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Abstract

FC-VFEMP; is an object-oriented Octave package dedicated to solve scalar or vector boundary value
problem (BVP) by P;-Lagrange finite element methods in any space dimension. It integrates the FC-
SIMESH package which allows a great flexibility in graphical representations of the meshes and datas on
the meshes.

This package also contains the techniques of vectorization presented in [2] and extended in [I] and
allows good performances when using finite elements methods.
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Chapter

Generic Boundary Value Problems

The notations of [4] are employed in this section and extended to the vector case.

Scalar boundary value problem

Let Q be a bounded open subset of R?, d > 1. The boundary of € is denoted by I.
We denote by Lapea, = £ : H*(2) — L?*(Q) the second order linear differential operator acting on
scalar fields defined, Yu € H2(2), by

Lape.a () —div(AV u) + div (bu) + (V u,¢) + apu (1.1)

where A e (L®(2))™4, be (L*(Q))4, ce (L®(2))? and ag € L*(2) are given functions and (-, -) is the
usual scalar product in RZ. We use the same notations as in the chapter 6 of [4] and we note that we can
omit either div (bu) or (Vu,¢) if b and ¢ are sufficiently regular functions. We keep both terms with b
and ¢ to deal with more boundary conditions. It should be also noted that it is important to preserve the
two terms b and ¢ in the generic formulation to enable a greater flexibility in the choice of the boundary
conditions.

Let TP, T'® be open subsets of T', possibly empty and f € L?(Q), ¢© € HY2(I'P), g% e L*(I'F),
a® e L*(T!) be given data.

A scalar boundary value problem is given by

g Scalar BVP 1 : generic problem
Find v € H2(Q) such that

E(u :f in Q,
u =g on I'P, (1.3)
(jn_ug + afu =g" on TR, (1.4)

The conormal derivative of u is defined by

O+ (A ) — (u,m) (1.5)
0n[;

The boundary conditions (|1.3) and (1.4]) are respectively Dirichlet and Robin boundary conditions.
Neumann boundary conditions are particular Robin boundary conditions with a® = 0.
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Scalar BVP n

To have an outline of the FC-VFEMP; package, a first and simple problem is quickly present. Expla-
nations will be given in next sections.
The problem to solve is the Laplace problem for a condenser.

-

20- Usual BVP 1 : 2D condenser problem
% p

Find u € H2(2) such that
~Au = 0 in QcR?, (1.6)
= 0 on F1, (17)
—12 on Fgg, (18)
u = 12 on ].—‘997 (19>

Figure 1.1: 2D condenser mesh and boundaries (left) and numerical solution (right)

The problem (1.6])-(1.9) can be equivalently expressed as the scalar BVP (1.2))-(1.4) :

g Scalar BVP 2 : 2D condenser problem
Find u € H2(2) such that

L(u

u

in €,

f
gD on FD = Fl (O Fgg () Fgg.

where £ := L10,0,0, f =0, and

gD :=0on I}, gD := —12 on T'gg, gD := +12 on I'gg

In Listing [19] a complete code is given to solve this problem.

meshfile=gmsh.buildmesh2d(’ condenser?,10); % generate mesh
Th=siMesh(meshfile); % read mesh
Lop=Loperator(2,2,{1,0;0,1},[L[1,[D;
pde=PDEelt(Lop);

bvp=BVP(Th,pde);

bvp.setDirichlet( 1, 0.);

bvp.setDirichlet( 98, —12.);

bvp.setDirichlet( 99, +12.);

U=Dbvp.solve();

% Graphic parts

figure(1)

Th.plotmesh(?color?,0.7%[1,1,1])

hold on
Th.plotmesh(’d?,1,’Linewidth’,2,’legend’ truc)
axis off,axis image

figure(2)
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17

18

Vector boundary value problem “—

Th.plot(U,’edgecolor’,’none’,’facecolor’,’interp’)
axis off,axis image;colorbar

Listing 1.1: Complete Octave code to solve the 2D condenser problem with graphical representations

Obviously, more complex problems will be studied in section ?? and complete explanations on the
code will be given in next sections. Previously, the vector BVP is formally presented with an application.

Vector boundary value problem

Let m > 1 and H be the m-by-m matrix of second order linear differential operators defined by

H oo (H2Q)™ — (LX)
{ U= (U1,...,Up) +—— f:(fl,...,fm)“;‘%(u) (1.10)

where .
fo = Haplug), Yae[l,m], (1.11)
B=1
with, for all (o, B) € [1,m]?,
Ha,p = EAa,Byba,ff,ca,B,ang (1.12)

and A%P e (L®(Q))4*? b*F € (L*(Q))4, ¢*P e (L*(Q))¢ and ag”g € L*(R) are given functions. We
can also write in matrix form

£A1’1,b1'1,81’1,aé'1 e EAl,m’bl,m’cl,'m,’aév’” (751
H(u) = : : B (1.13)

LAmJ,b"”’l,c’"*l,a’gl’l e EAm,m’bm,m’cm,m’aglﬂn um

We remark that the H operator for m = 1 is equivalent to the £ operator.

For a € [1,m], we define T2 and I'Z as open subsets of T', possibly empty, such that T2 n TZE = .
Let f e (L2(Q)™, g2 e HY2(TD), gF € L2(TE), aff € L®(TE) be given data.

A vector boundary value problem is given by

-

g Vector BVP 1 : generic problem
Find u = (u1,...,u,) € (H2(Q))™ such that

Hu) =f in Q, (1.14)

uy =g7 on T2, Va e [1,m], (1.15)

Ou + afu, =g on T® Va e [1,m], (1.16)
6n7.¢a

where the a-th component of the conormal derivative of u is defined by

Mgt 0 _OUp XN (/pas _ (pB
ona,, - ﬁgl anHa,ﬁ - ;1 (<A V'U'B’n> <b ’u’ﬂ’n>) : (1.17)

The boundary conditions are the Robin boundary conditions and is the Dirichlet
boundary condition. The Neumann boundary conditions are particular Robin boundary conditions
with aff =

In this problem, we may consider on a given boundary some conditions which can vary depending on

uw

2 R R
F- Tarur =gy and

the component. For example we may have a Robin boundary condition satisfying
1

a Dirichlet one with uy = g2.
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Vector BVP

To have an outline of the FC-VFEMP; package, a second and simple problem is quickly present.

-

-@'— Usual vector BVP 1 : 2D simple vector problem

Find u = (u1,u2) € (H%(2))? such that
~Au; +uz = 0 in QcR? (1.18)
~Aug +u; = 0 in Q< R? (1.19)
(up,u2) = (0,0) on Ty, (1.20)
(ug,u2) = (—12.,4+12.) on I'gs, (1.21)
(u1,us2) (+12.,—12.) on Iy, (1.22)

where Q and its boundaries are given in Figure
The problem (1.18])-(1.22) can be equivalently expressed as the vector BVP ([1.2)-(1.4)) :

-

Find u = (u1,us) € (H2(2))? such that

H(u) =f
Uy =91D
U2 =92D

where
(L1000 Loo00,:1
H =
Loo,01 L1000

and

g2 ==0onTly, g7 :=~12, g7

fg Vector BVP 2 : 2D simple vector problem

in Q,
on FD = Fl U ng () Fgg,

onI'P = I'y UTgg U gy,

:= 412 on I'gg, g{j = E12) g2D := —12 on I'yg

In Listing 21 a complete code is given to solve this problem. Numerical solutions are given in Fig-

ure

meshfile=gmsh.buildmesh2d(’ condenser?,10); % generate mesh

Th=siMesh(meshfile); % read mesh
Hop=Hoperator(2,2,2);
Hop.set([1,2],[1,2],Loperator(2,2,{1,[;[],1},[1,[,11));
Hop.set([1,2],[2,1],Loperator(2,2,[],[I,[],1));
pde=PDEelt(Hop);

bvp=BVP(Th,pde);

bvp.setDirichlet( 1, 0.,1:2);
bvp.setDirichlet( 98, {—12,+12},1:2);
bvp.setDirichlet( 99, {+12,—12},1:2);
U=bvp.solve(’split’, true);

% Graphic parts

figure(1)

Th.plot(U{1})

axis image;axis off;shading interp
colorbar

figure(2);

Th.plot(U{2})

axis image;axis off;shading interp
colorbar

Listing 1.2: Complete Octave code to solve the funny 2D vector problem with graphical representations
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Vector BVP

20 20
10 10
0 0

10 10
20 -20

Figure 1.2: Funny vector BVP, u; numerical solution (left) and us numerical solution (right)

Obviously, more complex problems will be studied in section 7?7 and complete explanations on the
code will be given in next sections.

