

François Cuvelier²

Sunday 5th April, 2020

¹LATEX manual, revision 0.1.2, compiled with Matlab 2019a, and toolboxes fc-vfemp1[0.2.2], fc-tools[0.0.32], fc-bench[0.1.2], fc-hypermesh[1.0.3], fc-amat[0.1.2], fc-meshtools[0.1.3], fc-graphics4mesh[0.1.4], fc-oogmsh[0.2.3], fc-siplt[0.2.3], fc-simesh[0.4.3]

²Université Sorbonne Paris Nord, LAGA, CNRS, UMR 7539, F-93430, Villetaneuse, France, cuvelier@math. univ-paris13.fr.

This work was supported by the ANR project DEDALES under grant ANR-14-CE23-0005.

Contents

1	Ger	neric Boundary Value Problems	5
	1.1	Scalar boundary value problem	5
	1.2	Vector boundary value problem	7
2	Ger	neralized Eigenvalue scalar BVP	11
	2.1	fc vfemp1.addon.eigs.solve function	11
	2.2	2D samples	12
		2.2.1 2D Laplace eigenvalues problem with Dirichlet boundary condition	12
		2.2.2 2D Laplace eigenvalues problem with mixed boundary conditions	22
		2.2.3 Other 2D eigenvalues problems with Dirichlet boundary condition	26
	2.3	3D examples	26
		2.3.1 Eigenvalues of the laplacian on the unit sphere with Dirichlet boundary condition	26
3	Ger	neralized Eigenvalue vector BVP	33
	3.1	Linear elasticity	33
		3.1.1 Elasticity problem	33
		3.1.2 2D tuning fork	35
		3.1.3 3D tuning fork	38
	3.2	Biharmonic eigenvalue BVP for plate vibration	40
		3.2.1 Simply Supported Plate	40
		3.2.2 Clamped Plate boundary condition	43
		3.2.3 Mixed boundary conditions	48
Α	Bih	armonic BVP	53
		A.0.1 Link with \mathcal{H} -operator and boundary conditions \ldots	53
	A.1	Some boundary conditions	56
		A.1.1 Clamped Plate boundary condition	57
		A.1.2 Simply Supported Plate boundary condition	57
		A.1.3 Cahn-Hilliard boundary condition	57

Chapter 1

Generic Boundary Value Problems

The notations of [6] are employed in this section and extended to the vector case.

1.1 Scalar boundary value problem

Let Ω be a bounded open subset of \mathbb{R}^d , $d \ge 1$. The boundary of Ω is denoted by Γ .

We denote by $\mathcal{L}_{\mathbb{A},\boldsymbol{b},\boldsymbol{c},a_0} = \mathcal{L} : \mathrm{H}^2(\Omega) \longrightarrow L^2(\Omega)$ the second order linear differential operator acting on scalar fields defined, $\forall u \in \mathrm{H}^2(\Omega)$, by

$$\mathcal{L}_{\mathbb{A},\boldsymbol{b},\boldsymbol{c},a_0}(u) \stackrel{\text{def}}{=} -\operatorname{div}\left(\mathbb{A}\,\boldsymbol{\nabla}\,u\right) + \operatorname{div}\left(\boldsymbol{b}u\right) + \langle\boldsymbol{\nabla}\,u,\boldsymbol{c}\rangle + a_0u \tag{1.1}$$

where $\mathbb{A} \in (L^{\infty}(\Omega))^{d \times d}$, $\mathbf{b} \in (L^{\infty}(\Omega))^d$, $\mathbf{c} \in (L^{\infty}(\Omega))^d$ and $a_0 \in L^{\infty}(\Omega)$ are given functions and $\langle \cdot, \cdot \rangle$ is the usual scalar product in \mathbb{R}^d . We use the same notations as in the chapter 6 of [6] and we note that we can omit either div $(\mathbf{b}u)$ or $\langle \nabla u, \mathbf{c} \rangle$ if \mathbf{b} and \mathbf{c} are sufficiently regular functions. We keep both terms with \mathbf{b} and \mathbf{c} to deal with more boundary conditions. It should be also noted that it is important to preserve the two terms \mathbf{b} and \mathbf{c} in the generic formulation to enable a greater flexibility in the choice of the boundary conditions.

Let Γ^D , Γ^R be open subsets of Γ , possibly empty and $f \in L^2(\Omega)$, $g^D \in \mathrm{H}^{1/2}(\Gamma^D)$, $g^R \in L^2(\Gamma^R)$, $a^R \in L^{\infty}(\Gamma^R)$ be given data.

A *scalar* boundary value problem is given by

5	sigma Scalar BVP 1 : generic problem		
	Find $u \in \mathrm{H}^2(\Omega)$ such that		
	$\mathcal{L}(u) = f$	in Ω ,	(1.2)
	$u = g^D$	on Γ^D ,	(1.3)
	$\frac{\partial u}{\partial n_{\mathcal{L}}} + a^R u = g^R$	on Γ^R .	(1.4)

The **conormal derivative** of u is defined by

$$\frac{\partial u}{\partial n_{\mathcal{L}}} \stackrel{\text{def}}{=} \langle \mathbb{A} \, \boldsymbol{\nabla} \, \boldsymbol{u}, \boldsymbol{n} \rangle - \langle \boldsymbol{b} \boldsymbol{u}, \boldsymbol{n} \rangle \tag{1.5}$$

The boundary conditions (1.3) and (1.4) are respectively **Dirichlet** and **Robin** boundary conditions. **Neumann** boundary conditions are particular Robin boundary conditions with $a^R \equiv 0$.

To have an outline of the **evfem R**-eigs toolbox, a first and simple problem is quickly present. Explanations will be given in next sections.

The problem to solve is the Laplace problem for a condenser.

$\dot{V} = Usual BVP 1 : 2D$ condenser problem	
Find $u \in \mathrm{H}^2(\Omega)$ such that	
$-\Delta u \hspace{0.1 cm} = \hspace{0.1 cm} 0 \hspace{0.1 cm} ext{in} \hspace{0.1 cm} \Omega \subset \mathbb{R}^{2},$	(1.6)
$u = 0 ext{ on } \Gamma_1,$	(1.7)
$u = -12$ on Γ_{98} ,	(1.8)
$u = 12 \text{ on } \Gamma_{99},$	(1.9)

where Ω and its boundaries are given in Figure 1.1.

Figure 1.1: 2D condenser mesh and boundaries (left) and numerical solution (right)

The problem (1.6)-(1.9) can be equivalently expressed as the scalar BVP (1.2)-(1.4):

Scalar BVP 2 : 2D condenser problem
Find
$$u \in H^2(\Omega)$$
 such that
 $\mathcal{L}(u) = f$ in Ω ,
 $u = g^D$ on $\Gamma^D = \Gamma_1 \cup \Gamma_{98} \cup \Gamma_{99}$.
where $\mathcal{L} := \mathcal{L}_{\mathbb{I},\mathbf{0},\mathbf{0},0}, f \equiv 0$, and
 $g^D := 0$ on $\Gamma_1, g^D := -12$ on $\Gamma_{98}, g^D := +12$ on Γ_{99}

In Listing 1.1 a complete code is given to solve this problem and in Table 1.1 computational times for assembling and solving steps are given with various size meshes.

Listing 1.1: Complete Matlab code to solve the 2D condenser problem with graphical representations

N	n_q		$n_{\rm me}$	Assembly	Solve
100	10 201	20	000	0.129~(s)	0.029 (s)
200	40 401	80	000	0.187 (s)	0.129 (s)
300	90 601	180	000	0.404~(s)	0.415~(s)
400	160 801	320	000	0.705~(s)	0.687~(s)
500	251 001	500	000	1.103~(s)	1.128 (s)
600	361 201	720	000	1.673~(s)	1.836~(s)
700	491 401	980	000	2.283 (s)	2.799 (s)
800	641 601	1 280	000	3.153~(s)	3.962 (s)

Table 1.1: Computational times for assembling and solving the 2D condenser BVP, described in *Scalar* BVP 2, with various size meshes.

1.2 Vector boundary value problem

Let $m \geq 1$ and \mathcal{H} be the *m*-by-*m* matrix of second order linear differential operators defined by

$$\begin{pmatrix} \mathcal{H} : (\mathrm{H}^{2}(\Omega))^{m} & \longrightarrow (L^{2}(\Omega))^{m} \\ \boldsymbol{u} = (\boldsymbol{u}_{1}, \dots, \boldsymbol{u}_{m}) & \longrightarrow \boldsymbol{f} = (\boldsymbol{f}_{1}, \dots, \boldsymbol{f}_{m}) \stackrel{\mathsf{def}}{=} \mathcal{H}(\boldsymbol{u})$$

$$(1.10)$$

where

$$\boldsymbol{f}_{\alpha} = \sum_{\beta=1}^{m} \mathcal{H}_{\alpha,\beta}(\boldsymbol{u}_{\beta}), \quad \forall \alpha \in [\![1,m]\!],$$
(1.11)

with, for all $(\alpha, \beta) \in [\![1, m]\!]^2$,

$$\mathcal{H}_{\alpha,\beta} \stackrel{\text{def}}{=} \mathcal{L}_{\mathbb{A}^{\alpha,\beta}} \mathbf{b}^{\alpha,\beta} \mathbf{c}^{\alpha,\beta} \mathbf{c}^{\alpha,\beta}$$
(1.12)

and $\mathbb{A}^{\alpha,\beta} \in (L^{\infty}(\Omega))^{d \times d}$, $\boldsymbol{b}^{\alpha,\beta} \in (L^{\infty}(\Omega))^d$, $\boldsymbol{c}^{\alpha,\beta} \in (L^{\infty}(\Omega))^d$ and $a_0^{\alpha,\beta} \in L^{\infty}(\Omega)$ are given functions. We can also write in matrix form

$$\mathcal{H}(\boldsymbol{u}) = \begin{pmatrix} \mathcal{L}_{\mathbb{A}^{1,1}, \boldsymbol{b}^{1,1}, \boldsymbol{c}^{1,1}, a_0^{1,1}} & \cdots & \mathcal{L}_{\mathbb{A}^{1,m}, \boldsymbol{b}^{1,m}, \boldsymbol{c}^{1,m}, a_0^{1,m}} \\ \vdots & \ddots & \vdots \\ \mathcal{L}_{\mathbb{A}^{m,1}, \boldsymbol{b}^{m,1}, \boldsymbol{c}^{m,1}, a_0^{m,1}} & \cdots & \mathcal{L}_{\mathbb{A}^{m,m}, \boldsymbol{b}^{m,m}, \boldsymbol{c}^{m,m}, a_0^{m,m}} \end{pmatrix} \begin{pmatrix} \boldsymbol{u}_1 \\ \vdots \\ \boldsymbol{u}_m \end{pmatrix}.$$
(1.13)

We remark that the \mathcal{H} operator for m = 1 is equivalent to the \mathcal{L} operator.

For $\alpha \in [\![1,m]\!]$, we define Γ^D_{α} and Γ^R_{α} as open subsets of Γ , possibly empty, such that $\Gamma^D_{\alpha} \cap \Gamma^R_{\alpha} = \emptyset$. Let $\mathbf{f} \in (L^2(\Omega))^m$, $g^D_{\alpha} \in \mathrm{H}^{1/2}(\Gamma^D_{\alpha})$, $g^R_{\alpha} \in L^2(\Gamma^R_{\alpha})$, $a^R_{\alpha} \in L^{\infty}(\Gamma^R_{\alpha})$ be given data.

A vector boundary value problem is given by

Vector BVP 1 : generic problem

Find $\boldsymbol{u} = (\boldsymbol{u}_1, \dots, \boldsymbol{u}_m) \in (\mathrm{H}^2(\Omega))^m$ such that

$$\mathcal{H}(\boldsymbol{u}) = \boldsymbol{j} \qquad \qquad \text{in } \Omega, \qquad (1.14)$$
$$\boldsymbol{u}_{\alpha} = \boldsymbol{q}_{\perp}^{D} \qquad \qquad \text{on } \Gamma_{\perp}^{D}, \ \forall \alpha \in [\![1,m]\!], \qquad (1.15)$$

where the α -th component of the **conormal derivative** of **u** is defined by

$$\frac{\partial \boldsymbol{u}}{\partial n_{\mathcal{H}_{\alpha}}} \stackrel{\text{def}}{=} \sum_{\beta=1}^{m} \frac{\partial \boldsymbol{u}_{\beta}}{\partial n_{\mathcal{H}_{\alpha,\beta}}} = \sum_{\beta=1}^{m} \left(\left\langle \mathbb{A}^{\alpha,\beta} \, \boldsymbol{\nabla} \, \boldsymbol{u}_{\beta}, \boldsymbol{n} \right\rangle - \left\langle \boldsymbol{b}^{\alpha,\beta} \, \boldsymbol{u}_{\beta}, \boldsymbol{n} \right\rangle \right). \tag{1.17}$$

The boundary conditions (1.16) are the **Robin** boundary conditions and (1.15) is the **Dirichlet** boundary condition. The **Neumann** boundary conditions are particular Robin boundary conditions with $a_{\alpha}^{R} \equiv 0$.

In this problem, we may consider on a given boundary some conditions which can vary depending on the component. For example we may have a Robin boundary condition satisfying $\frac{\partial \boldsymbol{u}}{\partial n_{\mathcal{H}_1}} + a_1^R \boldsymbol{u}_1 = g_1^R$ and a Dirichlet one with $u_2 = g_2^D$. To have an outline of the **(vfem P-eigs** toolbox, a second and simple problem is quickly present.

