Table 14: Triangulation of [—1,1]* by simplices

N Ng nme Python Matlab Octave
2 243 3 840 0.496 0.534 1.516
4 3 125 122 880 0.494 0.185 1.526
6 16 807 933 120 0.541 0.227 1.685
8 59 049 3 932 160 0.654 0.449 2.189
10 161 051 12 000 000 1.314 1.232 3.691
12 371 293 29 859 840 2.914 3.091 6.726
Table 15: Trianglation of [—1,1]° by simplices
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