In the following of the report we will solve by a P;-Lagrange finite element method scalar B.V.P. (1.2)
to and vector B.V.P. to without additional restrictive assumption.

1.2.0

1.2.Vector BVP
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Chapter 2

Octave objects

Fdata Object

This object is used to create the datas associated with the scalar boundary value problem (1.2))-(1.4) or
vector boundary value problem (|1.14))-(1.16]).

Loperator Object

The object Loperator is used to create the operator Lap ¢, defined in (1.1)). Its main properties are

5 Properties of rLoperator object

d : integer, space dimension.

A : array of d-by-d cells.
Used to store the A functions such that A{i,j} < A; ;.
Each cell contains a Fdata object or is empty for 0
value

b : array of d-by-1 cells.
Used to store the b functions such that b{i} < b;.
Each cell contains a Fdata object or is empty for 0
value

c : array of d-by-1 cells.
Used to store the ¢ functions such that c{i} < ¢;.
Each cell contains a Fdata object or is empty for 0

value
a0 : a Idata object or empty for 0 value

Used to store the ag function such that a0 < ag.
order : integer

order of the operator : 2 if A is not empty, 1 if A

is empty and b or ¢ not empty, 0 if A, b and ¢ are

empty.




Hoperator object “.
Constructor

Its contructor are

obj=Loperator ()
obj=Lopertor(dim,d,A,b,c,a0)

Description

‘ obj=Loperator() ‘ create an empty operator.

‘ obj=Loperator(dim,d,A,b,c,a0) ‘

[ ]

]

[ ]

Samples
—Au = £|707070

in R Lop=Loperator(1,1,{1}[II.I)
in R?2  Lop=Loperator(2,2,{L,[;[, 111111
in R? Lop=Loperat 01‘(3?37{17”7”;”717“§”7”71}7”7[]7”)

—Au+u = EI,O,O,l

in R Lop=Loperator(1,1,{1},[],[],1)
in R?  Lop=Loperator(2,2,{1,[;[,1},],[],1)
in R® Lop=Loperat or(3,3,{L,ILIENL,050:10,13:00.00,1)

[
(=}
-
8]
=]
e
fre)
(2]
=
(=}
O
i
(32]
(91}

In R?, —Au+ (1 + cos(z + y))u := L1.0.0,(z,y)—(1+cos(z+1))

Lop=Loperator(2,2,{1,[;[],1},[I,[],2(x,v) 14+cos(x+v))

2. Octave objects

N Methods

apply function

Hoperator object

The object Hoperator is used to create the operator H defined in (1.10). Its main properties are

g Properties of toperator object

d : integer, space dimension.
m : integer
H : array of d-by-d cells.

Used to store the H operators such that [{i,j} «
Hij, Vi,j € [1,m]. Each cell contains a Loperator
object or an empty value.

Constructor

Its contructor are

Compiled on 2017/10/15 at 09:21:13



PDEelt object

obj=Hoperator ()
obj=Hoperator(d,s,m)

Description

‘ obj=Hoperator() ‘ create an empty operator with all dimensions set to 0.

‘ obj=Hopertor(d,s,m) ‘ create an empty/null operator with the given dimensions.

Samples

In R?, with u = (uy,us) the operator H defined by

Hw) (—Au1 + u2)

Uy — AUQ

()= (7 ) ()

(L1000 £Loo,0:1
1Y =
Loo.0,1 L1000

could be written as

and then

Hop=Hoperator(2,2,2);
Lopl=Loperator(2,2,{L,[;[l,1},[L.ID;
Lop2=Loperator(2,2,[],[],[],1);
Hop.set(1,1,Lop1);Hop.set(2,2,Lop1);
Hop.set(1,2,Lop2);Hop.set(2,1,Lop2);

oA W N =

or

1 Hop=Hoperator(2,2,2);
2 H()I)'Set([172] ) [172] ,L()p(‘,]'zlt()]'(2,2,{1,[] 5 []71}7[] ) [] ) []))7
3 Hop.set([1,2],[2,1],Loperator(2,2,[],[],[],1));

el Methods

set function
zeros function

opStiffElas function

roeelt object

This object is used to create the scalar PDE (1.2) or the vector PDE (|1.14):

L(u)=f or H(u)=f.

Its main properties are

Compiled on 2017/10/15 at 09:21:13
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BVP object

f! Properties of PDrclt object

d . integer, space dimension.

m :  integer

Op : Loperator or Hoperator object.

f ¢ (cells of) Fdata object or empty.

Used to store the right-hand side of the PDE. If Op
is an Loperator object then f is an Fdata object or is
empty. If Op is an Hoperator object then [ is a cell
array of Op.m Fdata object or empty value.

Its contructor are

obj=PDEelt ()
obj=PDEelt (Op)
obj=PDEelt (Op, f)

Description

obj=PDEelt() | create an empty object.

| obj=PDEcli(Op) | create the PDE with f = 0: i.e. Op(u)=0

‘ obj=PDEelt(Op,f) ‘ create the PDE Op(u)=f. If Op is an Hoperator object then f must be a cell array of
length Hoperator.m.

Samples
In R?, —Au +u = f, with f(z,y) = xsin(z + y)
1 Lop=Loperator(2,2,{1,[];[1,1},[],[],1);

2 f=Q(x,y) x.xsin(x+y);
3 pde=PDEelt(Lop,f);

The f function must be written in a vectorized form.

7451 &ve object

The object BVP is used to create a scalar boundary value problem — or a vector boundary value
problem —. The usage of this object is strongly correlated with good comprehension of the
FC-SIMESH package and and more particularly with the siMesh object.

The properties of the object BV are

Eg Properties of zvr object

d :  integer, space dimension.
m :  integer, system of m PDEs.
Th : asiMesh object

pdes @ Th.sTh-by-1 cell array.

Used to store the PDE associated with each submesh
Th.sTh{i}. If pdes{i} is empty then there is no PDE
defined on Th.sTh{i}.

Constructor

Its contructor are
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BVP object

obj=BVP ()
0bj=BVP(Th,pde)
obj=BVP(Th,pde,labels)

Description

obj=BVP() | create an empty BVP object.

‘()bj:B\r'P(Th,l)(l(‘,) ‘ create a BVP object with PDE’s defined by pde object on all submeshes of index
Th.find(pde.d) i.e. on all submeshes such that Th.sTh{i}==pde.d. By default, homogeneous Neu-
mann boundary conditions are set on all boundaries.

‘ obj=BVP(Th,pde,labels) ‘ similar to previous one except among the selected objects are choosen those

with label (Th.sTh{i}.label) in labels array. By default, homogeneous Neumann boundary conditions
are set on all boundaries.