$\frac{1}{2}$ Usual vector BVP 1 : 2D simple	e v	ector problem	
Find $\boldsymbol{u} = (u_1, u_2) \in (\mathrm{H}^2(\Omega))^2$ such that			
$-\Delta u_1 + u_2$	=	$0 \ \text{ in } \Omega \subset \mathbb{R}^2,$	(1.18)
$-\Delta u_2 + u_1$	=	$0 \ \text{ in } \Omega \subset \mathbb{R}^2,$	(1.19)
(u_1, u_2)	=	$(0,0)$ on Γ_1 ,	(1.20)
(u_1, u_2)	=	$(-12.,+12.)$ on Γ_{98} ,	(1.21)
(u_1, u_2)	=	$(+12., -12.)$ on Γ_{99} ,	(1.22)

where Ω and its boundaries are given in Figure 1.1.

The problem (1.18)-(1.22) can be equivalently expressed as the vector BVP (1.2)-(1.4):

Vector BVP 2 : 2D simple vector problem Find $\boldsymbol{u} = (u_1, u_2) \in (\mathrm{H}^2(\Omega))^2$ such that $\mathcal{H}(\boldsymbol{u}) = \boldsymbol{f}$ in Ω . $u_1 = g_1^D$ $u_2 = g_2^D$ on $\Gamma^D = \Gamma_1 \cup \Gamma_{98} \cup \Gamma_{99}$, on $\Gamma^D = \Gamma_1 \cup \Gamma_{98} \cup \Gamma_{99}$, where $\mathcal{H} := \begin{pmatrix} \mathcal{L}_{\mathbb{I},\boldsymbol{O},\boldsymbol{O},0} & \mathcal{L}_{\mathbb{O},\boldsymbol{O},\boldsymbol{O},1} \\ \mathcal{L}_{\mathbb{O},\boldsymbol{O},\boldsymbol{O},1} & \mathcal{L}_{\mathbb{I},\boldsymbol{O},\boldsymbol{O},0} \end{pmatrix}, \text{ as } \mathcal{H} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} -\Delta & 1 \\ 1 & -\Delta \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$

 $f \equiv 0,$

ıd
$g_1^D = g_2^D := 0 \text{ on } \Gamma_1,$
$g_1^D := -12, \ g_2^D := +12 \ \text{on} \ \Gamma_{98},$
$g_1^D := +12, \ g_2^D := -12 \ { m on} \ \Gamma_{99}.$

In Listing 1.2 a complete code is given to solve this problem. Numerical solutions are represented in Figure 1.2. In Table 1.2 computational times for assembling and solving steps are given with various size meshes.

Figure 1.2: 2D simple vector BVP, u_1 numerical solution (left) and u_2 numerical solution (right)

N	1	n _q	$n_{\rm me}$	1	n _{dof}	Assembly	Solve
10	8 15	51 15	708	16	302	0.197~(s)	0.122 (s)
20	31 74	42 62	296	63	484	0.426~(s)	0.569~(s)
30	70 74	44 139	706	141	488	1.110~(s)	1.440 (s)
40	124 93	30 247	484	249	860	2.138 (s)	2.524 (s)
50	194 77	75 386	580	389	550	3.703~(s)	4.744 (s)
60	279 96	62 556	360	559	924	5.671 (s)	7.402 (s)

Chapter 2

Generalized Eigenvalue scalar BVP

We want to solve generalized eigenvalue problems coming from scalar BVP's. The **generalized eigenvalue problem** associated with *scalar* BVP (1.2)-(1.4) can be written as

	Scalar EBVP 1 : generic problem		
$\overline{\boldsymbol{\zeta}}$	Find $(\lambda, u) \in \mathbb{K} \times \mathrm{H}^2(\Omega)$ such that		
Ì	$\mathcal{L}(u) = \lambda \mathcal{B}(u)$	in Ω ,	(2.1)
Ş	u=0	on Γ^D ,	(2.2)
$\langle \rangle$	$\frac{\partial u}{\partial n_{\mathcal{L}}} + a^R u = 0$	on Γ^R .	(2.3)
Ş	where $\mathcal{B} = \mathcal{L}_{\mathbb{O}_{d \times d}, 0_{d}, \tilde{\boldsymbol{c}}, \tilde{\boldsymbol{a}_{0}}}.$		

We briefly describe the main function that will be used to solve eigenvalues problems. Let byp be a fc vfemp1.BVP object.

2.1 fc_vfemp1.addon.eigs.solve function

The function fc_vfemp1.addon.eigs.solve returns a few eigenvalues and eigenvectors obtained by solving a generalized eigenvalue scalar BVP with \mathbb{P}_1 -Lagrange finite elements.

```
[U, lambda]=fc_vfemp1.addon.eigs.solve(bvp)
[U, lambda]=fc_vfemp1.addon.eigs.solve(bvp, Name, Value)
```

Description

 $[U,lambda] = fc_vfemp1.addon.eigs.solve(bvp) calculates 6 of eigenvalues and eigenvectors/eigenfunctions of the generalized eigenvalue scalar BVP given by bvp a fc_vfemp1.BVP object which described the scalar BVP (1.2)-(1.4) with all right-hand sides equal to zeros, i.e. <math>f := 0, g^D := 0$ and $g^R := 0$.

By default the \mathcal{B} is the operator $\mathcal{L}_{\mathbb{O}_{d \times d}, \mathbf{0}_{d}, \mathbf{0}_{d}, \mathbf{1}}$. The outputs are those given by the eigs Matlab function:

- lambda is a k-by-1 vector where lambda(i) is the i-th eigenvalue approximation and k is the number of eigenvalues computed (6 by default).
- U is a N-by-k matrix where k is the number of eigenvalues and U(:,i) is the eigenvector (\mathbb{P}_1 -Lagrange finite elements approximation) associated with the eigenvalue lambda(i).

[U,lambda]=fc_vfemp1.addon.eigs.solve(bvp,Name,Value) specifies function options using one or more Name,Value pair.

- 'Bop' : to specify a fc_vfemp1.Loperator object corresponding to the operator \mathcal{B} . The default operator is $\mathcal{L}_{\mathbb{O}_{d \times d}, \mathbf{0}_{d}, \mathbf{0}_{d}, 1}$ for scalar BVP.
- 'neigs' : to specify the number of eigenvalues and eigenvectors to be computed. Default is 6.
- 'sigma' : to specify the sigma parameter of the eigs Matlab function. Default is 0.

2.2 2D samples

2.2.1 2D Laplace eigenvalues problem with Dirichlet boundary condition

We want to solve the eigenvalue problem given by (2.4)-(2.5)).

<mark>`</mark>	$\not \leftarrow Usual \ { m EBVP} \ 1: \ { m 2D} \ { m Laplace} \ { m with} \ { m Dirichlet} \ { m boundar}$	y condition
Ś	Find $(\lambda, u) \in \mathbb{C} \times \mathrm{H}^2(\Omega)$ such that	
Ş	$-\Delta u = \lambda u$ in Ω	, (2.4)
Ş	$u = 0$ on Γ	, (2.5)

The problem (2.4)-(2.5) can be equivalently write as the *Scalar* EBVP 1:

Scalar EBVP 2 : 2D Laplace with Dirichlet boundary condition Find $(\lambda, u) \in \mathbb{K} \times \mathrm{H}^{2}(\Omega)$ such that $\mathcal{L}(u) = \lambda \mathcal{B}(u)$ in Ω , u = 0 on $\Gamma^{D} = \Gamma$, where $\mathcal{L} = \mathcal{L}_{\mathbb{I},\mathbf{0},\mathbf{0},0}, \mathcal{B} = \mathcal{L}_{\mathbb{O},\mathbf{0},\mathbf{0},1}$.

Application on the rectangle $\Omega = [0, L] \times [0, H]$.

The eigenvalues and the associated eigen functions are given by

$$A_{k,l} = \left(\frac{k\pi}{L}\right)^2 + \left(\frac{l\pi}{H}\right)^2, \quad u_{k,l}(x,y) = \sin(\frac{k\pi}{L}x)\sin(\frac{l\pi}{H}y), \quad \forall (k,l) \in \mathbb{N}^* \times \mathbb{N}^*.$$
(2.6)

In Table 2.1 and Table 2.2, the first eigenvalues are given recpectively for L = 1, H = 1 and for L = 2, H = 3.

k	1	2	3	4	5
1	$2\pi^2 \approx 19.7392$	$5 \pi^2 \approx 49.3480$	$10\pi^2\approx 98.6961$	$17 \pi^2 \approx 167.783$	$26\pi^2\approx 256.610$
2	$5 \pi^2 \approx 49.3480$	$8\pi^2\approx 78.9568$	$13\pi^2\approx 128.305$	$20\pi^2\approx 197.392$	$29\pi^2\approx 286.219$
3	$10\pi^2\approx 98.6961$	$13\pi^2\approx 128.305$	$18\pi^2\approx 177.653$	$25\pi^2\approx 246.740$	$34 \pi^2 \approx 335.567$
4	$17 \pi^2 \approx 167.783$	$20\pi^2\approx 197.392$	$25\pi^2\approx 246.740$	$32 \pi^2 \approx 315.827$	$41\pi^2\approx 404.654$
5	$26\pi^2\approx 256.610$	$29\pi^2\approx 286.219$	$34 \pi^2 \approx 335.567$	$41\pi^2\approx 404.654$	$50\pi^2\approx 493.480$

Table 2.1: Eingenvalues $\lambda_{k,l}$ for $(k,l) \in [\![1,5]\!]$ with L = 1, H = 1

k	1	2	3	4	5
1	$\frac{13}{36}\pi^2 \approx 3.56402$	$\frac{25}{36}\pi^2 \approx 6.85389$	$\frac{5}{4}\pi^2 \approx 12.3370$	$\frac{73}{36}\pi^2 \approx 20.0134$	$\frac{109}{36}\pi^2 \approx 29.8830$
2	$\frac{10}{9}\pi^2 \approx 10.9662$	$\frac{13}{9}\pi^2 \approx 14.2561$	$2\pi^2 \approx 19.7392$	$\frac{25}{9}\pi^2 \approx 27.4156$	$\frac{34}{9}\pi^2 \approx 37.2852$
3	$\frac{85}{36}\pi^2 \approx 23.3032$	$\frac{97}{36}\pi^2 \approx 26.5931$	$\frac{13}{4}\pi^2 \approx 32.0762$	$\frac{145}{36}\pi^2 \approx 39.7526$	$\frac{181}{36}\pi^2 \approx 49.6222$
4	$\frac{37}{9}\pi^2 \approx 40.5750$	$\frac{40}{9}\pi^2 \approx 43.8649$	$5 \pi^2 \approx 49.3480$	$\frac{52}{9}\pi^2 \approx 57.0244$	$\frac{61}{9}\pi^2 \approx 66.8940$
5	$\frac{229}{36}\pi^2 \approx 62.7817$	$\frac{241}{36}\pi^2 \approx 66.0715$	$\frac{29}{4}\pi^2 \approx 71.5546$	$\frac{289}{36}\pi^2 \approx 79.2310$	$\frac{325}{36}\pi^2 \approx 89.1006$

Table 2.2: Eingenvalues $\lambda_{k,l}$ for $(k,l) \in [\![1,5]\!]$ with L = 2, H = 3

The Listing 2.1 is part of the Matlab script: fc_vfemp1.addon.eigs.demos.dim2d.Laplacian01. It contains the complete code computing the first smallest magnitude eight eigenvalues with their graphic representations. These graphic results ar given in Figure 2.1.

```
% Setting mesh:
Th=fc_simesh.hypercube(2,[L*N,H*N], 'trans',@(q) [L*q(1,:);H*q(2,:)]);
% Setting eBVP:
Lop=fc_vfemp1.Loperator(2,2,{1,0;0,1},[],[],[]);
pde=fc_vfemp1.PDE(Lop);
bvp=fc_vfemp1.BVP(Th,pde);
for lab=1:4, bvp.setDirichlet( lab, 0);end
% Solving eBVP:
[eVec,lambda]=fc_vfemp1.addon.eigs.solve(bvp, 'neigs', neigs, 'sigma', sigma);
% Plotting of eigenfunctions:
[eVec,lambda]=fc_vfemp1.addon.eigs.splitsort(bvp,eVec,lambda);
```

fc vfemp1.addon.eigs.plot(Th, eVec, lambda);

Listing 2.1: 2D Laplace eigenvalues problem with Dirichlet boundary condition $\Omega = [0, L] \times [0, H]$, obtained by using fc_vfemp1.addon.eigs.demos.dim2d.Laplacian01 script with L=2, H=3, N=150, neigs=8 and sigma=0.

We represent in Figure 2.2 the order of convergence of the first ten eigenvalues.

Compiled on Sunday $5^{\rm th}$ April, 2020 at 13:17

Figure 2.1: 2D Laplace in rectangle $[0,2] \times [0,3]$ with Dirichlet boundary conditions : eigenfunctions of the smallest magnitude eigenvalues

Figure 2.2: eigenvalues and eigenfunctions : order computation for 2D Laplace with Dirichlet boundary condition on rectangle (regular meshes) . Relative errors of eigenfunctions in L^2 -norm (upper left) and H^1 -norm (upper right). Relative errors of eigenvalues (bottom).

One can see that a superconvergence phenomena occurs due to regularity of the hypercube mesh. Indeed, for the H^1 -norm an order 1 is expected. To high thight it, gmsh is now used to generate all the meshes of Ω : results are given in Figure 2.3.

15

2. Generalized Eigenvalue scalar BVP 2.2.1 2D Laplace eigenvalues problem with Dirichlet boundary condition

Figure 2.3: eigenvalues and eigenfunctions : order computation for 2D Laplace with Dirichlet boundary condition on rectangle (gmsh meshes). Relative errors of eigenfunctions in L^2 -norm (upper left) and H^1 -norm (upper right). Relative errors of eigenvalues (bottom).

Application on the unit disk.

Let $\Omega \subset \mathbb{R}^2$ be the unit disk meshed by gmsh and given in Figure 2.4.

Let α_{nl} bet the *l*-th zero of the Bessel function of the first kind J_n . The eigenvalues are given by

$$\lambda_{n,l} = \alpha_{nl}^2 \quad \forall (n,l) \in \mathbb{N} \times \mathbb{N}^*$$

In Table 2.3, the values of α_{nl} are given for $(n, l) \in [0, 4]][1, 5]]$.

The eigenvalues are simple for n = 0 and twice degenerate for n > 0.

l	J_0	J_1	J_2	J_3	J_4	J_5	J_6
1	2.4048256	3.8317060	5.1356223	6.3801619	7.5883424	8.7714838	9.9361095
2	5.5200781	7.0155867	8.4172441	9.7610231	11.064709	12.338604	13.589290
3	8.6537279	10.173468	11.619841	13.015201	14.372537	15.700174	17.003820
4	11.791534	13.323692	14.795952	16.223466	17.615966	18.980134	20.320789
5	14.930918	16.470630	17.959819	19.409415	20.826933	22.217800	23.586084
6	18.071064	19.615859	21.116997	22.582730	24.019020	25.430341	26.820152

Table 2.3: Zeros of the Bessel function of the first kind J_n

Figure 2.4: Unit disk with four boundaries

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8
5.7831860	14.681971	14.681971	26.374616	26.374616	30.471262	40.706466	40.706466
λ_9	λ_{10}	λ_{11}	λ_{12}	λ_{13}	λ_{14}	λ_{15}	λ_{16}
49.218456	49.218456	57.582941	57.582941	70.849999	70.849999	74.887007	76.938928
λ_{17}	λ_{18}	λ_{19}	λ_{20}	λ_{21}	λ_{22}	λ_{23}	λ_{24}
76.938928	95.277573	95.277573	98.726272	98.726272	103.49945	103.49945	122.42780

Table 2.4: twenty four first eigenvalues

The Listing 2.2 is part of the Matlab script: fc_vfemp1.addon.eigs.demos.dim2d.Laplacian02. It contains the complete code computing the first smallest magnitude twenty-four eigenvalues with their graphic representations. These graphic results ar given in Figure 2.5.

```
% Setting mesh:
fullgeofile=fc_vfemp1.addon.eigs.get_geo(2,2,'disk4bounds.geo');
meshfile=fc_oogmsh.buildmesh2d(fullgeofile,N);
Th=fc_simesh.siMesh(meshfile);
Th.info('verbose',true)
% Setting eBVP:
Lop=fc_vfemp1.Loperator(2,2,{1,0;0,1},[],[],[]);
pde=fc_vfemp1.PDE(Lop);
bvp=fc_vfemp1.BVP(Th,pde);
for lab=Th.get_labels(1), bvp.setDirichlet( lab, 0);end
% Solving eBVP:
[eVec,lambda]=fc_vfemp1.addon.eigs.solve(bvp,'neigs',neigs,'sigma',sigma);
% Plotting eigenfunctions:
[eVec,lambda]=fc_vfemp1.addon.eigs.splitsort(bvp,eVec,lambda);
```

fc vfemp1.addon.eigs.plot(Th, eVec, lambda);

Listing 2.2: 2D Laplace eigenvalues problem on unit disk with Dirichlet boundary conditions, obtained by using fc_vfemp1.addon.eigs.demos.dim2d.Laplacian02 script with N=150, neigs=24 and sigma=0

Application on the L-shape domain. The *L*shape domain Ω meshed by gmsh is given in Figure 2.6.

Figure 2.5: 2D Laplace in unit disk with Dirichlet boundary conditions : eigenfunctions of the smallest magnitude eigenvalues

Figure 2.6: Lshape domain with four boundaries

To compute the eigenvalues and the eigenfunctions of the Laplacian with Dirichlet boundary condition using \mathbb{P}_1 -Lagrange finite elements one can used the Matlab script fc_vfemp1.addon.eigs.demos.dim2d.Laplacian03. Part of the source code is given in Listing 2.3

```
% Setting mesh:
fullgeofile=fc_vfemp1.addon.eigs.get_geo(2,2,'Lshape.geo');
meshfile=fc_oogmsh.buildmesh2d(fullgeofile,N);
Th=fc_simesh.siMesh(meshfile);
Th.info('verbose',true)
% Setting eBVP:
Lop=fc_vfemp1.Loperator(2,2,{1,0;0,1},[],[],[]);
pde=fc_vfemp1.PDE(Lop);
bvp=fc_vfemp1.BVP(Th,pde);
for lab=Th.get_labels(1), bvp.setDirichlet(lab, 0);end
% Solving eBVP:
[eVec,lambda]=fc_vfemp1.addon.eigs.solve(bvp,'neigs',neigs,'sigma',sigma);
% Plotting eigenfunctions:
[eVec,lambda]=fc_vfemp1.addon.eigs.splitsort(bvp,eVec,lambda);
fc_vfemp1.addon.eigs.plot(Th,eVec,lambda);
```

Listing 2.3: 2D Laplace eigenvalues problem with Dirichlet boundary condition on Lshape domain

Results can be found in [7], Figure 1 page 4 and [3]. From [4] section 6.52 page 122 or [8] Table 1 page 1088, we have the bounds to the first ten eigenvalues of the L-shaped Laplacian problem recalled in Table 2.5. We also give the computed values from a L-shaped mesh with $n_q = 78980$, $n_{me} = 156758$ and $h \approx 0.0086192473$.

n	bounds of λ_n from [8]	computed here
1	9.63972384_{04}^{44}	9.6420953
2	15.19725192_{59}^{66}	15.197889
3	$2\pi^2 = 19.739208802178$	19.740287
4	29.52148111_{38}^{42}	29.523893
5	31.9126359_{37}^{59}	31.920617
6	41.4745098_{66}^{92}	41.483163
7	44.9484877_{77}^{82}	44.954078
8	$5\pi^2 = 49.34802200544$	49.354768
9	$5\pi^2 = 49.34802200544$	49.354769
10	56.7096098_{18}^{90}	56.722843

Table 2.5: Bounds to the first ten eigenvalues of the L-shaped Laplacian problem

We represent in Figure 2.7 eigenvectors associated to the first twenty-four smallest magnitude eigenvalues.

Figure 2.7: 2D Laplace in L-shaped domain with Dirichlet boundary conditions : eigenfunctions of the smallest magnitude eigenvalues

In Figure 2.8 the eigenvectors associated with the four eigenvalues nearest 250 (multiplicity 1) and 493 (multiplicity 3) are represented. This is done by setting *sigma* option to 250 for the first case and to 493 for the second one.

Figure 2.8: 2D Laplace with Dirichlet boundary conditions : eigenfunctions of the eigenvalues near $\lambda_{50} = 250.78548$ (multiplicity 1) and $\lambda_{104} = 493.48022$ (multiplicity 3)

2.2.2 2D Laplace eigenvalues problem with mixed boundary conditions

We want to solve the eigenvalue problem given by (2.7)-(2.10)).

-`\	Usual EBVP 2 : 2D Laplace with mixed	l boundary condition	
Ż	Find $(\lambda, u) \in \mathbb{K} \times \mathrm{H}^2(\Omega)$ such that		
Ş	$-\Delta u = \lambda u$	$ \text{in }\Omega,$	(2.7)
Ş	$\frac{\partial u}{\partial n} + \alpha u = 0$	on Γ^a ,	(2.8)
ş	$\frac{\partial u}{\partial n} = 0$	on Γ^b ,	(2.9)
Ş	u=0	on Γ^c ,	(2.10)

The problem (2.7)-(2.10) can be equivalently written as the *Scalar* EBVP 1:

Scalar EBVP 3 : 2D Laplace with mixed boundary condition Find $(\lambda, u) \in \mathbb{K} \times \mathrm{H}^{2}(\Omega)$ such that $\mathcal{L}(u) = \lambda \mathcal{B}(u)$ in Ω , $\frac{\partial u}{\partial n_{\mathcal{L}}} + a^{R}u = 0$ on $\Gamma^{R} = \Gamma^{a} \cup \Gamma^{b}$, u = 0 on $\Gamma^{D} = \Gamma^{c}$, where $\mathcal{L} = \mathcal{L}_{1,0,0,0}$ (and then $\frac{\partial u}{\partial n_{\mathcal{L}}} = \frac{\partial u}{\partial n}$), $\mathcal{B} = \mathcal{L}_{0,0,0,1}$, $a^{R} = \alpha \delta_{\Gamma^{b}}$ Application on the disk with 5 holes domain. Let Γ_1 be the unit disk, Γ_{10} be the disk with center point (0,0) and radius 0.3. Let Γ_{20} , Γ_{21} , Γ_{22} and Γ_{23} be the disks with radius 0.1 and respectively with center point (0, -0.7), (0, 0.7), (-0.7, 0) and (0.7, 0). The domain $\Omega \subset \mathbb{R}^2$ is defined as the inner of Γ_1 and the outer of all other disks (see Figure 2.9).

Figure 2.9: Domain and boundaries

We want to solve the eigenvalue problem given by (2.11)-(2.14).

B	Scalar EBVP 4 : 2D Laplace eigenvalues conditions	problem with mixed l	boundary
Ś	Find $(\lambda, u) \in \mathbb{K} \times \mathrm{H}^2(\Omega)$ such that		
Ì	$-\Delta u = \lambda u$	in Ω ,	(2.11)
Ì	$\frac{\partial u}{\partial n} + \alpha u = 0$	on $\Gamma_{22} \cup \Gamma_{23}$.	(2.12)
Š	$\frac{\partial u}{\partial n} = 0$	on $\Gamma_{20} \cup \Gamma_{21}$,	(2.13)
Ş	u=0	on $\Gamma_1 \cup \Gamma_{10}$.	(2.14)

So we have, $\Gamma^D = \Gamma_1 \cup \Gamma_{10}$, $\Gamma^R = \bigcup_{i=20}^{23} \Gamma_i$, and $a^R = \alpha \delta_{\Gamma_{22} \cup \Gamma_{23}}$. We give in Listing 2.4 the corresponding Matlab code.

Listing 2.4: 2D Laplacian eigenvalues problem with mixed boundary conditions on a domain with 5 holes

```
% Setting mesh:
fullgeofile=fc_vfemp1.addon.eigs.get_geo(2,2,'disk5holes.geo');
meshfile=fc_oogmsh.buildmesh2d(fullgeofile,N);
Th=fc_simesh.siMesh(meshfile);
Th.info('verbose',true)
% Setting eBVP:
Lop=fc_vfemp1.Loperator(2,2,{1,0;0,1},[],[],[]);
pde=fc_vfemp1.PDE(Lop);
bvp=fc_vfemp1.BVP(Th,pde); % By default sets homogeneous Neumann on all boundaries
for lab=[1,10], bvp.setDirichlet( lab, 0);end
```

for lab = [22, 23], bvp.setRobin(lab, 0, a); end

% Solving eBVP: [eVec,lambda]=fc_vfemp1.addon.eigs.solve(bvp,'neigs',neigs,'sigma',sigma);

% Plotting eigenfunctions: [eVec,lambda]=fc_vfemp1.addon.eigs.splitsort(bvp,eVec,lambda); fc_vfemp1.addon.eigs.plot(Th,eVec,lambda);

Figure 2.10: 2D Laplace with mixed boundary conditions : eigenfunctions of the smallest magnitude eigenvalues

2.2.3 Other 2D eigenvalues problems with Dirichlet boundary condition

Advection-Diffusion on the L-shaped domain.

We want to solve the eigenvalue problem given by

 $\begin{array}{c} \overleftarrow{} Usual \ \textbf{EBVP 3} : \ \textbf{2D} \ \textbf{Advection-Diffusion} \ \textbf{eigenvalues} \ \textbf{problem with} \\ \hline \textbf{Dirichlet boundary condition} \\ \hline \textbf{Find} \ (\lambda, u) \in \mathbb{K} \times \mathbb{H}^2(\Omega) \ \textbf{such that} \\ & -\Delta u + \beta . \nabla u = \lambda u & \text{in } \Omega, \\ & u = 0 & \text{on } \Gamma. \\ \hline \textbf{with constant convection parameter } \boldsymbol{\beta} \in \mathbb{R}^2. \end{array}$

From [4] section 6.52 page 122 the eigenvalues of Usual EBVP 3 are $\lambda_i^{\beta} = |\beta|/4 + \lambda_i$ where λ_i are the eigenvalues of the L-shaped Laplacian problem with Dirichlet boundary condition (the ten first are given in Table ??). We have for example

$\lambda_1^{\beta} \approx \beta /4 + 9.63972,$	$\lambda_3^{oldsymbol{eta}}= oldsymbol{eta} /4+2\pi^2$
$\lambda_5^{\beta} \approx \beta /4 + 31.912636,$	$\lambda_8^{\pmb\beta} = \lambda_9^{\pmb\beta} = \pmb\beta /4 + 5\pi^2$
$\lambda_{20}^{\beta} \approx \beta /4 + 101.60529,$	$\lambda_{50}^{\beta} \approx \beta /4 + 250.78548.$

We give in Listing 2.5 the corresponding Matlab code.

```
Listing 2.5: 2D L-shaped Advection-Diffusion problem with \boldsymbol{\beta} = (3,0): Matlab code
```

```
% Setting mesh:
fullgeofile=fc_vfemp1.addon.eigs.get_geo(2,2,'Lshape');
meshfile=fc_oogmsh.buildmesh2d(fullgeofile,N);
Th=fc_simesh.siMesh(meshfile);
Th.info('verbose',true)
```

```
% Setting eBVP:
Lop=fc_vfemp1.Loperator(2,2,{1,0;0,1},[],b,[]);
pde=fc_vfemp1.PDE(Lop);
bvp=fc_vfemp1.BVP(Th,pde); % By default sets homogeneous Neumann on all boundaries
for lab=Th.get_labels(1), bvp.setDirichlet( lab, 0);end
```

% Solving eBVP: [eVec,lambda]=fc_vfemp1.addon.eigs.solve(bvp, 'neigs', neigs, 'sigma', sigma);

```
% Plotting eigenfunctions:
[eVec,lambda]=fc_vfemp1.addon.eigs.splitsort(bvp,eVec,lambda);
fc vfemp1.addon.eigs.plot(Th,eVec,lambda);
```

We give the computed values from a L-shaped mesh with $n_q = 78980$, $n_{me} = 156758$ and $h \approx 0.00862$. We represent in Figure 2.11 the twenty first eigenfunctions with $\boldsymbol{\beta} = (3, 0)$.