Main methods

Let bvp be a BVP object.

setPDE function

bvp.setPDE(d,label,pde)

Description

bvp.setPDE(d,label,pde) ‘ associated the pde object with the ¢-th submesh such that i=bvp.Th.find(d,label)
If 4 exists then bvp.pdes{i} is set to pde.

setDirichlet function

bvp.setDirichlet(label,g)
bvp.setDirichlet(label,g,Lm)

Description

bvp.setDirichlet(label,g) ‘ for scalar B.V.P., sets Dirichlet boundary condition

u =g, on I'pel
and for vector B.V.P., sets Dirichlet boundary condition

u; = gfi},Vie [1,m] on T'y;.

bvp.setDirichlet(label,g,Lm) ‘ for vector B.V.P.; sets Dirichlet boundary condition

U (1) = e{i}, Vi € [1,length(Lm)] on Iy},

setRobin function

bvp.setRobin(label,gr,ar)
bvp.setRobin(label,gr,ar,Lm)

Compiled on 2017/10/15 at 09:21:13
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BVP object

Description

bvp.setRobin(label,gr,ar) ‘ for scalar B.V.P., sets Robin boundary condition (|1.4])

u
% +aru = gr, on I}

For vector B.V.P., sets Robin boundary condition (|1.16)

ou
6nH

+ ar{i}u; = gr{i}, Vie [1,m]] on I'|, 0

i

‘ bvp.setRobin(label,gr,ar,Lm) ‘ for vector B.V.P., sets Robin boundary condition (|1.16) :
Vi € [1,length(Lm)], let o = Lim(i) then

ou
(9nH

+ ar{i}uy = gr{i}, on Flabel'

o

solve function

x=bvp.solve()

x=bvp.solve(key,value,...)
Description
x=bvp.solve()) | uses P;-Lagrange finite elements method to solve the B.V.P. described by the bvp object.
<
o
‘ x=bvp.solve(key,value,...) ‘ <
3]
® ’solver’ : =
4=
® ’split’ : E‘“
e ’local’ : N
=
® ’perm’ : N

(2]
Lo
3]
2
2
)
)
>
®
E
[8)
@)
~
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Chapter 3

Scalar boundary value problems

Poisson BVP’s

The generic problem to solve is the following

-@'— Usual BVP 2 : Poisson problem
Find u € HY(2) such that

where @ ¢ RYU™ with 0Q =Tp uTg and I'p nTr = .
The Laplacian operator A can be rewritten according to a £ operator defined in (1.1)) and we have

—A"i‘—dimifz (3.4)
= Z e 1,0,0,0- .

The conormal derivative a(% of this £ operator is given by

(9u def - (lu
s H AV un) = oo (3.5)

We now will see how to implement different Poisson’s BVP while using the FC-VFEMP; toolbox.

SRS 2D Poisson BVP with Dirichlet boundary conditions on the unit square

Let © be the unit square with the associated mesh obtain from HypErRCUBE function (see section ?? for
explanation and Figure ?? for a mesh sample) by the command

Th=fc_simesh.HyperCube(2,50);



Poisson BVP's

Figure 3.1: 2D hypercube (left) and its boundaries (right)

We choose the problem to have exact solution
2 2
Uex (T, y) = cos (z — y) sin (x + y) + e(=="=v)
So we set f = —Auey i.e.
flz,y) =—4 z2e(=2"=v") _ 4y2e(_$2_y2) +4 cos (z —y)sin(x +y) + gel=="=v"),
On all the 4 boundaries we set a Dirichlet boundary conditions (and so I'r = &¥) :
U = Uex, OHFD :F1UF2UF3UF4.

So this problem can be written as the scalar BVP

f!Scalar BVP 3 : 2D Poisson BVP with Dirichlet boundary conditions
Find u € H'(Q2) such that

Liooo(u) = f inQ=1[0,1]%

u Uex On 'y Uy UT3UTYy,

In Listing [0] we give the complete code to solve this problem with FC-VFEMP; toolbox.

()
1Y
(1]
=]
o
(7]
=
(=
=)
Q
=
=}
f=
o
(/2]
(=
.8
B
<
c
(]
(8]
>
'
(1]
T
=
w3
€ o
9 o
o9
g3
a-<
g
c c
>
;3
©S
(=
gm
c
T 9
[ .»
3
(7p]
.0
™ N
L]
=
o
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Poisson BVP's

1 | uex=Q(x,y) cos(x—y).*sin(x+y)+exp(—(x."2+y.”2));

2 | [=0(x,y) —4#x.”2.xexp(—x."2—y.72) — 4xy."2.xexp(—x."2—y."2) + 4xcos(x—y).xsin(x+y) + ...
4xexp(—x."2—y."2);

Th=fc_simesh.HyperCube(2,50);

Lop=Loperator(2,2,{1,0;0,1},[L,[l,[D;

pde=PDEelt(Lop,f);

bvp=BVP(Th,pde);

for lab=1:4, bvp.setDirichlet( lab, uex);end % Setting Dirichlet boundary conditions

U=bvp.solve(); % Solving the BVP

o N o o oA W

Listing 3.1: Poisson 2D BVP with Dirichlet boundary conditions : numerical solution (left) and
error (right)

In line 7?7 we set the Dirichlet boundary conditions and in line ?? we solve the BVP.

2D Poisson BVP with mixed boundary conditions

Let © be the unit square with the associated mesh obtain from HypErCuUBE function (see section ?? for
explanation and Figure ?? for a mesh sample)
We choose the problem to have exact solution

Uex (T, y) = cos (2 +y) .

So we set [ = —Augy i.e.
f(z,y) =5cos(2x +y).

On boundary labels 1 and 2 we set a Dirichlet boundary conditions :

U = Uex, ON re = I'yuls.

On boundary label 3, we choose a Robin boundary condition with af*(x,y) = 22 + y* + 1. So we have

0
—u—f—aRu:gR, onI‘R=I‘3
on
with g% = (22 + y?> + 1) cos (22 + y) +sin (2z + ).
On boundary label 4, we choose a Newmann boundary condition. So we have

0
XN onTVN =T,
on
with g% = —sin (22 + y) . this can be also written in the form of a Robin condition with aR = 0

So this problem can be written as the scalar BVP [
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Poisson BVP's

f!Scalar BVP 4 : 2D Poisson BVP with Dirichlet boundary conditions

Find u € HY(£2) such that
Ligoo(w) = f inQ=][0,1]% (3.8)
U = Uex onI'1 Ul U3 Uy, (3.9
ai—uﬁ +afu = ¢f onTs, (3.10)
ai_“ﬁ = g~ onTy, (3.11)

In Listing [T4] we give the complete code to solve this problem with FC-VFEMP; toolbox.

0.00025

uex=Q(x,y) cos(2*x+y);

f=Q(x,y) 5xcos(2%x+y);

gradu={Q(x,y) —2xsin(2*x+y), Q(x,y) —sin(2xx+y)};
ar3=Q(x,y) 14+x.724y."2;
Th=fc_simesh.HyperCube(2,50);
Lop=Loperator(2,2,{1,0;0,1},[1,[],[]);
pde=PDEelt(Lop,f);

bvp=BVP(Th,pde);

bvp.setDirichlet( 1, uex);

10 | bvp.setDirichlet( 2, uex);

11 | bvp.setRobin( 3, Q(x,y) —gradu{2}(x,y)+ar3(x,y).xuex(x,y),ar3);
12 | bvp.setRobin( 4, gradu{2},[]);

13 | U=bvp.solve();

© ® N o ;oA W N e

Listing 3.2: Poisson 2D BVP with mixed boundary conditions : numerical solution (left) and error
(right)

We set respectively in lines [I1] and [I2] the Robin and the Neumann boundary conditions by using
sETROBIN member function of BVP class.

3D Poisson BVP with mixed boundary conditions

Let Q be the unit cube with the associated mesh obtain from HyperCuUBE function (see section ?? for
explanation and Figure ?? for a mesh sample)
We choose the problem to have exact solution

Uex (2, y,y) = cos (4 —3y +52).

So we set [ = —Auey i.e.
f(z,y,2) =50 cos(dx—3y+52).

On boundary labels 1,3,5 we set a Dirichlet boundary conditions :

U = Uex, onI‘D=F1uI‘3uI‘5.
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Poisson BVP's

On boundary label 2, we choose a Robin boundary condition with a(z,y) = 1. So we have

0
l+aRu=gR, onTR=Ty,0uTy
on
with ¢®(z,y,2) = cos(4x — 3y +52)—4sin(dz — 3y +52),on Ty and g (x,y, 2) = cos (4z — 3y + 52)+
3sin(dx—3y+52), on Iy
On boundary label 6, we choose a Newmann boundary condition. So we have

0
—u:gN, on TV =TI
on
with ¢V = —5 sin (42 — 3y + 5 2) . this can be also written in the form of a Robin condition with aR = 0
on FG-
So this problem can be written as the scalar BVP [

gScalar BVP 5 : 3D Poisson BVP with mixed boundary conditions

-

Find u € H'(£2) such that
Ligoo(u) = f inQ=1/0,1]° (3.13)
U = Uex onl'y ulz Ul (3.14)
U | GRy g® on Ty UTy, (3.15)
6n£
ou
% = gN on I'g, (3.16)

In Listing [16] we give the complete code to solve this problem with FC-VFEMP; toolbox.
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05

0.0004

0.0003

0.0002

0.0001

0.0004

0.0003

0.0002

0.0001

uex=0(x,y,z) cos(2xx—y—z).*sin(x—2%y+2);

=Q(x,y,z) 6%cos(x — 2%y + z).xsin(2xx — y — z) + 12xcos(2xx — y — z).xsin(x — 2%y + 2);

ar=1;

gradu={Q(x,y,z) cos(2xx — y — z).xcos(x — 2%y + z) — 2xsin(2%x — y — z).xsin(x — 2xy + 2), ...