2.3 3D examples

2.3.1 Eigenvalues of the laplacian on the unit sphere with Dirichlet boundary con-

dition

Application on the unit sphere. Let $\Omega \subset \mathbb{R}^3$ be the unit sphere meshed by gmsh and given in Figure 2.12.

Figure 2.11: 2D L-shaped Advection-Diffusion problem with $\beta = (3, 0)$. Eigenfunctions of the smallest magnitude eigenvalues (n_q = 89780)

n	bounds of $\lambda_n^{\boldsymbol{\beta}}$ from [8]	computed here
1	$ \boldsymbol{\beta} /4 + 9.63972384_{04}^{44} \approx 11.88972384$	11.891869
2	$ \boldsymbol{\beta} /4 + 15.19725192_{59}^{66} \approx 17.44725192$	17.447524
3	$ \boldsymbol{\beta} /4 + 2\pi^2 = 21.989208802178716$	21.989808
4	$ \boldsymbol{\beta} /4 + 29.52148111_{38}^{42} \approx 31.77148111$	31.773171
5	$ \boldsymbol{\beta} /4 + 31.9126359_{37}^{59} \approx 34.1626359$	34.169836
6	$ \boldsymbol{\beta} /4 + 41.4745098_{66}^{92} \approx 43.7245099$	43.732143
7	$ \boldsymbol{\beta} /4 + 44.9484877_{77}^{82} \approx 47.19848777$	47.202972
8	$ \boldsymbol{\beta} /4 + 5\pi^2 = 51.598022005446794$	51.603181
9	$ \boldsymbol{\beta} /4 + 5\pi^2 = 51.598022005446794$	51.603923
10	$ \boldsymbol{\beta} /4 + 56.7096098^{90}_{18} \approx 58.9596098$	58.971443
20	$ \boldsymbol{\beta} /4 + 101.60529 \approx 103.85529$	103.88860
50	$ \boldsymbol{\beta} /4 + 250.78548 \approx 253.03548$	253.21421

Table 2.6: Eigenvalues of the L-shaped Advection-Diffusion problem with $\boldsymbol{\beta} = (3, 0)$.

Figure 2.12: Boundary of the unit sphere

Part of the source code To compute the eigenvalues and the eigenfunctions of the Laplacian with Dirichlet boundary condition using \mathbb{P}_1 -Lagrange finite elements one can used the Matlab command fc_vfemp1.addon.eigs.demos.dim3d.Laplacian02. Part of the source code (file +fc_vfemp1/+addon/+eigs/+demos/+dim3d is given in Listing 2.6

```
% Setting mesh:
fullgeofile=fc_vfemp1.addon.eigs.get_geo(3,3, 'sphere.geo');
meshfile=fc_oogmsh.buildmesh3d(fullgeofile,N);
Th=fc_simesh.siMesh(meshfile);
Th.info('verbose',true)
% Setting eBVP:
Lop=fc_vfemp1.Loperator(3,3,{1,0,0;0,1,0;0,0,1},[],[],[]);
pde=fc_vfemp1.PDE(Lop);
bvp=fc_vfemp1.BVP(Th,pde);
bvp.setDirichlet(1, 0);
```

2.3.3D examples

% Solving eBVP:

[eVec,lambda]=fc_vfemp1.addon.eigs.solve(bvp, 'neigs', neigs, 'sigma', sigma);

% Plotting eigenfunctions:

Listing 2.6: 3D Laplace eigenvalues problem with Dirichlet boundary condition on sphere domain

From [5], page 609, we get the eigenvalues of the laplacian on the sphere with Dirichlet boundary conditions. Let α_{nk} be the k-th zero of the Bessel function of the first kind $J_{n+1/2}$. The eigenvalues are given by

$$\lambda_{n,k} = \alpha_{nk}^2 \quad \forall n \in \mathbb{N}, \quad \forall k \in \mathbb{N}^*$$

In Table 2.7, the values of α_{nk} are given for $(n,k) \in [0,4][1,5]$. The eigenvalues have the degeneracy 2n + 1.

l	$J_{1/2}$	$J_{1+1/2}$	$J_{2+1/2}$	$J_{3+1/2}$	$J_{4+1/2}$	$J_{5+1/2}$	$J_{6+1/2}$
1	3.1415927	4.4934095	5.7634592	6.9879320	8.1825615	9.3558121	10.512835
2	6.2831853	7.7252518	9.0950113	10.417119	11.704907	12.966530	14.207392
3	9.4247780	10.904122	12.322941	13.698023	15.039665	16.354710	17.647975
4	12.566371	14.066194	15.514603	16.923621	18.301256	19.653152	20.983463
5	15.707963	17.220755	18.689036	20.121806	21.525418	22.904551	24.262768
6	18.849556	20.371303	21.853874	23.304247	24.727566	26.127750	27.507868

Table 2.7: Zeros of the Bessel function of the first kind $J_{n+1/2}$

	exact	numerical	rel. error
λ_1	9.8696044	9.8843887	1.498e-03
λ_2	20.190729	20.268363	3.845e-03
λ_3	20.190729	20.268576	3.856e-03
λ_4	20.190729	20.268690	3.861e-03
λ_5	33.217462	33.444466	6.834e-03
λ_6	33.217462	33.444913	6.847e-03
λ_7	33.217462	33.445149	6.854e-03
λ_8	33.217462	33.445816	6.875e-03
λ_9	33.217462	33.446448	6.894e-03
λ_{10}	39.478418	39.798711	8.113e-03
λ_{11}	48.831194	49.339144	1.040e-02
λ_{12}	48.831194	49.341745	1.046e-02
λ_{13}	48.831194	49.342522	1.047e-02
λ_{14}	48.831194	49.344420	1.051e-02
λ_{15}	48.831194	49.344782	1.052e-02
λ_{16}	48.831194	49.346092	1.054e-02
λ_{17}	48.831194	49.347897	1.058e-02
λ_{18}	59.679516	60.434811	1.266e-02
λ_{19}	59.679516	60.440039	1.274e-02
λ_{20}	59.679516	60.443164	1.280e-02
λ_{21}	66.954312	67.933217	1.462e-02
λ_{22}	66.954312	67.935441	1.465e-02
λ_{23}	66.954312	67.937650	1.469e-02
λ_{24}	66.954312	67.941095	1.474e-02

Table 2.8: Comparison between the twenty four first exact eigenvalues and numerical computation on mesh with $n_q = 45371$ and $n_{me} = 256980$

We represent in Figure 2.13 the eigenfunctions associated to the first twenty four smallest magnitude eigenvalues.

Figure 2.13: Dirichlet eigenvalue problem on the unit sphere : eigenfunctions associated to the first twenty four smallest magnitude eigenvalues.

Chapter 3

Generalized Eigenvalue vector BVP

The eigenvalue problems associated with vector BVP (1.14)-(1.16) can be written as

\$	Vector EBVP 1 : generic problem		
3	Find $\lambda \in \mathbb{K}$ and $\boldsymbol{u} = (\boldsymbol{u}_1, \dots, \boldsymbol{u}_m) \in (\mathrm{H}^2(\Omega))^m$ such that		
Įξ	$\mathcal{H}(oldsymbol{u})=\!\lambda\mathcal{B}(oldsymbol{u})$	in Ω ,	(3.1)
{	$oldsymbol{u}_lpha=0$	on $\Gamma^D_{\alpha}, \ \forall \alpha \in [\![1,m]\!],$	(3.2)
	$\frac{\partial \boldsymbol{u}}{\partial n_{\mathcal{H}_{\alpha}}} + a_{\alpha}^{R} \boldsymbol{u}_{\alpha} = 0$	on $\Gamma^R_{\alpha}, \ \forall \alpha \in [\![1,m]\!],$	(3.3)
\$	where \mathcal{B} is a given \mathcal{H} -operator.		

In most cases \mathcal{B} is the identity operator (\mathcal{B} is a diagonal \mathcal{H} -operator with $\mathcal{B}_{\alpha,\alpha} = \mathcal{L}_{\mathbb{O}_{d\times d},\mathbf{0}_{d},\mathbf{0}_{d},1}, \forall \alpha \in [[1,m]]).$

3.1 Linear elasticity

3.1.1 Elasticity problem

Let d = 2 or d = 3. We consider here Hooke's law in linear elasticity, under small strain hypothesis (see for example [2]).

For a sufficiently regular vector field $\boldsymbol{u} = (u_1, \ldots, u_d) : \Omega \to \mathbb{R}^d$, we define the linearized strain tensor $\boldsymbol{\underline{\epsilon}}$ by

$$\underline{\boldsymbol{\epsilon}}(\boldsymbol{u}) = \frac{1}{2} \left(\boldsymbol{\nabla}(\boldsymbol{u}) + \boldsymbol{\nabla}^t(\boldsymbol{u}) \right).$$

We set $\underline{\boldsymbol{\epsilon}} = (\epsilon_{11}, \epsilon_{22}, 2\epsilon_{12})^t$ in 2d and $\underline{\boldsymbol{\epsilon}} = (\epsilon_{11}, \epsilon_{22}, \epsilon_{33}, 2\epsilon_{12}, 2\epsilon_{23}, 2\epsilon_{13})^t$ in 3d, with $\epsilon_{ij}(\boldsymbol{u}) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$. Then the Hooke's law writes

$$\underline{\sigma} = \mathbb{C}\underline{\epsilon},$$

material	$E \ [psi](kg/s^2/mm)$	ρ in $[psi]kg/mm^3$	ν
Aluminium 6061-T6	68.26×10^6	$2.7126 imes 10^{-6}$	0.33
Silicone Rubber	50×10^6	1.1×10^{-6}	0.33
Wood	23×10^6	0.95×10^{-6}	0.27
Nickel Aluminum Bronze 632	120.66×10^{6}	7.5843×10^{-6}	0.27

Table 3.1: Mechanical properties of some materials with $GPa = 10^9 Pa = 10^6 kg/s^2/mm$

where $\underline{\sigma}$ is the elastic stress tensor and \mathbb{C} the elasticity tensor.

The material is supposed to be isotropic. Thus the elasticity tensor \mathbb{C} is only defined by the Lamé parameters λ and μ , which satisfy $\lambda + \mu > 0$. We also set $\gamma = 2 \mu + \lambda$. For d = 2 or d = 3, \mathbb{C} is given by

$$\mathbb{C} = \begin{pmatrix} \lambda \mathbb{1}_2 + 2\mu \mathbb{I}_2 & 0 \\ 0 & \mu \end{pmatrix}_{3 \times 3} \quad \text{or} \quad \mathbb{C} = \begin{pmatrix} \lambda \mathbb{1}_3 + 2\mu \mathbb{I}_3 & 0 \\ 0 & \mu \mathbb{I}_3 \end{pmatrix}_{6 \times 6}$$

respectively, where $\mathbb{1}_d$ is a *d*-by-*d* matrix of ones, and \mathbb{I}_d the *d*-by-*d* identity matrix.

For dimension d = 2 or d = 3, we have:

$$\boldsymbol{\sigma}_{\alpha\beta}(\boldsymbol{u}) = 2\,\mu\,\boldsymbol{\epsilon}_{\alpha\beta}(\boldsymbol{u}) + \lambda\,\mathrm{tr}(\boldsymbol{\epsilon}(\boldsymbol{u}))\delta_{\alpha\beta} \quad \forall \alpha,\beta \in [\![1,d]\!]$$

The material's properties are given by Young's modulus E and Poisson's coefficient ν . As we use plane strain hypothesis, Lame's coefficients verify

$$\mu = \frac{E}{2\left(1+\nu\right)}, \quad \lambda = \frac{E\nu}{\left(1+\nu\right)\left(1-2\nu\right)}, \quad \gamma = 2\mu + \lambda$$

For rubber material one can take $E = 21.10^5$ Pa and $\nu = 0.48$.

The problem to solve is the following

Ì	Usual EBVP 4 : Elasticity problem		
Ş	Find $(k, \boldsymbol{u}) = \mathbb{K} \times \mathrm{H}^2(\Omega)^d$ such that		
Ş	$-\operatorname{div}(\boldsymbol{\sigma}(\boldsymbol{u})) =$	$k \boldsymbol{u}, \text{in } \Omega \subset \mathbb{R}^d,$ (3.4)	
Ş	$oldsymbol{\sigma}(oldsymbol{u}).oldsymbol{n}$ =	$0 \text{on } \Gamma^R, \tag{3.5}$	
\$	\boldsymbol{u} =	$0 \text{on } \Gamma^D. \tag{3.6}$	J
			1

We recall the following lemma (see [1])

Lemme 3.1

Let \mathcal{H}^{σ} be the \mathcal{H} -operator defined in (1.10) by

(

$$\mathcal{H}_{\alpha,\beta} = \mathcal{L}_{\mathbb{A}^{\alpha,\beta},\mathbf{0},\mathbf{0},\mathbf{0}}, \quad \forall (\alpha,\beta) \in [\![1,d]\!]^2$$
(3.7)

with

$$\mathbb{A}^{\alpha,\beta})_{k,l} = \mu \delta_{\alpha\beta} \delta_{kl} + \mu \delta_{k\beta} \delta_{l\alpha} + \lambda \delta_{k\alpha} \delta_{l\beta}, \ \forall (k,l) \in [\![1,d]\!]^2.$$
(3.8)

Then, we have

$$\mathcal{H}^{\boldsymbol{\sigma}}(\boldsymbol{u}) = -\operatorname{div}\boldsymbol{\sigma}(\boldsymbol{u}) \tag{3.9}$$

and, $\forall \alpha \in [\![1,d]\!]$,

$$\frac{\partial \boldsymbol{u}}{\partial n_{\mathcal{H}_{\alpha}^{\boldsymbol{\sigma}}}} = (\boldsymbol{\sigma}(\boldsymbol{u}).\boldsymbol{n})_{\alpha}. \tag{3.10}$$

The matrices $\mathbb{A}^{\alpha,\beta}$ of previous lemma are explicitly given by

• for d = 2,

$$\mathbb{A}^{1,1} = \begin{pmatrix} \gamma & 0\\ 0 & \mu \end{pmatrix}, \ \mathbb{A}^{1,2} = \begin{pmatrix} 0 & \lambda\\ \mu & 0 \end{pmatrix}, \ \mathbb{A}^{2,1} = \begin{pmatrix} 0 & \mu\\ \lambda & 0 \end{pmatrix}, \ \mathbb{A}^{2,2} = \begin{pmatrix} \mu & 0\\ 0 & \gamma \end{pmatrix}$$

$$\begin{aligned} &\text{for } d = 3, \\ &\mathbb{A}^{1,1} = \begin{pmatrix} \gamma & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \mu \end{pmatrix}, \quad \mathbb{A}^{1,2} = \begin{pmatrix} 0 & \lambda & 0 \\ \mu & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbb{A}^{1,3} = \begin{pmatrix} 0 & 0 & \lambda \\ 0 & 0 & 0 \\ \mu & 0 & 0 \end{pmatrix} \\ &\mathbb{A}^{2,1} = \begin{pmatrix} 0 & \mu & 0 \\ \lambda & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbb{A}^{2,2} = \begin{pmatrix} 0 & \lambda & 0 \\ \mu & 0 & 0 \\ 0 & \gamma & 0 \\ 0 & 0 & \mu \end{pmatrix}, \quad \mathbb{A}^{2,3} = \begin{pmatrix} 0 & 0 & \lambda \\ 0 & 0 & 0 \\ 0 & 0 & \lambda \\ 0 & \mu & 0 \end{pmatrix}, \\ &\mathbb{A}^{3,1} = \begin{pmatrix} 0 & 0 & \mu \\ 0 & 0 & 0 \\ \lambda & 0 & 0 \end{pmatrix}, \quad \mathbb{A}^{3,2} = \begin{pmatrix} 0 & \lambda & 0 \\ \mu & 0 & 0 \\ 0 & 0 & \mu \\ 0 & \lambda & 0 \end{pmatrix}, \quad \mathbb{A}^{3,3} = \begin{pmatrix} \mu & 0 & 0 \\ 0 & \mu & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \gamma \end{pmatrix}. \end{aligned}$$

So the elasticity problem (3.4) to (3.14) can be equivalently written as :

ß	Vector EBVP 2 : Linear elasticity in dimension $d = 2$ or	d = 3	Ì
Š	Find $(k, \boldsymbol{u}) \in \mathbb{K} \times (\mathrm{H}^2(\Omega))^d$ such that		
ξ	$\mathcal{H}^{\sigma}(\boldsymbol{u}) = k \mathcal{B}^{\sigma}(\boldsymbol{u}),$ in	n Ω , (3.11)	
X	$\frac{\partial \boldsymbol{u}}{\partial n_{\mathcal{H}} \boldsymbol{\sigma}} = 0, \qquad \qquad \text{on } \Gamma^{R}_{\alpha} = \Gamma^{R}, \; \forall \alpha \in [\![$	[1,d] (3.12)	
Ş	$\boldsymbol{u}_{\alpha} = 0, \qquad \qquad \text{on } \Gamma^{D}_{\alpha} = \Gamma^{D}, \; \forall \alpha \in [\![1$	[,d]]. (3.13)	
Ş	with $\mathcal{B}_{\alpha,\beta}^{\sigma} = \delta_{\alpha,\beta} \mathcal{L}_{\mathbb{O},0,0,1}$.		

3.1.2 2D tuning fork

2D tuning fork Let $\Omega \subset \mathbb{R}^2$ be a 2d tuning fork obtained from file tuning-fork2D02.geo by using gmsh(unit is millimeter). One can easily modify the 2d tuning fork parameters a, b, l, R and L (see Figure 3.1) when we generate the mesh:

Dirichlet on Γ_1 and Neumann on $\Gamma_2\cup\Gamma_3$

The eigenvalue problem to solve is the following

Figure 3.1: 2d tuning fork geometrical parameters (left) and its boundaries (right)

Vector EBVP 3 : 2D tuning fork with Dirichlet boundary condition on Γ_1 Find $(\kappa, \boldsymbol{u}) = \mathbb{K} \times \mathrm{H}^1(\Omega)^2$ such that $-\operatorname{div}(\boldsymbol{\sigma}(\boldsymbol{u})) = \kappa \rho \boldsymbol{u}, \text{ in } \Omega$ $\boldsymbol{\sigma}(\boldsymbol{u}).\boldsymbol{n} = \boldsymbol{0} \text{ on } \Gamma_2 \cup \Gamma_3,$ $\boldsymbol{u} = \boldsymbol{0} \text{ on } \Gamma_1.$

The isotropic material is made of aluminium where its Poisson's ratio ν is 0.33, its Young's modulus E is 6.83×10^7 kg.s⁻².mm⁻¹ and its density ρ is 2.71×10^{-6} kg.mm⁻³.

We take $\Gamma^D = \Gamma_1$ and thus $\Gamma^R = \Gamma_2 \cup \Gamma_3$. For each eigenfunction \boldsymbol{u} , we represent $\sqrt{\boldsymbol{u}_1^2 + \boldsymbol{u}_2^2}$ in Figure 3.2 for the first twelve smallest magnitude eigenvalues. The mesh parameters are $n_q = 41146$, $n_{me} = 79533$ and h = 0.26661.

To compute the eigenvalues and the eigenfunctions of this problem by using \mathbb{P}_1 -Lagrange finite elements one can used the Matlab script fc_vfemp1.addon.eigs.demos.dim2d.LinearElasticity02. Part of the source code is given in Listing 3.1

```
 \begin{array}{l} \textbf{fprintf(`\_\_>\_Solving\_parameters:\_neigs=\%d,\_sigma=\%g,\_N=\%d.\n',neigs,sigma,N);} \\ \textbf{fprintf(`\_\_>\_Material\_parameters:\_nu=\%g,\_E=\%g,\_rho=\%g.\n',nu,E,rho);} \end{array}
```

```
% Computing the Lame parameters lambda and mu
mu= E/(2*(1+nu));
lambda = E*nu/((1+nu)*(1 2*nu));
% Setting mesh:
Lopts={' smooth_4', sprintf(' setnumber_L_%g',L), ...
        sprintf(' setnumber_l_%g',l), ...
        sprintf(' setnumber_R_%g',R), ...
        sprintf(' setnumber_a_%g',a), ...
        sprintf(' setnumber_b_%g',b) };
fullgeofile=fc_vfemp1.addon.eigs.get_geo(2,2,'tuning fork2D02');
meshfile=fc_oogmsh.buildmesh2d(fullgeofile,N, 'Loptions',Lopts, 'force',true);
```

```
Th=fc_simesh.siMesh(meshfile);
Th.info('verbose',true)
```

 $\label{eq:setting_ebvp:} & \texttt{Setting_eBVP:} \\ \texttt{dim}=2;\texttt{d}=2;\texttt{m}=2; \\ & \texttt{Hop}=\texttt{fc_vfemp1.operators.StiffElas}(\texttt{dim,lambda,mu}); \\ & \texttt{pd}=\texttt{fc_vfemp1.PDE}(\texttt{Hop}); \\ & \texttt{bvp}=\texttt{fc_vfemp1.BVP}(\texttt{Th,pde}); \\ & \texttt{for lab}=\texttt{DirLabs, bvp.setDirichlet}(\texttt{lab, 0.,1:dim}); \texttt{end} \\ & \texttt{Lop}=\texttt{fc_vfemp1.Loperator}(\texttt{dim,d,[],[],[],rho}); \\ & \texttt{Bop}=\texttt{fc_vfemp1.Hoperator}(\texttt{dim,d,m}); \\ & \texttt{for } i=1:\texttt{dim,Bop.H}\{i,i\}=\texttt{Lop}; \texttt{end} \\ \end{aligned}$

% Solving eBVP:

 $[eVec, eVal] = fc_vfemp1.addon.eigs.solve(bvp, 'Bop', Bop, 'neigs', neigs', 'sigma', sigma);$ Listing 3.1: 2D linear elasticity eigenvalues problem for the 2D tuning fork with a Dirichlet condition on Γ_1 .

Figure 3.2: 2D linear elasticity for the tuning-fork with Dirichlet boundary condition on Γ_1 : eigenfunctions of the twelve smallest magnitude eigenvalues colorized with their euclidean norm. Eigenfunctions are stretched to a maximum of 4.134 mm. The Tuning fork geometrical parameters in mm are a = 5, b = 5, l = 70, R = 10 and L = 80.343.

Neumann on all boundaries

The eigenvalue problem to solve is the following

Vector EBVP 4 : 2D tuning fork with Neumann boundary condition Find $(\kappa, u) = \mathbb{K} \times \mathrm{H}^1(\Omega)^2$ such that $-\operatorname{div}(\boldsymbol{\sigma}(u)) = \kappa \rho u$, in Ω $\boldsymbol{\sigma}(u).\boldsymbol{n} = \boldsymbol{0}$ on $\Gamma_1 \cup \Gamma_2 \cup \Gamma_3$,

37

We take $\Gamma^D = \emptyset$ and thus $\Gamma^R = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$. For each eigenfunction \boldsymbol{u} , we represent $\sqrt{\boldsymbol{u}_1^2 + \boldsymbol{u}_2^2}$ in Figure 3.3 for the first twelve smallest magnitude eigenvalues. The mesh parameters are $n_q = 41146$, $n_{me} = 79533$ and h = 2.666e-01.

Figure 3.3: 2D linear elasticity for the tuning-fork with Neumann boundary conditions : eigenfunctions of the twelve smallest magnitude eigenvalues colorized with their euclidean norm. Eigenfunctions are streched to a maximum of 4.134 mm. The Tuning fork geometrical parameters in mm are a = 5, b = 5, l = 70, R = 10 and L = 80.343.

3.1.3 3D tuning fork

2D tuning fork Let $\Omega \subset \mathbb{R}^3$ be a 3d tuning fork composed of rods of diameter r. The geometry is described in Figure 3.4 and the meshes can be obtained by using gmsh (version $\geq = 3.0.0$) with the file tuning_fork_02.geo.

The eigenvalue problem to solve is the following

 $\begin{array}{c} & \overbrace{\Gamma_1}^{\flat} \textbf{Usual EBVP 5}: \textbf{ 3D tuning fork with Dirichlet boundary condition on} \\ & \overbrace{\Gamma_1}^{\flat} \textbf{Find } (\kappa, \boldsymbol{u}) = \mathbb{K} \times \mathbb{H}^1(\Omega)^3 \text{ such that} \\ & -\operatorname{div}(\boldsymbol{\sigma}(\boldsymbol{u})) = \kappa \rho \boldsymbol{u}, \text{ in } \Omega \\ & \boldsymbol{\sigma}(\boldsymbol{u}).\boldsymbol{n} = \boldsymbol{0} \text{ on } \Gamma_2 \cup \Gamma_3, \\ & \boldsymbol{u} = \boldsymbol{0} \text{ on } \Gamma_1. \end{array}$

The geometrical parameters, in millimeters, are L = 123.41, R = 40, l = 100 and r = 10. The isotropic material is made of aluminium where its Poisson's ratio ν is 0.33, its Young's modulus E is $6.83 \times 10^7 \text{ kg.s}^{-2} \text{.mm}^{-1}$ and its density ρ is $2.71 \times 10^{-6} \text{ kg.mm}^{-3}$.

Figure 3.4: 3d tuning fork geometrical parameters (left) and its boundaries (right)

Figure 3.5: 3D Tuning fork with Neumann boundary conditions on $\Gamma_2 \cup \Gamma_3$ and Dirichlet on Γ_1 : eigenfunctions of the smallest magnitude eigenvalues streched to a maximum of 13.17 mm.