Q(x,y,z) —2%cos(2xx — y — z).xcos(x — 2xy + z) + sin(2%x —

Q(x,y,7) cos(2%x — v — z).kcos(x — 2y + z) + sin(2xx — y — z).sin(x — 2%y + 2)};

Th=fc_simesh.HyperCube(3,30);
Lop=Loperator(3,3,{1,0,0;0,1,0;0,0,1},[],[],[1);
pde=PDEelt(Lop,f);

bvp=BVP(Th,pde);

for lab=[1,3,5], bvp.setDirichlet( lab, uex);end
bvp.setRobin(2,Q(x,y,z) gradu{l}(x,y,z)+arxuex(x,y,z),ar);
bvp.setRobin(4,Q(x,y,z) gradu{2}(x,y,z)+arxuex(x,y,z),ar);
bvp.setRobin(6,Q(x,y,z) gradu{3}(x,y,z),[]);
U=bvp.solve();

y — z).xsin(x — 2xy + 7), ...

Listing 3.3: 3D Poisson BVP with mixed boundary conditions :

error (bottom)

numerical solution (upper) and

SRS 1D BVP : just for fun

Let 2 be the interval [a,b] we want to solve the following PDE

—u"(z) + c(z)u(z) = f(z) Vz €la,b]

with the Dirichlet boundary condition u(a) = 0 and the homgeneous Neumann boundary condition on b
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Stationary convection-diffusion problem

01r

0.05 [

-0.1

f=Q(x) cos(pixx);

c=Q(x) 14+(x—1)."2;

a=—1;b=1;

Th=fc_simesh.HyperCube(1,50,’ trans’,@Q(x) a + (b—a)*x);
Lop=Loperator(1,1,{1},[],[l,¢c);

pde=PDEelt(Lop,f);

bvp=BVP(Th,pde);

bvp.setDirichlet( 1, 0);

U=Dbvp.solve();

© ® N O ;oA W N =

Listing 3.4: 1D BVP with mixed boundary conditions

Stationary convection-diffusion problem
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SWPBN  Stationary convection-diffusion problem in 2D

The 2D problem to solve is the following
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-\@/— Usual BVP 3 : 2D stationary convection-diffusion problem
Find u € H'(2) such that
—div(aVu) +<(V,Vuy+pu = f inQcR? (3.18)
u = 4 on Ty, (3.19)
u = —4 onTy, (3.20)
u = 0 on Iy ulhsy, (3.21)
0
% = 0 on Fl O Fg V) FlO (322)

where  and its boundaries are given in Figure ??. This problem is well posed if a(z) > 0 and
B(z) = 0.
We choose «, V', fand f in Q as:

a@) = 0.1+ (z;—0.5)%

V(z) = (—10z2,10z;),

Bx) = 0.01,

f(®) = —200exp(—10((x; — 0.75)% + 23)).

3.2.Stationary convection-diffusion problem
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Figure 3.2: 2D stationary convection-diffusion BVP : mesh (left) and boundaries (right)

The problem (3.18))-(3.22) can be equivalently expressed as the scalar BVP (1.2))-(1.4) :

gScalar BVP 6 : 2D stationary convection-diffusion problem

Find u € H'(2) such that

E(u :f in Q,
u =gP onI'P,
ﬁ_u + aftu =g% on I'E,

where

e L:=La0,v,3, and then the conormal derivative of u is given by

ou ou
% = <AV u,n> — <bu,n> = Oé%.

o FD:FQUF4UF20UF21 andFR=F1UF3UF10
e gP:=40onTy and g” := —4 on Ty and g” := 0 on I'yg U I'y;
e af' = gf:=0onTF

The algorithm using the toolbox for solving (3.18)-(3.22)) is the following:

Algorithm 1 Stationary convection-diffusion problem in 2D

=W N =

t

: T, < siMEesH(...) > Get mesh
s a— (z,y) — 0.1+ (y — 0.5)(y — 0.5)

. f < 0.01

D f e (z,y) — —900e—10((z=0.75)*+y%)

a 0 —10y
. Lop « LQPERATOR(Z,Q, (0 a) ,0, < 102 > 7ﬁ)

: pde < PDEEgLr(Lop, f)
: bvp < BVP(Ty, pde)

: bvp.serDiricHLET(2,4.0) > Set ’Dirichlet’ condition on I'
: bvp.seTDIrICHLET(4, —4.0) > Set ’Dirichlet’ condition on I'y
: bvp.serDiricHLET(20,0.0) > Set ’Dirichlet’ condition on Iy
: bvp.serDiricureT (21, 0.0) > Set ’Dirichlet’ condition on I'y;

: 4 < bvp.sowve()
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Stationary convection-diffusion problem

Numerical solution (n q=3630. n me =6974)
Numerical solution (n q=3630, n me =6974)

fullgeofile=fc _vfempl.get geo(2,2,geofile);

if isempty(fullgeofile), error(’geofiley s not found’,geofile);end
af=Q(x,y) 0.14y."2;

Vx=Q(x,y) —10%y;Vy=Q(x,y) 10%x;
meshfile=gmsh.buildmesh2d(fullgeofile,N, ’meshdir’ ,R.meshdir); %, force’, true);, ’geodir’, R.geodir
end

tstart=tic();

Lop=Loperator(Th.dim,Th.d,{af,[J;[],af},[],{ Vx,Vy},b);
pde=PDEelt(Lop,f);

bvp=BVP(Th,pde);

bvp.setDirichlet(2, g2);

bvp.setDirichlet(4, g4);

Listing 3.5: Setting the 2D stationary convection-diffusion BVP and representation of the numerical
solution

The numerical solution for a given mesh is shown on figures of Listing ?7

Stationary convection-diffusion problem in 3D

Let A = (z4,y4) € R? and C' ([2min, Zmaz]) be the right circular cylinder along z—axis (2 € [Zmin, Zmax])
with bases the circles of radius r and center (24, YA, Zmin) and (A, YA, Zmaz)-
Let © be the cylinder defined by

Q = Cly 0y ([0, 3D\{C{%y ([0, 3]) L €. ([0,3]) © Clio 7 ([0, 3])}-

We respectively denote by I'1gp9 and I'1g91 the z = 0 and z = 3 bases of Q.
Iy, Tyo, Iy and T'y; are respectively the curved surfaces of cylinders C(l0 0)([0,3]), C?GSO)([O,S]),

C?d,l—o.n([(), 3]) and C?(j’loj) ([0, 3]).
The domain 2 and its boundaries are represented in Figure 77.
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Stationary convection-diffusion problem

Figure 3.3: 3D stationary convection-diffusion BVP : all boundaries (left) and boundaries without I’y
(right)

The 3D problem to solve is the following
-\@’- Usual BVP 4 :

-

3D problem : Stationary convection-diffusion Find u € H?(Q) such that
—div(aVu) +(V,Vuy+pu = f inQcR? (3.23)
0
a—u +agpu = ggo on Iy, (3.24)
on
0
O[l + a4 = @go21 On F21, (325)
on
0
% - 0 onTV (3.26)

where T'V = T'; U Ty U I'1goo U I'1go1. This problem is well posed if a(z) > 0 and B(zx) > 0.
We choose agg = as1 =1, go1 = —gog = 0.05 f = 0.01 and :

alz) = 0.7+x3/10,
V(iL‘) = (—10%‘2, 1021, 101‘3)t7
f(x) = —800exp(—10((z; — 0.65)% 4+ 23 + (z3 — 0.5)?))