3.2 Biharmonic eigenvalue BVP for plate vibration

The biharmonic eigenvalue problem for plate vibration is to find $u \neq 0$ and $\lambda \in \mathbb{R}$ such that

$$\Delta^2 u = \lambda u, \quad \text{in } \Omega \tag{3.14}$$

where boundary conditions on Γ can be

• Clamped Plate (CP) or pure Dirichlet type:

$$u = \frac{\partial u}{\partial \boldsymbol{n}} = 0 \tag{3.15}$$

• Simply Supported Plate (SSP) or Navier type :

$$u = \Delta u = 0 \tag{3.16}$$

• Cahn-Hilliard (CH) type

$$\frac{\partial u}{\partial n} = \frac{\partial \Delta u}{\partial n} = 0 \tag{3.17}$$

Classically the fourth-order PDE (3.14) is converted to the two second-order PDE

$$-\Delta v = \lambda u \tag{3.18}$$

$$-\Delta u = v \tag{3.19}$$

So with the the \mathcal{H} -operator \mathcal{G} defined in (A.9) these two PDE can be written as

$$\mathcal{G}\begin{pmatrix} u\\v \end{pmatrix} \stackrel{\text{def}}{=} \begin{pmatrix} 0 & \mathcal{L}_{\mathbb{I},\mathbf{0},\mathbf{0},0}\\ \mathcal{L}_{\mathbb{I},\mathbf{0},\mathbf{0},0} & \mathcal{L}_{\mathbb{O},\mathbf{0},\mathbf{0},-1} \end{pmatrix} \begin{pmatrix} u\\v \end{pmatrix} = \begin{pmatrix} \lambda u\\0 \end{pmatrix}$$
(3.20)

If we define the \mathcal{B} operator as

$$\mathcal{B} \stackrel{\text{def}}{=} \begin{pmatrix} \mathcal{L}_{\mathbb{O},\mathbf{0},\mathbf{0},1} & 0\\ 0 & 0 \end{pmatrix} \tag{3.21}$$

the two PDEs (3.18) can be equivalently written as

$$\mathcal{G}\begin{pmatrix} u\\v \end{pmatrix} = \lambda \mathcal{B}\begin{pmatrix} u\\v \end{pmatrix} \tag{3.22}$$

The code to build the two operators \mathcal{G} and \mathcal{B} is given in Listing 3.2.

```
Gop=fc_vfemp1.Hoperator(2,2,2);
Lop=fc_vfemp1.Loperator(2,2,{1,[];[],1},[],[],[]);
Gop.set(1,2,Lop);
Gop.set(2,1,Lop);
Gop.set(2,2,fc_vfemp1.Loperator(2,2,[],[],[],1));
Bop=fc_vfemp1.Hoperator(2,2,2);
Bop.set(1,1,fc_vfemp1.Loperator(2,2,[],[],[],[],1));
```

Listing 3.2: Setting the \mathcal{G} and \mathcal{B} operator.

3.2.1 Simply Supported Plate

eBVP 1 : biharmonic eigenvalue problem for plate vibration with simply supported plate boundary conditions Find $\lambda \in \mathbb{K}$ and $u \neq 0$ such that

 $\Delta^2 u = \lambda u$, in Ω u = 0 and $\Delta u = 0$, on Γ

This problem can be rewritten with operators \mathcal{G} and \mathcal{B} defined respectively in (3.20) and (3.21). Let $v = -\Delta u$ and $\boldsymbol{w} = (u, v)$, previous problem becomes

Vector EBVP 5 : biharmonic eigenvalue problem for plate vibration with simply supported plate boundary conditions with \mathcal{H} -operators Find $\lambda \in \mathbb{K}$ and $\boldsymbol{w} = (w_1, w_2) \in (\mathrm{H}^2(\Omega))^2$, $\boldsymbol{w} \neq 0$, such that

 $\mathcal{G}(\boldsymbol{w}) = \lambda \mathcal{B}(\boldsymbol{w})$ in Ω , $w_1 = 0$ and $w_2 = 0$ on Γ .

β remark 3.2

On convex domains, the biharmonic eigenvalues are just the squares of the eigenvalues of the Laplace operator with the homogeneous Dirichlet boundary condition and associated eigenfunctions are the same.

Application on $\Omega = [0, L] \times [0, H]$

The eigenvalues and the eigenvectors of the Laplacian with Dirichlet boundary conditions are given in (2.6) and Table 2.2 for L = 2 and H = 3. In Listing 3.3, the part of the code which solve the biharmonic eigenvalue problem for plate vibration with simply supported plate boundary conditions is given.

```
dim=2; d=2; m=2;
% Setting mesh:
Th=fc simesh.hypercube(2, [L*N, H*N], 'trans', @(q) [L*q(1,:); H*q(2,:)]);
% Setting eBVP:
Gop=fc_vfemp1. Hoperator (dim,d,m);
Lop=fc_vfemp1.Loperator(dim,d,{1,[];[],1},[],[],[]);
\operatorname{Gop} . \operatorname{\mathbf{set}} (1, 2, \operatorname{Lop});
\operatorname{Gop}. set (2, 1, \operatorname{Lop});
Gop.set(2,2,fc\_vfemp1.Loperator(dim,d,[],[],[],1));
Bop=fc vfemp1.Hoperator(dim,d,m);
Bop. set (1,1,fc_vfemp1.Loperator(dim,d,[],[],[],1));
pde=fc vfemp1.PDE(Gop);
bvp=fc vfemp1.BVP(Th, pde);
for lab=Th.sThlab(Th.find(1)), bvp.setDirichlet(lab, 0., 1:2); end
```

% Solving eBVP:

Listing 3.3: biharmonic eigenvalue problem for plate vibration with simply supported plate boundary conditions $\Omega = [0, 123.41] \times [0, 3].$

We represent in Figure 3.6 the twelve first eigenvectors obtained by using the command given in Listing 3.4.

neigs=12;N=150;sigma=0;L=2;H=3;isTitle=false; fc_vfemp1.addon.eigs.demos.dim2d.Biharmonic01

Listing 3.4: Biharmonic eigenvalues B.V.P. with S.S.P. boundary conditions on the unit square

Figure 3.6: 2D Biharmonic eigenvalues B.V.P. with S.S.P. boundary conditions on the unit square: smallest eigenvalues with their eigenfunctions

We represent in Figure 3.7 the twelve eigenvectors associated with the eigenvalues closest to 1000^2 and obtained by using the command given in Listing 3.5.

[Th, eVec, lambda, **info**] = fc_vfemp1.addon.eigs.demos.dim2d.funBiharmonic(300, ... 'SSP', 1:4, 'L', 1, 'H', 1, 'sigma', 1000^2, 'neigs', 12, 'title', false);

Listing 3.5: Biharmonic eigenvalues B.V.P. with S.S.P. boundary conditions on the unit square

Figure 3.7: 2D Biharmonic eigenvalues B.V.P. with S.S.P. boundary conditions on the unit square: eigenvalues closest to 1000^2 with their eigenfunctions

Application on a disk with 5 holes

We solve the eigenvalue problems eBVP 1 on the disk with five holes given in Figure 2.9 We represent in Figure 3.8 the twelve first eigenvectors obtained by using the command given in Listing 3.6.

```
[Th, eVec, lambda, info]=fc_vfemp1.addon.eigs.demos.dim2d.funBiharmonic(200, ...
'geofile', 'disk5holes', 'SSP',[1,10,20:23], 'sigma',0, 'neigs',12, ...
'title', false);
```

Listing 3.6: Biharmonic eigenvalues B.V.P. with S.S.P. boundary conditions on a disk with five holes

We represent in Figure 3.9 the twelve eigenvectors associated with the eigenvalues closest to 1000^2 and obtained by using the command given in Listing 3.7.

```
[Th,eVec,lambda,info]=fc_vfemp1.addon.eigs.demos.dim2d.funBiharmonic(200, ...
'geofile','disk5holes','SSP',[1,10,20:23],'sigma',0,'neigs',12, ...
'title',false);
```

Listing 3.7: Biharmonic eigenvalues B.V.P. with S.S.P. boundary conditions on a disk with five holes

3.2.2 Clamped Plate boundary condition

Figure 3.8: 2D Biharmonic eigenvalues B.V.P. with S.S.P. boundary conditions on a disk with five holes: smallest eigenvalues with their eigenfunctions

Figure 3.9: 2D Biharmonic eigenvalues B.V.P. with S.S.P. boundary conditions on a disk with five holes: eigenvalues closest to 1000^2 with their eigenfunctions

eBVP 2 : biharmonic eigenvalue problem for plate vibration with simply supported plate boundary conditions Find $\lambda \in \mathbb{K}$ and $u \neq 0$ such that $\Delta^2 u = \lambda u$, in Ω

u = 0 and $fcfunpdiffv\mathbf{n} = 0$, on Γ

This problem can be rewritten with operators \mathcal{G} and \mathcal{B} defined respectively in (3.20) and (3.21). Let $v = -\Delta u$ and $\boldsymbol{w} = (u, v)$, previous problem becomes

Vector EBVP 6 : biharmonic eigenvalue problem for plate vibration with simply supported plate boundary conditions with \mathcal{H} -operators Find $\lambda \in \mathbb{K}$ and $\boldsymbol{w} = (w_1, w_2) \in (\mathrm{H}^2(\Omega))^2, \, \boldsymbol{w} \neq 0$, such that $\mathcal{G}(\boldsymbol{w}) = \lambda \mathcal{B}(\boldsymbol{w})$ in Ω , $w_1 = 0$ and $\frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_2}} = 0$ on Γ .

Application on $\Omega = [0, L] \times [0, H]$

The eigenvalues and the eigenvectors of the Laplacian with Dirichlet boundary conditions are given in (2.6) and Table 2.1. In Listing 3.13, the part of the code which solve the biharmonic eigenvalue problem for plate vibration with simply supported plate boundary conditions is given.

```
pde=fc_vfemp1.PDE(Gop);
bvp=fc vfemp1.BVP(Th, pde);
for lab=Th.get labels(1)
  bvp.setDirichlet(lab, 0., [], 1);
  bvp.setRobin(lab, 0., [], 2);
\mathbf{end}
[eVec, eVal, flag]=fc_vfemp1.addon.eigs.solve(bvp, 'Bop', Bop, 'neigs', 12, 'sigma', 0);
```

Listing 3.8: Setting biharmonic eigenvalue problem for plate vibration with simply supported plate boundary conditions $\Omega = [0, 1] \times [0, 1]$. Using operators defined in Listing 3.2.

We represent in Figure 3.10 the twelve first eigenvectors obtained by using the command given in Listing 3.9.

```
[Th, eVec, lambda, info]=fc_vfemp1.addon.eigs.demos.dim2d.funBiharmonic(200, ...
    'CP',1:4, 'L',1, 'H',1, 'sigma',0, 'neigs',12, 'title', false);
```

Listing 3.9: Biharmonic eigenvalues B.V.P. with C.P. boundary conditions on the unit square

Figure 3.10: 2D Biharmonic eigenvalues B.V.P. with C.P. boundary conditions on the unit square: smallest eigenvalues with their eigenfunctions

We represent in Figure 3.11 the twelve eigenvectors associated with the eigenvalues closest to 1000^2 and obtained by using the command given in Listing 3.10.

Listing 3.10: Biharmonic eigenvalues B.V.P. with C.P. boundary conditions on the unit square

Figure 3.11: 2D Biharmonic eigenvalues B.V.P. with C.P. boundary conditions on the unit square: eigenvalues closest to 1000^2 with their eigenfunctions

Application on a disk with 5 holes

We solve the eigenvalue problems eBVP 1 on the disk with five holes given in Figure 2.9 We represent in Figure 3.12 the twelve first eigenvectors obtained by using the command given in Listing 3.11.

Listing 3.11: Biharmonic eigenvalues B.V.P. with C.P. boundary conditions on a disk with five holes

Figure 3.12: 2D Biharmonic eigenvalues B.V.P. with C.P. boundary conditions on a disk with five holes: smallest eigenvalues with their eigenfunctions

We represent in Figure 3.13 the twelve eigenvectors associated with the eigenvalues closest to 1000^2 and obtained by using the command given in Listing 3.12.

[Th, eVec, lambda, info]=fc_vfemp1.addon.eigs.demos.dim2d.funBiharmonic(200, ... 'geofile', 'disk5holes', 'CP', [1,10,20:23], 'sigma', 0, 'neigs', 12, 'title', false);

Listing 3.12: Biharmonic eigenvalues B.V.P. with C.P. boundary conditions on a disk with five holes

47

Figure 3.13: 2D Biharmonic eigenvalues B.V.P. with C.P. boundary conditions on a disk with five holes: eigenvalues closest to 1000^2 with their eigenfunctions

3.2.3 Mixed boundary conditions

In this sedtion we mixed the Cahn-Hilliard, Clamped Plate and Simply supported plate boundary conditions in some examples.

Application on $\Omega = [0, L] \times [0, H]$

We choose a C.P. boundary condition on Γ_1 (left boundary), a S.S.P. boundary condition on Γ_2 (right boundary) and a C.H. boundary condition on Γ_3 and Γ_4 (bottom and top boundaries). We represent in Figure 3.14 the twelve first eigenvectors obtained by using the command given in Listing 3.14.

```
pde=fc_vfemp1.PDE(Gop);
bvp=fc_vfemp1.BVP(Th, pde);
for lab=Th.get_labels(1)
    bvp.setDirichlet( lab, 0.,[],1);
    bvp.setRobin( lab, 0.,[],2);
end
```

 $[eVec, eVal, \textbf{flag}] = fc_vfemp1.addon.eigs.solve(bvp, 'Bop', Bop', neigs', 12, 'sigma', 0);$

Listing 3.13: Setting biharmonic eigenvalue problem for plate vibration with simply supported plate boundary conditions $\Omega = [0, 1] \times [0, 1]$. Using operators defined in Listing 3.2.

```
[Th, eVec, lambda, info]=fc_vfemp1.addon.eigs.demos.dim2d.funBiharmonic(200, ...
'CP', 1, 'SSP', 2, 'L', 1, 'H', 1, 'sigma', 0, 'neigs', 12, 'title', false);
```

Listing 3.14: Biharmonic eigenvalues B.V.P. with mixed boundary conditions on the unit square

Figure 3.14: 2D Biharmonic eigenvalues B.V.P. with mixed boundary conditions on the unit square: smallest eigenvalues with their eigenfunctions

We represent in Figure 3.15 the twelve eigenvectors associated with the eigenvalues closest to 1000^2 and obtained by using the command given in Listing 3.15.

[Th, eVec, lambda, info] = fc	_vfemp1.addon.	eigs.demos	. dim2d. funBiharmonic (200,	
$^{\prime}\mathrm{CP}^{\prime}$, 1 , $^{\prime}\mathrm{SSP}^{\prime}$, 2 , $^{\prime}\mathrm{L}^{\prime}$, 1	, 'H' ,1 , 'sigma '	,0, 'neigs',	,12, 'title ', false);	

Listing 3.15: Biharmonic eigenvalues B.V.P. with mixed boundary conditions on the unit square

Figure 3.15: 2D Biharmonic eigenvalues B.V.P. with mixed boundary conditions on the unit square: eigenvalues closest to 1000^2 with their eigenfunctions

Application on a disk with 5 holes

We choose a C.P. boundary condition on Γ_{10} (centered hole boundary), a S.S.P. boundary condition on $\Gamma_{20} \cup \Gamma_{21} \cup \Gamma_{22} \cup \Gamma_{23}$ (all the 4 small holes boundary) and a C.H. boundary condition on Γ_1 (big disk exterior boundary). The disk with five holes is given in Figure 2.9. We represent in Figure 3.16 the twelve first eigenvectors obtained by using the command given in Listing 3.16.

```
[Th, eVec, lambda, info]=fc_vfemp1.addon.eigs.demos.dim2d.funBiharmonic(200, ...
'geofile', 'disk5holes', 'CP',10, 'SSP',[20:23], 'sigma',0, 'neigs',12, ...
'title', false);
```

Listing 3.16: Biharmonic eigenvalues B.V.P. with mixed boundary conditions on a disk with five holes

Figure 3.16: 2D Biharmonic eigenvalues B.V.P. with mixed boundary conditions on a disk with five holes: smallest eigenvalues with their eigenfunctions

We represent in Figure 3.17 the twelve eigenvectors associated with the eigenvalues closest to 1000^2 and obtained by using the command given in Listing 3.17.

```
[Th,eVec,lambda,info]=fc_vfemp1.addon.eigs.demos.dim2d.funBiharmonic(200, ...
'geofile','disk5holes','CP',10,'SSP',[20:23],'sigma',0,'neigs',12, ...
'title',false);
```

Listing 3.17: Biharmonic eigenvalues B.V.P. with mixed boundary conditions on a disk with five holes

Figure 3.17: 2D Biharmonic eigenvalues B.V.P. with mixed boundary conditions on a disk with five holes: eigenvalues closest to 1000^2 with their eigenfunctions

Chapter A

Biharmonic BVP

Let $\Omega \subset \mathbb{R}^{\dim}$ and $\Gamma = \partial \Omega$. The biharmonic equation is the fourth-order partial PDE given by

$$\Delta^2 u = f, \quad \text{in } \Omega \tag{A.1}$$

where $\Delta^2 u = \Delta(\Delta u) = \sum_{i=1}^d \sum_{j=1}^d \frac{\partial^4 u}{\partial x_i^2 \partial x_j^2} = \sum_{i=1}^d \frac{\partial^4 u}{\partial x_i^4} + 2 \sum_{i=1}^d \sum_{j=i+1}^d \frac{\partial^4 u}{\partial x_i^2 \partial x_j^2}$ The boundary conditions on Γ can be

• Clamped Plate (CP) or pure Dirichlet type:

$$u = \frac{\partial u}{\partial \boldsymbol{n}} = g \tag{A.2}$$

• Simply Supported Plate (SSP) or Navier type :

$$u = \Delta u = g \tag{A.3}$$

• Pure Hinged Plate (PHP) or Steklov type :

$$u = \Delta u - (1 - \sigma) K \frac{\partial u}{\partial \boldsymbol{n}} = g \tag{A.4}$$

• Cahn-Hilliard (CH) type

$$\frac{\partial u}{\partial n} = \frac{\partial \Delta u}{\partial n} = g \tag{A.5}$$

A.0.1 Link with \mathcal{H} -operator and boundary conditions

Classically the fourth-order PDE (A.1) is converted to the two second-order PDE

$$-\Delta u = v \tag{A.6}$$

$$-\Delta v = f \tag{A.7}$$

A.0

These two equations can be equivalently written as

G

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix} \quad \text{or} \quad \mathcal{K} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ f \end{pmatrix} \tag{A.8}$$

where \mathcal{G} and \mathcal{K} are the \mathcal{H} -operators defined by

$$\mathcal{G} = \begin{pmatrix} 0 & \mathcal{L}_{\mathbb{I},\mathbf{0},\mathbf{0},0} \\ \mathcal{L}_{\mathbb{I},\mathbf{0},\mathbf{0},0} & \mathcal{L}_{\mathbb{O},\mathbf{0},\mathbf{0},-1} \end{pmatrix} \text{ and } \mathcal{K} = \begin{pmatrix} \mathcal{L}_{\mathbb{I},\mathbf{0},\mathbf{0},0} & \mathcal{L}_{\mathbb{O},\mathbf{0},\mathbf{0},-1} \\ \mathcal{L}_{\mathbb{O},\mathbf{0},\mathbf{0},0} & \mathcal{L}_{\mathbb{I},\mathbf{0},\mathbf{0},0} \end{pmatrix}$$
(A.9)

 $\dim =3; d=3; m=3;$

 $\operatorname{Hop}.\mathbf{set}(1, 1, \operatorname{Lop});$

 $\operatorname{Hop}.\mathbf{set}(2, 2, \operatorname{Lop});$

Hop. set(2, 2, Lop2);

The Matlab code using the FC-VFEMP1 toolboxto create the operators \mathcal{G} and \mathcal{K} are respectively given in Listings A.1 and A.2.

dim=3;d=3;m=2; $A=cell(\dim,\dim);$ for $i=1:\dim, A\{i,i\}=1;$ end Lop=fc_vfemp1.Loperator(dim,d,A,[[,[],[]); Gop=fc_vfemp1.Hoperator(dim,d,m); $\operatorname{Gop}.\mathbf{set}(1, 2, \operatorname{Lop});$ $\operatorname{Gop}.\mathbf{set}(2, 1, \operatorname{Lop});$ Lop2=fc_vfemp1.Loperator(dim,d,[],[],[], 1)); $\operatorname{Gop}.\mathbf{set}(1,1,\operatorname{Lop2});$

Listing A.1: ${\mathcal{G}}$ operator with the ${\ensuremath{{\mbox{\tiny FC-VFEMP1}}}\xspace{-vfemp1}$ toolbox

Listing A.2: \mathcal{K} operator with the FC-VFEMP1 toolbox

Lop2=fc_vfemp1.Loperator(dim,d,[],[],[], 1));

A=cell(dim,dim); for $i=1:dim,A\{i,i\}=1;$ end $\begin{array}{l} \text{Lop=fc_vfemp1.Loperator}(\dim, d, A, [], [], []); \\ \text{Hop=Hoperator}(\dim, d, m); \end{array}$

Let $\boldsymbol{w} = (u, v)$. From (A.8), the components of the conormal derivative of \boldsymbol{w} defined in (1.17) are given by

$$\frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{K}_{1}}} \stackrel{\text{def}}{=} \sum_{\beta=1}^{2} \frac{\partial \boldsymbol{w}_{\beta}}{\partial n_{\mathcal{K}_{1,\beta}}} = \sum_{\beta=1}^{2} \left\langle \mathbb{A}^{1,\beta} \boldsymbol{\nabla} \boldsymbol{w}_{\beta}, \boldsymbol{n} \right\rangle - \left\langle \boldsymbol{b}^{1,\beta} \boldsymbol{u}_{\beta}, \boldsymbol{n} \right\rangle \\
= \left\langle \mathbb{I} \boldsymbol{\nabla} \boldsymbol{w}_{1}, \boldsymbol{n} \right\rangle = \left\langle \boldsymbol{\nabla} \boldsymbol{u}, \boldsymbol{n} \right\rangle \\
= \frac{\partial u}{\partial \boldsymbol{n}} = \frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_{2}}}$$
(A.10)

and

$$\frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{K}_{2}}} \stackrel{\text{def}}{=} \sum_{\beta=1}^{2} \frac{\partial \boldsymbol{w}_{\beta}}{\partial n_{\mathcal{K}_{2,\beta}}} = \sum_{\beta=1}^{2} \left\langle \mathbb{A}^{2,\beta} \nabla \boldsymbol{w}_{\beta}, \boldsymbol{n} \right\rangle - \left\langle \boldsymbol{b}^{2,\beta} \boldsymbol{u}_{\beta}, \boldsymbol{n} \right\rangle \\
= \left\langle \mathbb{I} \nabla \boldsymbol{w}_{2}, \boldsymbol{n} \right\rangle = \left\langle \nabla v, \boldsymbol{n} \right\rangle \\
= \frac{\partial v}{\partial \boldsymbol{n}} = \frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_{1}}}$$
(A.11)

From Vector BVP (1.14)-(1.16), using \mathcal{G} operator one can impose the following boundary conditions with $\Gamma^{D}_{\alpha} \cap \Gamma^{R}_{\alpha} = \emptyset, \, \forall \alpha \in [\![1,2]\!],$

$$\boldsymbol{w}_{\alpha} = g_{\alpha}^{D} \qquad \qquad \text{on } \Gamma_{\alpha}^{D}, \; \forall \alpha \in [\![1,2]\!],$$
$$\frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_{\alpha}}} + a_{\alpha}^{R} \boldsymbol{w}_{\alpha} = g_{\alpha}^{R} \qquad \qquad \text{on } \Gamma_{\alpha}^{R}, \; \forall \alpha \in [\![1,2]\!]$$

i.e.

$$\begin{aligned} u &= g_1^D & \text{on } \Gamma_1^D, & v &= g_2^D & \text{on } \Gamma_2^D, \\ \frac{\partial v}{\partial \boldsymbol{n}} &+ a_1^R u &= g_1^R & \text{on } \Gamma_1^R, & \frac{\partial u}{\partial \boldsymbol{n}} &+ a_2^R v &= g_2^R & \text{on } \Gamma_2^R \end{aligned}$$

With \mathcal{K} operator one can impose the following boundary conditions

л

$$\begin{split} \boldsymbol{w}_{\alpha} = g_{\alpha}^{D} & \text{on } \Gamma_{\alpha}^{D}, \; \forall \alpha \in [\![1,2]\!], \\ \frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{K}_{\alpha}}} + a_{\alpha}^{R} \boldsymbol{w}_{\alpha} = g_{\alpha}^{R} & \text{on } \Gamma_{\alpha}^{R}, \; \forall \alpha \in [\![1,2]\!] \end{split}$$

i.e.

$$\begin{split} u = g_1^D & \text{on } \Gamma_1^D, & v = g_2^D & \text{on } \Gamma_2^D, \\ \frac{\partial u}{\partial \boldsymbol{n}} + a_1^R u = g_1^R & \text{on } \Gamma_1^R, & \frac{\partial v}{\partial \boldsymbol{n}} + a_2^R v = g_2^R & \text{on } \Gamma_2^R \end{split}$$

Compiled on Sunday 5th April, 2020 at 13:17

A.0.

8 remark A.1

One can neither impose *clamped plate* (A.2) nor *Pure Hinged Plate* (A.4) boundary conditions with \mathcal{K} operator. This is why thereafter we will only use the \mathcal{G} operator.

In the same way, with the operator \mathcal{G} given in (A.8), the components of the conormal derivative of \boldsymbol{w} defined in (1.17) are given by

$$\frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_{1}}} \stackrel{\text{def}}{=} \sum_{\beta=1}^{2} \frac{\partial \boldsymbol{w}_{\beta}}{\partial n_{\mathcal{G}_{1,\beta}}} = \sum_{\beta=1}^{2} \left\langle \mathbb{A}^{1,\beta} \boldsymbol{\nabla} \boldsymbol{w}_{\beta}, \boldsymbol{n} \right\rangle - \left\langle \boldsymbol{b}^{1,\beta} \boldsymbol{u}_{\beta}, \boldsymbol{n} \right\rangle$$

$$= \left\langle \mathbb{I} \boldsymbol{\nabla} \boldsymbol{w}_{2}, \boldsymbol{n} \right\rangle = \left\langle \boldsymbol{\nabla} v, \boldsymbol{n} \right\rangle$$

$$= \frac{\partial v}{\partial \boldsymbol{n}} \tag{A.12}$$

and

$$\frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_2}} \stackrel{\text{def}}{=} \sum_{\beta=1}^2 \frac{\partial \boldsymbol{w}_\beta}{\partial n_{\mathcal{G}_{2,\beta}}} = \sum_{\beta=1}^2 \left\langle \mathbb{A}^{2,\beta} \boldsymbol{\nabla} \boldsymbol{w}_\beta, \boldsymbol{n} \right\rangle - \left\langle \boldsymbol{b}^{2,\beta} \boldsymbol{u}_\beta, \boldsymbol{n} \right\rangle \\
= \left\langle \mathbb{I} \boldsymbol{\nabla} \boldsymbol{w}_1, \boldsymbol{n} \right\rangle = \left\langle \boldsymbol{\nabla} \boldsymbol{u}, \boldsymbol{n} \right\rangle \\
= \frac{\partial u}{\partial \boldsymbol{n}} \tag{A.13}$$

Let us denotes the two partitions avec the boundary Γ :

$$\mathring{\Gamma}^{D}_{\alpha} \cap \mathring{\Gamma}^{R}_{\alpha} = \emptyset \text{ and } \Gamma^{D}_{\alpha} \cup \Gamma^{R}_{\alpha} = \Gamma, \quad \forall \alpha \in \llbracket 1, 2 \rrbracket$$
(A.14)