+800 exp(—10((x; + 0.65)2 + 23 + (23 — 0.5)?)).

The problem (3.23))-(3.26)) can be equivalently expressed as the scalar BVP ((1.2)-(1.4) :
EgScalar BVP 7 :

3D stationary convection-diffusion problem as a scalar BVP Find u € H?(Q) such that

-

L(u) =f in Q,

du R R on TR
ang ’

where
o L:=L40V,3, and then the conormal derivative of u is given by

ou ou
= (AVu,n) — (bu,n) = ay.

a’ng

e T =T1 Ul Ul Ul Ul U 01 (and TP = )
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2D electrostatic BVPs

R { 0 onI'vyulipulig v oo
1

a = on FQO ) F21

0 on I't UT'19 U I'1goo U 1001
g =1 005  onTa,

—005 on FQO

We give respectively in Listing [11] the corresponding Octave codes and the numerical solution for a
more refined mesh.

nq=108999, nme=587067 ng=108999, nme=587067

fullgeofile=fc _vfempl.get geo(3,3,geofile);
if isempty(fullgeofile), error(’geofiley s not found’,geofile);end
af=Q(x,y,z) 0.7+ z/10;

beta=0.01;

tstart=tic();

end

tstart=tic();
Lop=Loperator(Th.dim,Th.d,{af,[],[};[],af,[];[I,[],at},[],V,beta);

pde=PDEelt(Lop,f);
bvp=BVP(Th,pde);

Listing 3.6: Setting the 3D stationary convection-diffusion BVP and representation of the numerical
solution

2D electrostatic BVPs

In this sample, we shall discuss electrostatic solutions for current flow in resistive media. Consider a
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where o is the local electrical conductivity and E the local electric field.
The electric field can be written as a gradient of a scalar potential

(2]

region 2 of contiguous solid and/or liquid conductors. Let j be the current density in A/m?. It’s satisfy %
(0]

divj =0, in Q. (3.27) -2
2

2

j=cE, inQ. (3.28) o
©

(@]

&

&

o)

E=—-Vy, inQ. (3.29)
Combining all these equations leads to Laplace’s equation
div(c V) =0 (3.30)

In the resistive model, a good conductor has high value of ¢ and a good insulator has 0 < opul.
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2D electrostatic BVPs

Material p(Q.m) at 20°C o(S/m) at 20°C

Carbon (graphene) | 1.00 x 1078 1.00 x 108

Gold 2.44 x 1078 4.10 x 108

Drinking water 2.00 x 10! to 2.00 x 10* | 5.00 x 10~ to 5.00 x 102
Silicon 6.40 x 102 1.56 x 1073

Glass 1.00 x 10! to 1.00 x 10'® | 10715 to 10~ 11

Air 1.30 x 106 to0 3.30 x 106 | 3 x 10715 to 8 x 10715

As example, we use the mesh obtain with gmsh from square4holes6dom.geo file represented in

Figure [3.4]

Figure 3.4: Mesh from square4holes6dom.geo, domains representation (left) and boundaries (right)

We have two resistive medias
Qa=QlO and Qb=920UQQUQ4UQGUQS.
In 2, and €2 the local electrical conductivity are respectively given by

o = 10% inQ,
7T 0, = 107* inQ,

We solve the following BVP
3@'— Usual BVP 5 : 2D electrostatic problem

Q
o
4=
=
9
2
[=]
-
Q.
e
2
(2]
=
—
5=
<
(=
.2
-
Q
(]
>
e
o
(S}
>
-
(]
S
=
s
(]
-
(%]
=
%
o

n
£
=
2
o
™3
a
(9]
=
)
>
>
1)
(]
°
=
=
[=}
2
)
k)
®
8}
[72]
o

Find ¢ € HY(Q) such that
div(c V) =0 in £, (3.31)
=0 onI'suly, (3.32)
p=12 onT; uTs, (3.33)
0
05 —0 on T1p. (3.34)

The problem (3.31)-(3.34) can be equivalently expressed as the scalar BVP (T1.2))-(1.4) :

-

fgScalar BVP 8 : 2D electrostatic problem

3.3.2D electrostatic BVPs

Find ¢ € H'(Q) such that
L(p) =0 in Q,
o =g>° on I'P,

0
% +afp=g® on I'E.

where
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2D electrostatic BVPs

o L:=L;10,v,3, and then the conormal derivative of ¢ is given by

op B _ O

e I'P =T, uUl'suls Ul and I'® = I';y. The other borders should not be used to specify boundary
conditions: they do not intervene in the variational formulation and in the physical problem!

e gP:=0onT3uly and gP :=120on T UTs.
e aft =g :=0onTFE
To write this problem properly with FC-VFEMP; toolbox, we split (3.31]) in two parts

div(e, V) =0 in Q,
div(ep V) =0 in Q

and we set these PDEs on each domains. This is done in Matlab Listing

Listing 3.7: Setting the 2D electrostatic BVP, Matlab code

tstart=tic();

end

tstart=tic();
Lop=Loperator(dim,d,{sigma2,0;0,sigma2},[],[I,[]);
pde=PDEelt(Lop);

bvp=BVP(Th,pde);
Lop=Loperator(dim,d,{sigmal,0;0,sigmal},[],[],[]);
pde=PDEelt(Lop);

bvp.setPDE(2,10,pde);

bvp.setDirichlet( 1, 12);

bvp.setDirichlet( 3, 0);

We show in Figures and respectively the potential ¢ and the norm of the electric field E.

potentiel $varphi$ potentiel $varphi$
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Figure 3.5: Test 1, potential ¢

3.3.2D electrostatic BVPs
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Norm of the electric field $E$ Norm of the electric field $E$

Figure 3.6: Test 1, norm of the electrical field £
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3.3.2D electrostatic BVPs
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Chapter 4

Vector boundary value problems

Elasticity problem

(SBE  General case (d = 2,3)

We consider here Hooke’s law in linear elasticity, under small strain hypothesis (see for example [3]).
For a sufficiently regular vector field u = (uy, ..., uq) : © — RY, we define the linearized strain tensor
€ by

e(u) = % (V(u) + V' (w).

We set €= (6117 €99, 2612)t in 2d and € = (611, €99, €33, 2612, 2623, 2613)t in 3(17 with eij(u) = % (gg’ + ZZ]>
j i
Then the Hooke’s law writes

g = Ce,

where g is the elastic stress tensor and C the elasticity tensor.
The material is supposed to be isotropic. Thus the elasticity tensor C is only defined by the Lamé
parameters A and p, which satisfy A + p > 0. We also set v =2pu+ A. For d =2 or d = 3, C is given by

co ()\112 + 2uly 0) or Co (Ang +2ulz 0 >
0 K/ 3x3 0 m3) 66’

respectively, where 1, is a d-by-d matrix of ones, and |5 the d-by-d identity matrix.
For dimension d = 2 or d = 3, we have:

Gas(W) = 2preas(u) + Atrle()das Vo B e [1,.d]

The problem to solve is the following

-
Ny

-@'— Usual vector BVP 2 : Elasticity problem
Find u = H2(Q)d such that

—div(e(u)) = f, inQcRY (4.1
ou)n = 0 onT%E (4.2
u = 0 onIP.

Now, with the following lemma, we obtain that this problem can be rewritten as the vector BVP



Elasticity problem

defined by to .
Lemme 4.1

Let H be the d-by-d matrix of the second order linear differential operators defined in (1.10) where
Hoz,ﬂ = EAa,ﬂ,(L0,0, V(a,ﬁ) € Hl,d]]z, with

(Aa’ﬂ)kwl = uéalg&d + /L(Sk/g(sla + Aékaélﬁ, V(k,l) € [[1, d]]2. (4.4)
then
H(u) = —dive(u) (4.5)
and, Vo € [[1,d],
ou
— = (o(u).n)q,. (4.6)

The proof is given in appendix ??7. So we obtain

ﬁ Vector BVP 3 : Elasticity problem with H operator in dimension d = 2
ord=3
Let H be the d-by-d matrix of the second order linear differential operators defined in where
V(a,ﬁ) € [[17dﬂ27 Hlx,ﬂ = £A°‘~5,0,0,0u with
e for d =2,
1,1 _ [ 0 1,2 _ 0 A 2.1 _ 0 wu 22 _ (M 0
A _(0 #)’A _(u 0)’A _(AO’A - \0 v
e for d = 3,
v 0 0 0 X O 0 0 X
Abl=1(0 p 0], AbL2 w 0 0f, AL3 0 0 O
0 0 uw 0 0 O pw 0 0
0 w O v 0 0 0 0 O
el A0 0], A22=[(0 v O, AZ3 0 0 M|,
0 0 O 0 0 w 0 pw O
0 0 u 0 0 O uw 0 0
A1 0 0 0], A2=1[0 0 pul|, A33 0 w 0].
A0 O 0 A O 0 0 v
The elasticity problem to can be rewritten as :
Find u = (uy,...,uq) € (H3(Q))? such that
H(u) =f, in 0, (4.7)
My, on TR = TR, Vo e [1,d] (4.8)
(977/,!.[(1
onT? =TP VYace[l,d].

For example, in 2d, we want to solve the elasticity problem (4.1) to (4.3)) where 2 and its boundaries are
given in Figure [£.1]
The material’s properties are given by Young’s modulus F and Poisson’s coefficient v. As we use
plane strain hypothesis, Lame’s coefficients verify
E Ev
IU/ = 5S4 )‘ = T N1 a4
2(1+v) 1+v)(1-2v)

The material is rubber so that E = 21.10°Pa and v = 0.45. We also have f = 2 — (0,—1)" and we
choose T =T1 T2 U T3, TP =T4,
We give in Listing the corresponding Octave codes.

v=2u+ A
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4.1.Elasticity problem




Elasticity problem

Figure 4.1: Domain and boundaries

Listing 4.1: 2D elasticity, Matlab code

fprintf(*1._Building the mesh using HyperCube function\n’ ) ;

%Hop=Hoperator.StiffElas(dim,lam,mu);
gamma=lambda+2+muj;

Hop=Hoperator(dim,dim,dim);
Hop.set(1,1,Loperator(dim,dim,{gamma,[];[],mu},[],[I,]));
Hop.set(1,2,Loperator(dim,dim,{[],lambda;mu,[] },[],[,1));
Hop.set(2,1,Loperator(dim,dim,{[],mu;lambda,|[] },[],[],[1));
Hop.set(2,2,Loperator(dim,dim,{mu,][];[],gamma},[],[],[]))
pde=PDEelt(Hop,{0,—1});

bvp=BVP(Th,pde);
fprintf(*2.b_Solving 2D elasticity, BVP\n’)

bl

I

One can also use the Octave function HoreraTor.STIFFELAS to build the elasticity operator :

Hop=Hoperator.StiffElas(dim,lambda,mu);

For a given mesh, its displacement scaled by a factor 50 is shown on Figure [£.2]
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Figure 4.2: Mesh displacement scaled by a factor 50 for the 2D elasticity problem
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4.1.3 3D example

4.1.Elasticity problem



Elasticity problem

Let = [0,5] x [0,1] x [0,1] = R3. The boundary of  is made of six faces and each one has a unique
label : 1 to 6 respectively for faces x1 = 0, x1 = 5, x2 = 0, 2 = 1, x3 = 0 and z3 = 1. We represent
them in Figure [1.3]
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Figure 4.3: Domain and boundaries

We want to solve the elasticity problem (4.1) to (#.3) with TP = T'y, I'V = U?:2 I;and f =2 —
(0,0, —1)%.
We give in Listing [£.2] the corresponding Octave code using function HOPERATOR.STIFFELAS .

Listing 4.2: 3D elasticity, Octave code

fprintf ( ’1..,Building, the mesh, using, HyperCube function\n’ ) ;
fprintf(’2.a Setting 3D elasticity BVP\n’);
Hop=Hoperator();

Hop.opStiffElas(dim,lambda,mu);

pde=PDEelt(Hop,{0,0,—1});

bvp.setDirichlet(1,0.,1:3);

The displacement scaled by a factor 2000 for a given mesh is shown on Figure [£.4]
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4.1.3 3D example

4.1.Elasticity problem



Stationary heat with potential flow in 2D

2D stationary heat with potential flow - domain Q

Figure 4.5: Domain and boundaries

Figure 4.4: Result for the 3D elasticity problem

Stationary heat with potential flow in 2D

Let T'; be the unit circle, I'1g be the circle with center point (0,0) and radius 0.3. Let T'gg, I'aq, T'o2 and I'ag
be the circles with radius 0.1 and respectively with center point (0, —0.7), (0,0.7), (—=0.7,0) and (0.7,0).
The domain © = R? is defined as the inner of I'; and the outer of all other circles (see Figure .

The 2D problem to solve is the following
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4.2.0 3D example



Stationary heat with potential flow in 2D

-

-\@‘ Usual BVP 6 : 2D problem : stationary heat with potential flow

Find u € H%(2) such that
—div(aVu) +{(V,Vuy+pBu = 0 in Qc R? (4.10)
u = 20xxy on gy, (4.11)
u = 0 on FQQ () F23, (412)
0
l = 0 on Fl ) FlO ) FQO (413)
on

where  and its boundaries are given in Figure This problem is well posed if a(z) > 0 and
B(z) = 0.
We choose o and § in Q as :

al) = 0.1+z3,
B(x) = 0.01

The potential flow is the velocity field V' = V ¢ where the scalar function ¢ is the velocity potential
solution of the 2D BVP ([4.14)-(.17)

-\@’- Usual BVP 7 : 2D velocity potential BVP

()]

Find ¢ € H?(Q) such that Téa.
(]

—A¢ = 0 inQ, (4.14) %

¢ = —20 on Iy, (4.15) a

¢ = 20 on Iy, (4.16) 2

5 .

% = 0 onT;uUTy Uy (4.17) ~

Then the potential flow V is solution of (4.18

-

-\@‘ Usual vector BVP 3 : 2D potential flow
Find V = (V,V3) € HY(Q) x H(Q) such that

V = V¢ inQ, (4.18)

For a given mesh, the numerical result for heat u is represented in Figure 77, velocity potential ¢ and
potential flow V' are shown on Figure 77.
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Stationary heat with potential flow in 2D

2D stationary heat with potential flow Velocity potential )
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Now we will present two manners of solving these problems using FC-VFEMP; codes. n
~
<

(WBIE  Method 1 : split in three parts

The 2D potential velocity problem (4.14)-(4.17) can be equivalently expressed as the scalar BVP (1.2)-
(L.4) :
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Stationary heat with potential flow in 2D

Scalar BVP 9 : 2D potential velocity

Find ¢ € H?(Q) such that
L(g) =f in Q,
¢ ng on FDy
6_(;3 + afp =g% on I'f.
ang

where

o L:=L0,0,0, and then the conormal derivative of ¢ is given by

20 AV g.m)— (bpm) =

9¢
ong on’
e fl@):=0
e TP =Ty uTy
o TP =T UT93 UT9
e gP :=20 on I'yg, and g” := —20 on T'y;

e g" = af := 0 on I'®. (Neumann boundary condition)

The code using the toolbox for solving (4.14)-(4.17) is given in Listing [4.6]
Listing 4.3: Stationary heat with potential flow in 2D, Octave code (method 1)

split in three parts

d=2;
Lop=Loperator(d,d,{1,[];[I,1},[I,[],[D;
bvpPotential=BVP(Th,PDEelt(Lop));
bvpPotential.setDirichlet(20,20);
bvpPotential.setDirichlet(21,—20);
phi=bvpPotential.solve();

4.2.1 Method 1 :

Now to compute V', we can write the potential flow problem (4.18) with H-operators as
Vi ¢
V= =B
(v:) -5 ()

B (502702(’)(170)t71 0 )

Lo, ,05,(0,1)t,0

where

The code using the toolbox for solving this problem is given in Listing
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Listing 4.4: Stationary heat with potential flow in 2D, Octave code (method 1)

Hop=Hoperator(Th.dim,d,d);
Hop.H{1,1}=Loperator(d,d,[],[],{1,0},[]);

Hop.H{2,2}=Loperator(d,d,[],[],{0,1},[]);
V=Hop.apply(Th,{phi,phi});