From Vector BVP (1.14)-(1.16), using \mathcal{G} operator one can impose the following boundary conditions

$$\boldsymbol{w}_{\alpha} = g_{\alpha}^{D} \qquad \qquad \text{on } \Gamma_{\alpha}^{D}, \ \forall \alpha \in [\![1, 2]\!],$$
$$\frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_{\alpha}}} + a_{\alpha}^{R} \boldsymbol{w}_{\alpha} = g_{\alpha}^{R} \qquad \qquad \text{on } \Gamma_{\alpha}^{R}, \ \forall \alpha \in [\![1, 2]\!]$$

i.e.

$$\begin{aligned} u &= g_1^D & \text{on } \Gamma_1^D, & v &= g_2^D & \text{on } \Gamma_2^D, \\ \frac{\partial v}{\partial \boldsymbol{n}} &+ a_1^R u &= g_1^R & \text{on } \Gamma_1^R, & \frac{\partial u}{\partial \boldsymbol{n}} &+ a_2^R v &= g_2^R & \text{on } \Gamma_2^R, \end{aligned}$$

To resume, we give a generic biharmonic BVP using the operator \mathcal{G} in *Vector* BVP (3) which is equivalent to the generic mixed formulation for the biharmonic BVP given in *Vector* BVP (4)

\$	Vector BVP 3 : generi	or BVP 3 : generic biharmonic BVP with \mathcal{G} operator					
Ĩ	Find $\boldsymbol{w} = (\boldsymbol{w}_1, \boldsymbol{w}_2) \in (\mathrm{H}^2(\Omega))^2$	and $\boldsymbol{w} = (\boldsymbol{w}_1, \boldsymbol{w}_2) \in (\mathrm{H}^2(\Omega))^2$ such that					
	$\mathcal{G}(oldsymbol{w}) = egin{pmatrix} f \ 0 \end{pmatrix}$	in Ω ,			(A.15)		
	$oldsymbol{w}_1=\!g_1^D$	on Γ_1^D ,	$oldsymbol{w}_2=\!g_2^D$	on Γ_2^D ,	(A.16)		
	$\frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_1}} + a_1^R \boldsymbol{w}_1 = g_1^R$	on Γ_1^R ,	$\frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_2}} + a_2^R \boldsymbol{w}_2 = g_2^R$	on Γ_2^R .	(A.17)		

5	Vector BVP 4 : generic mixed	formulatio	on for the biharm	nonic BV	Ρ
Find $\boldsymbol{w} = (u, v) \in (\mathrm{H}^2(\Omega))^2$ such that					
	$\begin{pmatrix} 0 & \mathcal{L}_{\mathbb{I},0,0,0} \\ \mathcal{L}_{\mathbb{I},0,0,0} & \mathcal{L}_{\mathbb{O},0,0,-1} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}$	in Ω ,			(A.18)
	$u = g_1^D$	on Γ_1^D ,	$v = g_2^D$	on Γ_2^D ,	(A.19)
	$\frac{\partial v}{\partial \boldsymbol{n}} + a_1^R u = g_1^R$	on Γ_1^R ,	$\frac{\partial u}{\partial \pmb{n}} + a_2^R v = g_2^R$	on Γ_2^R .	(A.20)

It's very easy to write (A.15) (or (A.18)) from the generic formulation of the biharmonic BVP with \mathcal{G} operator with the FC-VFEMP1 toolbox: the source code is given in Listing A.3 where Th is a given fc_vfemp1.siMesh object and f a given Matlab function or scalar.

```
dim=2;d=2;m=2;
Lop=fc_vfemp1.Loperator(dim,d,{1,0;0,1},[],[],[]);
Gop=fc_vfemp1.Hoperator(dim,d,m);
Gop.set(1,2,Lop);
Gop.set(2,1,Lop);
Lop2=fc_vfemp1.Loperator(dim,d,[],[],[],1));
Gop.set(1,1,Lop2);
pde=fc_vfemp1.PDE(Gop,{f,0})
bvp=fc_vfemp1BVP(Th,pde)
```

Listing A.3: Writing the $\mathcal{G}(\boldsymbol{w}) = \begin{pmatrix} f \\ 0 \end{pmatrix}$ with the FC-VFEMP1 package

🔒 remark A.2

By default the boundary conditions of a fc_vfemp1.BVP object are set to homogeneous Neumann so we have

$$\frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_1}} = \frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_2}} = 0 \quad \Leftrightarrow \quad \frac{\partial v}{\partial \boldsymbol{n}} = \frac{\partial u}{\partial \boldsymbol{n}} = 0$$

which is the homogeneous Cahn-Hilliard boundary condition.

Now we will see in the next sections how to set the **Clamped Plate** (CP), **Simply Supported Plate** (CP) and **Cahn-Hilliard** (CH) boundary conditions.

A.1

Some boundary conditions

Let $\Gamma_{lab} \subset \Gamma$. We want to set one of the following boundary conditions on Γ_{lab} :

• Clamped Plate (CP) or pure Dirichlet type:

$$u = g_a \text{ and } \frac{\partial u}{\partial \boldsymbol{n}} = g_b \text{ on } \Gamma_{\text{lab}}$$
 (A.21)

• Simply Supported Plate (SSP) or Navier type :

$$u = g_a \text{ and } \Delta u = -g_b \text{ on } \Gamma_{\text{lab}}$$
 (A.22)

• Cahn-Hilliard (CH) type

$$\frac{\partial u}{\partial n} = g_a \text{ and } \frac{\partial \Delta u}{\partial n} = -g_b \text{ on } \Gamma_{\text{lab}}$$
 (A.23)

Now we will see how to rewrite theses boundary conditions as those in *Vector* BVP 4, equations (A.19)-(A.20), and *Vector* BVP 3, equations (A.16)-(A.17).

A.1.1 Clamped Plate boundary condition

From (A.19) and (A.20), we deduce that (A.21) imposes

$$u = g_a \text{ on } \Gamma_{\text{lab}} \subset \Gamma_1^D \text{ and } \frac{\partial u}{\partial \boldsymbol{n}} = g_b \text{ on } \Gamma_{\text{lab}} \subset \Gamma_2^R$$

So with \mathcal{G} operator and with $\boldsymbol{w} = (u, v)$ we obtain

$$w_1 = g_a \text{ on } \Gamma_{\text{lab}} \subset \Gamma_1^D \text{ and } \frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_2}} = g_b \text{ on } \Gamma_{\text{lab}} \subset \Gamma_2^R$$

Let byp be the fc_vfemp1.BVP object build in Listing A.3. We want to set this object with the (CP) boundary condition. To set the dirichlet condition on first component $w_1 = g_a$ on Γ_{lab} , we can use the setDirichlet method of the fc_vfemp1.BVP object:

bvp.setDirichlet (lab,ga,1)

To set the Neumann condition on second component $\frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_2}} = g_b$ we can use the setRobin method of the fc vfemp1.BVP object:

bvp.setRobin(lab,gb,2)

A.1.2 Simply Supported Plate boundary condition

From (A.19) and (A.20), we deduce that (A.22) imposes

$$u = g_a$$
 on $\Gamma_{\text{lab}} \subset \Gamma_1^D$ and $v = g_b$ on $\Gamma_{\text{lab}} \subset \Gamma_2^D$

So with \mathcal{G} operator and with $\boldsymbol{w} = (u, v)$ we obtain

$$w_1 = g_a$$
 on $\Gamma_{\text{lab}} \subset \Gamma_1^D$ and $w_2 = g_b$ on $\Gamma_{\text{lab}} \subset \Gamma_2^D$

Let byp be the fc_vfemp1.BVP object build in Listing A.3. We want to set this object with the (SSP) boundary condition. To set the dirichlet conditions, we can use the setDirichlet method of the fc_vfemp1.BVP object:

bvp.setDirichlet (lab,ga,1) bvp.setDirichlet (lab,gb,2)

or

bvp.setDirichlet (lab,[ga,gb])

A.1.3 Cahn-Hilliard boundary condition

From (A.19) and (A.20), we deduce that (A.23) imposes

$$\frac{\partial v}{\partial n} = g_b \text{ on } \Gamma_{\text{lab}} \subset \Gamma_1^R \text{ and } \frac{\partial u}{\partial \boldsymbol{n}} = g_a \text{ on } \Gamma_{\text{lab}} \subset \Gamma_2^R$$

where $v = -\Delta u$.

So with \mathcal{G} operator and with $\boldsymbol{w} = (u, v)$ we obtain

$$\frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_1}} = g_b \text{ on } \Gamma_{\text{lab}} \subset \Gamma_1^R \text{ and } \frac{\partial \boldsymbol{w}}{\partial n_{\mathcal{G}_2}} = g_a \text{ on } \Gamma_{\text{lab}} \subset \Gamma_2^R$$

Let byp be the fc_vfemp1.BVP object build in Listing A.3. We want to set this object with the (CH) boundary condition. To set the Neumann conditions, we can use the setRobin method of the fc_vfemp1.BVP object:

bvp.setRobin(lab,gb,[],1) bvp.setRobin(lab,ga,[],2)

or more concisely

 $bvp.setRobin(lab, \{gb, ga\})$

Bibliography

- F. Cuvelier and G. Scarella. A generic way to solve partial differential equations by the P₁-Lagrange finite element method in vector languages. https://www.math.univ-paris13.fr/~cuvelier/ software/docs/Recherch/VecFEM/distrib/0.1b1/vecFEMP1_report-0.1b1.pdf, 2015.
- [2] G. Dhatt, E. Lefrançois, and G. Touzot. Finite Element Method. Wiley, 2012.
- [3] L. Fox, P. Henrici, and C. Moler. Approximations and bounds for eigenvalues of elliptic operators. SIAM Journal on Numerical Analysis, 4(1):89–102, 1967.
- [4] J. M. Gedicke. On the Numerical Analysis of Eigenvalue Problems. PhD thesis, University of Berlin, 2013.
- [5] D. S. Grebenkov and B.-T. Nguyen. Geometrical structure of laplacian eigenfunctions. SIAM Review, 55(4):601-667, jan 2013.
- [6] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations, volume 23 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1994.
- [7] L. N. Trefethen and T. Betcke. Computed eigenmodes of planar regions. Manchester Institute for Mathematical Sciences School of Mathematics, 2006.
- [8] Quan Yuan and Zhiqing He. Bounds to eigenvalues of the laplacian on l-shaped domain by variational methods. Journal of Computational and Applied Mathematics, 233(4):1083 – 1090, 2009.

Informations for git maintainers of the $even \mathbb{P}_1$ -eigs Matlab toolbox

	git	informations o	n the toolboxes use	ed to build this manu
Addon eigs of	the fc-vfemp1 package			
name : eigs tag : 0.1.2 commit : f5c2a3	5cf4268ca3727ba459f81430	5344113d0b		
date : 2020-04 time : 10-10- status : 0	1-05 14			
name : fc-vfe tag : 0.2.2 commit : 881e3d	np1 f2cc277b3bd9db00e91b9fd4	5fc4e341d3		
date : 2020-0 time : 13-27-3	4-04 22			
status : 0				
Packages used	by the fc-vfemp1 package			
name : fc-too	 ls			
tag : 0.0.32				
date : 2020-0	a386933d564cic0/ee542860 4-01	5418c4ba/e		
time : 16-02-	26			
status : O				
name : fc-ben				
tag : 0.1.2				
commit : 666dc6	0d1277f5fa9c99dee4ae1c33	270f22c57d		
time : 06-38-	2-16 46			
status : O				
name : fc hum				
tag : 1.0.3	ermesn			
commit : c520b3	4cfd7eb0dbf9e4ecd459fd71	62db73cc58		
date : 2020-0	2-16			
status : 0	15			
<pre>name : ic-ama tag : 0.1.2</pre>	t			
ommit : 957340	f6e71d805dbd8b9d04c434b2	4fd3f92591		
date : 2020-0	2-16			
status : 0	12			
tag : 0.1.3	ntools			
commit : cdbc41	bc98af4e4faccc1746024ace	d1f21aae53		
date : 2020-0	2-17			
status : 0	00			
name : fc-graj	phics4mesh			
commit : Obc57d	a35958c469ac43b56f559682	33d720206c		
date : 2020-0	4-01			
time : 07-22-0 status : 0	J6			
name : fc-oog	nsh			
commit : 5da0f9	3c4701b185dda7da047d015d	daa8119026		
date : 2020-0	3-20			
time : 08-15- status : 0	11			
name : fc-sip	lt			
tag : 0.2.3 commit : 3c9ef4	a46d80d7898360b18e1db7e7	95fbae44d3		
date : 2020-04	1-03			
time : 15-44-3	34			
status : 0 				
name : fc-sim	esh			
tag : 0.4.3	1/07/f26022094f796bE792-	83/0/54122		
date : 2020-0	170,41a0eaaeou1/2000/23e 1-04	0049401103		
time : 14-10-	57			
status : 0				

A.BIBLIOGRAPHY A.1.3 CAHN-HILLIARD BOUNDARY CONDITION

Compiled on Sunday 5^{th} April, 2020 at 13:17

git informations on the ${\rm I\!AT}_{\rm E}\!X$ package used to build this manual

name : fctools
tag :
commit : c6841f9838937ffe0b2a21ec7162efcc615774e3
date : 2020-04-03
time : 10:06:02
status : 1

Using the remote configuration repository:

url ssh://lagagit/MCS/Cuvelier/Matlab/fc-config commit 8e7bd91a47e41e84824fb78be23d01004931a1fc