Obviously, one can compute separately V1 and V.
Finally, the stationary heat BVP (4.10])-(4.13]) can be equivalently expressed as the scalar BVP (|1.2))-

[T :

-\@/— Usual BVP 8 : 2D stationary heat
Find u € H2(2) such that

4.2 .Stationary heat with potential flow in 2D

where
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Stationary heat with potential flow in 2D

o L:=L 0 , and then the conormal derivative of u is given by
(a ),o,v,ﬁ
0
ou ou
—:={A — =a—.
P (AV u,ny — (bu,n) as

e f:=0
e I'P =Ty UTy Ul
e T =T, UTyuUTy
e gP(z,y) := 20y on I'yy, and g” := 0 on I'yy U a3
e gf:=0and a®:=0on TR
The code using the package FC-VFEMP; for solving — is given in Listing

Listing 4.5: Stationary heat with potential flow in 2D, Octavecode (method 1)

Lop=Loperator(d,d,{af,[];[],af},[],V,b);
bvpHeat=BVP(Th,PDEelt(Lop));
bvpHeat.setDirichlet(21,gD);
bvpHeat.setDirichlet(22, 0);
bvpHeat.setDirichlet(23, 0);
u=bvpHeat.solve();

(W8 Method 2 : have fun with H-operators

We can merged velocity potential BVP (4.14)-([4.17) and potential flow to obtain the new BVP
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(1. 14)-(1.16)) -

fg Vector BVP 4 : Velocity potential and potential flow in 2D

(2]
N . . . . E
-@- Usual vector BVP 4 : Velocity potential and potential flow in 2D 2
Find ¢ € H2(Q) and V = (V1,V3) € HY(Q) x HY(Q) such that S
o
oV, oV, . =
Y A T = 0 Q0 4.19 o
(%) - v o B
¢ : S
Vi— W = 0 in Q, (4.20) 'g
0¢ : E
Vo — a—y = 0 in Q, (4.21) s %
ey
(b = —20 on Fgl, (422) 8 ;
¢ = 20 on Iy, (4.23) = 2
¢ s
— = 0 onI'yuTlsz3uTls (424) =]
on s
s
We can also replace (4.19) by —A¢ = 0. 2
¢ s
Let w = | V1 |, the previous problem 1' can be equivalently expressed as the vector BVP 2
L
Vo _ES
>
&
c
.2
-
3
n
o~
<

Find w = (w1, w2, w3) € (H2(2))3 such that
H(w) =f in Q, (4.25)
w, =g on T2 Vae[l,3], (4.26)
2
Y 4 afw, =g on TR, Va e [1,3], (4.27)
ﬁnﬂa

where T'? = T2 = ¥ for all a € {2,3} (no boundary conditions on V; and V) and
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Stationary heat with potential flow in 3D

e 7 is the 3-by-3 operator defined by

0 L£0,-e100 L0500
H=|Loo—-e,0 Lo0po1
L£0,0,—e2,0 0 L£0,0,0,1
its conormal derivative are given by
ow, owo ows
=0, = wan1, = W3Ng,
anHl,l a’n’"‘h 2 an?‘h,s
0 0 0
o _ 0, _w2 0, _Ws
anH2,1 anHQ 2 a71”1‘-[2,3
owq ows ows
— =0, —= =0, 7S
5%7{3,1 &nHa 2 6nH313
So we obtain X
oW  au owq ¢
= = V’n = =, 4.28
6717.[1 o;l anyl . < > on ( )
and 5 2
e Y —o (4.29)

From (4.29), we cannot impose boundary conditions on components 2 and 3.
e f:=0

FlD = FQO o F21 and F{% = Fl v FlO v FQQ \ F23

e gP :=20 on I'yg, and g := —20 on I'y;
e gf=all:=00onT¥

The solution of this vector BVP is obtain by using the Octave code is given by Listing [£.6]

Listing 4.6: Stationary heat with potential flow in 2D, Octave code (method 1)

d=2;
Hop=Hoperator(d,d,3

k]

)
Hop.set(1,2,Loperator(d,d,[],{—1,0},[],]));
Hop.set(1,3,Loperator(d,d,[],{0,—1},[1,[1));
Hop.set(2,1,Loperator(d,d,[,[],{=1,0},[));
Hop.set(2,2,Loperator(d,d,[],[],[],1));
Hop.set(3,1,Loperator(d,d,[],[],{0,—1},[]));
Hop.set(3,3,Loperator(d,d,[],[],[],1));
bvpFlow=BVP(Th,PDEelt(Hop));
bvpFlow.setDirichlet(20,20,1);
bvpFlow.setDirichlet(21,—20,1);
U=bvpFlow.solve(’split’,true);

Stationary heat with potential flow in 3D

Let Q < R? be the cylinder given in Figure

Compiled on 2017/10/15 at 09:21:13

(2]
=
<
N
o
=
(=5
(]
=
(]
>
b
9
1]
©
c
=
(=}
2
f.
(=}
=
Q
(]
>
<

(2]
-
(=}
-
]
-
(]
Q.
¢
xR
=
5=
2
e
=
(¥
(]
>
(]
=
(o]
=]
o
=
=
=
=
%
<

4.3.Stationary heat with potential flow in 3D




Stationary heat with potential flow in 3D

Figure 4.6: Stationary heat with potential flow : 3d mesh

The bottom and top faces of the cylinder are respectively I'1000 U 1020 WI'1021 and T'aggg w2020 UT'2021 -
The hole surface is I'1g U I'1; U I's; where I'1g U I'1; is the cylinder part and I's; the plane part.
The 3D problem to solve is the following

-\@’- Usual BVP 9 : 3D stationary heat with potential flow

Find u € H?(2) such that
—div(aVu) +{V,Vu)+pfu = 0 in Q<R3 (4.30)
u = 30 on F1020 ) Fgozo, (431)
u = 105‘2_1|>0'5 on FlOa (432)
0
% = 0 otherwise (4.33)

where 2 and its boundaries are given in Figure This problem is well posed if a(z) > 0 and
B(x) = 0.
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We choose o and S in ) as : <

a@) = 14 (zs—1)%,
Bx) = 0.01

The potential flow is the velocity field V' = V ¢ where the scalar function ¢ is the velocity potential
solution of the 3D BVP (4.34))-(4.37)

-\@'- Usual BVP 10 : 3D velocity potential

(2]
=
<
N
o
=
(=5
(]
=
(]
>
b
9
1]
©
c
=
(=}
2
f.
(=}
=
Q
(]
>
<

Find ¢ € H'(Q) such that
“Ap = 0 inQ, (4.34)
¢ = 1 onTip21 L2021, (4.35)
¢ = —1 onTp20 U 2020, (4.36)
0
a—i = (0 otherwise (4.37)

Then the potential flow V is solution of (4.38)

-

-\@'- Usual vector BVP 5 : 3D potential flow
Find V = (V1,V,,V3) e HY(Q) x HY(Q) such that

4.3.Stationary heat with potential flow in 3D

V = V¢ inQ,

For a given mesh, the numerical result for heat u is represented in Figure [£.7] velocity potential ¢ and
potential flow V' are shown in Figure 4.8
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Stationary heat with potential flow in 3D

Figure 4.7: Heat solution u

split in three parts

4.3.1 Method 1 :
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e it

Figure 4.8: Velocity potential ® (bottom) and velocity field V. =V ® (upper)

4.3.Stationary heat with potential flow in 3D

Now we will present two manners of solving these problems using FC-VFEMP; codes.

Method 1 : split in three parts

The 3D potential velocity problem li can be equivalently expressed as the scalar BVP ([1.2)-
) :
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Stationary heat with potential flow in 3D “

fgScalar BVP 10 : 3D potential velocity

Find ¢ € H'(Q) such that
L(¢) =f in Q,
¢ ng on FDy
6_45 + afp =g% on I'f.
8n£

where

o L:=L0,0,, and then the conormal derivative of ¢ is given by

6¢

. f@):=0
D (/7]
o '™ =T'1020 U I'1o21 W I'2020 U I'2g21 "g
=
e I =T Ul Ul Uls U U Fagoo )
e g :=1o0n T'g21 U Tago1, and g” := —1 on T'yg29 U Tagoo S
c
e g% =a®f := 0 on ', (Neumann boundary condition) =
c
(/2]

The code using the package for solving (4.34)-(4.37)) is given in Listing @

Listing 4.7: Stationary heat with potential flow in 3D, Octave code (method 1)

d=3;dim=3;

Lop=Loperator(dim,d, {1,[],[;[I,1,0;[,0,1}[,1[D;
bvpFlow=BVP(Th,PDEelt(Lop));
bvpFlow.setDirichlet(1021,1.);
bvpFlow.setDirichlet(2021,1.);
bvpFlow.setDirichlet(1020,—1.);
bvpFlow.setDirichlet(2020,—1.);
Phi=bvpFlow.solve();
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Now to compute V| we can write the potential flow problem (4.38)
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(m)

e with H-operators as 2
Vi ¢ 2

V=|V,|=8|9¢ =

V, o s

Ed

where g
L£0,.04.(1,0.0).1 0 0 5

B = 0 L0,,05,(0,1,0)t,0 0 <

0 0 L04,05,(0,0,1)*,0 3

e with L-operators as §
Vi L04.05,(1,0,00t,0() -:,
V=1{V2]|=Vo=1Lo,0s01,000(®) §

V, L0,.05,(0,0,1),0() =

]

The code using FC-VFEMP; package for solving this problem with L-operators is given in Listing 5
)

<

Listing 4.8: Stationary heat with potential flow in 3D, Octave code (method 1)

Lop=Lope 1(1‘r<)1((l1111 4,[,11,{1,0,0},1D;
V{1}=Lop.apply(Th,Phi);
Lop=Loperator(dim,d,|],[],{0,1,0},[]);
V{2}=Lop.apply(Th, Phl)

(di

ly(T

Lop=Loperator(dim,d,[],[],{0,0,1},[]);

V{3}=Lop.app h,Phi);
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Stationary heat with potential flow in 3D

Finally, the stationary heat BVP (4.30)-(??) can be equivalently expressed as the scalar BVP (L.2)-
[)

fg Scalar BVP 11 : 3D stationary heat
Find u € H'(Q2) such that

o L:=L o 0 0 , and then the conormal derivative of u is given by
(O o 0),07V,/3

ou ou
P (AV u,ny — (bu,n)y = as.

e f:=0

o TP =T020 U 2020 U T'1o

e T® =T7 Ul U3 U000 U 021 U Tag00 U Tag21

e gP(x,y,2) := 30 on T'iga0 U agao, and g (z,y, 2) := 10(]z — 1] > 0.5) on Ty

e gf:=0and a®:=0on I'F
The code using the package for solving (4.30)-(?7?) is given in Figure

Listing 4.9: Stationary heat with potential flow in 3D, Octave code (method 1)

af=Q(x,y,z) 1+(z—1)."2;
Lop=Loperator(dim,d, {af,[[,[];[I,aL[];[],[],af},[], {V{1},V{2},V{3}},0.01);
bvpHeat=BVP(Th,PDEelt(Lop));
bvpHeat.setDirichlet(1020,30.);
bvpHeat.setDirichlet(2020,30.);

bvpHeat.setDirichlet(10, Q(x,y,z) 10%(abs(z—1)>0.5));
U=bvpHeat.solve();

Method 2 : have fun with H-operators

To solve problem (4.30)-(4.33]), we need to compute the velocity field V. For that we can rewrite the
potential flow problem (#.34)-(4.37)), by introducing V = (V1,V5,V3) as unknowns :
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-@'— Usual vector BVP 6 : Velocity potential and velocity field in 3D

4.3.Stationary heat with potential flow in 3D

Find ¢ € H2(Q) and V € H(Q)® such that
_ (aa‘;l + aa‘/; 1 a;?) = 0 inQ, (4.39)
1 — % = 0 inQ, (4.40)
b — %‘5 = 0 inQ, (4.41)
Vs — g—f = 0 inQ, (4.42)
with boundary conditions ([@.35) to (E.37).

We can also replace (4.39) by —A¢ = 0.
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¢
Let w = “;1 , the previous PDE can be written as a vector boundary value problem (see section
2
Vs
where the H-operator is given by
H(w) =0 (4.43)
with
Hi1 =0, Hi2 = L0, —e1 00 Hiz = L0,—e,,0,0, Hia=L0,—e50,0, (4.44)
Ho1 = L£0,0,—e1,05 Hao = L0001, Ha3 =0, Hoa =0, (4.45)
Hs1 = L0,0,—es,0 Hsz o =0, Hsz = L0,00,1, Hz s =0, (4.46)
H4,1 = £O,0,7e3,07 H4,2 =0, H4,3 =0, 'H4’4 = »CO,O,O,l, (4.47)

and € = (].,O,O)t7 €y = (0, 1,0)t, €3 = (0, 0, 1)t
The conormal derivatives are given by

6w1 -0 6w1 -0 &wl -0 &wl 0
a"7‘7-11,1 ’ anHZ,l ’ an'Hz 1 ’ anHzl,l ’
0 1%
Jwy Vin,, owy 0, wy 0, _owy 0,
6’17,7.(112 (?n;{“ (9717.[3 2 (?ng.[(lyz
0 0
(9’1.U3 _ Vgng, 6w3 _ 07 ws _ 07 ws _ 07
anHl,s an"'&,s an?'ls 3 &nH4,3
1% 1%
aaw4 = V3n37 aaw4 = 07 a W = 07 a W = 07
N4 Ny 4 NHs3 4 Ny s
So we obtain .
w,
S e Vony = (Vém), (4.48)
a=1 anHlva
and
4 4 4
ow ow ow
> = > = 2 —0. 4.49
0;1 8717{2,@ azzll 6nHM o;l 6717.[4 « ( )

From (|4.49), we cannot impose boundary conditions on components 2 to 4. Thus, with notation of section
WehaveFN=FN=FN=FWithg§V=g§V=giV=O.
To take into account boundary conditions (4.35) to (4.37), we set TP = T'120 U T'1021 U T'a020 U Tag21,

N __ D D __ N
I F\Fl and g1 ﬁozourmzo - 6F1021UF20217 9 = = 0.

The operator in (4.30) is given by L41,0,v,3. The conormal derivative —a“L is
ou ou
7 (A — g
g ={(AVu,n) —{(bu,n) =« i

The code using the package for solving (4.39)-(4.42)) is given in Listing

Listing 4.10: Stationary heat with potential flow in 3D, Octave code (method 2)

d=3;dim=3;m=4;
Hop=Hoperator(dim,d,m);
Hop.set(1,2,Loperator(dim,d,[],{—1,0,0},[],1));
Hop.set(1,3,Loperator(dim,d,|[],{0,—1,0},[],[]));
Hop.set(1,4,Loperator(dim,d,[],{0,0,—1},[],1));
Hop.set(2,1,Loperator(dim,d,|[],[],{=1,0,0},[]));
Hop.set(2,2,Loperator(dim,d,[],[],[],1));
Hop.set(3,1,Loperator(dim,d,|],[],{0,—1,0},1]));
Hop.set(3,3,Loperator(dim,d,|[[,[],[],1));
Hop.set(4,1,Loperator(dim,d,|],[],{0,0,—1},[]));
Hop.set(4,4,Loperator(dim,d,|[[,[],[],1));
1)VpFl()\\':BVP(Th,PDE()lT(Hop));
bvpFlow.setDirichlet(1020,—1,1);
bvpFlow.setDirichlet(1021,1,1);
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bvpFlow.setDirichlet(2020,—1,1);

bvpFlow.setDirichlet(2021,1,1);

W=bvpFlow.solve(’split’,true);

af=Q(x,y,z) 1+(z—1)."2;
Lop=Loperator(dim,d,{af,[|,[];[],at,[];[I.[],at},[,{W{2},W{3},W{4}},0.01);
bvpHeat=BVP(Th,PDEelt(Lop));

bvpHeat.setDirichlet(1020,30.);

bvpHeat.setDirichlet(2020,30.);

bvpHeat.setDirichlet (10, Q(x,y,z) 10x(abs(z—1)>0.5));
U=bvpHeat.solve();
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